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Abstract

The aim of this paper is to accurately solve short wave scattering problems governed by
the Helmholtz equation using the Bernstein-Bézier Finite Element method (BBFEM), com-
bined with a conformal perfectly matched layer (PML). Enhanced PMLs, where curved geome-
tries are represented by means of the blending map method of Gordon and Hall, are numeri-
cally investigated. In particular, the performance of radial and elliptical shaped PMLs, with a
parabolic absorption function, are assessed and compared in terms of accuracy against second
order Bayliss-Gunzburge-Turkel (BGT2) based local absorbing boundary conditions. Numerical
results dealing with problems of Hankel source radiation and wave scattering by a rigid cylinder
show that the radial shaped PML, with the h and p versions of BBFEM, enables the recovery of
the predicted algebraic and exponential convergence rates of a high order finite element method
(FEM). Furthermore, radial shaped BGT2 and PML have a similar performance, as long as
the wave is not sufficiently well resolved. But, BGT2 performs poorly as the wave resolution
increases. Additionally, the effect of harmonics of higher modes on accuracy is examined. The
study reveals that the PML outperforms BGT2 for almost all propagating modes. However,
a similar performance is achieved with both methods either with higher modes or a low wave
resolution. Results from a multiple scattering benchmark problem provide evidence of the good
performance of the proposed PMLs and the benefit of elliptical shaped PMLs in reducing sig-
nificantly the size of the computational domain, without altering accuracy. The choice of the
PML parameters ensuring optimal performance is also discussed.

Keywords. Finite elements; Bernstein-Bézier; Helmholtz equation; absorbing boundary condition; per-

fectly matched layer; high frequency

1 Introduction

The numerical modelling of wave scattering problems in unbounded media, based on domain dis-
cretisation procedures such that the FEM, requires the truncation of the infinite domain and pre-
scription of an appropriate boundary condition allowing outgoing waves to leave the computational
domain without spurious reflection.

Two different approaches are commonly used for dealing with domain truncation: either to
truncate the domain of the original problem by introducing an absorbing boundary condition (ABC)
at the truncation interface or to truncate by introducing an absorbing layer. Among the latter is the
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perfectly matched layer (PML), introduced by Bérenger in [1] as a reflectionless absorbing material
surrounding the domain of interest. Initially designed for electromagnetic waves, the PML exhibits
attractive features that have motivated its extension to a wide range of applications in acoustic
scattering (see the survey [2] and references therein), seismology [3–5], elastodynamics [6–9] and
geophysical fluid dynamics [10, 11].

ABCs can be broadly classified into two main categories: local or non local, where locality is
in the sense that the field at any point on the outer boundary depends only on the fields local to
that point. Local ABCs have the advantage to preserve the computational efficiency of the FEM.
These include those of Bayliss, Gunzburger and Turkel [12, 13], Engquist and Majda [14, 15], and
Feng [16]. Despite the ease of implementation of the lowest order ABCs, acceptable accuracy cannot
be obtained unless the artificial boundary is placed far enough from the scatterer [17]. High order
ABCs allow one to achieve good accuracy [18–20], but they require a substantial computational
effort and are difficult to implement. For a survey about ABCs, see Reference [21]. Non local
ABCs such as the truncated Dirichlet-to-Neumann (DtN) [16,17] enable the artificial boundary to
be placed closer to the scatterer, but they yield a dense sub-block in the FE global matrix near the
outer boundary. This makes the solution processing of the resulting linear system computationally
expensive, especially in 3D applications. For further discussions about ABCs, the reader is directed
to References [21, 22]. Alternatively, other techniques have been developed for this purpose, such
as the continued-fraction ABC [23], the double absorbing boundary method [24], infinite elements
[25,26], wave envelope [27] and boundary element methods [28, 29].

The main feature of the PML is that it shares the advantage of non local ABCs, because it
can be set closer to the scatterer. Furthermore, as for the local ABCs, it preserves the compu-
tational efficiency of the FEM. Unfortunately, the PML is no longer reflectionless at the discrete
level, resulting in spurious reflections of outgoing waves that may pollute the solution in the en-
tire computational domain. This source of error can be hopefully attenuated by adjusting the
FE discretisation and PML parameters. There is extensive literature dealing with the PML and
extensions of this concept to more general geometries and applications. Most PML developments
make use of straight or planar artificial boundaries and Cartesian coordinates. However, for certain
problems, the derivation of PMLs in other coordinate systems is of a relevant importance. Time
domain computations of electromagnetic waves in [30], have shown that corner regions are a dom-
inant source of reflection errors. Besides, a noteworthy analysis performed in [31] has indicated
that an inadequate choice of the time step may induce long time instabilities of Cartesian PMLs.
Based on the complex coordinate stretching approach [32], the Cartesian PML was extended to
cylindrical and spherical coordinates in [33–35]. A theoretical study of the PML in curvilinear
coordinates was carried out in [36], and optimal PML parameters leading to the best performance
were investigated in [37]. A comparative study of the performance of an ellipsoidal PML against
infinite elements for Helmholtz problems has been conducted in [38]. The advantages of PML over
the infinite element approach in terms of scalability and iteration count of a domain decomposition
Helmholtz based solver were demonstrated. A parameter-free PML relying on singular absorbing
functions was introduced and studied in [39, 40]. In the time harmonic framework, PML methods
involving convex shaped geometries were dealt with in [35, 41–43].

Another problem arising for such applications, in mid and high frequency regimes, is related
to the pollution error [44–46]. Standard discretisation methods are unable to solve wave problems
at high wavenumbers, because they require a prohibitive computational effort in order to resolve
the wave and control the pollution error. High order polynomial methods such as those relying
on integrated Legendre [47, 51, 52], Bernstein [47, 53] shape functions and spectral element [47, 54]
allow the reduction of the pollution effect, and hence to cope with frequency limitation and high
grid resolution requirements of conventional FEMs. Unlike Lagrange polynomials, conventional
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hierarchical H1-conforming p-FEs and Bernstein polynomials are not interpolatory. For p-adaptive
FE applications, hierarchical bases are often preferred. As it was first pointed out in [55], the choice
of higher-order polynomial shape functions can dramatically affect the conditioning of the FE global
matrix. In Reference [47], Bernstein shape functions are demonstrated to be superior when using
Krylov subspace iterative solver, compared to spectral FEs and integrated Legendre polynomials.
Besides, it has been shown in [48–50] that Bernstein-Bézier FEs over simplicial domains, hexahedra
and pyramids can deliver optimal complexity for the standard FE spaces. Comparative studies,
dealing with several benchmarks related to Helmholtz problems, against high order wave based
methods in [51, 53], have indicated that integrated Legendre and Bernstein-Bézier FEs are able to
yield comparable, and even better performance in terms of accuracy and memory requirements.
These last two works make use of a Robin type boundary condition enforcing the analytical solution,
and accordingly allowing to avoid the problem of truncation of the infinite domain. Using the p-
version of these methods for wave problems with smooth solutions, good quality results can be
achieved with low numbers of degrees of freedom (DOF) per wavelength [51–53]. On the other
hand, it has been shown in [56, 57] that the hp-FEM can control the pollution error by increasing
the polynomial order slowly with the wavenumber.

In the present work, a conformal PML is applied as a domain truncation procedure for Bernstein-
Bézier finite element computation, to accurately solve short wave scattering problems. The PML
is derived in curvilinear coordinates based on complex coordinate stretching [32]. This consists of
a simple change of variables, where the spatial coordinates inside the PML are mapped onto the
complex space by means of a stretching function. To further enhance the proposed curvilinear PML,
the linear blending map method due to Gordon and Hall is adopted [58–60]. Much effort has been
spent on optimizing the PML parameters to obtain optimal performance [37, 61, 62]. Polynomial
absorption functions are commonly used in order to ensure a progressive attenuation of the outgoing
waves in the layer. With this choice, the PML involves free parameters that need to be adjusted
in advance by expensive computational procedures. Numerical experiments carried out in this
study, dealing with wave scattering problems, reveal that the conclusions of the previous analyses,
regarding the optimization of the PML parameters, cannot be extrapolated to high order FEMs.
Indeed, based on a parabolic absorption function and radial or elliptical shaped PMLs combined
with BBFEM, accurate results can be achieved, with a low computational cost, by enforcing a rapid
attenuation of outgoing waves in the artificial layer.

This paper is organized as follows: Section 2 describes the model problem. The PML for-
mulation in curvilinear coordinates is presented in Section 3. An overview of the linear blending
map method of Gordon and Hall is given in Section 4. Section 5 is devoted to the FE based
Bernstein-Bézier discretisation. The performance of radial and elliptical shaped PMLs, in terms of
accuracy, is investigated in Section 6 and compared against those of BGT2 based ABCs, through
three benchmarks. Finally some concluding remarks are drawn in Section 7.

2 The model problem

Let D be a bounded domain in R2. The sound-hard scattering problem of an incident plane wave
uin by an obstacle D consists of finding a function u : Dc → C satisfying

−k2u−∆u = 0, in Dc

∇u · n = g, on ΓD

lim
r→∞

r
1
2

(
∂u

∂r
− iku

)
= 0, uniformly in x̃,

(2.1a)

(2.1b)

(2.1c)
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where Dc = R2 rD, g (= −∇uin ·n) is the prescribed boundary data in L2(ΓD), n is the outward
normal unit vector to ΓD, r = |x|, | · | is the usual l2 norm, and x̃ = x

r .

Figure 1: Setup of the wave scattering problem: a hard obstacle D surrounded by an artificial
boundary Σ.

The Sommerfeld radiation condition (2.1c) states that the energy is propagating from the ob-
stacle D towards infinity. Here, the time dependence is assumed to be exp(−iωt). For the unique
solvablity of the scattering problem (2.1), see for instance [63].

Suppose one attempts to solve Problem (2.1) in the vicinity of the scatterer, using FEM. Trun-
cating an infinitely large solution domain into a finite computational domain is one of the major
difficulties faced when solving open-region wave problems. Both ABCs and PMLs have been widely
used as procedures for mesh truncation in this context. Let C be a convex domain with a piecewise
smooth boundary Σ such that D ⊂ C (see Figure 1). The imposed ABC on the artificial boundary
Σ, should prevent reflections of outgoing waves into the domain Ω = C rD. The idea of the PML
approach consists first in surrounding the computational domain Ω by an artificial layer denoted
Ωpml that has minimal reflection and strong absorption properties. The computational domain Ω
is next extended to the introduced layer. Further details on the PML are given in the following
Section.

3 PML formulation

Let us consider an orthogonal system of curvilinear coordinates (ζ1, ζ2) defined in the layer Ωpml

(see Figure 2). The location of a point x = x(ζ1, ζ2) in Ωpml is obtained by intersecting curves
parallel and perpendicular to the interface Σ. Since C is assumed to be convex, the orthogonal
projection of x denoted by p onto the interface Σ is well defined. The coordinate ζ1 is given by the
distance from x to p, while the coordinate ζ2 is chosen as a local parametrization of the interface
Σ with its arc length. The unit outward normal n = n(ζ2) and tangent t = t(ζ2) are such that the
well known Frenet Formulas hold

dp

dζ2
= t and

dn

dζ2
= κt, (3.1)

where κ = κ(ζ2) is the curvature of Σ at the point p = p(ζ2). Any point x in the layer Ωpml can
be written as

x(ζ1, ζ2) = ζ1n(ζ2) + p(ζ2). (3.2)
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Figure 2: Orthogonal curvilinear coordinates system.

This system of coordinates has been used for PMLs in [35,41,64] and ABCs in [65]. By denoting
with lΣ the length of the artificial boundary Σ, a conformal PML can be defined by

Ωpml = {x = x(ζ1, ζ2) : 0 ≤ ζ1 < δ and 0 ≤ ζ2 ≤ lΣ}, (3.3)

such that ∂Ωpml = Σ ∪ Σδ and Σ ∩ Σδ = ∅, where

Σ = {x = x(ζ1, ζ2) : ζ1 = 0 and 0 ≤ ζ2 ≤ lΣ} (3.4)

and

Σδ = {x = x(ζ1, ζ2) : ζ1 = δ and 0 ≤ ζ2 ≤ lΣ}. (3.5)

Let si be the scale factors defined by si =

∣∣∣∣∂x∂ζi
∣∣∣∣, with i = 1, 2. Then, using the system of coordinates

(ζ1, ζ2), the Helmholtz equation (2.1a) can be written in the layer Ωpml as

k2u+
1

s1s2

[
∂

∂ζ1

(
s2

s1

∂u

∂ζ1

)
+

∂

∂ζ2

(
s1

s2

∂u

∂ζ2

)]
= 0. (3.6)

Taking into account the formulas given by (3.1), the scale factors s1 and s2 become

s1 = 1 and s2 = 1 + κζ1. (3.7)

For time harmonic problems, the PML system is usually derived by complex stretching the normal
coordinate that corresponds to the direction where waves are damped in the fictitious layer:

ζ1 −→ ζ̂1(ζ1) = ζ1 +
i

ω

∫ ζ1

0
σ(s)ds, with ζ1 ∈ [0, δ]. (3.8)

Here, the frequency ω is related to the wavenumber k and the propagation speed c of the medium
by ω = ck, σ is the absorption function and δ is the layer thickness. These yield the complex
stretching map

x̂(ζ1, ζ2) = ζ̂1n(ζ2) + p(ζ2) (3.9)

and the new scale factors

ŝ1 = 1 +
iσ

ω
and ŝ2 = 1 + κζ̂1. (3.10)

The function σ is chosen such that

σ(ζ1) = 0 for ζ1 ≤ 0, σ(ζ1) > 0 for ζ1 > 0, and lim
ζ1−→+∞

∫ ζ1

0
σ(s)ds = +∞. (3.11)
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Under the analytic continuation x −→ x̂, Equation (3.6) becomes

k2u+
1

ŝ1ŝ2

[
∂

∂ζ1

(
ŝ2

ŝ1

∂u

∂ζ1

)
+

∂

∂ζ2

(
ŝ1

ŝ2

∂u

∂ζ2

)]
= 0. (3.12)

Let us set

σ̂ =
1

ζ1 + 1
κ

∫ ζ1

0
σ(s)ds, γ = 1 +

iσ

ω
and γ̂ = 1 +

iσ̂

ω
. (3.13)

Then we have
ŝ2 = (1 + κζ1)γ̂. (3.14)

From the view point of implementation in the FEM, it is practical to transform Equation (3.12)
back to the Cartesian coordinates system to obtain

−ak2u−∇ · (A∇u) = 0, (3.15)

where a = γγ̂, A =
γ̂

γ
n⊗ n+

γ

γ̂
t⊗ t (see Appendix A), and the notation ’⊗’ refers to the tensor

product of two vectors. Let us point out that for ζ1 ≤ 0, we have a = 1 and A = I (the identity
matrix). Following [36, 37], a simple absorbing boundary condition, suitable for an evanescent
Hankel function, is imposed on the outer boundary Σδ:

(A∇u) · n− iγ̂ku = 0, on Σδ. (3.16)

By setting Ω̂ = Ω ∪ Ωpml, the PML problem associated with (2.1) can be written in the Cartesian
coordinates as 

− ak2u−∇ · (A∇u) = 0, in Ω̂

∇u · n = g, on ΓD

(A∇u) · n = iγ̂ku, on Σδ.

(3.17a)

(3.17b)

(3.17c)

One of the parameters that affect the performance of the PML is the absorption function σ. Here
a standard parabolic profile is assumed:

σ(ζ1) = σ0

(
ζ1

δ

)2

, 0 ≤ ζ1 ≤ δ, with σ0 =
3

2δ
Log

(
1

R0

)
, (3.18)

where R0 is the modulus of the reflection coefficient at normal incidence [37]. Typical choices are
R0 = 10−1, 10−2, · · · . Due to numerical dispersion which has an influence on the discrete PML
behaviour, it was pointed out in [37,66] that, at a fixed mesh grid resolution in the artificial layer,
largest value of σ0 does not yield necessarily the smallest reflection. A remedy to this drawback
is the use of a singular absorbing function [39, 40], or hp adaptation [67]. The difficulty relying
on tuning the parameter σ0 seems likely to hold for low order FEM. This can be seen through
the numerical study carried out in this work, where the absorption function defined by (3.18) and
high order BBFEM are used. Indeed, choosing R0 small enough, helps significantly in reducing
reflection.
For comparison purposes against the radial shaped PML (rPML), the second order BGT2 [13] given
by

(rBGT2)
∂u

∂r
=

(
ik − 1

2ρ
+

1

8ρ2(1
ρ − ik)

)
u+

1

2ρ2(1
ρ − ik)

∂2u

∂θ2
, on Σ, (3.19)
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is considered as well, where the artificial boundary Σ is a circle defined by

Σ = {x = (x1, x2) ∈ R2 : x2
1 + x2

2 = ρ2}. (3.20)

Additionally, an elliptical shaped PML (ePML) is used and compared against the symmetrical
BGT2 [68]:

(eBGT2) ∇u · n =

(
ik − κ

2
+

κ2

8(κ− ik)

)
u+

∂

∂ζ2

(
1

2(κ− ik)

∂u

∂ζ2

)
, on Σ, (3.21)

which applies for more general convex shapes. Here Σ is an ellipse given by

Σ = {x = (x1, x2) ∈ R2 :
x2

1

ρ2
1

+
x2

2

ρ2
2

= 1}, (3.22)

where ρ1 and ρ2 are the semi-major and semi-minor axes, respectively. There are other approaches
to derive ABCs like BGT2 when the artificial boundary Σ is an ellipse; see for instance references
[69–72].

Let us denote by B the ABC operator involved in (3.19) or (3.21). Then the BGT2 problem
associated with (2.1) is given by

−k2u−∆u = 0, in Ω

∇u · n = g, on ΓD

∇u · n = Bu, on Σ.

(3.23a)

(3.23b)

(3.23c)

Practical wave scattering problems may involve scatterers with curved boundaries. Moreover, to
efficiently model the PML in curvilinear coordinates, accurate boundary representation is needed.
The next Section is devoted to the blending map method used in this work.

4 Boundary representation

In p-FEM, it is practical to work with a relatively coarse mesh, containing large elements com-
pared to the wavelength, and increase the polynomial order to efficiently resolve the wave at a
high wavenumber. However, when the mesh grid contains elements with curved edges, low order
polynomial interpolation of the geometry may induce a significant error. Therefore, an accurate
geometric description is crucial for such problems.

Let us consider a partition of the domain Ω into a set of non-overlapping finite elements Te.
Let T̂ be the reference element defined by

T̂ = {ξ = (ξ1, ξ2) : 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1− ξ1}. (4.1)

Let qi and qij be the nodal points of Te (see Figure 3). The barycentric coordinates relative to the

reference element T̂ are given by

λ1(ξ) = ξ1, λ2(ξ) = ξ2 and λ3(ξ) = 1− ξ1 − ξ2. (4.2)
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Figure 3: Reference map for a curved triangular element.

In this work the linear blending map due to Gordon and Hall [58, 59] is adopted. To illustrate
this method, let consider the case of a triangular element with only one curved edge and assume
it is edge e1 = (q1q2) (see Figure 3), given by its parametric form q = q(s), where 0 ≤ s ≤ 1,
q(0) = q1 and q(1) = q2. Following [60], a map denoted Φe and defined from T̂ to Te can be
written as

Φe(ξ) = λ1(ξ)q1 + λ2(ξ)q2 + λ3(ξ)q3 +
λ1(ξ)λ2(ξ)

ξ2(1− ξ2)
[q(ξ2)− ((1− ξ2)q1 + ξ2q2)] . (4.3)

For instance, if edge e1 is the circular arc defined by the parametric form q = ρ(cos θ, sin θ), with
θ ∈ [θ1, θ2], then

q(s) = ρ(cos((1− s)θ1 + sθ2), sin((1− s)θ1 + sθ2))>, with s ∈ [0, 1]. (4.4)

This method applies for triangular elements where two or all sides are curved as well. Let us point
out that the function

g : ξ2 7−→
q(ξ2)− ((1− ξ2)q1 + ξ2q2)

ξ2(1− ξ2)

can be continuously extended to the whole interval [0, 1] by taking

g(0) = q′(0) + q2 − q1 and g(1) = −q′(1) + q2 − q1, (4.5)

where the prime ’′’ refers to differentiation with respect to the argument. It suffices to see that

g(ξ2) =
q(ξ2)− q1

ξ2
− q(ξ2)− q2

ξ2 − 1
. (4.6)

Additionally, the following six-node Lagrange interpolation map

Φe(ξ) =
∑
i

λi(ξ)(2λi(ξ)− 1)qi + 4
∑
i<j

λi(ξ)λj(ξ)qij (4.7)

is used and compared against the blending map method.
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5 Bernstein-Bézier FE discretisation

Under the previous notations, the approximate solution, denoted by uh, by Bernstein-Bézier FE of
either Problem (3.17) or (3.23), can be written element-wise in the form

uh(x) =
∑
|α|=p

uαB
p
α(ξ), (5.1)

where Bp
α are the Bernstein polynomials of degree p ∈ Z+, associated with the reference element

T̂ and given by

Bp
α(ξ) =

(
p
α

)
λα(ξ). (5.2)

The order |α| of a multi-index α = (α1, α2, α3) in Z3
+ is defined by |α| =

∑
i=1,3 αi, λ

α = λα1
1 λα2

2 λα3
3

and (
p
α

)
=

p!

α1!α2!α3!
. (5.3)

Multiplying by a test function v̄ (the complex conjugate of v ∈ H1(Ω̂)) in the PML problem (3.17)
and integrating by parts over Ω̂, we obtain the weak form

−ak2

∫
Ω̂
uv̄ dΩ̂ +

∫
Ω̂
A∇u ·∇v̄ dΩ̂ + ik

∫
Σδ

γ̂uv̄ dΣ =

∫
ΓD

gv̄ dΓ, ∀v ∈ H1(Ω̂). (5.4)

Similarly, the BGT2 problem (3.23) yields

−k2

∫
Ω
uv̄ dΩ +

∫
Ω
∇u ·∇v̄ dΩ +

∫
Σ
Buv̄ dΣ =

∫
ΓD

gv̄ dΓ, ∀v ∈ H1(Ω). (5.5)

To ensure C0 conformity of BBFEM, the matching of edge modes of a similar shape is required.
This is performed based on a global orientation of the FE edges (see [73, 74] for further details).

The element integrals arising in the discrete weak forms of the variational problems (5.4) and
(5.5) are evaluated using a high order Gauss-Legendre integration scheme. Here, an element without
any edge in contact with curved boundaries is interpolated using a standard linear FE map and
hence analytical integration rules can be used. However, for curved elements that are accurately
represented based on the blending map of Gordon and Hall, numerical integration is performed.

The resulting linear system from the approximation by BBFEM of the weak forms (3.17) and
(3.23) involves sparse symmetric complex valued matrices. It is solved, using a coordinate storage
format, based on the multi-frontal sparse direct solver MUMPS [75].

6 Numerical results

Both rPML and ePML are validated by means of two dimensional benchmarks, based on BBFEM
with static condensation [53]. This technique is very efficient in reducing the total number of DoF
and bandwidth of high order FE global matrices. It consists of removing interior mode DoF from
the resulting discrete algebraic system during the assembling process. Once the solution related to
element boundary modes is obtained, that corresponding to interior modes is recovered by solving
small linear algebraic systems at an elemental level. In all that follows, the propagation speed c of
the medium is assumed to be unity, so the wavenumber is k = ω. For affine elements, a rule of p+1
integration points is used for the evaluation of element matrices by the Gauss-Legendre integration
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scheme, which is exact if the integrand is a polynomial of degree no higher than 2p + 1 [73]. The
choice of the number of quadrature points with the presence of curved elements is mainly dictated
by the target accuracy (see, e.g., References [77, 78] for further discussion). Since, convergence
analysis is dealt with and a high level of accuracy is desired, a rule of 2p + 1 quadrature points
is adopted to accommodate the variation of the Jacobian. For element right side integrals, it is
required to account for the number of wavelengths per edge as well, as the integrand involves a
highly oscillatory incident plane wave.

First, a benchmark test dealing with the radiation of a Hankel source is carried out to assess
the performance of the blending map method of Gordon and Hall. Then, a single wave scattering
problem is considered to study the h and p convergence of BBFEM combined to rPML. This domain
truncation method is also compared against rBGT2. Lastly, a multiple scattering benchmark test
is considered, in which both rPML and ePML are used and compared against rBGT2 and eBGT2,
respectively. The effect of the discrete PML parameters on accuracy is also examined.

6.1 Description of the Benchmarks

For the first two benchmarks the computation domains have an annular shape (see Figure 4). The
inner and outer radii of the rBGT2 domain Ω are a and ρ, and those of the rPML domain Ω̂ are a
and ρ+ δ, respectively, where δ is the PML thickness. Both rBGT2 and PML artificial boundaries
Σ are placed at the same distance ρ from the origin.

Figure 4: Computational domain for the first two benchmarks: (left) rBGT2 domain; (right) rPML
domain.

The benchmark dealing with Hankel source radiation has an analytical solution given by

u = H0(k|x|), (6.1)

where H0 is the Hankel function of the first kind. On the boundary ΓD, the analytical solution is
enforced by taking g = kH′0(k|x|). Since rBGT2 performs very well for harmonics of lower modes,
it is chosen as a mesh truncation procedure to assess the performance of the blending map method.
But the use of rPML leads to similar results, provided an adequate choice of the PML parameters
R0 and δ is made.

The second benchmark concerns the scattering of a horizontal plane wave uin = exp(ikx1) by a
rigid circular cylinder of radius a, centered at the origin. This problem has an analytical solution
given by [76]

u = −
∞∑

m=−∞
imZmHm(kr) exp(imθ), (6.2)
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where (r, θ) denotes the polar coordinates system, Jm and Hm are respectively the Bessel and

Hankel functions of the first kind and order m, and Zm =
J′m(ka)

H′m(ka)
. At the implementation level,

the above infinite expansion must be truncated to a finite number of terms 2M + 1. This generates
another source of error in addition to those of discretisation and mesh truncation. In reference [79],
it was shown that a sufficient condition to ensure uniqueness of the solution for the truncated
Dirichlet-to-Neumann (DtN) formulation of the Helmholtz problem is M > kρ. In this work, the
number M is chosen such that M ' 2ka.

The last benchmark deals with a multiple scattering problem, in which an incident plane wave
uin = exp(ikx · d) impinges upon an array of N rigid cylinders, such that d = (cosβ, sinβ) and
β = π/4. In a such case, the diffracted waves from these separated rigid obstacles are not purely
outgoing, as they may undergo multiple reflections between the scatterers.

Figure 5: Schematic diagram defining the parameters of the multiple scattering problem.

An approximate analytical solution of this problem is given by [76]

u =

N∑
j=1

Mj∑
m=−Mj

AjmZ
j
mHm(krj) exp(imθj), (6.3)

where Zjm =
J′m(kaj)

H′m(kaj)
and the unknowns {Ajm} are solution of the following linear system

Apn +

N∑
j = 1
j 6= p

Mj∑
m=−Mj

AjmZ
j
m exp(i(m− n)αjp)Hm−n(krjp) = −Ip exp(in(π/2− β)),

p = 1, · · · , N and n = −Mj , · · · ,Mj ,

(6.4)

where Ip = exp(ikxp · d). The definitions of the parameters αjp and rjp are given in Figure 5.
In this benchmark, an array of five equidistant rigid cylinders of equal radii a, arranged on the

x1 axis are considered (see Figure 6). Hence aj = a and the numbers Mj can be chosen equal, i.e.
Mj = M . The positions of the scatterers are given by xi = (3(i− 3)a, 0)>, with i = 1, · · · , 5. The
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computational domains used for rBGT2 and eBGT2 can be deduced from Figure 6 by removing the
layer Ωpml. A similar benchmark is dealt with numerically using rBGT2 combined to the partition
of unity FE method in [80]. As can be seen from this configuration of the scatterers, the use
of rBGT2 or rPML leads to a large computational domain. An alternative approach to eBGT2

or ePML adopted here, is to enclose each scatterer by a separate artificial boundary, as done in
References [81,82] within the DtN map and PML, respectively. It is worth noticing that the curve
Σδ parallel to the ellipse Σ (see Figure 6 (bottom)) is not itself an ellipse. More precisely, Σδ is
described by the parametric form

p =

ρ1 +
δρ2√

ρ2
1 sin2 θ + ρ2

2 cos2 θ

 cos θ,

ρ2 +
δρ1√

ρ2
1 sin2 θ + ρ2

2 cos2 θ

 sin θ

> , (6.5)

where θ ∈ [0, 2π]. The curvature of Σ is given by

κ =
ρ1ρ2√

ρ2
1 sin2 θ + ρ2

2 cos2 θ
3 . (6.6)

The orthogonal projection of a point x in the artificial layer onto the ellipse Σ is computed nu-
merically using Newton’s Method. In order to create a FE partition of the ePML domain using a
mesh generator, the outer artificial boundary Σδ is represented by B-splines via CAD and imported
as a ’step’ file to Gmsh [83]. Further details about the derivation of rPML and ePML are given in
Appendix A.
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Figure 6: Computational domains for multiple scattering problem: (top) rPML domain; (bottom)
ePML domain.
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These benchmarks make use of a number of parameters such as the wavenumber k, the mesh
size h, the polynomial order p, the PML thickness δ and the absorption coefficient R0. The wave
resolution is given by

τλ = λ

√
ndof

|Ω|
, (6.7)

where |Ω| is the surface area of Ω and ndof is the total number of DoF. The indicator τλ gives
the number of DoF per wavelength λ. The accuracy of the numerical solution is measured by the
following relative L2 error

ε2 =
‖uh − u‖0
‖u‖0

× 100%, (6.8)

where ‖ · ‖0 is the usual norm of L2(Ω). For the PML numerical solution, the quantities τλ and ε2
are evaluated using the extended and physical domains Ω̂ and Ω, respectively.

6.2 Hankel source radiation

In order to study the performance of the blending map method of Gordon and Hall, the sound source
radiation problem is numerically solved using BBFEM combined with rBGT2. This boundary
representation method is compared against the six-node Lagrange interpolation map given by (4.7).
The numerical experiments are performed on a sequence of eight gradually refined mesh grids (see
Figure 7), where the radius ρ of the outer circle Σ is chosen such that ρ = 3a. Since the analytical
solution is enforced on ΓD as mentioned previously, the only sources of error are those of the
BBFEM discretisation and rBGT2 mesh truncation.

Figure 7: Typical unstructured mesh grids used for rBGT2; from the left to the right: M1 (h =
0.88a), M1/2 (h = 0.5a), M1/4 (h = 0.28a) and Mf (h = 0.08a).

First, h-convergence analysis is carried out. In Figure 8, the relative L2 error ε2 is plotted
against the number τλ of DoF per wavelength, for both Lagrange interpolation and blending map
methods at wavenumbers ka = 5π and ka = 10π, where the polynomial order p is set equal to 6.

Unless an accurate solution is sought, the results in Figure 8 indicate that the Lagrange in-
terpolation and blending map methods have a similar performance. However, the L2 error with
the Lagrange map stagnates as τλ increases. This is not surprising, because low order polynomial
interpolation maps of the geometry are inconsistent with high order FEM. Due to round off error
which is very significant with ill conditioning, the L2 error with the blending map method becomes
saturated for higher wave resolutions (see Figure 8(a)). But as can be seen, this method enables
the recovery of an asymptotically algebraic decay of the L2 error which scales as τ−p−1

λ .
Next, p-convergence analysis is investigated, where numerical experiments are performed on

mesh grid M1/2 (see Figure 7), for the same two wavenumbers as before. Let us notice that at the
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Figure 8: The L2 error versus τλ, h-refinement with p = 6: (a) ka = 5π; ka = 10π.

wavenumber ka = 10π, elements of the mesh grid M1/2 may contain up to h/λ ' 2.5 wavelengths.
Figure 9 shows the L2 error ε2 versus the polynomial order p, at the wavenumbers ka = 5π and
ka = 10π. It is observed from these results that the Lagrange interpolation and blending maps
lead to a similar accuracy for moderate approximation orders: p ≤ 7 for ka = 5π (Figure 9(a)), and
p ≤ 8 for ka = 10π (Figure 9(b)). As before, it can be seen that the L2 error with the Lagrange
interpolation map stagnates, but now with the increase of the polynomial order p. Most notably,
results of Figure 9 show clearly an exponential decay of the L2 error as the approximation order p
increases.
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Figure 9: The L2 error versus the polynomial order, p-refinement with h = 0.50a: (a) ka = 5π; (b)
ka = 10π.

For similar studies, relying on nodal and modal curving methods and Non-uniform rational
B-splines (NURBS) representation of the geometry, the reader is referred to references [77, 78].

6.3 Wave scattered by a rigid cylinder

This scattering problem is numerically solved, based on BBFEM using rBGT2 and rPML as mesh
truncation methods. Curved geometries are represented by the blending map of Gordon and Hall.
The mesh grids used with rBGT2 are those of the previous benchmark (see Figure 7). Numerical
experiments with rPML are performed on the sequence of mesh grids depicted in Figure 10. The
parameters δ and R0 are set equal to 0.4a and 10−10, respectively. The effect of the PML parameters
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on the accuracy will be studied for both rPML and ePML in the third benchmark. In Figure 10,
the parameter mesh sizes are not indicated, because mesh grids of the physical domain Ω are the
same as those of Figure (7) used with rBGT2, and the L2 error with rPML is evaluated on Ω.

Since the analytical solution of this benchmark is defined by a truncated expansion, an additional
source of error due to truncation should be taken into account. This suggests that we investigate
first the effect of cylindrical waves of higher modes m, on the L2 error. These harmonics involved
in the infinite expansion (6.2) are given by um = ZmHm(kr) exp(imθ). As for the first benchmark,
these analytical solutions are enforced on ΓD, by taking g = kZmH′m(kr) exp(imθ).

Figure 10: Typical unstructured mesh grids used for the single scattering problem with rPML; from
the left to the right: M̂1, M̂1/2, M̂1/4 and M̂f .

6.3.1 Effect of harmonics of higher modes on accuracy

A study in this context at the continuous level comparing the reflection coefficients of rBGT2 and
rPML was conducted in [84]. It was concluded that by increasing the absorption coefficient, the
PML outperforms BGT2 for all propagating modes. Related work using rBGT2 can be found
in [85].

Here, numerical experiments with rBGT2 are performed on mesh grids M1/2 and M1/4, while

those with rPML are on mesh grids M̂1/2 and M̂1/4. Figure 11 shows the L2 error ε2 against the
ratio m/ka, for the wavenumbers ka = 5π and ka = 10π. The polynomial order p is set equal to
10. Using mesh grids M1/2 and M̂1/2, the approximate solutions of the harmonics {um} require the
wave resolutions: τλ w 6.20 and τλ w 7.45 at the wavenumber ka = 5π, with rBGT2 and rPML,
respectively.
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Figure 11: The L2 error versus m/ka, with h = 0.5a and p = 10: (a) ka = 5π and (b) ka = 10π.
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The results shown in Figure 11(a) indicate that a similar accuracy is achieved with rBGT2 and
rPML, for harmonics with lower modes (m . 0.25k). As the ratio m/ka increases, with m ≤ ka,
rBGT2 performs poorly, while the error using rPML is about three orders of magnitude smaller.
When m > ka, it is also seen that the L2 error grows, as the ratio m/ka increases. For harmonics
of higher modes (m & 1.5ka), it can be observed from Figure 11(a) that both rBGT2 and rPML
yield a similar accuracy.

Now, by increasing the wavenumber ka to 10π, the wave resolutions to solve the harmonics um
are only τλ w 3.01 and τλ w 3.72 with rBGT2 and rPML, respectively. In such a case where the
wave is not sufficiently well resolved, results of Figure 11(b) show that rBGT2 and rPML perform
similarly.
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Figure 12: The L2 error versus m/ka, for ka = 10π: (a) h = 0.28a and p = 10; (b) h = 0.5a and
p = 15.

To confirm it is a wave resolution issue, h and p refinements are performed, by keeping the
wavenumber ka = 10π. First, numerical experiments are carried out on mesh grids M1/4 and

M̂1/4, with the approximation order p = 10 . These yield improved wave resolutions τλ w 6.01 and
τλ w 6.69 with rBGT2 and rPML, respectively.The results depicted in Figure 12(a) show the same
trend as before (see Figure 11(a)). In a similar fashion, by keeping mesh grids M1/2 and M̂1/2 and
increasing the polynomial order to p = 15, the wave resolutions become: τλ w 3.84 and τλ w 4.61
with rBGT2 and rPML, respectively. One can observe again in the results displayed in Figure 12(b)
the same behaviour of the L2 error with respect to the ratio m/ka as previously (see Figures 11(a)
and 12(a)).
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Figure 13: Real part of the rPML numerical solution computed on mesh grid M̂1/2, with p = 10, for
the wave number ka = 10π: (left) m = 10 and ε2 = 0.0002%; (middle) m = 30 and ε2 = 0.0002%;
(right) m = 40 and ε2 = 0.005%.

For illustration purposes, contour plots of the real part of the rPML numerical solution are
depicted in Figure 13, for the wavenumber ka = 10π, where computations are performed on mesh
grid M̂1/2, with a polynomial order p = 10. These make use of nndof = 28, 080 and τλ ' 6.68 to
achieve the indicated accuracies. Three kinds of waves can be seen: a propagating wave (m < ka),
a grazing wave (m w ka) and an evanescent wave (m > ka). Unless higher evanescent modes whose
decay is much faster as 1/rm (see Reference [86]) are not involved, the results shown in Figure 13
indicate that rPML enables the scheme to achieve a high level of accuracy. Similar numerical tests
are dealt with in [51] to assess the performance of p-FEM.

6.3.2 Convergence analysis

In addition to the errors due to the PML truncation and FE discretization, there is another error
due the truncation of the infinite expansion (6.2) to a finite number of terms 2M + 1, because the
approximate analytical solution no longer satisfies the Neumann boundary condition (3.17b). In
all that follows, the number M is taken such that M w 2ka.

In a similar fashion as in the first benchmark, h-convergence analysis is investigated by using
rBGT2 and rPML. In this scattering problem, the function g is given by g = −∇uin · n, where
uin = exp(ikx1). Numerical experiments with rBGT2 and rPML are performed, respectively, on
the sequence of mesh grids in Figures 7 and 10. As before the parameters δ and R0 of rPML are
set equal to 0.4a and 10−10 , respectively.

Figure 14 shows the relative L2 error ε2 against the number τλ of DoF per wavelength, for the
wavenumbers ka = 5π and ka = 10π. The polynomial order p being set equal to 6. In contrast to
the case of the Hankel source benchmark, the results shown in Figure 14 indicate a poor performance
of rBGT2 at a high wave resolution. This is likely due to the fact that the reflection of harmonics
with intermediate mode orders using rBGT2 is more significant. However, at a low wave resolution,
rBGT2 and rPML lead to a similar accuracy. Let us notice that for the wavenumbers ka = 5π and
ka = 10π, the number of involved harmonics in the approximate analytical solution are M ' 31
and M ' 62, respectively. It is also evident from the results shown in Figure 14, that there is an
algebraic decay of the L2 error which scales asymptotically as τ−p−1

λ .
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Figure 14: The L2 error versus τλ; h-refinement with p = 6: (a) ka = 5π and (b) ka = 10π.

Results with the wavenumber ka = 20π and approximation order p = 12, are depicted in Figure
15. A similar trend as before can be seen for both rBGT2 and rPML.
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Figure 15: The L2 error versus τλ; h-refinement with p = 12, ka = 20π.

Now, p-convergence analysis is carried out. Numerical experiments are performed on mesh grids
M1/2 and M̂1/2, with the wavenumbers ka = 5π and ka = 10π. A test case with ka = 20π, and

mesh grids M1/4 and M̂1/4 are also considered. Let us notice that at the wavenumber ka = 20π,

elements of the computational meshes M1/4 and M̂1/4 may contain up to h/λ w 2.8 wavelengths.
Figure 16 shows the relative L2 error ε2 against the polynomial order p, with both rBGT2

and rPML. It can be seen again from results of Figure 16 that rBGT2 performs poorly at a high
wave resolution. However, as before, rBGT2 and rPML lead to a similar accuracy, when the wave
is not sufficiently well resolved. A trend similar to that found previously is observed, with the
p-refinement.
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Figure 16: The L2 error versus the polynomial order p; p-refinement with h = 0.5a: (a) ka = 5π
and (b) ka = 10π.

In a similar fashion, numerical experiments are performed on the mesh grids M1/4 and M̂1/4.
The wavenumber ka is now set equal to 20π. The obtained results are depicted in Figure 17 and
similar trends as before can be seen.
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Figure 17: The L2 error versus the polynomial order p; p-refinement with h = 0.28a: ka = 20π.

In summary, the overall conclusions are:

• rBGT2 and rPML have a similar performance at a low wave resolution;

• rBGT2 performs poorly when the wave is sufficiently well resolved;

• The h and p versions of BBFEM combined to rPML enable the scheme to achieve the usual
algebraic and exponential convergence of high order FEMs, provided an adequate choice of
the PML parameters is made to push the error induced by the PML truncation below the FE
discretization error.

6.4 Multiple scattering

Numerical results are now presented for the multiple scattering benchmark. The artificial boundary
Σ of rPML or rBGT2 is placed at a distance ρ = 8a from the origin to enclose the scatterers (see
Figure 6 (top)), while the parameters ρ1 and ρ2 of ePML or eBGT2 are taken such that ρ1 = ρ and
ρ2 = ρ/2 (see Figure 6 (bottom)).
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6.4.1 Influence of the layer thickness δ

For both rPML and ePML, the thickness δ is increased from 0.1a to 1.6a. Here, eight mesh grids
of different thicknesses δ are used. Examples of such meshes are depicted in Figures 18 and 19.

Figure 18: Typical rPML mesh grids used in the multiple scattering benchmark: (left) δ = 0.4a
and h = 0.3a; (right) δ = 1.6a and h = 0.28a.

Figure 19: Typical ePML mesh grids used in the multiple scattering benchmark: (left) δ = 0.4a
and h = 0.3a; (right) δ = 1.6a and h = 0.28a.

Table 1 reports the L2 error with both rPML and ePML, corresponding to increasing values of
the layer thickness δ, for two wavenumbers: ka = 2.5π and ka = 5π. The polynomial order p and
the absorption parameter R0 are set equal to 8 and 10−10, respectively. The results shown in Table
1 indicate that rPML and ePML lead, for practically comparable levels of the wave resolution τλ,
to a similar accuracy. However, ePML involves about half of the total number ndof of DoF used
with the rPML. On the other hand, accurate results can be obtained by taking only δ ' λ
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rPML ePML

δ ndof τλ ε2[%] ndof τλ ε2[%]

λ/4 129,316 21.13 0.00461 61,512 21.54 0.00140
λ/2 134,744 21.57 0.00020 65,386 22.21 0.00027
λ 151,820 22.89 0.00019 76,177 23.97 0.00025

1.5λ 165,574 23.91 0.00019 87,203 25.65 0.00025
2λ 180,054 24.93 0.00019 98,038 27.19 0.00025

δ

λ/4 134,272 10.76 0.00534 64,481 11.03 0.00201
λ/2 129,316 10.56 0.00694 61,512 10.77 0.00191
λ 134,744 10.78 0.00012 65,386 11.11 0.00012

1.5λ 145,864 11.22 0.00009 70,888 11.56 0.00011
2λ 151,820 11.45 0.00009 76,177 11.98 0.00010

Table 1: The L2 error corresponding to the rPML and ePML with respect to the layer thickness δ,
with p = 8: (top) ka = 2.5π; (bottom) ka = 5π.

6.4.2 Influence of the absorption parameter R0

The next numerical experiments focus on the effect of the absorption parameter R0 on accuracy.
Now, the layer thickness δ is set equal to 0.4a. The rPML and ePML mesh grids used are those
given in Figures 18 and 19 (left). Let us notice that in the case where R0 = 1, rPML and ePML
are equivalent to the zeroth-order absorbing boundary condition (3.16).
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Figure 20: The L2 error versus R0: (a) ka = 5π and p = 8; (b) ka = 10π and p = 12.

In Figure 20, the relative L2 error is plotted against the absorption parameter R0, for the
two wavenumbers ka = 5π and ka = 10π. The polynomial order p is taken equal to 8 and 12,
respectively. At the wavenumber ka = 10π, the rPML and ePML mesh grids involve elements
which may contain up to h/λ ' 1.3 and h/λ ' 1.5 wavelengths, respectively.

The results presented in Figure 20 show an exponential decrease of the L2 error ε2 as the
magnitude σ0 of the absorption function σ (defined by Equation 3.18) increases. Furthermore,
rPML and ePML give a similar L2 error, when the parameter R0 is sufficiently small. It can also
be observed that below a small threshold R∗0, i.e. R0 < R∗0, the L2 error ε2 becomes small and
nearly constant. In contrast to the case of PML with low order FEM, when it is required to find an
optimal value of the parameter σ0 for a given mesh grid [37], a fixed sufficiently large value of σ0
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can be used here for different computational meshes, polynomial orders and wavenumbers, as can
be already seen from the results of the single scattering benchmark where h and p convergences
are studied, and R0 is set equal to 10−10. Of course, the L2 error with rPML is lower, for large
values of R0 where numerical reflections are more pronounced, because its artificial boundary Σ is
far from the scatterers compared to that of ePML.

6.4.3 Effect of the frequency

Now, rPML and ePML are compared against rBGT2 and eBGT2, respectively. The parameters δ
and R0 are chosen such that δ = 0.4a and R0 = 10−10. The mesh grids used in these numerical
experiments, with rPML and ePML, are shown in Figures 18 and 19 (left), respectively. Those
of rBGT2 and eBGT2 are deduced by removing the PML. To assess whether the performance of
rPML or ePML is not affected by the frequency, wavenumbers ranging from ka = 5π to 20π are
considered. Figure 21 shows the relative L2 error ε2 against the number τλ of DoF per wavelength,
for both rPML and rBGT2 and two polynomial orders p = 8 and p = 12.
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Figure 21: The L2 error versus τλ: (a) p = 8; (b) p = 12.

The results shown in Figure 21(a) indicate that rPML and rBGT2 perform similarly at a low
wave resolution. As the wavenumber ka decreases, the wave becomes well resolved and a decay of
the L2 error with rPML is clearly seen, while it stagnates with rBGT2. By increasing further the
approximation order p, such that p = 12, the wave resolution τλ improves and a decay of the L2

error with rPML can be observed from the results in Figure 21(b), especially for large wavenumbers.
However, the L2 error with rBGT2 remains always higher than 1%.
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Figure 22: The L2 error versus τλ: (a) p = 8; (b) p = 12.

Similarly, results using ePML and eBGT2 are shown in Figure 22 and the trends described
above are again seen. It can be concluded from this numerical study that the BGT2 based ABCs
are not suitable for multiple scattering applications.

Figure 23: Real part of the diffracted potential for the wavenumber ka = 20π, with p = 12:
(left) rPML solution, ε2 = 0.015% and ndof = 208, 168; (right) ePML solution, ε2 = 0.027% and
ndof = 100, 990.

For illustration purposes, contour plots of the real parts of the rPML and ePML numerical
solutions are depicted in Figure 23, for the wavenumber ka = 20π with p = 12. It is worth
noticing that elements of the used rPML and ePML mesh grids may contain up to h/λ ' 2.65
and h/λ ' 3.02 wavelengths, respectively. Good quality results are obtained, with only τλ ' 3.45
for rPML and ePML. Moreover, the same level of accuracy is achieved using ePML, with a low
computational effort.
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7 Conclusions

The concept of curvilinear PMLs has been applied for short wave scattering computations in the
frequency domain, using Bézier-Bernstein based finite elements. A key idea to obtain an efficient
PML is the use of high order FEs on computational mesh grids consisting of large elements com-
pared to the wavelength, to accurately resolve the PML. The blending map of Gordon and Hall is
very useful for such applications in representing curved geometries. Standard FEMs face a trade-off
between using a costly PML allowing a high absorption that minimizes the reflection of outgoing
waves and a PML with a low absorption that is computationally cheaper to resolve. Intensive
simulations have been carried out to assess the performance of the proposed PMLs. Comparison
studies against a radial shaped second order ABC, dealing with Hankel source radiation and wave
scattering by a rigid cylinder revealed that the radial PML enables the recovery of the predicted
exponential and algebraic convergence rates of the p and h versions of BBFEM, respectively. For
the scattering problem, where the wave involves many modes, the radial ABC leads to a similar
performance, provided an accurate solution is not sought. Numerical results from multiple scatter-
ing problem by many rigid cylinders indicated that radial and elliptical shaped PMLs are able to
provide very accurate results. The study highlighted the importance of elliptical shaped PMLs in
reducing the size of the computational domain. Most notably, since BBFEM is able to efficiently
capture the rapid decay of outgoing waves in the layer, the parabolic absorption function does
not require a non trivial optimization procedure. Moreover, optimal performance can be achieved
by using λ-thick PMLs. In general, it can be concluded that there is no need to tune the PML
parameters for each problem; they worked well for wide ranges of frequencies, grid resolutions and
polynomial orders. Recent works [20,39,40,62] have shown that PMLs based on unbounded absorp-
tion functions have a superior performance. A comparative study in this direction, using high order
FEs is of a relevant importance in future investigations. Curvilinear PMLs can be readily extended
to three-dimensional applications, as already done in Reference [64] for time domain wave problems.
A model based on curved tetrahedral Bézier-Bernstein FEs is under development. To take advan-
tage of high order methods, hp-refinement (see for instance [67]) is a promising strategy to further
improve computational efficiency. It is worth noting that radial and elliptical shaped PMLs, com-
bined to an efficient high-order FE solver, are well suited for time-domain wave problems, because
they do not involve corners which require special treatment to avoid long time instabilities [31].
Many questions remain open, in particular, it would be interesting to extend the present method
to time-dependent wave problems using the complex coordinate stretch technique in conjunction
with the uniaxial PML concept [32,64] and an appropriate high-order time stepping procedure.

A Appendix

In the orthogonal coordinate system (ζ1, ζ2) the gradient and divergence of a function u and a
vector field q = q1n+ q2t are given by

∇u =
1

s1

∂u

∂ζ1
n+

1

s2

∂u

∂ζ2
t (A.1)

∇ · q =
1

s1s2

[
∂(s2q1)

∂ζ1
+
∂(s1q2)

∂ζ2

]
. (A.2)

Let us set

a =
ŝ1ŝ2

s1s2
, q1 =

ŝ2

ŝ1s2

∂u

∂ζ1
, q2 =

ŝ1

s1ŝ2

∂u

∂ζ2
and q = q1n+ q2t. (A.3)
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Then

1

ŝ1ŝ2

[
∂
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(
ŝ2
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∂
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(
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1
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[
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+
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]
(A.4)

=
1

a
∇ · q. (A.5)

Since q1 =
s1ŝ2

ŝ1s2
∇u · n and q2 =

ŝ1s2

s1ŝ2
∇u · t, it follows that

1

a
∇ · q =

1

a
∇ ·

[
s1ŝ2

ŝ1s2
(∇u · n)n+

ŝ1s2

s1ŝ2
(∇u · t)t

]
(A.6)

=
1

a
∇ · (A∇u), (A.7)

with the matrix A given by

A =
s1ŝ2

ŝ1s2
n⊗ n+

ŝ1s2

s1ŝ2
t⊗ t. (A.8)

As
s1ŝ2

ŝ1s2
=
γ̂

γ
, the matrix A can be written as

A =
γ̂

γ
n⊗ n+

γ

γ̂
t⊗ t. (A.9)

Moreover, we have

a =
ŝ1ŝ2

s1s2
= γ̂γ. (A.10)

A.1 Radial shaped PML

Suppose that the fictitious interface Σ is a circle of radius ρ centred at the origin and described by
its parametric equation

p = (ρ cos θ, ρ sin θ)> with θ ∈ [0, 2π]. (A.11)

The unit vectors t and n are given by

t = (cos θ, sin θ)> and n = (− sin θ, cos θ)>. (A.12)

In this case we take ζ1 = r − ρ, ζ2 = ρθ, where r = |x|. The curvature of Σ is given by κ = 1
ρ and

σ̂ can be written as

σ̂ =
1

r

∫ r−ρ

0
σ(s)ds. (A.13)

The matrix A becomes

A =
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γ
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(
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− γ
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γ
− γ
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)
cos θ sin θ

γ

γ̂
cos2 θ +

γ̂

γ
sin2 θ

 . (A.14)
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A.2 Elliptical shaped PML

Suppose now that the fictitious interface Σ is an ellipse centred at the origin with semi-major and
semi-minor axes denoted respectively by ρ1 and ρ2. The parametric representation of Σ is given by

p = (ρ1 cos θ, ρ2 sin θ)>, with θ ∈ [0, 2π]. (A.15)

The distance from a point x in the PML to the ellipse Σ given by ζ1, is usually computed based
on a numerical algorithm. Here, as previously mentioned, Newton’s method is used. The element
arc length dζ2 can be written as

dζ2 =

∣∣∣∣∂p∂θ
∣∣∣∣ dθ (A.16)

=
√
ρ2

1 sin2 θ + ρ2
2 cos2 θ dθ. (A.17)

Hence to obtain the arc length ζ2, it is required to evaluate an elliptic integral. The curvature of
Σ is defined by Formula (6.6). The unit vectors t and n are given by

t =
∂p

∂θ

dθ

dζ2
(A.18)

=
1√

ρ2
1 sin2 θ + ρ2

2 cos2 θ
(−ρ1 sin θ, ρ2 cos θ)>, (A.19)

n =
1√

ρ2
1 sin2 θ + ρ2

2 cos2 θ
(ρ2 cos θ, ρ1 sin θ)>. (A.20)

In the same fashion as before, we have
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t⊗ t (A.21)
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[45] F. Ihlenburg and I. Babuška, Finite element solution of the Helmholtz equation with high
wavenumber. Part II: The h-p version of the FEM. Siam Journal on Numerical Analysis. 34
(1997) 315–358.
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