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Abstract: While there do exist several statistical tests for detecting zero-modification
in count data regression models, these rely on asymptotical results and do not trans-
parently distinguish between zero—inflation and zero-deflation. In this manuscript, a
novel non—asymptotic test is introduced which makes direct use of the fact that the
distribution of the number of zeros under the null hypothesis of no zero-modification
can be described by a Poisson—binomial distribution. The computation of critical val-
ues from this distribution requires estimation of the mean parameter under the null
hypothesis, for which a hybrid estimator involving a zero—truncated mean estimator
is proposed. Power and nominal level attainment rates of the new test are studied,

which turn out to be very competitive to those of the likelihood ratio test. Illustrative
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data examples are provided.
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1 Introduction

There are many reasons why one would observe (or suspect) that the number of zeros
in a given count data set is unusually large or unusually small. These reasons can be
roughly classified into two major categories: (i) Bias arising from the data collection
procedure (ii) Structural zeros due to an underlying physical reason. To give an
example for (i), we cite Dietz and Bohning (2000) who modelled zero-deflated DMFT
index data from a dental epidemiological study previously published by Mendonca

(1995). Specifically, the DMFT index quantifies the dental status of an individual
through a count of “Decayed, Missing and Filled Teeth”, and it was noted that an
“incorrect sampling procedure” had led to the non-inclusion of some children whose

Score was zero.

An example for (ii) is illustrated through the two data sets displayed in Table 1, which
report results from laboratory (in vitro) experiments where frequencies of chromosome
aberrations were counted after exposing blood samples to 200 kV X-rays (Heimers et
al., 2006). To be more precise, blood (from healthy volunteers) was mixed and then di-
vided into five parts, with each part getting exposed to one of the doses 1Gy, ..., 5Gy.
The radiation exposure may lead to double-strand breaks, which, when incorrectly

repaired by the DNA-damage response mechanism, can produce dicentric chromo-
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somes (that is, chromosomes with two centromeres) or centric rings, which can be
counted under a microscope. While Table 1 (left) is representing data collected under
a ‘whole-body—exposure’ scenario, Table 1 (right) represents a partial exposure sce-
nario in which 25% exposed blood was mixed with 75% unexposed blood. It is clear
that the three quarters of blood which have not been exposed to radiation will con-
tribute very little chromosome aberrations (there does exist a background prevalence
of such aberrations, for instance caused by naturally occurring ionizing radiation, but
this rate is very low). Hence, one naturally would assume many ‘structural’ zeros in

this data set, as is indeed observed.

Such considerations lead to the question of what it actually means to speak of ‘too
few’ or ‘too many’ zeros. Usually this notion is related to a specific statistical model.
For instance, in the field of radiation biodosimetry, the model of choice has been
traditionally the Poisson model, based on solid physical arguments and empirical
evidence. If the number of zeros is too large or too small relative to what would be
expected under the assumed model, be it due to bias or for structural reasons, the
Poisson model will fit poorly. A possible solution to the problem is to resort to a more
complex model. In the case of partial body radiation exposure, a zero—inflated model
appears to be a natural choice, though a plethora of alternative models including the
negative binomial distribution and Hermite models have been suggested for this kind

of data (Oliveira et al., 2016).

But, taking the decision aside on which alternative model to choose, it remains the
immediate question of whether or not there is evidence for deflation or inflation of
zeros relative to the baseline model. While this seems quite likely in Table 1, where

the right hand table features much more zeros (and far fewer ones) than the left
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Table 1: Number of chromosome aberrations in blood samples exposed to sparsely
ionizing radiation. Left: whole body exposure scenario; right: partial body exposure

scenario. These data sets have been labelled (A3) and (C1) in Oliveira et al. (2016).

(A3) frequency (C1) frequency

dose O 1 2 3 4 5 6 7 dose O 1 2 3 4 5 6 7 8

1 1715 268 15 2 0 0 0 O 1 27113 78 8 0 1 0 0 0 O
2 638 298 56 8 0 0 0 O 2 1302 71 22 5 0 0 0 0 O
3 247 225 8 37 6 0 0 O 3 1116 46 28 7 2 1 0 0 O
4 99 129 92 52 21 5 2 O 4 929 18 14 22 13 2 0 1 1

5 48 8 97 99 36 25 5 2 5 726 17 18 12 9 13 1 4 O

hand table, this question would be much harder to assess if we hadn’t seen the left
hand side table. Hence, there is a need for quantitative methods which, relative
to a given model, help to decide whether zero—inflation or deflation exists. The
terms zero—inflation and zero—deflation have sometimes been combined towards zero—
modification, meaning that there are either too few or too many zeros in the data,

relative to the specified count data model. We follow this convention henceforth.

Of course, such methods do exist, in principle, already in the statistician’s toolbox,
with the most prominent representative being the likelihood ratio test, which we will
outline in detail in Section 2.2. Also score (Rao) and Wald tests are available for this
purpose. While these tests are all viable, they rely upon asymptotic results and hence
implicitly on large samples, and they do, in their standard form, not transparently
distinguish between zero—inflation and zero—deflation (at least not without proper
adjustment, which will be unknown to many applied users). It should also be noted
that, whilst Vuong’s test for non-nested models has recently become popular as a test

for zero—inflation, Wilson (2015) shows such use to be methodologically erroneous.
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We propose here a new and intuitive test of zero-modification that avoids such issues
elegantly and which possesses similar attainment rates and power to previous tests.
The proposed test relates more directly to the character of zero-modification than
the other tests: the test will employ the number of zeros in the data as the test
statistic, and tests whether this number is consistent with the non zero—modified
model. We will demonstrate that this statistic, under the null hypothesis of no zero—
modification, follows a Poisson—binomial distribution, based on which critical values

can be obtained.

The rest of the paper develops as follows. Section 2 will introduce the test problem,
and review the likelihood ratio test in this context. Section 3 will introduce our new
test of zero-modification. Section 4 will discuss the important question of how to
robustly estimate the Poisson mean parameter (which is needed for the computation
of our test statistic) in the absence of the knowledge of whether or not the Poisson
assumption is correct. Section 5 provides real data examples with and without co-
variates, including a detailed study of the chromosome aberration data. Section 6

provides concluding remarks.

2 Testing for zero-modification

2.1 Hypotheses

To fix terms, denote y = {y1,¥2,...,yn} an independent sample drawn from count
random variables Y7, ...,Y,. We denote further the mean of y by 7, and the number

of zeros in y by ng, which can be considered as a realization of the random variable
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The question of interest is whether the distribution of the Y; is zero-modified with
respect to a given count distribution F'(y;|u;, ¢) with densities p(y;|u;, ¢), where the
mean parameter y; may depend on a set of covariates x; € R?, i = 1,...,n in some
pre—specified form, and ¢ captures further model parameters such as shape or scale
parameters of F. (In principle ¢ could be modelled by further covariates though for
ease of presentation we assume that this is not the case.) That is, we assume that
g(p;) = ¥ B with some monotonic and known link function g, and model parameters
B € R which will have to be estimated. While the new test procedure is applicable to
test for zero—modification w.r.t any baseline count distribution, in this work the most
important application will be the Poisson distribution, in which case u; corresponds

just to the Poisson parameter, and ¢ is empty.

Expressing the general framework above in other words, we wish to establish whether
the distributional assumption Y;|x; ~ F(y;|ui, @) is consistent with the number of
zeros observed. It is clear that both the count distribution F' and the predictor
specification for p; impact on the model fit. We consider our test as a tool to asses
the adequacy of F' given the specification of p;, but not as a tool to simultaneously
assess F' and p;. Hence, we use F' in what follows as short hand notation for the

entire model specification, that is we identify notationally F' = F(y;|u:, ¢).
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We formulate the null hypotheses and three possible alternatives as follows:

Hy : The distribution of Y;|x; follows the specified count data model F.
Hfa) . The distribution of Y;|x; is zero-modified w.r.t count data model F.
H 1(b) : The distribution of Y;|x; is zero—inflated w.r.t count data model F'.
H fc) . The distribution of Y;|x; is zero—deflated w.r.t count data model F'.

(2.1)

Notably, our approach will not require fitting the model under the alternative, which
is a property shared with the score test but not with the Wald test and the likelihood
ratio test. The latter procedure, which can be considered as the most prominent

among the three asymptotic sister tests, is briefly reviewed below.
2.2 Likelihood ratio tests

Likelihood ratio tests are usually employed to determine whether a larger model fits
significantly better than a competing smaller (or ‘restricted’) model that is nested
within it (though some variants for non—nested models have also been proposed, see
for example Cox (1962) and Vuong (1989)). In the case of testing for zero-inflation,

the larger model takes the shape

p(Wilp, ¢, w) = (1 — w)p(yilpi, @) + wp(ys, 0) (2.2)

where w > 0 is the zero-inflation parameter, p(y;|u;, ¢) is some base density (corre-
sponding to the restricted model) such as Poisson or Negative binomial, and p(y;, 0)
is a point mass at 0, that is p(y;, 0) = 14y,—0}. The test problem of zero-inflation can
then be stated as

Hy: w=0 versus H : w>0.
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For nested models where the smaller model does not sit on the boundary of the
parameter space of the larger model, it is well known that the distribution of the
LR test statistic (under the restricted model, corresponding to the null hypothesis)
follows a 2 distribution, with the degrees of freedom being equal to the number of
parameters by which the two models differ. However, when testing for zero—inflation
then we are precisely in a scenario where the restricted model, for w = 0, does sit on
that boundary. Molenberghs and Verbeke (2007) showed that the resulting LR test
statistic

o= [t(8".6.0) ~ ¢ (8,6:5)] 23
where ((3, ¢, w) = D1 log p(yi| i, ¢, w), with p; = g~ (! B3), and the superscript (r)
indicating that all model parameters have been estimated under the restriction w = 0,
follows an equal mixture of a xZ (i.e. a point mass at zero) and a x? distribution.
Table 2 compares the theoretical 95%, 98% and 99% quantiles of such a distribution
with the estimates of those quantiles of the distribution of the log—likelihood ratios
(based upon 10000 resamples) when zero—inflated Poisson and Poisson models are
fitted to samples of sizes 1000, 40 and 20 drawn from Poisson data with parameters
=2, u=08and p = 0.5 respectively. As is apparent, even for relatively large

sample sizes and Poisson means, the approximation is somewhat poor.

While model (2.2) was originally only thought as a ‘zero-inflated’ model, it actually
allows for zero—deflation. In the particular case of zero—modified Poisson (ZMP),
where p(y;|pi) = e *iu? /y;!, one can show that the density is still well-defined for all
w > ——~—. The test problem of zero-modification can then be stated as

T eti—1"

Hy: w=0 versus Hi: w#0.

and in this case the asymptotic distribution reverts to x2. However, note that espe-
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Table 2: Observed quantiles of the distribution of the log-likelihood ratios ZIP versus

Pois(u) and the theoretical quantiles under a 0.5x3 + 0.5x% distribution

quantiles

nou 9%  98%  99%

1000 2.0 2.592 4.099 5.461
40 0.8 2340 3.758 5.082
20 0.5 2235 4.415 4.785

theoretical 2.706 4.218 5.412

cially (but not only) in the presence of covariates, often a monotonic link function
r is applied, with common choices being the complementary log—log (cloglog) link
r(w) = log(—log(1l — w)) or the logit link, r(w) = log (w/(1 — w)). Notably, the use
of a logit or cloglog link excludes the detection of zero—deflation since they imply the
restriction w > 0. Hence, if zero-deflation is to be detected then the identity link
r(w) = w is the best choice. It is finally noted, that, even though the likelihood ratio
test can be used to test for any of zero—inflation, zero—deflation, or zero-modification
in principle, the LR test statistic (2.3) as such is uninformative for the direction of

the modification.

3 The proposed test

3.1 Distribution of test statistic

Assume Hy is true and hence F' = F(y;|p;, @) is the correct model, with density

p(Yilpi, #). Let p; = p(0|w;, @) (that is, in the Poisson case, p; = e #i), and T; a
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random variable which takes the value 1 if Y; = 0 and 0 otherwise. Clearly, T; is a
Bernoulli random variable with parameter p;, and so the random variable Ny, which
serves as test statistic, can be formulated as the sum over independent Bernoulli

experiments 17, ...,7,.

Based on this simple observation, consider the special case that there are no covariates,
that is u; = o = --- = p, = p. In this case, the p;’s are equal also, and so the
distribution of Ny is the binomial distribution Bin(n,p), and thus has mean np and
variance np(1—p). Based on this distribution, one can immediately compute quantiles
corresponding to a given significance level, and use these as critical values for the test;

see Section 3.2.

The situation is more interesting when p; does depend on covariates x;, that is
wi = g~ (xI'B), and hence the p;’s are not all equal. The distribution of a sum
of Bernoulli distributions with different success probabilities is known as a Poisson—

binomial distribution (Chen and Liu, 1997), with probability mass function

P(Ny=k) = {H(l —pi)} Z Wy, Wy,

i=1 i< <ig

where w; = 12;, 1=1,2,...,n, and the summation is over all possible combinations
1

of distinct 41,14, . ..,4 from {1,2,...,n}.

Note that this is not a compound Poisson—binomial distribution. Daskalakis et al.
(2012) remark that “It is believed that Poisson (1837) was the first to consider this
extension of the binomial distribution, and the distribution is sometimes referred to

as ‘Poisson’s binomial distribution’ ”.

The R package poibin (Hong, 2013b) implements both exact and approximate meth-

ods for computing the cumulative distribution function of the Poisson—binomial dis-
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tribution based upon algorithms presented by Hong (2013). It also provides the
probability mass function, quantile function and random number generation for the
Poisson—binomial distribution. Four options for the model fitting algorithms are avail-

able in poibin, throughout this paper we use the default DFT-CF algorithm.
3.2 Test procedure

To carry out the actual test, specify a significance level «, and decide for one of the
test scenarios (a), (b) or (c) as given in (2.1). Denote by n. an appropriate y—quantile
of the Poisson-binomial distribution of Ny (to be discussed below). The test consists

of carrying out the following procedure:

(i) Fit the relevant count data regression model to the data, yielding means

=g (x] B), (3.1)
and, if relevant, further distributional parameters qAb;

(ii) for each y; estimate p; = p(0|i, ¢);

(iii) use a Poisson—binomial distribution with parameters (p1,...,p,) to determine
the distribution of Ny. [This reduces to the binomial distribution Bin(n,p) in

the absence of covariates, where p=p; = -+ = py.|
(iv) Depending on the chosen alternative, do one of the following

(a) Reject Hy in favour of Hfa) if ng < naje Or Ng > Ni_q/.
(b) Reject Hy in favour of Hfb) if ng > ny_q.

(c) Reject Hy in favour of H\? if ng < nq.

11
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Otherwise, one fails to reject H.

For the use in our test, appropriate quantiles, or, equivalently, p—values, need to be ex-
tracted from the relevant Poisson-binomial distribution. For instance, for test problem
(b), the customarily defined quantile and p-value are given by ny_, = min{ P(Ny <
t) > 1—a} and p*(t) = P[Ny > t], respectively. However, it has been argued in the
literature that these quantities behave unfavourably for discrete distributions, both
from a theoretical and practical viewpoint (Ma et al., 2011; Franck, 1986). The latter
reference strongly advocates the use of the mid-p-value, drawing on previous research
by Lancaster (1961), Dempster and Schatzoff (1965) and Stone (1969). Specifically,

for a given value t of the test statistic Ny, the mid—p—value is given by

Py5(t) = P[Ng > t] +0.5P[Ny =t] = 0.5 (P [Ny > t] + P[Ny >t +1]), (3.2)

and, under the null hypothesis, enjoys the property that E(p§-(No)) = 0.5 unlike for
the customarily defined p—value for which this expectation may range between 1/2

and 1 for discrete distributions (Franck, 1986).

Following similar lines of reasoning, one can motivate and define the mid—quantile (Ma
et al., 2011); the mathematical definition of which is a bit lengthy and is therefore
omitted here. For a precise formulation, in the context of the test under study, see
Wilson and Einbeck (2017). For all application studies to be carried out in Section 5,
we will employ mid-p-values and mid—quantiles. We refer to the interval [n4/2, n1_q/2]

as a 1 — o mid—quantile interval (MQI) for Nj.
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4 Estimating the Poisson parameter

A key component of our test which has not been discussed in detail yet is how to
estimate the mean function (3.1) in step (i) of the test introduced in Subsection 3.2.
The reader may be surprised that there is an issue at this stage — the problem is that
we need to estimate a Poisson mean parameter in the absence of the knowledge of
whether this Poisson assumption is correct, that is whether there is zero—modification
or not. For a given sample y = {y1, ¥, - . ., Y } without covariates, the ‘obvious’ choice
under the Poisson assumption would be the ‘whole sample mean’ fiwy = ¢, which cor-
responds to the maximum likelihood estimator, and is unbiased for . However, as we
will demonstrate in Subsection 4.2, this estimate may lead to a severe underestima-
tion of u if the data is in fact zero-inflated, or an overestimation if the data is in fact
zero—deflated. We therefore consider in Section 4.1 an alternative mean estimator,
based on the zero—truncated distribution, which resolves this problem at the expense
of an increased variance. A hybrid version of the two estimators is introduced in Sub-
section 4.3 and its properties in terms of the test under consideration are analyzed in
Subsection 4.4. For ease of presentation, all considerations in Subsections 4.1 to 4.4
are provided in the case without covariates. The required adaptations when including

covariates are discussed in Subsection 4.5.

4.1 Estimation through zero—truncated distribution

As before we denote by ng the number of zero—valued observations in y. When the

latter is Poisson, then the distribution of the n — ng non—zero observations will follow

13
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a zero—truncated Poisson distribution Z ~ ZT P(u) with probability mass function

z

1

pr(zlp) = (e —1)2! (4.1)
for 2 =1,2,3,.... It is well known that
¢=B(z) = 7 = s (4.2
et —1
and hence
p=s"1(0) (4.3)

Irwin (1959) gives an explicit expression for s~1(¢) involving a Lagrange series ex-
pansion, this is sometimes slow to converge and not conveniently implementable.
Plackett (1953) shows that p can be estimated without bias through the expression
> 2 Yi/ (n—np). Ridout and Demétrio (1992) show that a very accurate estimate

of ;4 may be obtained using

~

. ¢ [1 — exp (—51(5)>]2 - [Sl(é)r exp [—51(5)] (0.4
. 1= [s1() + 1] exp [-s:(0) |

where
. 1 .
a0 = 1-em (3 -0)) (45)
and C is the mean of the positive observed data. We use estimator (4.4) in what

follows.
4.2 Bias and precision of estimators

For Y; ~ Pois(p), it is important to recognise that whilst, unconditionally, iy is an
unbiased estimator of pu, this is not the case when conditioning on the number of

observed zeros, ng. With Ny as defined in Subsection 2.1, and assuming w.l.o.g. that
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the first observations Y, ..., Y,,_,, give the non—zero results, one has from (4.2)

n—ng
1

E (iw|No =no) = — Y E(Yi[Y; > 0)

n <
=1

n—mngy pet

n et —1

g et
- (1- —) " 46
< n/ et —1 H ( )

If we substitute ne™* (i.e. E(Ny)) for ng in (4.6) the right-hand side reduces to p,
and hence if ng > E(Ny) the Poisson parameter tends to be underestimated, and if
ny < E(Np) it tends to be overestimated. It is worth noting that the derivation of
(4.6) remains valid when allowing for zero-modification (that is when assuming the

Poisson assumption to hold only for the non-zero part).

In contrast, the estimator fit of (4.3) does not incur bias when conditioning on ny,
since the number of zeros is not involved in its calculation. However, it is less precise
than fiyy. This is illustrated in Figure 1 which shows the estimates of the Poisson
means obtained when n = 100 observations are sampled from a Pois(1) distribution.
The black circles indicate whole sample mean (Poisson) estimates jiw, and the grey
crosses the estimates it obtained from the positive observations. The horizontal axis
gives the number of zeros, ng, with the expected number of zeros under the Poisson
model, 100e™! ~ 37, highlighted by a dotted line. It is clear that the whole sample
mean estimator has smaller variance but is biased if the observed number of zeros is
far from their expected number. On the other hand, the ZTP-derived mean estimator

does not demonstrate a noticeable bias, at the expense of a large variance.

The unsuitability of using either jfiw or fir in our test problem is shown by Figure
2. The left hand diagram illustrates the attainment of the test for Hy vs H 1(a) with a

nominal significance level of 0.05 for sample of size n = 500 using fiw, and the right

15
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Figure 1: Estimation from the zero—truncated and whole sample
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Figure 2: Attainment rate using fiw and fir
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hand diagram using . Clearly, even for such a sample size, neither estimator is

suitable.

4.3 A hybrid estimator

We propose here a hybrid estimator for the Poisson parameter, u, that balances the

precision of jiw with the accuracy of fir:

i = hjw + (1 —R)ar  0<h <L (4.7)
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Iterative schemes which alternately optimize h (in terms of MSE) and update jig
were considered, but found rather unsuitable since the additional variance created
in this process defeats the purpose of the hybrid estimator. Instead, we give the
following, simpler, recommendations based on simulation studies which are presented
in summarized form in Figure 3. It is apparent that for larger mean parameter values

the value of A is less critical than for smaller values, and that

(i) h=2/3

returns a parameter estimate that results in good power and attainment of the nom-
inal level of significance for all values of the Poisson parameter. Based on compre-
hensive simulations which we have carried out but do not present in detail, we also
suggest an ‘adaptive’ selection method for h, that results in slightly improved power

and attainment, namely

(i)

0.7 (0.854w) v < T

h=f(pw) = (48)

% otherwise,

the rationale for which being that smaller mean parameters will lead to many zeros

and thus few positive observations, hence the weight of the truncated estimator should

In(5/7)

decrease in this case. (The constant Tn(17/20)

~ 2.07 is chosen so that f is continuous).
Detailed study of the performance of schemes (i) and (ii), for one-sided and two-sided

tests, is provided as follows.

17
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Figure 3: Left: observed attainment under various values of h; right: observed power

for h = 2/3.
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4.4 Attainment and power of the proposed test

In a simulation study, the nominal level attainment of the proposed tests was studied
under a nominal 0.05 level of significance and sample sizes of 500, 100 and 30. Figure
4 shows the attainment rates as a function of the true Poisson parameter ;o for both
schemes, ‘fixed’” and ‘adaptive’, with the corresponding rates for the likelihood ratio
test shown for comparative purposes. Results for both a two tailed test of zero—
modification (alternative hypothesis H fa)) and a one tailed test of zero—inflation (H fb))

are presented. It is apparent that, for both test scenarios, both the fixed and adaptive

mixing parameters have excellent attainment rates, the latter especially so.

Figures 5 and 6 show the power of the proposed zero-modification and zero-inflation
tests, respectively, for sample sizes of 500, 100 and 30 and Poisson parameters of 0.5,

1 and 2. The power of the likelihood ratio test is shown for comparative purposes. It
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is observed that, under both test scenarios, the adaptive and fixed mixing parameters
lead to tests with nearly identical powers which are either extremely similar to that
of the likelihood ratio test, or greater. The relatively weaker power of the LR test
becomes more pronounced for small Poisson parameters and sample sizes, noting
however that for very small sample sizes the comparison becomes difficult since then

all attainment curves behave rather erratically (Figure 4 bottom).

Concerning the execution of the simulation, in the right-hand side diagrams of Figure
4 and the diagrams of Figure 6, which pertain to the one-sided version of the test,
the competing models of the likelihood ratio test are a Poisson model, where p is
modelled by a log link, and a zero—inflated Poisson model, where 1 is modelled by a
log link and w by a logit link. For the estimates p; = p (0|fi;) = e " required for the
proposed test, the estimate of u also uses a log link. In the left-hand side diagrams
of Figure 4 and the diagrams of Figure 5, which pertain to the two-sided version
of the test, the competing models of the likelihood ratio test are a Poisson model,
where p is modelled by an identity link, and a zero-modified Poisson model, where
both i and w are modelled by an identity link, and the estimates of p required for
the proposed test are also derived using identity links. Depending upon the value
of the Poisson parameter and the sample size either 5000 or 25000 resamples were
used to determine the rejection rates. It is further noted that where power curves
appear incomplete (such as Figure 6 bottom left), the configuration of parameters led
to occasional samples which consisted almost entirely of zeros, and hence could not

be reliably fitted within the framework of a simulation study.

19
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Figure 4: Attainment rate under hybrid estimator. Left: alternative H 1(a); right:
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Figure 5: Power
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under hybrid estimators (test of zero-modification; H 1(a))
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Figure 6: Power under hybrid estimators (test of zero—inflation; Hl(b))
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4.5 Mean function estimation in the presence of covariates

In this case, the hybrid version of the estimated mean for case ¢ may be obtained
by computing fitted values under a Poisson model (say, fi;w) and a zero-truncated
Poisson model (fi; ), respectively, and then applying the hybrid technique (4.7) on
the respective pairs of fitted values. The fitted values from the ZTP model can be
obtained using statistical software such as the R-package VGAM (Yee, 2010). [Of
course, this methodology could also be applied in the absence of covariates, in which
case the fitted values will all be equal.] Denoting by fi; g the resulting hybrid mean
estimates, this implies that for scheme (i) one simply has

R 2 1, )
i = g,uz',w + g#i,% 1=1,...,n, (4.9)

whereas for scheme (ii), an adaptive choice of h is obtained via h; = f(fi;w), yielding

the case-wise hybrid rule

L = hiftiw + (1 — hg)fii . (4.10)

Figure 7 illustrates the power and attainment of the proposed test in comparison to
the LR test in the presence of covariates. The left hand diagram displays the powers
obtained when n = 50 observations are simulated from a zero-modified Poisson model,
with zero modification parameter w (on the horizontal axis) and Poisson parameter
of the form x; 4+ 0.5, where x; is a random draw of 50 observations from a uniform
distribution on the interval (0.5,1.0). The right hand diagram illustrates the powers
obtained when n = 100 observations are simulated from a zero—modified Poisson
model with Poisson parameter of the form w; + ws 4+ 0.1, where w; and wsy are
both random draws of 100 observations from a uniform distribution on (0.2,1). The

adaptive hybrid parameter has been used, but the results remain similar for the fixed

23



24 Paul Wilson and Jochen Einbeck

estimator. Overall these plots give evidence that the proposed test compares strongly

to the LR test also in the presence of covariates.

Figure 7: Power under hybrid estimator (covariate model, left: alternative H fa); right:

H(b))
1
n=100 Two Sided n=100 One Sided
K~ X, +0.5 H~wy +w,+0.1

1.0
1.0

0.6 0.8
1 1
0.8
1

0.6
1

0.4
1
0.4

0.2
1
0.2

- - - adaptive
—— LR test

0.0

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

5 Examples

In this section we present a collection of examples, with and without covariates.
R Code to reproduce these examples will be provided in the Statistical Modelling

Archive under www.statmod.org/smij/.

We initially present an example of the proposed test applied to covariate—free data,
in which case the Poisson—binomial distribution reduces to a binomial distribution,
and proceed with two covariate—bearing examples in the subsections which follow.
For all the examples of this section the adaptive (scheme (ii)) hybrid estimator of the

Poisson mean was used in the execution of the proposed test.

For the one-sided tests of zero inflation the Poisson parameter is modelled by a
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log link and the zero-inflation parameter by a logit link; for the one-sided tests
of zero—deflation and the two-sided test of zero-modification both the Poisson and
zero-inflation parameter are modelled by identity links. The estimates of the Poisson
parameters necessary for the proposed test are derived from the Poisson and truncated
Poisson models with log link for the one—sided tests, and with identity link for the

two—sided tests.

5.1 The “Prussian horse kicks” data

Table 3: The “Prussian Horse Kicks Data”
yl| 0 1 2 3 4 >5

count | 144 91 32 11 2 0

Table 3 is the famous “Horse Kicks” data of von Bortkiewicz (1898), which summarises
the number of deaths by horse or mule kicks per Prussian army corps annually between
1875 and 1894. Table 4 illustrates the use of one-sided and two-sided versions of the
proposed test. Concerning the latter, we fail to reject Hy: data is Poisson in favour
of H l(a): data is zero-modified Poisson as the test statistic, i.e. the observed number
of zeros, lies within the 95% MQI, or equivalently as p = 0.30. Note that this is in

agreement with the results of a likelihood ratio test of the same hypothesis.

Further, we fail to reject Hy: data is Poisson in favour of the zero—inflated alternative

Hl(b) since the observed number of zeros is not greater than the 95th quantile of

the relevant binomial distribution (i.e. the upper limit of the 90% MQI, nggs5), or

equivalently as p = 0.137; similarly we fail to reject Hy: data is Poisson in favour of
(¢)

the zero-deflated alternative H,~ as the test statistic, i.e. the observed number of

zeros is not less than the 5th quantile of the relevant binomial distribution (the lower
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Table 4: One—and two-sided tests of zero—modification

Proposed Test LR Test
H, | ng 95% MQI 90% MQI p—value | Statistic p—value
H™ | 144 [120.07,148.23] 0.30 | 1.026  0.288
HY | 144 0.137 0.144
[118.09, 150.87] 1.026
H | 144 0.863 0.856

limit of the 90% MQI, ngs), or equivalently as p = 0.856. Again both these results

are in agreement with the results of a likelihood ratio test of the same hypotheses.

5.2 Chromosome aberration data

We consider four datasets consisting of chromosome aberration counts in human blood
cells after in vitro exposure to ionising radiation. These datasets have previously been
studied by Oliveira et al. (2016), where detailed descriptions of the datasets can be

found.

Table 5 summarises the results obtained when the proposed test and a likelihood
ratio test are used to test for zero—inflation relative to a Poisson regression model
with log link and a quadratic linear predictor for covariate ‘absorbed radiation dose’
[Gy]. The third column provides the 90% MQI, the upper bound of which coincides
with the critical value ng g5 for the zero-inflation test (H 1(b)). We see that, for all data
sets except A3, the observed number of zeros exceeds ng g5, hence clearly rejecting the
Poisson model in favour of the zero—inflated Poisson model for A1, B1 and C1, but
not for A3. These results are in full agreement with the corresponding one—sided LR

test. Note that the lower limit of the 90% MQI is included in Table 5 for informational
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purposes, but is not required for test.

Table 5: Analyses of chromosome aberration data. Data labels refer to notation in

Oliveira et al. (2016).
Proposed Test (H l(b)> LR Test

Data no 90% MQI p-value | Statistic p-value

Al || 14430 [14213.9,14318.4] < 107° 16.37 522 x 107°
A3 2747 [2726.5,2814.3] 0.368 0.98 0.322

Bl 7280 [6716.6,6818.4] < 107° 85.31 <107

C1 6786 [5041.1,5152.8] < 1072 | 1330.65 <107°

5.3 Trajan Data

The data are the number of roots produced by n = 270 micropropagated shoots of
the columnar apple cultivar “Trajan”. During the rooting period, all shoots were
maintained under identical conditions, but the shoots themselves were cultured on
media containing different concentrations of the cytokinin BAP, in growth cabinets
with an 8 or 16 hour photoperiod. Full details of the experiment are to be found in
Marin et al. (1993). A striking feature of the data is that although almost all of
the 140 shoots produced under the 8 hour photoperiod rooted, only about half of the
130 shoots produced under the 16 hour photoperiod did. Overall 64 shoots produced

zero roots, of which only 2 were from the shorter photoperiod.

These data were analysed by Ridout and Demétrio (1992) and Ridout et al. (1998).
The latter paper presents a table of the fits of various Poisson and negative binomial
models, and their zero—inflated counterparts, and finds evidence of zero—inflation with

respect to both models. The authors comment that there is little evidence of an effect
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due to BAP concentration, but the effect of photoperiod is significant.

Table 6: Poisson analyses of Trajan data.

Proposed Test (Hfb)> LR Test

Data ng 90% MQI p-value | Statistic p-value

all 64 [0,49] <10716| 3142 <107
period =16 | 62 [0,4.13] <1016 | 3168 < 10°'6

period =8 | 2 [0,0.55  0.003 7.846  0.003

The results when the proposed method is used with a Poisson model (where the mean
is modelled by photoperiod) as the model of the null hypothesis are summarised in

Table 6, noting again a very good agreement between the proposed and the LR test.

6 Conclusion

We have developed a novel test for zero-inflation or zero—deflation in count data
models with or without covariates, which tackles the problem more directly than
existing asymptotic tests, by asserting whether or not the observed number of zeros
is plausible under the hypothesized count distribution. The plausibility is assessed
with reference to appropriate quantiles of a Poisson—binomial distribution. Essential
to this procedure is the estimation of the parameters of the count data model. The
question of how to estimate the mean parameter robustly has been given detailed
attention in the case of the Poisson hypothesis, and a ‘hybrid’ rule which mixes the
whole sample mean with a zero—truncated mean estimator has been developed which
yields excellent attainment and power properties of the resulting zero—modification

test. This hybrid estimator was developed specifically for the purpose of the proposed
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test, but may be of more general use than the one presented here. The extension of
the test to other base distributions is straightforward, however the investigation of
the requirement for, and shape of, robust parameter estimation techniques such as the

hybrid estimator for other base distributions than Poisson requires further attention.
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