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Abstract 

 

The eastern Altun Shan is a crucial part of the Altun orogenic belt within the 

Tibetan Plateau. Study of the uplift rate and the related features in this area provides 

important clues for understanding the uplift mechanism of the Tibetan Plateau as a 

whole. As an important geomorphic element in landscape development, the fluvial 

system can record the relationship between tectonic activity and climatic change. In 

recent years, studies of the Channel Steepness Index Ksn, have been conducted by 

many researchers, using the geomorphological model of equilibrium channel 

longitudinal profiles, combining bedrock uplift and river incision and thus making it 

possible to extract rock uplift history from river profiles. This research show that 

regional rock uplift rate is a major factor in affecting the Ksn index. Regional tectonic 

activity and intensity, therefore, can be evaluated from variation in the Ksn index, 

which can provide a sensitive measure of uplift rate. 

In this paper, the Digital Elevation Map ‘ASTER GDEM’, with a spatial 

resolution of 30 m, was utilized as basic data, and combined with ArcGIS and 

MATLAB software to extract the Ksn index from the equilibrium channel longitudinal 

profiles model. Meanwhile, we employed statistical methods to analyze the Ksn index.  

Our results suggest that averaged Ksn indices, obtained from the subrange A，B，

C，D, and E of the eastern Altun Shan (from west to east), are 70.93, 139.03, 108.85, 
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134.44 and 165.39, respectively. Further analysis implies that the variation in this 

index can be correlated with the distribution pattern of uplift rates within different 

regions. Its value increases gradually from west to east, reflecting regional uplift rate. 

Along the western section of the eastern Altun Shan, the uplift rate is slower and 

characterized by strike-slip movements, while its eastern part has uplifted faster and is 

controlled by thrust fault systems. Moreover, in contrast with the southern Altun Shan, 

the uplift rate of the northern part is high. These variations in uplift rate seem to be 

linked with “the imbricated thrusting transformation- limited extrusion model” of the 

Tibetan Plateau. Our results can be correlated with previous work on the active 

characteristics along the eastern Altyn Tagh Fault (ATF).  

 

Key words: Eastern Altun Shan; Channel Steepness Index; uplift rate; fluvial incision
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1. Introduction 

 

The Altyn Tagh Fault (ATF) system, as the northern boundary of the Tibetan 

Plateau, is famous for its large amount slip (e.g., Molnar, 1975; Tapponnier et al., 

1982; Xu et al., 1999; Yin et al., 2002; Xu et al., 2005; Cheng et al., 2016). Much 

research has been focused on its present geometric kinematics, dynamics and 

structural chronology (e.g., Wang, 1997; Ge et al., 2002; Yuan et al., 2006; Gold et al., 

2011; Zhang et al., 2007). The large-scale strike-slip movement and Positive Flower 

Structure system led to elevation and exhumation of the middle and lower crust in the 

Altyn Tagh Range, finally forming the grand Altun Shan. During the Cenozoic period, 

the Altun Orogenic Belt has risen strongly with the uplift of the Tibetan Plateau. In 

recent decades, much work has focused upon the uplift of the Altun Shan (e.g., Jolivet 

et al., 1999; Wan et al., 2001; Jolivet et al., 2001; Chen et al., 2002; Ge et al., 2002; 

Yuan et al., 2006). These studies, however, only addressed the uplift history within 

certain specific periods, and with low resolution, because of the availability of 

chronological frameworks that were only approximate and difficult access to some 

field key sites (e.g., Zhu et al., 1990; Ge et al., 2004; Yuan et al., 2006). In contrast, 

the intensity and distribution pattern of tectonic uplift across the whole Altun Shan are 

less well known. Thus the aim here to outline the differentiation in tectonic activity 

and then further explore the growth mechanism of the Tibetan Plateau will constitute 

major challenges.  

The eastern Altun Shan, which is intermediate between the Qilian Shan and 

Altun Shan, plays a key role in the understanding of structural evolution and in 

evaluation of differences in regional tectonic activities. In this paper, we extract 

fluvial channel-steepness indices and then analyze their distribution pattern along the 

eastern Altun Shan. For testing the accuracy of the channel steepness index as a 

digital geomorphic parameter to estimate the intensity of regional tectonic activity, 

these calculated indices were further correlated with measured fluvial incision rates in 

the region.   

 

2. Regional Setting 
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The Indian and the Eurasian plates have converged and collided at an averaged 

velocity of 40–50 mm/a since 55 Ma, bringing about a series of orogenic movements 

and fault-belt growth in the Northern Tibetan Plateau (Molnar et al., 1987; Wittlinger 

et al., 1998; Tapponnier et al., 2001). The Altun orogenic belt, constraining the 

northern boundary of the Plateau, represents the frontier area of the Indian–Eurasian 

collision. Along this belt, a very large left- lateral slip fault system (termed ATF) forms 

the main boundary fault of the Northern Tibetan Plateau, separating two major inland 

basins, the Tarim and Qaidam Basins of north-western China. This fault reaches up to 

1500~1600 km in length and plays an important role in controlling and 

accommodating the Cenozoic crustal deformation of the Plateau (Molnar et al., 1987; 

Ding, 1995; Deng et al., 2002; Yin et al., 2002; Xu et al., 2003; Xu et al., 2005; Cheng 

et al., 2016; Li et al., 2016).  

 

<Fig. 1 is hereabout> 

 

Our study mainly focuses upon the eastern Altun Shan (here referred as the Altun 

orogenic belt), where that mountain range converges with the Qilian Shan (Fig. 1). 

The Altun Shan has been uplifted as a NE–SW trending orogen, reaching up to 5753 

m at its highest point, and with an N–S width of 25–35 km. Its northern front is 

steeper than its southern flank. A series of faults were formed along the eastern Altun 

Shan (Fig. 1A), together constituting the eastern ATF, which includes the northern 

ATF (F1), the Southern ATF (F2), the North Qaidam fault (F3), the Danghenanshan 

fault (F4), the Yemahe fault (F5), the North Danghenanshan fault (F6), a branch fault 

of the southern ATF (f2), and a branch fault of the Danghenanshan (f4). In detail, the 

eastern ATF, extending from Lapeiquan (W) to Subei (E) and with a length up to 200 

km, plays a key role in accommodating the tectonic stress from the northern part of 

the Tibetan Plateau. Detailed research in this area has led to reporting of the active 

parameters of these faults (e.g., Ding, 1995; Deng et al., 2002; Xu et al., 2003; Li et 

al., 2016; Cheng et al., 2016). F1 is aligned in a WNW direction near the Lapeiquan, 

gradually turning to an ENE direction of 70–75°. At Qingyazi, it is characterized by a 
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left- lateral and right stepover, creating a multiple extrusion zone. The same tectonic 

geometric morphology also occurs along F2, which further extends eastward to 

connect with F4. 

In Fig.1A, we can observe that the western section of F2, extending toward the 

west from Annanba, is shows a trend direction of ENE 70–75°, and then turning to the 

east near Annanba, is expressed as an ‘S’ type. F3, originating from the south flank of 

the Altun Shan, trends toward the SE as the boundary between the Qaidam basin and 

the Qilian Shan, and finally becomes hidden at Wulan (Ye et al., 1996; Pang et al., 

2015). Since the Pliocene, this fault has evolved further, forming a series of 

right–lateral–slip–thrust–structures (Wang et al., 2005; Xiao et al., 2006). 

Based on the digitized 1:50000 geological map (Fig.1B, Bureau of Geology and 

Mineral Resources of Gansu Province, 1989), the study area is dominated by the 

Paleoproterozoic quartz–mica schist, quartzite, amphibolite and granulite, and 

unconsolidated Quaternary deposits. Other lithologies, namely Middle and 

Neoproterozoic dolomitic marble, silica–banded carbonate, silty slate, Ordovician 

lava, Silurian volcano-clastic, Carboniferous mudstone, Oligocene sandstone, tonalite, 

quartz–diorite, granite, and various ultramafic rocks, are only distinguished 

sporadically in this area. In summary, the lithological distribution along the eastern 

Altun Shan is complex and diverse rather than a regular and uniform pattern (see 

Fig.1B). 

 

3. Methodology: channel–steepness index 

 

Recent decades have seen the application of geomorphic parameters, providing 

new insight into tectonic activity and regional uplift information in association with 

advances in tectonic geomorphology (e.g., Li et al., 1996; Pan et al., 2003, 2004, 2007; 

Hu et al., 2010; Zhang et al., 2010; Yang et al., 2013; Liang et al., 2015; Pan et al., 

2015; Li et al., 2015). Research on shear-stress incision modelling has revealed that 

the detachment- limited rate of bedrock channel erosion (E) is a power function of 

upstream drainage area (A) and local channel slope (S) (Howard, 1994; Howard and 
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Kerby, 1983; Whipple and Tucker, 1999; Bridgland and Westaway, 2012):  

E=K·Am·Sn                      （1）                            

Where (K) is the erosion coefficient, (m) is the area exponent, and (n) is the 

slope exponent, the value of which amalgamates many different variables that control 

erosional efficiency, including rock erodibility, sediment load, climate, erosion 

process, hydraulic geometry, and the return period for effective discharge episodes. At 

the same time, it is considered that at any point along a river profile, the change in 

height with time (dz/dt) is the difference between rock uplift (U) and erosion (E): 

(Howard, 1994; Snyder, et al., 2000; Kirby et al., 2003; Wobus et al., 2006; Ramsey et 

al., 2007; Hu et al., 2010; Burbank and Anderson, 2011; Kirby and Whipple, 2012; 

Pan et al., 2015). 

dz/dt=U-E=U- K·Am·Sn             （2） 

For a steady-state profile in which channel elevation at a particular point does 

not change, dz/dt equals zero, and U equals E, and equation (2) can be solved for 

equilibrium slope (Se) as follows: 

Se=（U/K）1/n·A-m/n                 （3） 

In this context, the long profile of the river is a function of m/n, which is defined 

as the concavity and is typically designated as θ. The power-function relation implied 

by equation (3) has been observed empirically in many different geological settings 

(e.g., Hu et al., 2010; Pan et al., 2015; Li et al., 2016), with stream gradient described 

by: 

S=Ks·A-θ                                       （4） 

The exponent Ks is channel–steepness index, which is similar in principle to the 

stream-gradient index developed by Hack (1973), but more generalized. The 

concavity index (θ) is generally found to be between 0.3 and 0.6 (Hack, 1957; Moglen 

and Bras, 1995). In any analysis of stream longitudinal profile, the relationships are 

implied by equations (5) and (6): 

θ = m/n               (5) 

and 

Ks= (U/K)1/n           (6) 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

Where these conditions are met, the parameters (U/K)1/n and m/n can be 

estimated directly through regression of channel-gradient and drainage-area data. In 

order to compare the channel–steepness index under different drainage-area and 

concavity indices, researchers have used the reference concavity index (θref) to 

calculate the normalized steepness index Ksn. 

 The variation in the channel normalized steepness index (Ksn) can still show a 

sensitive response to the difference in structural uplift activity, despite some 

limitations appearing within the reconstruction of regional uplift rate differences by 

the balanced river longitudinal profile model with a series of empirical tests (e.g., 

Hack, 1957; Moglen and Bros, 1995; Whipple and Tucker, 1999; Snyder et al., 2000; 

Kirby et al., 2003; Wobus et al., 2006; Hu et al., 2010; Burbank and Anderson, 2011; 

Kirby and Whipple, 2012; Wang et al., 2015; Li et al., 2016; Wang et al., 2016; Liu et 

al., 2016). This index is thus employed in this paper to analyze the distribution 

characteristics of regional tectonic activity and then further discuss the fault activity 

characteristics and differences along the eastern Altun Shan.  

 

<Fig. 2 is hereabout> 

 

Taking into account the significant differences in geomorphology and tectonic 

activity along the eastern Altun Shan, we have divided this studied area into five 

subranges, which are identified sequentially as A, B, C, D, and E, from west to east 

(see Fig. 2a for their extent). They are all cut through by F1 and F2. The peak within 

A reaches up to ~3923 m in comparison with the lowest altitude of ~2034 m, creating 

a local relief of ~1889 m. An intermontane basin in A, cut through by F2, was formed 

at the elevation of ~2810 m, close to the averaged elevation for A of 2809 m. F3 

trends toward the northwest within B, intersecting with F2. The averaged elevation 

and local relief in B are ~4826 and ~2481 m, respectively. The extent of C is the 

largest of the subranges, and its averaged elevation and local relief reach the 

maximum values of ~3755 and 3580 m, and then decrease gently to ~3250 and ~2278 

m in D (Fig. 4b). Due to the considerable relief, a series of deep gorges and the 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

highest peak of the Altun Shan occur within C, where f2 converging with F2 and F1 is 

apparently expressed by a W–E trending, arc-shaped fault system. The Altun Shan 

combines with the Qilian Shan within E, resulting in a complex fault system in which 

F4, f4, F5, and F6 are involved, as well as F1 and F2. The averaged elevation and 

local relief across E is ~3435 and 2594 m, respectively. Its landscape is characterized 

by a series of high mountains and a typical intermontane basin cut through by F2 and 

F4. In this paper, the ASTER GDEM, with a spatial resolution of 30 m in the vertical 

and 20 m in the horizontal, provides basic data covering the whole of the eastern 

Altun Shan. A combined method involving both ArcGIS and MATLAB was then 

employed to extract the channel-steepness index (Ksn) from the data, based on the 

equilibrium channel longitudinal profiles model (Whipple and Tucker, 1999; Snyder 

et al., 2000; Kirby et al., 2003; Wobus et al., 2006).  

In detail, this Ksn index was extracted using the MATLAB script written by 

Snyder et al. (2000) and Kirby (2003), in which a referenced channel concavity index 

θref was set as 0.45 and a 250 m window was adopted to smooth the obtained results. 

In addition, a contour sampling interval of 12 m was also set to calculate raw slope. 

The extracted Ksn indices from all drainage systems were then interpolated, finally 

presenting a distribution pattern over the eastern Altun Shan (Fig. 2b). 

 

4. Results 

 

In order to discuss the relationship between the activity behavior of these faults 

and the obtained Ksn indices along the eastern Altun Shan in detail, a total of 16 

typical profiles, which are roughly perpendicular to the faults and across the regions 

with significant variation in value, have been reconstructed within the five subranges 

(Fig. 2b). These obtained profiles are shown in Fig. 3, based on which the average Ksn 

index value has been calculated for each profile. 

 

<Fig. 3 is hereabout> 
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Overall, those Ksn indices extracted from the northern front are rather high 

compared with those from the southern flank, except the profiles ② and ④. This 

distribution pattern is in agreement with the topographic characteristics of the eastern 

Altun Shan (which has a steeper northern front than southern flank). Profiles ② and 

④, however, cross precisely through regions where the stress of F1 and F2 has been 

adjusted, probably leading to their mismatch. Owing to intense strike-slip activity by 

F1 and F2, their interior regions are dominated mainly by horizontal movement, 

marked by the lower Ksn indices along these profiles. In Profiles ○15  and ○16 , the 

Ksn indices show a marked increase in the confluence area between the eastern Altun 

Shan and western Qilian Shan; strike-slip movement is perhaps resisted by the 

western Qilian Shan, resulting in a region in which tectonic stress has been 

concentrated. This abrupt increase in Ksn indices in profiles ○15  and ○16  may be 

linked with this high stress.  

 

<Fig. 4 is hereabout> 

 

Based on the distribution pattern of Ksn indices along the eastern Altun Shan 

(Fig. 2b), the average Ksn index for each subrange has been calculated  (Fig. 4a). An 

approximate trend of change has been outlined, in which these average Ksn indices 

show a general and gradual increase between subranges A to E (from west to east), 

except C, where the main peak of the Altun Shan occurrs. Based on the same DEM 

data, a 240-km-long and 40-km-wide swath window across the five subranges was 

selected for the topographic analysis of maximum, minimum, mean, and local relief 

(Fig. 4b). Their variation seems to be correlated with the distribution patteren of Ksn 

indices, implying that strike-slip displacement by the eastern Altun Shan is gradually 

cumulative eastwards (Xu et al., 2005).  

 

5. Discussion 
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5.1. Analysis of factors influencing the Ksn index  

 

On the basis of the shear-stress incision model (Snyder et al., 2000), the Ksn 

index can show a sensitive response to variations in bedrock lithology, precipitation, 

sedimentary load, and rock uplift rate (e.g., Hack, 1957; Moglen and Bros, 1995; 

Whipple and Tucker, 1999; Snyder et al., 2000; Kirby et al., 2003; Wobus et al., 

2006; Hu et al., 2010; Burbank and Anderson, 2011; Kirby and Whipple, 2012; Pan 

et al., 2015; Wang et al., 2015; Li et al., 2016; Wang et al., 2016; Liu et al., 2016). 

The geology of the eastern Altun Shan is dominated by regional metamorphic rocks, 

including the Proterozoic quartz schist, quartzite, and amphibolite. In contrast, 

granite, gabbro, and ultrabasic/mafic rocks can be identified only sporadically, 

within a very limited area (Fig.1B). Over the extent of the eastern Altun Shan, 

therefore, there is a roughly uniform lithological distribution presents pattern, which 

seems unlikely to be responsible for the remarkable change in the Ksn index.  

The eastern Altun Shan is located within a typical desert environment, with a 

mean annual precipitation that reaches only 110.0 mm, and is characterized by a 

rather high mean annual evaporation, at 2495.2 mm (Resource and Environment 

Data Cloud Platform of China: http://www.resdc.cn/). All the rivers originating from 

the eastern Altun and debouching northward into the desert are therefore ephemeral. 

The mean annual precipitation within the mountains is a little higher than in their 

frontal zones, reaching 200.0–250.0 mm. Moreover, from west to east, along the 

eastern Altun Shan, mean annual precipitation is see to increase slowly from 27.0 to 

183.0 mm, with average annual evaporation also increasing from 1630.0 to 2500.0 

mm. According to Hu et al. (2010), however, the Ksn index has an inverse correlation 

with mean annual precipitation within arid and semi-arid regions, so the variation in 

the Ksn index along the eastern Altun Shan cannot be attributed to the increasing 

mean annual precipitation.  

 

<Fig. 5 is hereabout> 
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In general, the variation in Ksn index can also be linked with sedimentary load 

(Snyder et al., 2000; Kirby et al., 2003; Wobus et al., 2006; Hu et al., 2010; Burbank 

and Anderson, 2011; Kirby and Whipple, 2012; Pan et al., 2015). Based on field 

investigation, the river channel types in the eastern Altun Shan mainly comprise 

exposed bedrock riverbeds, alluvial rivers, and accumulation channels, as well as 

combinations of these (Fig.5). In addition, these are all ephemeral rivers, which, in 

combination with the notably low mean annual precipitation, results in limited 

sedimentary loads. Along the eastern Altun Shan, sedimentary loads are indeed 

probably approximately equal, in contrast to the striking variation in the Ksn index. 

 

5.2. Correlation between Ksn index and fluvial incision rate 

 

Considering the rather limited impact of lithology, precipitation, and 

sedimentary load on the Ksn index along the eastern Altun Shan, rock uplift rate is 

employed here to link with the variation of this index. Previous work by Hu et al. 

(2010) and Pan et al. (2015) has suggested that the change in Ksn index within the 

Qilian Shan can probably be attributed to variation in rock uplift rate. Further 

analysis has revealed that there is a positive correlation (e.g., Hack, 1957; Moglen 

and Bros, 1995; Whipple and Tucker, 1999; Snyder et al., 2000; Kirby et al., 2003; 

Wobus et al., 2006; Hu et al., 2010; Burbank and Anderson, 2011; Kirby and 

Whipple, 2012; Wang et al., 2015; Li et al., 2016; Wang et al., 2016; Liu et al., 

2016).  

Controlled by a series of strike-slip thrust faults, the eastern Altun Shan has 

been strongly uplifted during the Cenozoic (Yin et al., 2002; Xu et al., 2005; Cheng 

et al., 2016). These faults remain active at the present day, so that this mountain 

range maintains a tectonically uplifting setting (Cheng et al., 2016)(Fig.1). In general 

it is thought that tectonic or rock uplift rate can be evaluated from fluvial incision 

rate (Bridgland et al., 2000, 2007, 2012; Pan et al., 2003, 2007, 2012; Vandenberghe, 

2008; Westaway et al., 2009a). At the eastern end of the eastern Altun Shan, the 

Daebo, Xiaoebo, and Changcaogou rivers flow northward through the strike-slip 
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thrust faults, debouching into the desert (Fig. 1A). A series of terrace sequences has 

been formed along these rivers (e.g. Chen et al., 2012). In order to investigate the 

pattern of the incision by these rivers, from west to east, a total of 5 Optically 

Stimulated Luminescence (OSL) samples was taken from sand lenses within the 

gravels accumulated on terraces T1 and T2 (Fig.6).  

In sampling, a 25-cm-long stainless steel tube was hammered horizontally into 

the sediments in freshly cleaned vertical sections. Then, immediately after removal, 

the tube was sealed with tinfoil and plastic tape at both ends. In the OSL Chronology 

Laboratory in the Key Laboratory of Western China’s Environmental Systems 

(Ministry of Education), Lanzhou University, 90–125 μm quartz grains were selected 

and purified following the procedure of Zhao and Li (2002) and Fan et al. (2010). 

Luminescence signals were measured for 2-mm-diameter small aliquots using an 

automated Risø TL/OSL-DA-20 reader. 

The OSL signal was measured using the modified single-aliquot regenerative 

protocol (Banerjee et al., 2001) to eliminate the potential contribution of any infrared 

stimulated luminescence (IRSL) signals from feldspar inclusions within the quartz 

crystals, and the post- infrared (IR) OSL signal was used to obtain the De values of 

the quartz fractions. The detailed protocol was described by Fan et al. (2016). The 

environmental dose rate was calculated from the concentrations of U, Th, and K in 

the samples and from the contribution of cosmic rays. The water content was 

estimated according to the natural water content and saturated water content. Age 

calculation uses the central age model and represents a 2σ uncertainty. 

On the basis of the dating results from these samples (Table 1), with reference 

to related terrace heights, the average rates of incision by the Daebo, Xiaoebo, and 

Changcaogou rivers were calculated and are shown in Table 2. A significant trend 

can be clearly observed, in which the rate of incision increases progressively from 

west to east, in good agreement with other researchers (e.g. Xu et al., 2003; Chen et 

al., 2012). Owning to the resistance of the Qilian Shan, the deformation of these 

strike-slip thrust faults has been transformed into vertical thrust style at the eastern 

end of the eastern Altun Shan (Chen et al., 2002; Deng et al., 2002; Xu et al., 2003, 
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2005; Zheng et al., 2013; Cheng et al., 2016). The pattern of fluvial incision may 

thus indicate an eastward increasing trend in tectonic uplift rate (Ge et al., 2004; Xu 

et al., 2005; Li et al., 2015). Along the eastern Altun Shan, the variation in the Ksn 

index is in good agreement with the increase in uplift rate from west to east, 

confirming its tectonic implication (Deng et al., 2002; Xu et al., 2003, 2005). GPS 

observation by Zhang et al. (2004, 2007) and Li et al. (2015) also suggests that the 

left- lateral slip rate on fault F1 declines from west to east, in response to this 

transformation of tectonic style at the eastern end of the eastern Altun Shan.  

 

<Table 1 is hereabout> 

 

<Table 2 is hereabout> 

 

<Fig. 6 is hereabout> 

 

5.3. Uplift and lateral growth of the Tibetan Plateau revealed by the variation in 

Ksn index  

The eastern ATF, as the northern boundary of the Tibetan Plateau, 

accommodates the force from the Indian plate, by the way of left- lateral strike slip 

motion (Molnar et al., 1975; Molnar et al., 1987; Ding, 1995; Cui, 1999; Deng et al, 

2002; Yin et al., 2002; Westaway, 2009b; Xu et al., 2003). During the late 

Pleistocene, the maximum slip rate at the west end of this fault system has reached 

up to 30 ± 20 mm/a (Xu et al., 2003). According to the Ksn index distribution pattern, 

however, this rate decreases progressively eastward. At the east end of the eastern 

ATF, a remarkably reduced rate of 11.0 mm/a has been estimated (Xu et al., 2003). In 

the growth model for the Tibetan Plateau of Tapponnier et al. (1982, 2001), the great 

crustal shortening between the Indian and Eurasian plates is mainly absorbed by a 

series of strike-slip fault systems, bringing about rapid escape of the extruded mass. 

Based on further analysis of the geodetic data, in combination with chronological 

study, the eastward escape or extrusion of the Tibetan Plateau is nevertheless 
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regarded as limited (Deng et al., 2002; Xu et al., 2003, 2005). Along the eastern ATF, 

some active thrust faults with a NW trend splay from this fault and propagate 

southeastward, creating two sets of triple junctions (Fig. 1A). Slip vector analyses 

argue that the sinistral slip rates from west to east across these junctions have 

decreased significantly since Pleistocene (Xu et al., 2003). Their loss has been 

considered to be transformed into local crustal shortening perpendicular to the active 

thrust faults, associated with strong uplift of the Qilian Shan (Ding, 1995; Cui et al., 

1999; Xu et al., 2003). As a result, the distribution pattern of Ksn index along the 

eastern Altun Shan, obtained in this study, is in good agreement with “the imbricated 

thrusting transformation- limited extrusion model” of the Tibetan Plateau (Deng et al., 

2002; Xu et al., 2003, 2005).  

 

6. Conclusions  

 

In this study, the Ksn index over the eastern Altun Shan has been extracted from 

the ASTER GDEM and used as basic data for analysis. Its distribution pattern has 

been clearly observed to represent a general increase in value from west to east along 

this mountain range. Further relative analysis has revealed that the variation in this 

index probably results from changes in uplift rate, rather than in lithology, 

precipitation, or sedimentary load. In fact, our chronological study, combined with 

terrace archives, has confirmed that the incision rate increases gradually eastward, 

reflecting an eastward rise in uplift rate. Thus the Ksn index distribution pattern within 

the eastern Altun Shan provides notable support for the argument for “the imbricated 

thrusting transformation- limited extrusion model” of the Tibetan Plateau. 
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Table Captions 

 

Table 1. OSL sample information and analysis data. 

 

Table 2. Terrace data and river incision rates. 

 

Figure Captions 

 

Fig. 1. Topographic and geological map of the eastern Altun Shan. (A) Major fault 

systems, rivers, and mountains across the eastern Altun Shan. The inset map displays 

the location within the Tibetan Plateau. Numerous ephemeral rivers develop along the 

northern and southern front of the eastern Altun Shan, and cutting through these fault 

systems. According to Xu et al. (2005), some active faults with NW trend splay from 

faults F1 and F2 and propagate southeastward, creating two sets of triple junctions, 

their extent constrained by the dotted circle. The rivers with OSL sampling positions 

are marked by red pentagon, in which the insert numbers 1, 2, and 3 represent the 

Daebo, Xiaoebo, and Changcaogou rivers, respectively. (B) Lithological information 

from the Chinese geological map, with a scale of 1:200,000 (Bureau of Geology and 

Mineral Resources of Gansu Province, 1989.). In the eastern Altun Shan, the 

dominant lithologies are  regional metamorphic rocks, presenting a generally 

uniform pattern.  

 

Fig. 2. Distribution map of the extracted Ksn, along the eastern Altun Shan. (a) The 

topographic map was divided into 5 subranges, named as A, B, C, D, and E, from 

west to east along the eastern Altun Shan. (b) The Ksn indices obtained from the above 

5 subranges have been superimposed onto the topographic map of the eastern Altun 

Shan. In order to analyze their distribution pattern further, some 16 profiles were 

established within these subranges. They were numbered consecutively from ① to 

○16 , corresponding with the profile numbers in Fig. 3.  

 

Fig. 3. Ksn index profiles. In each profile, the vertical and horizontal axes depict Ksn 

index and distance, respectively. Their positions are indicated in Fig. 2. For each 
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profile, an average Ksn index has been calculated, and is denoted by dotted lines. In 

general, the Ksn indices extracted from the northern front of the eastern Altun Shan are 

higher than those from the southern flank, except for profiles ○2  and ○4 . The 

characteristics of these faults that were cut through by the profiles are shown on the  

Ksn index variation curves.  

 

Fig. 4. Ksn index distribution pattern combined with topographic characteristics over 

the extent of the eastern Altun Shan. (a) Ksn index distribution pattern. The numbers 

along the horizontal axis express the same profiles as in Fig. 3. Their average Ksn 

indices are indicated by black dots, which were further connected with each other to 

point out an eastward increasing tendency. The green bars are the average Ksn indices 

over the five subranges along the eastern Altun Shan. See Fig. 2 for their detailed 

extent. (b) Maximum, minimum, mean, and local relief topography along a 

240-km-long and 40-km-wide swath window across the same extent of the eastern 

Altun Shan. On this swath plot, the extent of major topographic features over the five 

subranges is displayed. Their variation seems to be correlated with the distribution 

pattern of Ksn indices. 

 

Fig. 5. River channel types in the eastern Altun Shan. (A) Alluvial riverbed with thin 

gravel layer. (B) Example of bedrock riverbed. Numerous typical knickpoints have 

been observed in our field investigation, occurring along the rivers in the eastern 

Altun Shan, two of which are presented in A and B. (C) A complex riverbed pattern, 

including exposed bedrock riverbed, alluvial river, and accumulation channel. (D) 

Accumulation channel with thick gravel layer.  

Fig. 6. Fluvial terraces formed by the Daebo, Xiaoebo, and Changcaogou Rivers at 

the east end of the eastern Altun Shan. (A) Terrace T1 of the Daebo. Its height above 

the riverbed is indicated, as is the age of an OSL sample taken from its gravel in order 

to calculate incision rate. (B) Age and height of Daebo terrace T2. (C) Terraces T1 

and T2 of the Xiaoebo. Terrace T2 has been deformed by northward thrust faults. Its 

age and height were obtained to determine the incision rate. (D) Details of the yellow 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

dashed box within C to display the conglomerate wedge accumulated in the thrust 

nappe. (E) Terrace sequence of the Changcaogou. The age and height of terrace T3 are 

indicated. (F) Age and height of terrace T2 of the Changcaogou, with underlying 

deformed bedrock.
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Table 1: OSL sample information and analysis data.  

Sample ID Location /Terrace Material 
Latitude 

（°N）  

Longtitude 

（°E）  

Altitude 

（m）  

Burial 

depth 

（m）  

Water content 

（%）  

Equivalent 

dose(Gy) 

Dose rate 

(Gy/ka) 

OSL Age 

 (ka) 

DEB01 Daebo /T1 Fluvial sand 39.3792 94.1100 2758 2.0 10±5 55.5±1.5 3.71±0.26 14.9±1.1 

DEB02 Daebo /T2 Fluvial sand 39.3790 94.1074 2807 6.5 10±5 114.0±1.8 3.57±0.25 31.9±2.3 

XEB02 Xiaoebo/T2 Fluvial sand 39.3973 94.1982 2628 4.5 10±5 56.3±6.1 3.46±0.24 16.3±2.1 

CCG01 Changcaogou/ T2 Fluvial sand 39.4144 94.3005 2677 4.2 10±5 98.7±6.9 3.90±0.28 25.3±2.5 

CCG02 Changcaogou /T3 Fluvial sand 39.4144 94.3005 2753 1.5 10±5 329.0±14.5 3.09±0.21 106.4±8.7 
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Table 2: Terrace data and river incision rates. 

River channel  
Terrace 

 order 
Age（ka） Terrace height（m） Incision rate(mm/a) 

Daebo  
T2 31.9±2.3 18.4 0.58±0.05 

T1 14.9±1.1 7.5  0.50±0.03 

Xiaoebo T2 16.3±2.1 12.0  0.73±0.07 

Changcaogou 
T3 106.4±8.7 111.0 1.04±0.08 

T2 25.3±2.5 23.0 0.90±0.07 
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Highlights 

 

·Along the eastern Altun Shan, the obtained index Ksn shows a rough tendency of 

increasing eastward.  

 

·The index Ksn from the north front of the eastern Altun Shan is higher than that from 

the south flank. 

 

·This distribution pattern of the index Ksn is translated into the different uplift along 

the eastern Altun Shan. 

 

·The difference in uplift rate can be evaluated well by the fluvial incision rate 

obtained by terrace archives. 

 

·The analysis of the index Ksn along the eastern Altun Shan provides an excellent 

insight into the argument for extrusion model of the Tibetan Plateau. 
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