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ABSTRACT
We introduce one- and two-dimensional ‘exponential shapelets’: orthonormal basis functions
that efficiently model isolated features in data. They are built from eigenfunctions of the
quantum mechanical hydrogen atom, and inherit mathematics with elegant properties under
Fourier transform, and hence (de)convolution. For a wide variety of data, exponential shapelets
compress information better than Gauss–Hermite/Gauss–Laguerre (‘shapelet’) decomposition,
and generalize previous attempts that were limited to 1D or circularly symmetric basis
functions. We discuss example applications in astronomy, fundamental physics, and space
geodesy.

Key words: methods: data analysis.

1 IN T RO D U C T I O N

A frequent task in data analysis is to categorize and quantify
the shapes of localized objects – such as transient events in a
(one-dimensional) time-series, or regions of interest in a (two-
dimensional) image. It is such a universal challenge that methods
developed for one field frequently turn out to be useful in others.
For example, astrophysicists measure the shapes of distant galaxies
by decomposing them into orthogonal basis functions, such as
CHEFs (Jiménez-Teja & Benı́tez 2012) or (Gaussian) shapelets
(Bernstein & Jarvis 2002; Refregier 2003; Refregier & Bacon 2003;
Massey & Refregier 2005). Shapelets have been used to analyse
data in other branches of astrophysics, modelling extrasolar planets
(Hoekstra et al. 2005; Amara & Quanz 2012), the distribution of
dark matter (Birrer, Amara & Refregier 2015; Tagore & Jackson
2016), or flashes of pulsars (Ellis & Cornish 2015; Lentati et al.
2015; Desvignes et al. 2016). They have also been used in medical
imaging (Weissman, Hancewicz & Kaplan 2004; Apostolopoulos
et al. 2017), pattern recognition in human vision (Sharpee &
Victor 2009) or artificial vision (Sabzmeydani & Mori 2007), data
compression (Holbrey 2006), and the manufacture of nanoscale thin
films (Suderman & Lizotte 2015; Akdeniz, Lizotte & Mohieddin
Abukhdeir 2018).

Gaussian shapelets are based on eigenfunctions of the quantum
mechanics harmonic oscillator. In one-dimensional form, they are
Gauss–Hermite functions, which seem to be well adapted in several
time-series analyses, especially when transients (whose shape is
close to damped oscillations) must be detected, characterized,
and/or corrected for. This is the case for instance in fundamental
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physics for MICROSCOPE ‘crackles’ (e.g. Baghi et al. 2015;
Bergé et al. 2015), space geodesy for GRACE ‘twangs’ (Flury,
Bettadpur & Tapley 2008; Peterseim, Jakob & Schlicht 2010;
Peterseim et al. 2014), or ‘glitches’ in gravitational wave searches
with LIGO (Cornish & Littenberg 2015; Powell et al. 2015, 2017;
Principe & Pinto 2017 and references therein). In two-dimensional
form, they can be expressed equivalently as either Gauss–Hermite
(Cartesian; Refregier 2003) or Gauss–Laguerre (polar; Bernstein &
Jarvis 2002; Massey & Refregier 2005) functions. Owing to their
quantum mechanical origin, they have elegant properties (they make
a complete set) under Fourier transform, and are hence efficient for
operations involving convolution or deconvolution of two images.

The main limitation of shapelets is that they are perturbations
around a Gaussian, which is flat near its peak. They inefficiently
parametrize peaky features, including the distant galaxies for which
they were originally suggested (Melchior et al. 2010). Galaxies have
a two-dimensional surface density that decreases approximately
exponentially with distance from the centre. Capturing the steep
gradient near the centre requires a weighted sum of many Gaussian
shapelet basis functions, which then overfit noise in the extended
wings. Attempting to overcome this limitation, Ngan et al. (2009)
developed ‘Sersiclets’, although they were forced to be circularly
symmetric, and have not seen wider applications.

In this paper, we extend the quantum mechanical framework
underpinning Gaussian shapelets, and define 1D and 2D exponential
shapelets based on wavefunctions of the hydrogen atom. These
functions are perturbations around a decreasing exponential, and
should efficiently model any arbitrarily shaped but centrally peaked
regions of interest. The perturbations themselves are Laguerre
polynomials.

We introduce 1D exponential shapelets in Section 2, and 2D
exponential shapelets in Section 3. In both cases, we describe their
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Exponential shapelets 545

main properties, compare them to Gaussian shapelets, and provide
example uses. We conclude in Section 4.

2 1 D EXPONENTIAL SHAPELETS

2.1 Definition

The 1D hydrogen atom is the solution to the motion of a particle in
a 1D Coulomb potential 1/|x|. In this paper, we will neither dwell on
its rich history, nor the debates about the finitude of its ground state,
and about the existence of even wavefunctions (see Nieto 1979;
Palma & Raff 2006; Nú nez-Yépez, Salas-Brito & Solis 2011, 2014
and references therein). Instead, we simply exploit the normalized
1D hydrogen atom wavefunctions as given by Palma & Raff (2006)
to define the 1D exponential shapelet basis functions

�+
n (x; β)= (−1)n−1√

n3β

2x

nβ
L1

n−1

(
2x

nβ

)
exp

(
− x

nβ

)
∀x � 0, (1)

for n ≥ 1, where L1
n−1 are the generalized Laguerre polynomials

(see e.g. Massey & Refregier 2005). The characteristic scale size β

corresponds to the Bohr radius, and n is the eigenfunction energy
level.

Note that, contrary to normal procedure in quantum physics, we
restrict 1D exponential shapelets on positive x, and refrain from
defining the negative-x part �−

n (x; β) = −�+
n (−x; β) (for x < 0).

Hence, we do not follow Palma & Raff (2006) and do not define the
even and odd wavefunctions �+

n (x; β) ± �−
n (x; β). Events in time-

series can often be adequately described by their behaviour after a
certain moment (in this case, x = 0). Henceforth, we shall therefore
drop the + superscript, to write more simply �n(x; β) ≡ �+

n (x; β).
These functions are continuously differentiable, smoothly departing
from zero at x = 0 and tending back to zero as x → ∞.

Because the basis functions (1) are eigenfunctions of the 1D
hydrogen atom’s Hamiltonian, they form an orthogonal basis of
the square integrable functions L2([0, ∞[, 〈 ·, ·〉) Hilbert space
equipped with the inner product 〈f (x), g(x)〉 = ∫ ∞

0 f (x)g∗(x)dx

and an asterisk denotes complex conjugation. They are orthonor-
mal, in the sense that

∫ ∞
0 �n(x; β)�m(x; β) dx = δnm, where

δnm is the Kronecker symbol, and complete, in the sense that∑∞
n=1 �n(x; β)�n(x ′; β) = δ(x − x ′).
They thus form a basis on which we can uniquely decompose a

function as

f (x) =
∞∑

n=1

fn�n(x; β), (2)

with coefficients fn given by an overlap integral

fn =
∫ ∞

0
f (x)�n(x; β) dx. (3)

Bessel’s inequality then assures us that for any function f ∈ L2([0,
∞[, 〈 ·, ·〉),

∞∑
n=1

|fn|2 � ||f ||2, (4)

where ||.|| is the L2 norm, so that the series (2) converges and
coefficients fn must vanish as n increases. The series can therefore
be truncated for suitably localized functions, at some value n ≤
nmax.

Figure 1. The first few 1D exponential shapelets �n(x), for β = 1. The
inset shows a zoom on the smallest x.

2.2 Properties

2.2.1 Maximum and minimum effective scales

The first few 1D exponential shapelet basis functions �n(x; β) are
shown in Fig. 1. As the order n increases (with constant β), the
largest-scale oscillation dominates, and rapidly acquires a larger
extent. However, the smallest oscillations always remain roughly
the same size.

To act as a convenient figure of merit, we follow Refregier (2003)
in defining the largest scale that can be described by an exponential
shapelet model as

θmax ≈
√∫

x2�nmax (x; β) dx∫
�nmax (x; β) dx

= β
√

2nmax(2nmax + 1) . (5)

Empirically, the smallest scale that can be described is

θmin ≈ β. (6)

As nmax → ∞, the range of scales modelled by a 1D exponential
shapelet decomposition, θmax/θmin ∝ nmax = ncoeffs. However, the
resolution of an exponential shapelet model is greatest near the
origin, and decreases away from it. This behaviour is very different
from Gaussian shapelets, where the resolution is more spatially
uniform: Increasing n increases the scale of the model slowly,
while simultaneously adding smaller-scale oscillations (see fig. 1 of
Refregier 2003). The wide effective range of scales for exponential
shapelets is what will allow them to efficiently describe spiky but
long-duration events.

2.2.2 Fourier and Laplace transforms

To compute the Fourier transform of the 1D exponential shapelet
basis functions, we adopt a convention where the Fourier transform
is defined as

f̃ (k) = (2π)−
1
2

∫ ∞

−∞
f (x)eikx dx,

f (x) = (2π)−
1
2

∫ ∞

−∞
f̃ (k)e−ikx dk

(7)

for any function f(x), where i2 = −1. The Fourier transform of the
basis function �n(x; β) is then (setting f(x) = 0 for x < 0)

�̃n(k; β) = (−1)n
√

2nβ

π

(nβk − i)2n

[(nβk)2 + 1]n+1
. (8)
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546 J. Bergé et al.

Figure 2. Exponential shapelets are well localized in frequency space. This
shows the modulus of the Fourier transform of the first few 1D exponential
shapelets �n(x; β), for β = 1.

Note that the real part of the Fourier transform is even for all n,
while its imaginary part is odd for all n. Its modulus is a Lorentzian
function centred on k = 0 whose width parameter � ≡ 2/(nβ) is
inversely proportional to β (as typical for exponentially suppressed
oscillations)

∣∣�̃n(k; β)
∣∣ =

√
2π

nβ

1

π

�/2

k2 + (�/2)2
. (9)

With conventions similar to those for the Fourier transform, the
Laplace transform is given by

L(�n(x; β))(s) = (−1)n−12
√

nβ
(nβs − 1)n−1

(nβs + 1)n+1
. (10)

Although equations (8) and (10) are not as simple as for Gaussian
shapelets (the Fourier transform of a Gaussian shapelet is itself a
Gaussian shapelet), closed forms exist for exponential shapelets
that are easy to implement. The Fourier and Laplace transforms of
1D exponential shapelets are also well localized in frequency space
(Fig. 2).

2.2.3 Convolution

Convolution is an inevitable operation during signal acquisition,
whereby an input (‘real’) signal undergoes the measurement ap-
paratus’ transfer function. What is ultimately measured is the
convolution of the input signal with the transfer function.

Let us consider the convolution of two functions f(x) and g(x),
whose convolution product is

h(x) ≡ (f � g)(x) ≡
∫ ∞

−∞
dx ′f (x − x ′)g(x ′). (11)

Following the same arguments as Refregier (2003), the functions
can all be decomposed into exponential shapelets, perhaps with
different scale sizes α, β, and γ . We can then relate the 1D
exponential shapelet space coefficients hn; γ to fm; β and gl; α via

hn =
∞∑

m,l=1

Cnmlfmgl, (12)

where the convolution tensor is given by

Cnml(γ, α, β) =
√

8 αβγ nml

π

2m∑
u=0

2l∑
v=0

2n∑
w=0

iu+v+w

(
2m

u

)

×
(

2l

v

)(
2n

w

)
(mα)u(lβ)v(nγ )nIm,l,n

u,v,w (13)

and
(

n

m

)
is the binomial coefficient. A proof of equation (13) is

provided in Appendix A1.
The integral

Im,l,n
u,v,w≡

∫ ∞

−∞

(−1)w ku+v+w dk[
(mαk)2 + 1

]m+1 [
(lβk)2 + 1

]l+1 [
(nγ k)2 + 1

]n+1

(14)

appearing in equation (13) is zero if u + v + w is odd (a proof is
provided in Appendix A2). Hence, Cnml(γ , α, β) is always wholly
real. Under some conditions, it can be estimated analytically and
expressed as a sum of converging series (see equations A18, A22,
and A29 in Appendix A3). Those conditions are often not met,
but the integrand is a well-behaved function, so the integration can
also be performed numerically. We find that numerical integration
is most convenient if the function is cut into three segments (see
equations A14, A20, and A27 in Appendix A3).

2.2.4 Rescaling

One-dimensional exponential shapelets obey the integral property∫ ∞

0
�n(x; β)dx = 2

√
nβ. (15)

Using this, it can be shown that under a rescaling x → x′ = ax, the
coefficients fn of a model (3) transform as

f ′
n;β = a−1/2fn;aβ , (16)

and under f(x) → f′(x) = kf(x), the coefficients are themselves
multiplied by k.

2.3 Shape characterization

Let f(x) = ∑
nfn�n(x; β) be a 1D object decomposed into 1D

exponential shapelets. In terms of its shapelet coefficients, its
integral (total ‘flux’) is

F ≡
∫ ∞

−∞
f (x)dx = 2

√
β

∞∑
n=1

√
n fn , (17)

which can be readily shown from the integral property (15).
Provided F �= 0, its barycentre (centroid) is

xc ≡ 1

F

∫ ∞

−∞
xf (x)dx = 4

√
2β3/2

F

∞∑
n=1

n2fn , (18)

and it has a characteristic size

r2
c ≡ 1

F

∫ ∞

−∞
x2f (x)dx = 4β5/2

F

∞∑
n=1

n3(2n2 + 1) fn . (19)

This size can be used to determine the exponential decay rate of the
object, for instance when modelling damped oscillations.

Note that the series (19) converges only if the amplitudes of the
1D exponential shapelet coefficients decrease faster than n−6, which

MNRAS 486, 544–559 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/486/1/544/5382063 by U
niversity of D

urham
 user on 02 July 2019



Exponential shapelets 547

may not always be the case. Care must therefore be taken to check
for convergence when characterizing the shape of a feature using
this technique.

2.4 Exponential shapelet modelling in practice

As shown above (equation 2), a 1D feature is straightforward to
model for a given couple (nmax, β), where nmax is the maximum
order of the truncated sum (2). For example, a linear least-square
method can be efficiently used for this purpose. Then the model
depends non-linearly on the two parameters nmax and β that can
be optimized by iteratively minimizing the residuals between the
observed feature and its model. This procedure was described at
length, in the 2D case, by Massey & Refregier (2005).

2.5 Example applications

This section demonstrates three possible applications of 1D expo-
nential shapelets. We start by modelling exponentially suppressed
oscillations, which are measurements throughout experimental
physics, including the response of accelerometers1 onboard the
space missions MICROSCOPE (Touboul, Métris & Rodrigues
2017), GRACE (Tapley et al. 2004), and GOCE (Rummel, Yi &
Stummer 2011). We then discuss a potential application to un-
modelled bursts in the analysis of gravitational waves. Exponential
shapelets may also be convenient to model charge transfer inef-
ficiency trailing due to radiation damage in spacebourne imaging
detectors (Massey et al. 2010), although we do not explore that
further here.

2.5.1 Cleaning accelerometer time series data, and modelling an
experiment’s response function

MICROSCOPE tested the weak equivalence principle (WEP) by
precisely measuring the differential acceleration experienced by
two concentric cylindrical test masses onboard a drag-free satellite
in Low Earth Orbit.2 In theory, any non-zero difference at a well-
defined frequency fEP (which depends on the orbit and attitude
characteristics of the satellite) is a signature of violation of the
WEP.

In practice, many transients are apparent in MICROSCOPE data
(the upper panel of Fig. 3 shows a typical high-signal-to-noise
example). These transients are generally caused by crackles of
the satellite’s coating (because of temperature variations), crackles
of the satellite’s gas tanks (as their pressure decreases as the gas
is consumed), or impacts with micro-meteorites. Such transients
occupy frequencies higher than fEP, so they do not directly impact a
possible WEP violation signal. However, it is necessary to detect and
mask them in measured time-series, and then either reconstruct the
corresponding ‘missing data’ (Bergé et al. 2015; Pires et al. 2016) to
allow for a least-square fit of the expected WEP violation signal in
the frequency domain (Touboul et al. 2017), or adapt the maximum
likelihood technique to take missing data into account (Baghi et al.
2015, 2016). Existing techniques are suboptimal, as they may affect
the noise characteristics. Moreover, transients could be considered
as conveying useful information. They are created by an external
impulse; if this is assumed to be instantaneous (Dirac), the shape

1http://www.onera.fr/en/dphy
2The mission ended on 2018 October 16; data analysis is still underway.

Figure 3. Test data for 1D exponential shapelets. Upper panel: a transient
in MICROSCOPE accelerometer time series, as observed (black) and
reconstructed from a 1D exponential model (red), with model residuals
(green). Lower panel: convergence of the model as we increase the order of
the model nmax.

and relaxation time of the observed signal are a measurement of
MICROSCOPE’s transfer function.

1D exponential shapelets are well-matched to these transient
signals. The upper panel of Fig. 3 shows a transient in the time
domain: the observed data are shown in black, a model (fitted
between t = 10 s and t = 25 s) and its 68 per cent confidence interval
are shown in red, and residuals consistent with noise are shown in
green. This model uses nmax = 15, meaning that it has compressed
60 data points in the time domain description (15 s sampled at
4 Hz) into 15 shapelet coefficients. None the less, the model has
rich, empirical freedom to capture multiple response modes of the
instrument’s complex structure. The lower panel of Fig. 3 shows
the convergence of the model as we increase nmax, quantified as
the square residuals between the observed transient and the model.
Most of the information is contained in coefficients 3 ≤ n ≤ 13.

An extension to this process will be presented in a future paper.
By fitting 1D exponential shapelet coefficients to many transients,
it is possible to model temporal variations in relaxation time of
MICROSCOPE’s instrument via the parameter β or the exponential
envelope scale rrms. Interpolating these models then yields a model
of the transfer function at any time, to either gain insight into
the instrument’s performance or correct (deconvolve) signals with
an ‘inverse transfer function’ transform. Note that this procedure
is similar to techniques developed for 2D astronomical image
processing, where a point spread function (PSF) is determined from
the shape of stars then interpolated across the data (see e.g. Bergé
et al. 2012; Gentile, Courbin & Meylan 2013; Kilbinger 2015).
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2.5.2 Characterization of perturbing signals in space-borne
geodesy missions

The GRACE mission (Tapley et al. 2004) revolutionized geodesy
by measuring the Earth’s gravitational field with unprecedented
precision. Two satellites followed each other on the same orbit,
monitoring the distance between them via microwave ranging. In
theory, any variation in their relative speed or distance can be
ascribed to variations in the Earth’s geopotential.

In practice, the satellites were also subject to non-gravitational
forces. These were measured by ultrasensitive accelerometers, for
removal during post-processing (Flury et al. 2008; Peterseim et al.
2010). Peterseim (2014) and Peterseim et al. (2014) modelled tran-
sients (known as ‘spikes’) in accelerometer data using a piecewise
function made from the derivative of a Gaussian, a third-order
polynomial, and a damped oscillation. Some were successfully
classified as either due to the satellite’s heaters or due to activation
of its magnetic torquers – but no physical origin could be assigned
to others, known as ‘twangs’.

Tentative correlations of twangs with the position of the satellite
along its orbit hint at a possible geophysical origin. Both categories
of twangs are compactly represented as 1D exponential shapelets,
so we will investigate in a future paper whether these provide a
cleaner set of shape parameters to categorize and understand their
origin.

2.5.3 Unmodelled bursts and glitches in gravitational wave data
analysis

A wealth of methods have been developed to search for, charac-
terize, and classify unmodelled bursts and instrumental glitches
in searches for gravitational waves (see e.g. Cornish & Litten-
berg 2015; Powell et al. 2015, 2017; Principe & Pinto 2017,
and references therein). Glitches are often modelled using ‘sine-
Gaussian waveforms’ (Principe & Pinto 2017). These have similar
properties to Gaussian shapelets, although shapelets can encode
more details. One-dimensional exponential shapelets could further
optimize the data compression of complex glitch shapes that often
exhibit damped oscillations.

Shapelets might therefore improve the detection, characteriza-
tion, and classification of instrumental glitches in gravitational wave
detectors. Indeed, bursts and glitches are usually detected in the
time–frequency domain, which is easily reproduced in Gaussian
shapelet-time space. If 1D exponential shapelets more efficiently
model the information in a glitch, exponential shapelet-time space
would be even better. We will investigate in a future paper whether
glitches can be detected by scanning a matched filter and correlating
the measured signal with a 1D exponential shapelet model while
leaving β (and possibly nmax) free.

2.6 Comparison with Gaussian shapelets

The MICROSCOPE transient modelled as exponential shapelets
(nmax = 15) in Fig. 3 is modelled as Gaussian shapelets (nmax =
18) in Fig. 4. Achieving a similar precision of fit requires more
coefficients, and creates more small-scale artefacts: The data are
overfitted near the centre of the model, and underfitted at the
extremes. We also find that its coefficients are highly covariant,
with the good fit produced by large positive and negative basis
functions almost precisely cancelling each other. This is much
less apparent for the 1D exponential shapelet coefficients. Indeed,
we find that estimating the model again on points different from

Figure 4. Gaussian shapelet model of the MICROSCOPE transient whose
1D exponential shapelet model is shown in Fig. 3.

those observed data fails to reproduce the overall shape of the
transient, whereas the 1D exponential shapelet model is itself
predictive.

In this example, it appears that 1D exponential shapelets outper-
form Gaussian shapelets. This is because their perturbations around
an exponential decay are better matched to the underlying signal,
and because their wider extent spreads information density more
evenly. In general, the type of shapelet to choose should depend on
the decay rate of the target function.

3 2 D EXPONENTI AL SHAPELETS

3.1 Definition

The quantum mechanics of a hydrogen atom restricted to two
dimensions is well studied (see e.g. Zaslow & Zandler 1967; Yang
et al. 1991; Chaos-Cador & Ley-Koo 2007). The bound states of the
electron (i.e. eigenfunctions of the Hamiltonian) provide a natural
set of basis functions to represent a bounded distribution. After
renormalizing these, we define the 2D exponential shapelet basis
functions

�n,m(r, φ; β) = (−1)n
√

2

βπ(2n + 1)3

(n − |m|)!
(n + |m|)!

×
(

2r

β(2n + 1)

)|m|
L

2|m|
n−|m|

(
2r

β(2n + 1)

)

× exp

(
− r

β(2n + 1)

)
exp(−imφ), (20)

for n ≥ 0, where L
j

i (x) are generalized Laguerre polynomials. The
(− 1)n term is used to ensure that the integral of each basis function
is positive, but this is otherwise the form used in quantum theory. In
terms of quantum mechanics, n is the principal quantum number (the
eigenfunction energy level) and m the magnetic quantum number,
which takes integer values between −n and n. The characteristic
scale β is linked to the Bohr radius.

These functions form an orthonormal set of basis
functions in the L2([0, ∞[ × [0, 2π [, 〈 ·, ·〉) space
equipped with inner product 〈�n,m(r, φ), �n′,m′ (r, φ)〉 =∫ 2π

0

∫ ∞
0 �n,m(r, φ) �∗

n′,m′ (r, φ) r dr dφ = δnn′δmm′ .
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Any localized function f(r, φ) can be uniquely decomposed into
a weighted sum of these basis functions

f (r, φ) =
∞∑

n=0

n∑
m=−n

fn,m �n,m(r, φ; β), (21)

where the 2D exponential shapelet coefficients are given by

fn,m =
∫ 2π

0

∫ ∞

0
f (r, φ) �n,m(r, φ; β) r dr dφ. (22)

Using Bessel’s inequality like in the 1D case, we find that series
(21) converges, and the coefficients fn,m must vanish when n and
m increase. For a real function f (r, φ) ∈ R, fn,m = f ∗

n−m. In this
case, truncating the series at n ≤ nmax results in ncoeffs = (nmax + 1)2

independent coefficients.
It may also be possible to define elliptical 2D exponential

shapelets by applying a shear transformation to the coordinate
system, as Nakajima & Bernstein (2007) suggested for Gaussian
shapelets. This preserves their orthonormality, and can increase
their rate of data compression, at the cost of two additional non-
linear parameters to specify the shear.

3.2 Properties

3.2.1 Maximum and minimum effective scales

The first few 2D exponential shapelet basis functions are illustrated
in Fig. 5, and their radial component is shown in Fig. 6, defined
via �n,m(r, φ; β) ≡ Rn,m(r; β)exp (−imφ). Their resemblance
with Gaussian polar shapelets is striking (see fig. 2 of Massey &
Refregier 2005). However, due to their exponential kernel, expo-
nential shapelets are both more peaky and further spread out than
Gaussian shapelets. The size difference between the lowest-order
basis function �00 and even a low-order one like �40 is striking. It is
this behaviour that will help to describe spatially extended features.

Generalizing the 1D case (Section 2.2.1), we define the largest
effective scale in a 2D exponential shapelet model as

θmax ≈

√√√√√√√√
“

R2
r2 �nmax,0(r, φ; β) rdrdφ

“
R2

�nmax,0(r, φ; β) rdrdφ

= β(2nmax + 1)
√

2(2n2
max + 2nmax + 3) . (23)

Again empirically, the smallest resolved scales are roughly con-
stant,

θmin ≈ β. (24)

The range of scales included in a 2D exponential shapelet model
as nmax → ∞ is (θmax/θmin)2 ∝ n4

max ∝ n2
coeffs. The resolution of

an exponential shapelet model is greatest near the origin, and
the information density is concentrated there. This behaviour is
different from the Gaussian shapelets, where resolution is more
spatially uniform, and the information density is constant, with
(θmax/θmin)2 = n2

max + 1 ∝ ncoeffs.

3.2.2 Fourier transformation and convolution

Using the same convention as in the 1D case, it can be shown that
the Fourier transform of 2D exponential shapelets is given by

�̃n,m(�k; β) = 2πime−imφk [Fm(k)]n,β , (25)

where k = |�k|, φk is the angle between the �k direction and the φ = 0
direction in polar space, and [Fm(k)]n,β is the Hankel transform
of the Rnm(r, β) radial function. Consequently, the convolution
tensor involved in the convolution of two objects modelled in
2D exponential shapelets is the integral of products of Hankel
transforms of Rn,m functions. We were not able to find an analytic
form for this Hankel transform, so it must instead be computed
numerically.

3.2.3 Coordinate transforms

It can be useful to know the response of the basis functions to
2D linear coordinate transforms: either to know how to mix the
coefficients of a shapelet decomposition in order to perform that
transform, or to form combinations of coefficients that are invariant
under some transforms. This was used to construct estimators of the
shear distortion applied to images of galaxies by the effect of weak
gravitational lensing (Kuijken 2006; Massey et al. 2007).

A convenient shortcut to calculating those transforms for Gaus-
sian shapelets was provided by the ladder operators associated with
the quantum mechanical harmonic oscillator (Refregier & Bacon
2003). Unfortunately, we have not yet found a useful form of the
ladder operators for the 2D hydrogen atom. If it becomes necessary
to perform linear transformations on 2D exponential shapelets, it
will be necessary to apply the transforms manually to the basis
functions (a long and arduous task, but one that is guaranteed to
yield a closed form, because the basis is complete).

3.3 Object shape measurement

Once a feature has been decomposed into 2D exponential shapelets,
its coefficients can be used to construct characteristic measurements
of its shape. In this section, we derive expressions for an object’s
(azimuthally averaged) radial profile, flux, centroid, unweighted
quadrupoles, size, and ellipticity, in terms of its shapelet coefficients.
We have not attempted it here, but it should also be possible to de-
velop an exponential-shapelet classification of galaxy morphologies
via e.g. their concentration, asymmetry, and symmetry (Conselice,
Bershady & Jangren 2000).

3.3.1 Radial profile

Azimuthally averaging an object’s signal yields its mean radial
profile

f̄ (r) ≡ 1

2π

∫ 2π

0
f (r, φ) dφ. (26)

Noting that all m �= 0 basis functions average to zero, the radial
profile reduces to

f̄ (r) =
∞∑

n=0

fn,0�n,0(r; β), (27)

where the (rotationally invariant) m = 0 basis functions are

�n,0(r; β) = (−1)n
2

β
√

2π
(2n + 1)−3/2

× exp

(
− r

β(2n + 1)

)
Ln

(
r

β(n + 1
2 )

)
. (28)

Equation (26) is identical to the equivalent derivation for Gaussian
shapelets (see equation 16 of Massey & Refregier 2005), up to
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550 J. Bergé et al.

Figure 5. The first few 2D exponential shapelet basis functions: real part (left) and imaginary part (right). Red is positive; blue is negative. The normalization
of both the colour scale and the spatial scale is arbitrary, but is the same in every box.

the fact that m = 0 basis functions with odd n do not exist in the
Gaussian case.

3.3.2 Flux

Integrating the signal inside a circular aperture of radius R yields
its ‘flux’

FR ≡
∫ 2π

0

∫ R

0
f (r, φ) r dr dφ. (29)

To evaluate this integral, it is useful to note that, once again, all m �=
0 basis functions cancel out to zero during integration over φ, and
also a closed form for the generalized Laguerre polynomials,

Lα
n (x) =

n∑
k=0

(−1)k
(

n + α

n − k

)
xk

k!
. (30)

Using this, it can be shown that

FR = 2
√

2πβ

∞∑
n=0

fn,0 (2n + 1)1/2

×
n∑

k=0

2k(−1)n+k

k!

(
n

k

)
γ

(
k + 2,

R

β(2n + 1)

)
, (31)

where γ (y, x) is the lower incomplete gamma function. Extrapolat-
ing FR to a large radius, and taking the limit R → ∞, we obtain

F ≡
“

R2
f (r, φ) rdrdφ = 2

√
2πβ

∞∑
n=0

(2n + 1)3/2fn,0 . (32)

3.3.3 Centroid

Similarly, it can be shown that the unweighted centroid (xc, yc),
defined by

xc + iyc ≡

“
R2

(x + iy)f (x, y) dxdy

“
R2

f (x, y) dxdy

, (33)

is, in terms of 2D exponential shapelet coefficients,

xc + iyc = −4
√

2πβ2

F

∞∑
n=1

√
n(n + 1)(2n + 1)5 fn,1 . (34)
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Exponential shapelets 551

Figure 6. Radial component of the first few 2D exponential shapelet basis
functions, Rn,m(r). Functions with the same n are of the same colour (blue
for n = 0, green for n = 1, red for n = 2, black for n = 3). Functions with
m �= 0 are shown as dashed lines.

3.3.4 Quadrupole moments

The unweighted quadrupole moments of an object

Fij =
“

R2
xixjf (x, y) dxdy (35)

can be used to define quantities such as its rms size and ellipticity
(see below). They are, in terms of 2D exponential shapelet coeffi-
cients,

F11 = 2
√

2πβ3
∞∑

n=0

(2n + 1)7/2

×
[

(2n2 + 2n + 3)fn,0 + 2

√
(n + 2)!

(n − 2)!
fn,2

]
(36)

F22 = 2
√

2πβ3
∞∑

n=0

(2n + 1)7/2

×
[

(2n2 + 2n + 3)fn,0 − 2

√
(n + 2)!

(n − 2)!
fn,2

]
(37)

F12 =F21 =−4
√

2πβ3i

∞∑
n=0

(2n + 1)7/2

√
(n + 2)!

(n − 2)!
fn,2 . (38)

3.3.5 Size and ellipticity

Using equations (35)–(37), expressions can be obtained to quantify
a feature’s size

R2 ≡ F11 + F22

F

= 4
√

2πβ3

F

∞∑
n=0

(2n + 1)7/2 (2n2 + 2n + 3) fn,0 (39)

and ellipticity

ε ≡ F11 − F22 + 2iF12

F11 + F22

= 8
√

2πβ3

FR2

∞∑
n=2

(2n + 1)7/2

√
(n + 2)!

(n − 2)!
fn,2 . (40)

In this complex notation with ε ≡ |ε|cos (2φ) + i|ε|sin (2φ), ε =
0 denotes rotational invariance, and a positive real (imaginary)
component denotes elongation along (at 45◦ to) the x-axis.

3.3.6 Convergence

Expressions for the shape estimators resemble those obtained for
polar Gaussian shapelets in section 6 of Massey & Refregier (2005).
In particular, a feature’s radial profile, flux, and size are encoded
within the n = 0 coefficients, while the centroid is described by
the n = 1 coefficients and ellipticity by the n = 2 coefficients. The
expressions also contain the same power of β as those for Gaussian
shapelets, because that encodes information about the units in which
the data is expressed.

However, shape measures for 2D exponential shapelets contain
higher powers of n than those for 2D Gaussian shapelets, and will
converge more slowly. Some of this is due to the normalization of the
basis functions against an inner product. In the Gaussian shapelet
case, this happens to yield an integral of basis functions (equation
31) that is independent of n, while in exponential shapelets it
is ∝n3/2. That power of n could have been included in the basis
functions and removed from the coefficients – although doing so
would merely make them look more stable rather than actually
altering convergence. In the limit that R → ∞, convergence of
the flux estimator requires |fn,0| to decrease faster than n−5/2;
convergence of centroid requires |fn,1| to decrease faster than n−11/2;
and convergence of size and ellipticity requires |fn,0| and |fn,2| to
decrease faster than n−13/2. This may not be a problem, since we
expect 2D exponential shapelets to converge faster than shapelets
(i.e. to have a lower nmax for a given galaxy). However, if this does
not hold true, e.g. due to measurement noise, care should be taken to
restrict the decomposition and measurement of photometry inside
a finite aperture, or to truncate the 2D exponential shapelet model
at finite nmax.

3.4 Example application

This section demonstrates the use of 2D exponential shapelets to
model the shapes of galaxies seen outside our own Milky Way (they
may also be convenient to model the shapes of gamma-ray events; S.
Pires, private communication). We examine the convergence speed
of 2D exponential shapelets, and compare their performance to that
of 2D Gaussian shapelets.
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552 J. Bergé et al.

Figure 7. Test images of four galaxies from the Hubble Space Telescope COSMOS survey (Scoville et al. 2007a,b). For each galaxy, we show the observed
data (upper left); the 2D exponential shapelet model (upper middle) and its residuals (upper right); the Gaussian shapelet model (lower middle) and its residuals
(lower right). Also shown for each galaxy are the maximum order of decomposition nmax and the total number of coefficients ncoeffs in each model. For a given
galaxy, the grey-scales are the same in all panels.

3.4.1 Distant galaxies in astronomical imaging

Galaxies are collections of (hundreds of billions of) stars, with a
combined surface brightness that peaks sharply near the centre, and
decreases to large radii in a way that is often exponential. Four
galaxies in the COSMOS survey, (Scoville et al. 2007a,b) observed
by the Hubble Space Telescope (Koekemoer et al. 2007), are shown
in Fig. 7. As mentioned in Section 2.4 for the 1D case, we follow the
algorithm described by Massey & Refregier (2005) to choose the
best non-linear parameters of the models –nmax, β, and centroid).
Note that galaxies in this figure were modelled into shapelets with
the ‘diamond’ truncation scheme introduced in Massey et al. (2007),
which is intended to reduce small-scale oscillations by ignoring the
higher m terms of the decomposition. In this case, the number of
coefficients is divided by 2, allowing also a better compression of
the information.

In all four cases, 2D exponential shapelets require fewer coeffi-
cients (lower nmax; here ncoeffs = 85) to provide a model whose
residuals are consistent with the noise than Gaussian shapelets
(here ncoeffs = 121). Even more interestingly, exponential shapelets
tend to provide a (visually) cleaner model of the central region of
the galaxies. The top left galaxy has an irregular morphology, and

the 2D exponential shapelet model shows fewer artefacts than the
polar shapelet model. For an elliptical (top right) or edge-on spiral
galaxy (bottom left), the ringing common in Gaussian shapelets
disappears with 2D exponential shapelets: They do not possess
high-frequency ripples at large radii that need large coefficients
alternating in sign for them to cancel. Even for highly eccentric
galaxies (bottom right), 2D exponential shapelets provide cleaner
models than polar shapelets, especially in the outskirts of the
galaxies, as the exponential wings are fundamentally a better match
to the underlying signal.

3.4.2 Convergence speed

To assess the ability of 2D exponential shapelets to model galaxies,
we require noise-free images whose true properties are known. We
simulate elliptical galaxies with a Sersic radial profile

ln

[
I (r)

I (re)

]
= −bn

[(
r

re

)1/ns

− 1

]
, (41)

where I(r) is the galaxy’s s profile, ns is the Sersic index, bn is a
normalization constant, and re is the effective radius (which contains
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Figure 8. Exponential (upper panels) and Gaussian (lower panels) shapelet models’ speed to converge on the profile of different types of (noiseless) elliptical
galaxies: exponential (ns = 1, left), intermediate ns = 2 (centre), and de Vaucouleurs galaxy (ns = 4, right). In each panel, squares represent the profile of the
galaxy estimated in pixel space.

50 per cent of the galaxy’s flux). We simulate three types of galaxies:
exponential (ns = 1), intermediate (ns = 2), and de Vaucouleurs
(ns = 4).

Fig. 8 compares the radial profiles fitted with 2D exponential
shapelets (upper row) or Gaussian shapelets (lower row), for
different maximum orders of decomposition nmax, and coarsely
optimised β (this could be further optimized at low nmax in the
presence of noise). The normalization of the ordinate depends on
bn and pixelization, and so is arbitrary; only its relative scaling is
informative. For all three galaxy types, 2D exponential shapelets
greatly outperform Gaussian shapelets. A decomposition to nmax =
2 or 4 is sufficient to model an exponential galaxy. Depending
on the signal to noise of real data, a decomposition to nmax =
6 may be sufficient for an intermediate ns = 2 galaxy. It is
more challenging to model a de Vaucouleurs galaxy, and even
exponential shapelets require nmax = 12 to capture its extended

tails three orders of magnitude fainter than the peak. However,
they do so without the oscillatory ‘ringing’ introduced by the
cancellation of positive and negative basis functions in Gaussian
shapelets.

To illustrate the convergence speed, Fig. 9 shows the mean square
residual of the models of the same galaxies as in Fig. 8, as a function
of the maximum shapelet order nmax (upper row), or the total number
of coefficients ncoeffs. The normalization of the ordinate is arbitrary,
and only its relative scaling is informative. Once again, it is clear
that 2D exponential shapelets (solid lines) outperform Gaussian
shapelets (dashed lines). For exponential and intermediate galaxies
(left-hand and middle columns), the residual of the 2D exponential
shapelet model decreases consistently, and ends up several orders
of magnitude better than that of Gaussian shapelets. The enhanced
performance of exponential shapelets is even more prominent for
a de Vaucouleurs galaxy. The limitation for exponential shapelets
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554 J. Bergé et al.

Figure 9. Convergence speed as a function of shapelets’ nmax (upper panels) and number of coefficients (lower panels), for exponential (solid lines) and
Gaussian (dashed lines) shapelets, for the same Sersic galaxies as in Fig. 8 (ns = 1, 2, 4 from left to right).

in this case is numerical precision of our algorithm to pixelate
the basis functions. At high n, this breaks down, causing spurious
residuals at the very centre of the model, shown as an artificial
upturn in the bottom right-hand panel of Fig. 9. This could be
circumvented by more accurate pixelization, or by imposing limits
on θmin.

4 C O N C L U S I O N

In this paper, we introduced exponential shapelets, a family of
orthonormal basis functions that can be efficiently used to model
1D and 2D objects. They borrow many concepts from the original
Gaussian shapelets, but are perturbations around a decaying expo-
nential rather than a Gaussian, and more efficiently compress the
information in damped 1D oscillations or centrally concentrated 2D
features. In particular, they can simultaneously capture the central

peak and the extended wings of galaxies in astronomical imaging,
thereby solving the main criticism levelled at Gaussian shapelets in
the field for which they were originally intended.

Modelling a feature using exponential shapelets first requires
a choice of characteristic scale size β and expansion order nmax;
these can be selected using an non-linear optimization method
developed for Gaussian shapelets (Massey & Refregier 2005). The
function is then decomposed into a weighted sum of exponential
shapelet basis functions using linear regression. A least-squares fit
is often sufficient, although in some cases modelling a transient
may be stabilized by regularization techniques such as sparsity
constraints.

Once a feature is described as a weighted sum of exponential
shapelets, simple combinations of the weights yield expressions for
its total flux, centroid, size, and ellipticity. These are similar to those
for Gaussian shapelets. However, convolution and deconvolution in
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exponential shapelets are significantly more difficult than in the
Gaussian case, with the convolution tensor being time-consuming
to calculate via numerical integration.

We described possible applications of exponential shapelets in
several fields of experimental and observational science. One-
dimensional exponential shapelets can be used to model (and
subtract or understand) spurious transients in time-series, such as
measurements by the MICROSCOPE or GRACE satellites, or the
LIGO search for gravitational waves. Thanks to their exponential
decay, 2D exponential shapelets overcome the main criticism aimed
at Gaussian shapelets (though at the cost of losing some simplicity)
and can be used to measure the brightness, shape, and size of distant
galaxies in astronomical imaging. The characteristics of exponential
shapelets should make them well suited to data compression and
analysis in a wide range of fields; their convenient mathematical
properties should see them frequently adopted.
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APPENDIX A : D ERIVATION O F C ONVO LUTI ON K ERNEL TENSOR Cnml F O R 1 D EX P O N E N T I A L
SHAPELETS

A1 Proof of equation (13)

Let f(x) and g(x) be two one-dimensional functions, whose convolution product is h(x) = f(x)�g(x). In Fourier space, h̃(k) = f̃ (k)g̃(k), where

f̃ (k) = 1√
2π

∫
f (x)eikxdx, (A1)

and similarly for g̃(k).
Decomposing f(x) and g(x) into exponential shapelets (f (x) = ∑∞

m=1 fm�m(x, α)), substituting in equation (A1) and rearranging terms,
we get

h̃(k) =
∞∑

m=1

∞∑
l=1

fmgl�̃m(k, α)�̃l(k, β), (A2)

where we recall that

�̃l(k, β) = (−1)l
√

2lβ

π

(lβk − i)2l[
(lβk)2 + 1

]l+1 . (A3)

Using the Parseval–Plancherel theorem, we get

hn =
∫

dkh̃(k)�̃n(k, γ ), (A4)

where the bar denotes the complex conjugate.
Substituting equation (A2) in equation (A4), and rearranging terms, we find

hn =
∞∑

m=1

∞∑
l=1

fmgl

∫ ∞

−∞
dk(−1)n+m+l

√
αβγ

√
mnl

(mαk − i)2m

[(mαk)2 + 1]m+1

(lβk − i)2l

[lβk)2 + 1]l+1

(nγ k − i)2n

[(nγ k)2 + 1]n+1
, (A5)

which defines Cnml such that

hn =
∞∑

m,l=1

fmglCnml. (A6)

The final expression for Cnml (equation 13) is then found using the binomial decompositions of (mαk − i)2m, (lβk − i)2l, and (nγ k − i)2n.
It can be noted that Cnml is a complex number, unless u + v + w is even, such that iu + v + w = −1. If u + v + w is odd, then the integral is

0 (see equation A2). Hence, we do not need to impose any restriction on u + v + w for Cnml to be real. We can also note that since u ≤ 2m, v

≤ 2l, and w ≤ 2n, the integral in equation (13) converges.
We will then aim to look for an analytic expression for the integral in equation (13). We introduce

Im,l,n
u,v,w ≡

∫ ∞

−∞
dk(−1)w

ku+v+w[
(mαk)2 + 1

]m+1 [
(lβk)2 + 1

]l+1 [
(nγ k)2 + 1

]n+1 . (A7)

A2 Properties of Im,l,n
u,v,w’s integrand

In this section, we derive some properties of the integrand that appears in the definition of Im,l,n
u,v,w . Let us name it f(x) (rigorously, we should

write f m,l,n
u,v,w (x), but we drop the u, v, w, n, m, l indices to simplify the notation), such that

f (x) = (−1)w
xu+v+w[

(mαx)2 + 1
]m+1 [

(lβx)2 + 1
]l+1 [

(nγ x)2 + 1
]n+1 , (A8)

where 0 ≤ u ≤ 2m, 0 ≤ v ≤ 2l, and 0 ≤ w ≤ 2n (see equation 13).

A2.1 Alternative definition

When developing binomial expressions in f, we get another form for the function, which appears as the inverse of a series of x

1/f (x) = (−1)w
m+1∑
νm=0

l+1∑
νl=0

n+1∑
νn=0

(
m + 1

νm

)(
l + 1

νl

)(
n + 1

νn

)
(mα)2νm (lβ)2νl (nγ )2νnx2(νm+νl+νn)−u−v−w. (A9)

A2.2 Parity

It is obvious that f(− x) = (− 1)u + v + wf(x), so that f is even (resp. odd) when u + v + w is even (resp. odd). Hence, Im,l,n
u,v,w vanishes when u +

v + w is odd, in which case Cnml = 0. As mentioned in the main text, Cnml is real if u + v + w is even (then, Cnml is real for all combinations
of u, v, w, n, m, l). In the remainder of this appendix, we restrict ourselves to x ≥ 0.
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Figure A1. f(x) function. Left: f(x) for different values of α, β, γ , n, m, l, u, v, w. Right: f(x) for γ = α = β) = 1, n = 2, m = 1 l = 1, w = 2, u = 1, v = 1;
the grey region shows the domain [min ((mα)−1, (lβ)−1, (nγ )−1), max ((mα)−1, (lβ)−1, (nγ )−1)].

A2.3 Value in 0

Evidently, f(0) = 0 if u + v + w �= 0. If u + v + w = 0, then f(0) = 1.

A2.4 Limit at x → ∞
Since 0 ≤ u ≤ 2m, 0 ≤ v ≤ 2l, and 0 ≤ w ≤ 2n, it is easy to see that limx → ∞ = 0.

A2.5 Dependence on n, m, l

For a given x, f quickly decreases as m2(m + 1) (and similarly for n and l), showing that only the contributions of low n, m, and l are significant
in Cnml. Then, the series hn (equation A6) converges quickly.

The left-hand panel of Fig. A1 shows f(x) for some realistic combinations (α, β, γ , n, ml, u, v, w). It can be seen that f(x) is well behaved,
and tends quickly towards 0 for large x. Its extent depends on α, β, and γ . As mentioned above, for a given x, it quickly decreases when n,
m, l increase. The right-hand panel of Fig. A1 shows f(x) when γ = α = β = 0.1, n = 2, m = 1 l = 1, w = 2, u = 1 and v = 1, together
with the values x = min ((mα)−1, (lβ)−1, (nγ )−1) and x = max ((mα)−1, (lβ)−1, (nγ )−1) (borders of the grey area), which are key values in
computing Im,l,n

u,v,w (see below).

A3 Computation of the integral in Cnml

We now turn to look for an analytic expression for Im,l,n
u,v,w . We first note that, due to the parity property of f m,l,n

u,v,w (x),

Im,l,n
u,v,w ≡ 2Im,l,n

u,v,w,> = 2
∫ ∞

0
f m,l,n

u,v,w (k)dk (A10)

if u + v + w is even, or Im,l,n
u,v,w = 0 otherwise.

We decompose Im,l,n
u,v,w,> as

Im,l,n
u,v,w,> =

∫ μ

0
f m,l,n

u,v,w (k)dk +
∫ M

μ

f m,l,n
u,v,w (k)dk +

∫ ∞

M

f m,l,n
u,v,w (k)dk, (A11)

where, as we show below, we impose μ < min ((mα)−1, (lβ)−1, (nγ )−1) and M > max ((mα)−1, (lβ)−1, (nγ )−1).

A3.1 Computation of first integral on r.h.s. of equation (A11)

We first introduce

Im,l,n
u,v,w(μ) ≡

∫ μ

0
f m,l,n

u,v,w (k)dk, (A12)

where, for clarity, we wrote f with all its indices.
Changing variable such that k = yμ, we get

I
m,l,n
u,v,w,1(μ) = (−1)wμu+v+w+1

∫ 1

0
dy[(mαμ)2y2 + 1]−m−1[(lβμ)2y2 + 1]−l−1[(nγμ)2y2 + 1]−n−1yu+v+w. (A13)
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Another change of variable, t = y2, gives

Im,l,n
u,v,w(μ) = (−1)w

2
μu+v+w+1

∫ 1

0
t

u+v+w−1
2 [1 + (mαμ)2t]−m−1[1 + (lβμ)2t]−l−1[1 + (nγμ)2t]−n−1dt, (A14)

where we can recognize, if μ < min ((mα)−1, (lβ)−1, (nγ )−1), Lauricella’s function of the fourth kind (e.g. Hasanov & Srivastava 2007;
Bezrodnykh 2016)

F
(r)
D (a, b1, . . . , br , c; x1, . . . , xr ) = �(c)

�(a)�(c − a)

∫ 1

0
ta−1(1 − t)c−a−1

r∏
i=1

(1 − xi t)
−bi dt (A15)

with r = 3, a = u+v+w+1
2 , c = u+v+w+3

2 , b1 = m + 1, b2 = l + 1, c2 = n + 1, x1 = −(mαμ)2, x2 = −(lβμ)2, and x3 = −(nγμ)2, such that

Im,l,n
u,v,w(μ) = (−1)w

2
μu+v+w+1 � ((u + v + w + 1)/2)

� ((u + v + w + 3)/2)

×F
(3)
D

(
u + v + w + 1

2
, m + 1, l + 1, n + 1,

u + v + w + 3

2
; −(mαL)2, −(lβμ)2, −(nγL)2

)
. (A16)

F
(3)
D is defined (as long as max (|xi|) < 1) as a converging series (equation 1.4 in Hasanov & Srivastava 2007), such that

F
(r)
D (a, b1, . . . , br , c; x1, . . . , xr ) =

∞∑
ν1,...,νr=0

(a)ν1+···+νr
(b1)ν1 . . . (br )νr

(c)ν1+···+νr

x
ν1
1

ν1!
. . .

xνr
r

νr !
, (A17)

where (a)ν is the Pochhammer symbol, such that (after simplifying Pochhammer symbols):

Im,l,n
u,v,w(μ) = (−1)w

∞∑
ν1,ν2,ν3=0

(−1)ν1+ν2+ν3

u + v + w + 2(ν1 + ν2 + ν3) + 1

(m + 1)ν1 (l + 1)ν2 (n + 1)ν3

ν1!ν2!ν3!

×(mα)2ν1 (lβ)2ν2 (nγ )2ν3μu+v+w+2(ν1+ν2+ν3). (A18)

A3.2 Computation of second integral on r.h.s. of equation (A11)

We then introduce

Jm,l,n
u,v,w(μ, M) ≡

∫ M

μ

f m,l,n
u,v,w (k)dk, (A19)

which we will compute in a similar fashion to the previous integral.
With successive changes of variables y = k2, z = y − μ2, and t = z/(M2 − μ2) (under our assumptions, M �= μ; if M = μ, Jm,l,n

u,v,w(μ, M) = 0),
we obtain

Jm,l,n
u,v,w(μ, M) = (−1)w(M2 − μ2)μu+v+w−1

2
[
1 + (μmα)2

]m+1 [
1 + (μlβ)2

]l+1 [
1 + (μnγ )2

]n+1

∫ 1

0

[
1 − μ2 − M2

μ2
t

] u+v+w−1
2

×
[

1 − (μ2 − M2)(mα)2

1 + (μmα)
t

]−m−1 [
1 − (μ2 − M2)(lβ)2

1 + (μlβ)
t

]−l−1 [
1 − (μ2 − M2)(nγ )2

1 + (μnγ )
t

]−n−1

dt (A20)

If M �
√

2μ, then Jm,l,n
u,v,w(μ, M) must be calculated numerically. This is the case in the example of Fig. A1. However, if M <

√
2μ

(i.e. max {(mα)−1, (lβ)−1, (nγ )−1} <
√

2 min
{

(mα)−1, (lβ)−1, (nγ )−1
}

, then we recognize a Lauricella F
(4)
D function, such that

Jm,l,n
u,v,w(μ, M) = (−1)w(M2 − μ2)μu+v+w−1

2�(2)
[
1 + (μmα)2

]m+1 [
1 + (μlβ)2

]l+1 [
1 + (μnγ )2

]n+1

×F
(4)
D

(
1,

1 − u − v − w

2
, m + 1, l + 1, n + 1, 2;

μ2 − M2

μ2
,

(μ2 − M2)(mα)2

1 + (μmα)2
,

(μ2 − M2)(lβ)2

1 + (μlβ)2

(μ2 − M2)(nγ )2

1 + (μnγ )2

)
.

(A21)

If M <
√

2μ, Jm,l,n
u,v,w(μ, M) can finally be expressed as a converging series

Jm,l,n
u,v,w(μ, M) = (−1)w+1

2

∞∑
ν1,ν2,ν3,ν4=0

(
1−u−v−w

2

)
ν1

(m + 1)ν2 (l + 1)ν3 (n + 1)ν4

(ν1 + ν2 + ν3 + ν4)ν1!ν2!ν3!ν4!

× μ−2ν1 (μ2 − M2)ν1+ν2+ν3+ν4 (mα)2ν2 (lβ)2ν3 (nγ )2ν4[
1 + (μmα)2

]m+1+ν2
[
1 + (μlβ)2

]l+1+ν3
[
1 + (μnγ )2

]n+1+ν4
. (A22)
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A3.3 Computation of third integral on r.h.s of equation (A11)

We now introduce

Km,l,n
u,v,w(M) ≡

∫ ∞

M

f m,l,n
u,v,w (k)dk, (A23)

which we will compute in a similar fashion to Im,l,n
u,v,w and Jm,l,n

u,v,w .
We first note that

∫ ∞
M

f m,l,n
u,v,w (k)dk = limξ→∞ Iξ (M), where, for simplicity, we dropped the indices from the Kξ definition, and ξ is some

positive cut-off, and

Kξ ≡
∫ ξ

M

f m,l,n
u,v,w (k)dk. (A24)

Kξ can be computed using successive changes of variable. First, we set y = 1/k, so that (after rearranging some terms)

Kξ =
∫ 1/M

1/ξ

(−1)wy−2−(u+v+w)−2(3+n+m+l)

(mα)2(m+1)(lβ)2(l+1)(nγ )2(n+1)

[
1 + y2

(mα)2

]−m−1 [
1 + y2

(lβ)2

]−l−1 [
1 + y2

(nγ )2

]−n−1

dy. (A25)

Additional changes of variables (z = y2, t′ = z − 1/ξ 2, t = M2ξ2

ξ2−M2 t) then yield

Kξ = (−1w)

2(mα)2(m+1)(lβ)2(l+1)(nγ )2(n+1)

ξ 2 − M2

ξ 2M2

(
ξ 2(mα)2 + 1

ξ 2(mα)2

)−m−1 (
ξ 2(lβ)2 + 1

ξ 2(lβ)2

)−l−1 (
ξ 2(nγ )2 + 1

ξ 2(nγ )2

)−n−1

×
∫ 1

0

(
1

ξ 2
+ ξ 2 − M2

ξ 2M2
t

)g (
1 + ξ 2 − M2

M2[(ξmα)2 − 1]
t

)−m−1 (
1 + ξ 2 − M2

M2[(ξ lβ)2 − 1]
t

)−l−1 (
1 + ξ 2 − M2

M2[(ξnγ )2 − 1]
t

)−n−1

dt (A26)

where g = 3 + n + m + l − (3 + u + v + w)/2. Taking the limit ξ → ∞, we obtain

Km,l,n
u,v,w(M) = (−1)wM−2(3+n+m+l)+1+u+v+w

2(mα)2(m+1)(lβ)2(l+1)(nγ )2(n+1)

×
∫ 1

0
t3+n+m+l−(3+u+v+w)/2

[
1 + t

(Mmα)2

]−m−1 [
1 + t

(Mlβ)2

]−l−1 [
1 + t

(Mnγ )2

]−n−1

dt . (A27)

Under the assumption that M > max ((mα)−1, (lβ)−1, (nγ )−1), we recognize a Lauricella F
(3)
D function, such that

Km,l,n
u,v,w(M) = (−1)wM−2(3+n+m+l)+1+u+v+w

2(mα)2(m+1)(lβ)2(l+1)(nγ )2(n+1)

�
(
n + m + l − u+v+w+5

2

)
�
(
n + m + l − u+v+w+7

2

)
×F

(3)
D

(
n + m + l − u + v + w + 5

2
, m + 1, l + 1, n + 1, n + m + l − u + v + w + 7

2
;

− (Mmα)−2,−(Mlβ)−2, −(Mnγ )−2

)
. (A28)

and we can finally express Km,l,n
u,v,w(M) as a converging series

Km,l,n
u,v,w(M) = (−1)w

∞∑
ν1,ν2,ν3=0

(−1)ν1+ν2+ν3

5 + 2(n + m + l) − (u + v + w)

(m + 1)ν1 (l + 1)ν2 (n + 1)ν3

ν1!ν2!ν3!

× (mα)−2(m+1−ν1)(lβ)−2(l+1−ν2)(nγ )−2(n+1−ν3)M−2(3+n+m+l)+u+v+w+1−2(ν1+ν2+ν3). (A29)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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