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ABSTRACT
This paper reports on the experimental investigation of metal-insulator-metal (MIM) diodes based on alkyltrichlorosilane self-assembled
monolayers (SAMs) with different alkyl chain lengths. The insulating SAM is sandwiched between two metal contacts, Pt and Ti, with different
work functions. The electronic properties of the MIM diodes can be tuned by controlling the alkyl chain length of the SAMs to address
different constraints in high speed electronics applications. Data fitting of the tunneling current through the MIM junctions using the Fowler-
Nordheim model suggests that the device operation is influenced by the barrier heights of the diodes and thicknesses of the SAMs. The
current-voltage characteristics achieved in MIM diodes based on alkyltrichlorosilane SAMs make them promising candidates for high speed
electronics applications.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5100252

Since the first theoretical prediction of molecular rectifiers in
1974,1 significant attention has been directed to developing diodes
based on either single molecules2–6 or self-assembled monolayers
(SAMs).7–12 Unlike the use of single molecules, the use of SAMs as
a dielectric layer appears particularly promising for metal-insulator-
metal (MIM) diodes due to their low cost, ease of processing, and
compatibility with large-scale manufacturing.11–14 The operation of
an MIM diode is based on quantum mechanical tunneling through
a thin dielectric layer between two metal contacts.15–17 The tun-
neling of electrons occurring in the MIM diode is a fast process,
typically in the femtosecond range,16,18 and theoretically can rec-
tify frequencies as high as several hundreds of THz.18 Hence, MIM
diodes can operate at much faster speed than conventional Schot-
tky diodes11 and have been extensively investigated for various high
speed electronics applications including energy harvesting11,19–21

and infrared detection.22–24 The design of high-performance MIM
diodes requires an ultra-thin high quality dielectric layer to engineer
the tunneling current,15,25 and a large difference in work functions
of the metals in order to achieve a sufficient level of nonlinearity and
asymmetry.16,26,27

Alkyltrichlorosilane (SiCl3-(CH2)n-1-CH3) SAMs are ultra-thin
high quality dielectric films with well-controlled structure.28–32 MIM
diodes based on alkyltrichlorosilane SAMs were initially investigated
using metal contacts with similar work functions.33,34 Recently, MIM
diodes based on one of the alkyltrichlorosilane SAMs, octadecyl-
trichlorosilane with different work function metal contacts have
been reported to achieve good rectification characteristics.13,14 Nev-
ertheless, the diodes based on octadecyltrichlorosilane may not pro-
vide optimal performance for high-speed electronics applications,
since the layer thickness and surface roughness of the SAM are
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FIG. 1. Water contact angle as a function of alkyl chain length. Six different loca-
tions were measured and the error bars represent the standard deviations from
measurements between repeated samples.

highly dependent on many factors, in particular, the alkyl chain
length,35,36 which will influence the diode performance. Hence, fur-
ther refinement is possible in order to optimize the SAMs used for
the diode fabrication. Currently, no systematic study on the real-
ization of MIM diodes using alkyltrichlorosilane SAMs and metal
contacts with a large difference in work function exists in the
literature.

In this work, we report the use of alkyltrichlorosilane SAMs
sandwiched between metal contacts with two dissimilar work
functions, Pt (5.65 eV)16,37 and Ti (4.33 eV),37 to investigate
how the alkyl chain length affects the electrical properties of the
MIM diodes. Four SAMs with different chain lengths were used
(see supplementary material for structures of alkyltrichlorosilane
SAMs), octyltrichlorosilane (SiCl3-(CH2)7-CH3, denoted as C8),
decyltrichlorosilane (SiCl3-(CH2)9-CH3, denoted as C10), dodecyl-
trichlorosilane (SiCl3-(CH2)11-CH3, denoted as C12) and octadecyl-
trichlorosilane (SiCl3-(CH2)17-CH3, denoted as C18).

To begin with, alkyltrichlorosilane SAMs were formed by sub-
merging the substrates in silane solutions (1 part of alkyltrichlorosi-
lane dissolved in 2000 parts of hexane by volume) for 1 h at room
temperature (approximately 21 ○C), after which the substrates were
rinsed with hexane to remove unbound silanes, and then dried
using compressed nitrogen gas. Finally, the substrates were baked
for 10 min at 90 ○C to complete the surface binding via polymer-
ization and remove any residual solvent. The physical characteriza-
tion of static contact angle, spectroscopic ellipsometry, and atomic
force microscopy (AFM) was carried out for the alkyltrichlorosilane
SAMs. Static contact angles were measured with a DSA100 Expert
Drop Shape Analyzer (KRÜSS GmbH) to characterize the surface
of the alkyltrichlorosilane SAMs on Ti. Droplets of distilled water,
with a volume of 5 µL, were placed onto the surface of the SAMs.
The contact angles were measured six times at different locations on
each film. Spectroscopic ellipsometry (J.A. Woollam Co. Inc) was
conducted over the wavelength range 200-1000 nm at three angles
of incidence 65○, 70○ and 75○ to determine the thicknesses of alkyl-
trichlorosilane SAMs silanized on Si wafers with a 90 nm thermally
grown SiO2 layer. The experimental data was fitted with fixed opti-
cal constants (the refractive indices equivalent to the liquid phase of
alkane), giving the relative thickness of the layer measured.37 Mea-
surements were repeated at multiple positions on different films of
the same coating. Tapping mode AFM was used to characterize the
surface morphology of the alkyltrichlorosilane SAMs silanized on
the Si wafer with a 300 nm thermally grown SiO2 layer. The substrate
had a root mean square (rms) roughness of 0.10 nm and the scanned
area of the alkyltrichlorosilane SAMs and metal contacts was
1 × 1 µm2.

The measured water contact angle values for alkyltrichlorosi-
lane molecules with different alkyl chain lengths are shown in
Fig. 1. The mean contact angles of C8, C10, C12, and C18 surfaces
were found to be 86, 93, 97, and 106○, confirming the hydropho-
bic nature of the CH3 terminated surfaces.34 Higher water con-
tact angles were observed for longer alkyl chain length molecules,

FIG. 2. Tapping mode AFM images
(1 µm × 1 µm) from the top sur-
faces of (a) octyltrichlorosilane (C8),
(b) decyltrichlorosilane (C10), (c) dode-
cyltrichlorosilane (C12), (d) octadecyl-
trichlorosilane (C18), (e) Ti and (f) Pt.
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TABLE I. Main Properties of alkyltrichlorosilane SAMs.

Film thickness rms roughness Mean contact
Alkyltrichlorosilane (nm) (nm) angle (○)

C8 1.20 0.15 86
C10 1.34 0.16 93
C12 1.57 0.19 97
C18 2.23 0.24 106

suggesting higher carbon concentration with lower surface energy.38

Prior to the SAM deposition, the contact angle of the Ti surface was
found to be around 10○, confirming the hydrophilic nature of the
OH terminated surface.13

Insulator and metal imperfections at the metal/insulator inter-
faces give rise to conduction other than tunneling.15 Hence, the pro-
duction of high quality insulator and metal with smooth interfaces
is crucial for high performance MIM diodes. Ellipsometry measure-
ments showed that the thicknesses of C8, C10, C12, and C18 mono-
layers were 1.20, 1.34, 1.57, and 2.23 nm respectively and that the
variation of the thicknesses did not exceed ±0.2 nm for all samples.
The rms surface roughnesses of C8, C10, C12, and C18 monolay-
ers were found to be 0.15, 0.16, 0.19, and 0.24 nm, respectively
(Fig. 2a–d). The longer alkyl chain molecules had a higher rms sur-
face roughness, consistent with the findings previously reported.36

These ultra-thin and smooth alkyltrichlorosilane SAMs are expected
to lead to low parasitic parallel conduction compared to the con-
ventional oxide dielectric films used in MIM diodes. The rms sur-
face roughnesses of Ti and Pt were 0.19 and 0.21 nm, respectively

(Fig. 2e and 2f), which demonstrates low rms surface roughness of
the metal contacts. The thicknesses, rms surface roughnesses, and
water contact angles of each of the alkyltrichlorosilane SAM films
are summarized in Table I.

The diodes were fabricated on 2-inch Si wafers with a 300 nm
thermally grown SiO2 layer. Standard photolithography was used
to pattern the metal contacts. A Moorfield minilab 060 e-beam
evaporation system was used for the metal deposition. Figure 3(a)
shows the top view and cross-section schematic of the MIM
diode (see supplementary material for detailed fabrication pro-
cess). The alkyltrichlorosilane SAM is sandwiched between two
metal contacts, Pt and Ti. The overlapping region between the
Ti and Pt contacts determines the effective area of the diode,
which is 100 µm2. The electrical current-voltage (I-V) measurements
were conducted with an Agilent E5270B semiconductor parameter
analyzer.

The I-V characteristics of MIM diodes with different alkyl-
trichlorosilane SAMs are shown in Fig. 3b (semi-logarithmic scale
I-V) and Fig. 4b–e (linear scale I-V). It can be seen that by decreas-
ing the alkyl chain length, both the reverse and forward currents
increase, suggesting that the tunneling probability increases with a
decreasing film thickness. From the I-V characteristics, four figures
of merit (FOM) such as asymmetry (fasym), dynamic resistance (Rd),
nonlinearity (fnl), and responsivity (fres) were extracted in order to
evaluate the performance of the diodes. fasym is defined as the ratio
of forward to reverse current. Rd=dV/dI and a low value of Rd is
generally required for lower power dissipation in the diode. fnl is
defined as the ratio of static resistance (V/I) to dynamic resistance
Rd, i.e., fnl = V

I /Rd. fres is defined as the ratio of the second derivative
to the first derivative of the I-V characteristics, i.e., fres = d2I

dv2 / dI
dV .

FIG. 3. (a) Top view optical microscope image and cross-section schematic of an MIM diode. (b) Current versus voltage characteristics of MIM diodes based on four different
alkyltrichlorosilane SAMs. Extracted (c) asymmetry (fasym), (d) dynamic resistance (Rd ), (e) nonlinearity (fnl ) and (f) responsivity (fres) of the MIM diodes.
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FIG. 4. (a) Energy-band diagrams of the MIM diodes with
Ti/SAM/Pt structure. DT and FNT refer to direct and Fowler-
Nordheim tunneling and the direction of electron injection
is indicated by arrows. Measured and fitted I-V curves
for the MIM diodes based on four different alkyltrichlorosi-
lane SAMs; (b) octyltrichlorosilane (C8), (c) decyltrichlorosi-
lane (C10), (d) dodecyltrichlorosilane (C12), (e) octadecyl-
trichlorosilane (C18).

fres is a measure of the diode’s rectification ability and is directly
related to fnl in the diode’s I-V characteristic. The higher the fnl,
the higher the fres.24 Ideally, MIM diodes should exhibit I-V char-
acteristics with high fasym, fnl and fres for most high speed electronics
applications. The extracted electrical properties of the MIM diodes,
fasym, Rd, fnl, and fres are shown in Fig. 3c–f. As the thickness of the
alkyltrichlorosilane SAMs is varied, a trade-off is apparent between
Rd and the other FOM (fasym, fnl, and fres). Consequently, the choice
of an optimum MIM device should take into consideration this trade
off, depending on the application.

For energy harvesting applications, it is important for the
diodes to operate at zero-bias, and for Rd to be low enough in order
to minimize the potential mismatch between the impedance of the
diodes and the antennas utilized. Hence, the fres and Rd at zero bias
were also determined. The zero-bias fres for the diode based on C8,
C10, C12, and C18 films were found to be 4.1, 4.6, 4.7, and 8.0 V-1,
respectively. In addition, the zero-bias dynamic resistance for the
diodes based on C8, C10, C12, and C18 films were found to be
32 kΩ, 71 kΩ, 464 kΩ, and 5 GΩ, respectively. The zero-bias Rd of
the diode based on the C18 film was significantly higher than that
for a device previously reported by Etor et al.14 This is due to the

improvement in the SAM deposition, resulting in the reduction of
the number of defects and ultimately less parasitic parallel conduc-
tion. The 15 min sonication step after the formation of the alkyl-
trichlorosilane SAMs on Ti was removed and the samples were
rinsed with hexane, followed by drying using compressed nitro-
gen gas. It is likely that sonication caused structural changes in
the films, leading to a low breakdown voltage of ±0.35 V. All of
the diodes could operate in a voltage range of ±1 V without son-
ication, similar to the diodes based on alkyltrichlorosilane SAMs
reported previously.29,34 Although the diode based on C8 has the
lowest zero-bias fres as shown in Fig. 3f, the obtained zero-bias fres
value was similar or considerably higher than most MIM diodes typ-
ically designed for high speed electronics applications.24,39 In addi-
tion, the diode based on the C8 film has the lowest zero-bias Rd
as shown in Fig. 3d, hence this is promising for integration with
an antenna for energy harvesting. For applications such as detec-
tion and sensing of infrared signals, the MIM diodes can be biased
by an external source where high fasym, strong fnl and high fres
are the most important considerations rather than zero-bias oper-
ation. Figure 3 shows that the diode based on C18 has the highest
fasym, strongest fnl and highest fres. The maximum fasym, fnl, and fres

AIP Advances 9, 065017 (2019); doi: 10.1063/1.5100252 9, 065017-4

© Author(s) 2019

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

values of the MIM diode based on C18 are 117.8, 6.8 and 20.8 V-1

respectively.
The tunneling current between two similar work function elec-

trodes separated by alkyltrichlorosilane SAMs has been evaluated
using Simmons theory.34 Here, the tunneling occurs between two
dissimilar work function metal electrodes Pt and Ti, separated
by alkyltrichlorosilane SAMs. Schematic energy-band diagrams for
these diodes are shown in Fig. 4a. Due to the difference in work
functions between Pt and Ti, the conduction electrons in an MIM
diode encounter non-identical barriers (φb1 and φb2). Hence, there
is a difference in barrier height (∆φ=φb1-φb2) at zero bias (sub-
panel 1 of Fig. 4a). To bias the device, a voltage was applied to the
Ti electrode while the Pt electrode was connected to ground. At
low reverse and forward voltages, the direct tunneling (DT) mecha-
nism would dominate where the applied bias is less than the barrier
height, as illustrated in subpanels 2 and 4 of Fig. 4a. In contrast,
when the applied bias exceeds the barrier height, Fowler-Nordheim
tunneling (FNT) becomes dominant, as illustrated in subpanels 3
and 5 of Fig. 4a. This type of field-assisted FNT can be expressed
using

I = A(V + ∆ϕ)2

dφb
exp
⎛
⎝
−Bd(φb)

3
2

V + ∆φ
⎞
⎠, (1)

where A and B are constants, V is the applied voltage, d is the barrier
thickness and φb is the barrier height. For a forward bias, φb=φb1;
for a reverse bias, φb=φb2. To determine the theoretical I-V fit, it is
necessary to determine the barrier heightsφb1 andφb2. We estimated
the barrier heights using Fowler-Nordheim plots40 of log(∣ I

(V+∆φ)2 ∣)
versus 1

V+∆φ for both voltage polarities at an optimum value of ∆φ
(see supplementary material for the barrier height determination).
Table II shows the estimated barrier heights of the MIM diodes
based on four different alkyltrichlorosilane SAMs.

The fitting of I-V characteristics was performed using the FNT
equation (1). The measured I-V characteristics (solid lines) and fits
for the FNT region (dots) are shown in Fig. 4b–e. Due to the very
low φb2, as shown in Table II, FNT dominates at positive bias for all
diodes. For the diodes based on the short alkyl chain length SAM
(e.g. C8), DT dominates at very low negative bias due to the very
thin dielectric layer.15 Whereas, when the alkyltrichlorosilane SAM
thickness increases, the negative transition voltage from DT to FNT
becomes higher due to the increased φb1 and the SAM layer becomes
thick enough to stand off significant DT current up to the onset
of FNT.15 Clearly, the electron tunneling and device operation are
influenced by the barrier heights of the diodes and the thicknesses of
the alkyltrichlorosilane SAMs.

TABLE II. Main parameters of MIM diodes estimated from the Fowler-Nordheim
tunneling model.

Alkyltrichlorosilane ∆φ (eV) φb1 (eV) φb2 (eV)

C8 0.084 0.263 0.179
C10 0.100 0.287 0.187
C12 0.157 0.422 0.265
C18 0.373 0.448 0.075

In conclusion, we have fabricated MIM diodes comprised of
different alkyl chain length alkyltrichlorosilane SAMs sandwiched
between two metal contacts, Pt and Ti, with different work func-
tions. The influence of the alkyl chain length on the electrical prop-
erties of the MIM diodes was investigated. The results show that
as the alkyl chain length of the SAMs varies, a trade-off is appar-
ent between the dynamic resistance and the other three FOM values,
asymmetry, nonlinearity and responsivity. The barrier heights of the
MIM diodes were estimated from Fowler-Nordheim plots by plot-
ting log(∣ I

(V+∆φ)2 ∣) versus 1
V+∆φ for both voltage polarities at an

optimum value of ∆φ. We found that the electron tunneling and
device operation were influenced by the barrier heights of the diodes
and the thicknesses of the alkyltrichlorosilane SAMs. This work pro-
vides an important guide for the selection of the appropriate alkyl-
trichlorosilane SAMs in the development of high speed electronics
applications.

See supplementary material for structures of alkyltrichlorosi-
lane SAMs, detailed device fabrication process, and method of
barrier height determination.

The authors would like to thank the Engineering and Physi-
cal Sciences Research Council (EPSRC) for funding to carry out this
project under Grant No: EP/N021258/1.
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