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ABSTRACT In this paper, a differential downlink transmission scheme is proposed for a massive
multiple-input multiple-output (MIMO) system without explicit channel estimation. In particular, we use
a downlink precoding technique combined with a different encoding scheme to simplify the overall system
complexity. A novel precoder is proposed, which, with a large number of transmit antennas, can effectively
precancel the multiple access interference (MAI) for each user, thus enhancing the system performance.
Maximizing the worst case signal-to-interference-plus-noise ratio (SINR) is used to optimize the precoder for
the users in which full power space profile (PSP) knowledge is available to the base station (BS). In addition,
we provide two suboptimal solutions based on the matched and the orthogonality approach of the PSP to
separate the data streams of multiple users. The decision feedback differential detection (DFDD) technique
is employed to further improve the performance. The proposed schemes eliminate the MAI, enhance system
performance, and achieve a simple low complexity transmission scheme. Moreover, transmission overheads
are significantly reduced using the proposed scheme, since it avoids explicit channel estimation at both ends.
The Monte Carlo simulation results demonstrate the effectiveness of the proposed schemes.

INDEX TERMS Massive (MIMO), differential modulation, multiple symbol differential detection,
precoding.

I. INTRODUCTION
Multiple-input multiple-output (MIMO) technology helps
in improving wireless multiple access and can be used to
increase the spectral efficiency and improve the link relia-
bility at low power operation [1], [2]. With multiple transmit
antennas at the base station (BS), the system can spatially
multiplex multiple data streams for multiple users at the
same frequency and time. The spatial multiplexing property
becomes more effective as the number of antennas becomes
large where the system is referred to as massive MIMO [3].
Such properties render a massive MIMO architecture as an
important part of many wireless communications standards,
such as LTE and 5G networks.

Much of the research on MIMO downlink transmission
designs assumes perfect channel state information (CSI)
at the transmitter. The availability of CSI at both ends

The associate editor coordinating the review of this manuscript and
approving it for publication was Pietro Savazzi.

makes it possible for the system to eliminate the multiple
access interference (MAI) between users. However, due to
various reasons, such as pilot contamination from training
sequence reuse in massive MIMO, perfect CSI estimation is
unattainable [4]. In [5], the authors proposed a framework
that uses the block diagonalisation method to cancel MAI
between users. The proposed method provides a substantial
gain in terms of spatial diversity with a low decoding com-
plexity. However, for the decoding process, each user still
needs to know the channel in order to decode the information
signal coherently.

The authors in [6] proposed a downlink spreading scheme
combined with differential detection (DD) to eliminate the
need of estimating the CSI at the BS and users. The scheme
provides both low complexity transceivers and good perfor-
mance. However, for large number of users, the proposed
scheme in [6] does not provide a comprehensive high rate
differential scheme in a downlink scenario due to the long
length of the spreading code. In [7], the authors proposed a
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full rate downlink algebraic transmission scheme combined
with a differential space-time scheme. The proposed scheme
provides a full rate full diversity system and does not require
any knowledge of the CSI to separate the data streams of
multiple users. In this approach, however, the BS typically
employs only a few antennas, and thus the corresponding
improvement in spectral efficiency and system simplicity is
still relatively modest.

In order to improve the spectral efficiency and to sim-
plify the required signal processing, a massive MIMO down-
link system is employed [8], [9], where the BS is equipped
with a very large number of transmit antennas. In practice,
the demodulation reference signals (DM-RS) are used to sup-
port channel estimation and data demodulation. In DM-RS,
the estimation of the channel for coherent detection is often
obtained by training and tracking, e.g. using reference sig-
nals (RS), or pilots. However, it is not always feasible
to use training-based schemes, with systems that have a
large number of antennas. As the number of transmit anten-
nas grows large such as in the case of massive MIMO,
the channel estimation process, system overheads, latency,
and power consumption will grow proportionately [10]. Dis-
cussion of DM-RS improvements are ongoing in 3GPP
release 15 standardization [11], hence, it is natural to adopt
differential modulation with massive MIMO to reduce the
overhead and latency of DM-RS.

A well-established method to enhance DD is multiple
symbol differential detection (MSDD). The authors in [12]
point out a 3dB performance improvement simply by demod-
ulating the received symbols jointly as a block, instead of
one at a time using the MSDD detection technique. The
authors of [13], [14] developed MSDD detection for the
uplink MIMO system in ultra-wideband (UWB) systems.
Essentially, the authors in [14] adopted decision feedback
differential detection (DFDD) for a massive MIMO system,
as this approach improves the performance of MSDD. How-
ever, the multiuser transmission scheme in [14] suffers from
severe MAI without a proper precoding design scheme. Fur-
thermore, prior research onMSDD andMAI cancellation has
mainly been focused on uplink transmission, where cancella-
tion was implemented at the BS receiver, and therefore com-
plexity was not a significant concern [13], [14]. For downlink
transmission, however, interference cancellation at end users
increases receiver complexity, and for this reason, we account
for interference cancellation at the BS instead of receivers.
In particular, in order to have low complexity receivers, it is
assumed that the transmitted signals are precoded at the BS.

In this paper, we therefore propose a differential MIMO
downlink transmission framework, in which a BS is equipped
with a massive antenna array that precodes transmit signals
to separate the data streams of multiple users. In particu-
lar, to achieve a low-complexity differential massive MIMO
system, a novel downlink precoding design is proposed by
employing knowledge of the power space profile (PSP) of
users. It is assumed that the PSP for each user is estimated
at the BS, since it can tolerate more complexity compared

FIGURE 1. Differential massive MIMO downlink system model.

to receivers. Once the PSPs are estimated at the BS, the trans-
mitter computes the precoder. More precisely, we provide an
optimal solution for the precoder based on a max-min signal-
to-interference-plus-noise ratio (SINR) problem formulation.
The optimized precoder can effectively precancel the inter-
ference between users, thus enhancing overall system per-
formance. In addition, we provide two suboptimal solutions
suitable for the low interference system based on the matched
and the orthogonality approach of PSP of each user. The
proposed schemes facilitate precanceling MAI, enhance sys-
tem performance, and provide simple transmitter and receiver
schemes. Consequently, since the proposed scheme avoids
channel estimation, the system overheads and latency will be
reduced significantly.

The remainder of this paper is organized as follows.
Section II introduces the system model of the differential
massive MIMO system. Section III describes the downlink
transmit precoding approach. Section IV presents differential
detection for a massive MIMO system. In Section V, simu-
lation results are shown. Finally, conclusions are drawn in
Section VI.
Notations: Vectors are denoted by boldface lower case

letters and matrices by boldface upper case letters. In, 1n,
and 0m×n denote an n × n identity matrix, n × 1 identity
vector andm×n zero matrix, respectively. The operators (.)T ,
(.)∗ (.)H , trace(.), log(·), log2(·), |·|, ‖·‖F , and diag(·) denote
transpose, complex conjugate, conjugate transpose, trace of a
matrix, natural logarithm, logarithm to base 2, absolute value
of a scalar, Frobenius norm of a matrix, and diagonal of a
matrix, respectively.<(·), =(·) denote real and imaginary part
of a complex number, respectively. {xn} denotes a set of all
vectors indexed by n. Cm×n and Rm×n denote the set of all
complex and the set of all real m× n matrices, respectively.
E denotes the expected value of a discrete random variable.
cov(x, y) and var(x) denote the covariance between the ran-
dom variables x and y, and the variance of x, respectively.

VOLUME 7, 2019 86907



F. Alsifiany et al.: Differential Downlink Transmission in Massive MU-MIMO Systems

II. SYSTEM MODEL
Consider a single-cell massive MIMO downlink broadcast
channel. The BS has nt transmit antennas, which simultane-
ously transmit multiple streams to K single-antenna users,
as shown in Fig.1. The number of transmit antennas is
assumed to be very large1 (nt � 1). We assumed that
all users are equipped with a single-antenna for the decod-
ing process which is a realistic assumption for the mas-
sive MIMO system, where the large number of transmit
antennas at the BS provides a mutual orthogonality among
the vector-valued channels to the users (so-called favor-
able propagation) [16]. For downlink massive MIMO trans-
mission, multiple-antennas at each user increases receiver
complexity and overhead. Instead, we would like to have
a simple, inexpensive, and power efficient single-antenna
receiver. Further, equivalent capacity can be achieved by
serving K single-antenna users instead of one user having
K -multiple-antennas users, thereby serving more users in the
cell [16].

A. DIFFERENTIAL MASSIVE MIMO SYSTEM MODEL
For any kth user, sk = [sk,1, sk,2, · · · , sk,N ] ∈ C1×N , 1 ≤
k ≤ K , is the information vector with elements drawn from
an M -ary PSK constellation as:

M =
{
ej2π i/M | i = 0, 1, · · · ,M − 1

}
, (1)

where N denotes the block length of the coherence time
intervals. In the context of differential massive MIMO sys-
tem, a sequence of symbols of the kth user sk,τ , 1 ≤ τ ≤

N , is differentially encoded into the transmit symbol vector
bk ∈ C1×(N+1) via the rule

bk,τ = sk,τbk,τ−1 = bk,0
τ∏
i=1

sk,i. (2)

The transmit information signal vector bk comprises the
initial reference symbol bk,0 = 1 and the following
N differentially encoded symbols in the form of bk =
[bk,0, bk,1, · · · , bk,N ].
We consider that no prior information about the channel

is available at the BS. The channel vector between the BS
and user k , hk = [hk,1, hk,2, · · · , hk,nt ]

T
∈ Cnt×1, models

independent fast fading and slow fading PSP attenuation,
where the PSP is denoted as gk,m, 1 ≤ m ≤ nt , we specify
PSP later in Section II-B. It is assumed that the channel
coefficients remain constant over the block length and vary
independently from one block to another. The coefficient hk,m
can be written as

hk,m =
√
gk,m h̃k,m, m = 1, 2, · · · , nt , (3)

where h̃k,m is the fast-fading coefficient from the kth user
to the mth transmit antenna of the BS, which is modeled
as an independent over m and identically distributed (i.i.d.)

1The assumption of nt →∞ is valid and commonly used in the massive
MIMO literature. However, the system’s performance can be tested for the
practical case of large but limited number of antennas [15].

complex Gaussian random variable with zero-mean and unit-
variance, i.e., h̃k,m ∼ CN (0, 1). gk,m models the PSP atten-
uation between the mth antenna at the BS and user k , which
is assumed to be independent over m and to be constant over
many coherence time intervals N and known a priori to the
BS. We consider that the value of h̃k,m remain stationary for
a sufficiently long transmission time. Then, we have

hk = G1/2
k h̃k , k = 1, · · · ,K , (4)

where h̃k = [h̃k,1, h̃k,2, · · · , h̃k,nt ]
T
∈ Cnt×1, and Gk =

diag(gk ) = diag(gk,1, gk,2, · · · , gk,nt ) ∈ Rnt×nt . There-
fore, the variance of {hk} is determined by the user PSP,
where the channel variance is equal to the power profile,
i.e., hk,m ∼ CN (0, gk,m).
We assume that the multiuser system adopts a linear

transmission and reception strategy. The BS performs trans-
mit beamforming and communicates simultaneously with
all users. The instantaneous transmitted signal matrix B ∈
Cnt×(N+1) for the kth user can then be expressed as

B =
K∑
k=1

√
pkukbk , (5)

where uk =
[
uk,1, uk,2, · · · , uk,nt

]T
∈ Rnt×1 is the nor-

malized differential transmit precoder (beamformer) of the
kth user, where ‖uk‖2 = 1. pk is the downlink average
transmit power of the kth user. We consider a total power
constraint at the BS is

E
{
trace(BHB)

}
= P̄. (6)

The received signal vector yk ∈ C1×(N+1) for the kth user is
given by

yk =
√
pkhHk ukbk + h

H
k

K∑
q=1
q6=k

√
pquqbq + zk (7)

=
√
pkhHk ukbk + wk + zk , (8)

where the term
√
pkhHk ukbk represents the desired signal

at the kth user, wk = hHk
∑K

q=1
q 6=k

√pquqbq ∈ C1×(N+1)

is the MAI component against the kth user, and zk ∈
C1×(N+1) is the noise vector modeled as zero-mean complex
circularly symmetric Gaussian random variables, i.e., zk ∼
CN (0, σ 2

zk Int ).
Assuming that the information transmitted symbols bk

are uncorrelated, the average SINRk at the kth user can be
expressed as follows

SINRk = E

 pk
∣∣hHk uk ∣∣2∑K

q=1
q6=k

pq
∣∣hHk uq∣∣2 + σ 2

zk

 . (9)
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B. CO-LOCATED ANTENNA SYSTEM WITH
A GEOMETRICAL MODEL
Now, we summarize the PSP model construction following
the approach in [14]. As shown in Fig. 2, the users are ran-
domly distributed in front of a large uniform antenna array
at the BS. We assume that the BS has full knowledge of
any user’s location information. The location of the users is
determined by the following parameters: rk,m is the distance
between the antenna index m and the kth user; lk is the direct
orthogonal distance between the kth user and the array; and,
la is the antenna spacing.2 Letmk denote the antenna element
closest to the kth user according to the Euclidean distance.
From algebraic geometry, we have

rk,m =
√
l2k + l

2
a |m− mk |2 (10)

= lk
√
1+ |m− mk |2/l2k,r , m = 1, · · · , nt , (11)

FIGURE 2. Geometric system model of user’s location.

where lk,r
def
= lk/la denotes the normalized relative distance of

the kth user to the array. We assume that the average transmit
power obeys the path loss model with path loss exponent γ .
Hence, the path loss for the kth user at antenna m is given by

gk,m = r−γk,m. (12)

Using exponential and logarithmic properties, we have

gk,m = exp
{
− γ log

(
lk
√
1+ |m− mk |2/l2k,r

)}
= exp

{
− γ log(lk )+

−γ log
(
1+ |m− mk |2/l2k,r

)
2

}
.

Since log(1+ x) ≈ x for small x, we have

gk,m = exp
{
− γ log(lk )

}
· exp

{
−γ |m− mk |2

2l2k,r

}
= βk · exp

{
−|m− mk |2

2ζ 2k

}
, (13)

where βk = exp
{
− γ log(lk )

}
and ζ 2k

def
= l2k,r/γ . Therefore,

the PSP is well approximated by a Gaussian function with
mean mk and channel variance ζ 2k .

2we assume there is no correlation between transmit antennas at the BS as
they are spaced at a minimum of 0.5λ.

Remark 1: In practical systems, the power space pro-
file (PSP), gk,m, of each user (which includes the path loss
exponent) varies very slowly with time compared to the fast
fading coefficients h̃k,m. In this context, for massive MIMO
systems, it is reasonable to assume that the PSPs of the users
of the system are known at the BS [17]–[19]. In the uplink,
we assume that each user transmits N (i.i.d.) symbols as
sk = [sk,1, sk,2, · · · , sk,τ , · · · , sk,N ]. For each symbol the BS
can calculate the PSP for each user accurately by averaging
the received uplink signal over different data slots indexed
by τ as [17]

Ĝk = diag(ĝk ) = E
[
rk,τ rHk,τ

]
, (14)

where rk,τ is the uplink received signal vector for the kth user
at the antennas of the BS during the τ th time slot, which is
given as

rk,τ = hksk,τ + zk,τ . (15)

Hence, with the assumption of channel reciprocity, the PSP is
calculated for each user during the uplink as in (14), which
is assumed to be equivalent to the PSP in the downlink.
Note that PSP profile estimation is less challenging than

estimating the actual channel state information, in which the
PSP can remain constant over many coherence time intervals.
However, the actual estimation process of gk,m is beyond the
scope of this paper, thus we assumed the PSP profiles to
be (perfectly) known in our system.

III. DOWNLINK TRANSMIT PRECODING
In massive MIMO, transmit precoding is used to can-
cel inter-user interference. Conventional transmit precoding
design requires channel knowledge at the transmitter. How-
ever, in massive MIMO, the number of transmit antennas is
very large, i.e., nt � 1. Hence, the estimation of all channel
coefficients hk,m quickly becomes unfeasible. Instead, differ-
ential transmit precoding schemes could be considered which
avoid the need for explicit channel estimation. After estimat-
ing the PSP profile gk,m at the BS, we use this knowledge
to design the transmit precoder for each user k to separate
different users. Now, we present an asymptotic analysis of
SINR and the proposed precoder design strategies for the
differential massive MIMO framework.

A. ASYMPTOTIC ANALYSIS OF SINR
As a consequence of employing large number of antennas at
the BS nt → ∞ (as our case of massive MIMO), the down-
link channel vectors of independent users have a large degree
of orthogonality, i.e.,

1
nt

hHk hk
N→∞
→

gTk gk
nt

,
1
nt

hHk hq 6=k
N→∞
→

gTk gq 6=k
nt

.

The orthogonality between different user’s channels is deter-
mine by the orthogonality between the small fading vec-
tors {h̃k}, and the orthogonality between the PSPs {gk}.
Theorem 1: From the law of large random numbers and

under the most favorable propagation conditions, where the
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column-vectors of the propagation vectors are asymptotically
orthogonal, the expected value of SINRk can be calculated
when nt → ∞. Since {hHk } has Gaussian distribution with
zero-mean and covariance of Gk = diag

(
gk
)
, hence the

desired signal
√
pkhHk uk is also Gaussian distributed with

zero mean and variance pk
∑nt

m=1 gk,mu
2
k,m, where the sum

of multiple Gaussian variables is also a Gaussian variable.
Similarly, the interference component of SINRk is also a
Gaussian signal with variance

∑K
q=1,q 6=k pq

∑nt
m=1 gk,mu

2
q,m.

The variance for the AWGN noise is σ 2
zk . Therefore,

the expected value of SINRk as nt →∞ is

SINRk
N→∞
→

E
[
pk
∣∣hHk uk ∣∣2]

E

[∑K
q=1
q 6=k

pq
∣∣hHk uq∣∣2 + σ 2

zk

] (16)

=
pk
∑nt

m=1 gk,mu
2
k,m∑K

q=1
q 6=k

pq
∑nt

m=1 gk,mu
2
q,m + σ

2
zk

. (17)

Proof: See Appendix I �

B. SUBOPTIMAL PRECODERS
1) MATCHED PSP PRECODER
The first precoder design strategy is to match the beamformer
vector to the PSP profile of the transmit antennas to separate
different users, i.e., u2k,m ∼ gk,m, which can be written as

uk,m =

√
βk · exp

{
−|m− mk |2

2ζ 2k

}
, (18)

where we assume the BS has full knowledge of the channel
parameter ζk , and the antenna index mk which is the closest
to the user k with maximum average power. For the power
allocation in matched PSP scheme, we allocate the downlink
transmit power equally between users, i.e., pk = P̄/K .

2) ORTHOGONAL PSP PRECODER
In the orthogonal PSP precoder, the beamformer for each user
has to be distinguished and identified from other users. In the
orthogonal precoder scheme, each user is assigned a unique
orthogonal PSP to enhance data separation between users.
The orthogonal PSP for each user is then multiplexed by its
own power profile.

The orthogonal precoder for each user can be con-
structed using the Gram-Schmidt process (GSP). Let the
vector vk =

[
vk,1, vk,2, · · · , vk,nt

]T
∈ Rnt×1 repre-

sent the user’s PSP vector. The elements of vector vk
are computed by matching their value to the power pro-
file of the transmit antennas, i.e., v2k,m ∼ gk,m. The
Gram-Schmidt process takes a finite, linearly independent set
S = {v1, v2, · · · , vk , · · · , vK } for K ≤ nt and generates an
orthogonal set S̄ = {v̄1, v̄2, · · · , v̄k , · · · , v̄K }which spans the
same K -dimensional subspace of Rnt×1 as S. We define the
projection operator as [20]

projv̄(v) =
〈v̄, v〉
〈v̄, v̄〉

v̄, (19)

where 〈v̄, v〉 denotes the inner product of the vectors v̄ and v,
i.e., 〈v̄, v〉 = v̄T v for vectors in Rnt×1. The Gram-Schmidt
process then works as follows:

v̄1 = v1,

v̄2 = v2 − projv̄1 (v2),

v̄3 = v3 − projv̄1 (v3)− projv̄2 (v3),
...

v̄k = vk −
k−1∑
i=1

projv̄i (vk ). (20)

Note that, the Gram-Schmidt precoder for the first user is
equal to the original PSP for the first user, i.e., v̄1 = v1, hence
the user’s separation works only for the received signal of the
first user. To enhance the separation for the received signal
of other users, we multiply each element of the orthonormal
vector v̄k by its own specific original power profile elements
of vk and then normalize them, which yields

uk =
vk ◦ v̄k
‖vk ◦ v̄k‖

, (21)

where ◦ denotes the Hadamard product. For power allocation
in orthogonal PSP precoder, we allocate the downlink trans-
mit power equally between users, i.e., pk = P̄/K .

C. OPTIMAL PSP PRECODERS
In this precoder, we consider the joint optimization of power
and downlink precoder for the PSP among all users simul-
taneously using the max-min formulation problem. A max-
min formulation guarantees a fair quality of service among
all users.

1) SINR OPTIMAL PSP PRECODER
In optimal PSP precoder, we maximize the worst case SINR
jointly among all user. Starting from (17), the corresponding
optimization problem can be written as

maximise
pk ,uk,m

k∈[1,K ],m∈[1,nt ]

min
k∈[1,K ]

( pk
∑nt

m=1 gk,mu
2
k,m∑K

q=1
q 6=k

pq
∑nt

m=1 gk,mu
2
q,m + σ

2
zk

)
,

(22a)

subject to
K∑
k=1

nt∑
m=1

pku2k,m ≤ P̄, (22b)

pku2k,m ≥ 0, ∀k,m. (22c)

Problem (22) can be recast as

maximise
pk ,ck
k∈[1,K ]

min
k∈[1,K ]

(
pk f Tk ck

f Tk
∑K

q=1
q 6=k

pqcq + 1

)
, (23a)

subject to
K∑
k=1

pk1Tnt ck ≤ P̄, (23b)

pkck ≥ 0, ∀k, (23c)
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where f k and ck are defined as

f k =
1
σ 2
zk

[
gk,1, gk,2, · · · , gk,m, · · · , gk,nt

]T
, (24)

and

ck =
[
u2k,1, u

2
k,2, · · · , u

2
k,m · · · , u

2
k,nt

]T
. (25)

It can be seen that the cost-function in (23a) is non-linear
and non-convex over the optimization variables pk , and ck for
k ∈ [1,K ]. In the following, we provide optimal solutions for
the design problems. The feasibility of problem (23) can be
examined by solving it with the objective function replaced
by constant values, i.e., finding a common domain which
satisfies all problem constraints. Without loss of generality,
we assume that our problem is feasible. Next, we solve
our optimization problem optimally through recasting the
non-convex constraints. Now, let’s define aKnt×1 vector v as

v =
[
p1(c1)T , p2(c2)T , · · · , pK (cK )T

]T
. (26)

In addition, let’s define other variables wk and w̄k of size
Knt × 1 as

wk =
[
0T(k−1)nt×1, f

T
k ,0

T
(K−k)nt×1

]T
, (27)

and

w̄k =
[
f T1 , · · · , f

T
k−1,0

T
nt×1, f

T
k+1, · · · , f

T
K
]T
, (28)

where 0m×1 denotes anm×1 vector whose elements are zero.
Next, the SINRk optimization problem in (23) may be written
in amore convenient form by using (26), (27), and (28), which
yields

maximise
v

min
k∈[1,K ]

(
wTk v

w̄Tk v+ 1

)
, (29a)

subject to 1Tnt v ≤ P̄, (29b)

v ≥ 0. (29c)

To convexify the cost-function (29a), which comprises a
product of fractional terms, we substitute the numerators and
denominators of the fractions by exponential variables as
follows [21]

eαk = wTk v, ∀k, (30a)

eα̃k = w̄Tk v+ 1, ∀k. (31b)

Then, by using the properties of the exponential and
according to (30a) and (30a), the problem in (29) can be
formalized as

maximise
v,αk ,α̃k
k∈[1,K ]

min
k∈[1,K ]

(
e(αk−α̃k )

)
, (32a)

subject to 1Tnt v ≤ P̄, (32b)

v ≥ 0, (32c)

eαk ≤ wTk v, ∀k, (32d)

eα̃k ≥ w̄Tk v+ 1, ∀k. (32e)

It can be seen that the exponential parameters eαk and eα̃k
in (32d) and (32e) are constrained by the expressions on
the right hand sides of (30a) and (30a), respectively. The
objective function in (32a) consists of an exponential function
which is non-convex, and thus we can linearize it using the
monotonicity property of the exponential function. Hence,
the objective function in (32a) can be defined as follows

e(αk−α̃k )def= αk − α̃k , ∀k. (33)

Next, to deal with the non-convex constraint (32e), we lin-
earize the exponential term eα̃k using the first order Taylor
approximation as follows [22]

eα̃k = eα̈k
(
1+ α̃k − α̈k

)
, ∀k, (34)

where α̈k is the point where the linear approximation is
made. Therefore, from (33) and (34), problem (32) can be
reformulated as

maximise
v,αk ,α̃k
k∈[1,K ]

min
k∈[1,K ]

αk − α̃k , (35a)

subject to 1Tnt v ≤ P̄, (35b)

v ≥ 0, (35c)

eαk ≤ wTk v, ∀k, (35d)

eα̈k
(
1+ α̃k − α̈k

)
≥ w̄Tk v+ 1, ∀k. (35e)

Now the above problem (35) is convex and can be solved
iteratively using CVX optimization software [23]. The initial
value of α̈k is updated by the optimized value of α̃k , ∀k ,
obtained in the previous iteration. The iterations continue
until the error,

∑K
k=1 |α̈k − α̃k |, converges to a certain thresh-

old. Algorithm 1 is provided to solve the above optimization
function. Here α = [α1 · · ·αK ]T , α̃ =

[
α̃1 · · · α̃K

]T , and
α̈ = [α̈1 · · · α̈K ]T .

Algorithm 1 Algorithm for Solving Problem (35)
1: Set threshold = ε
2: Initialize α̈[i], α̃[i], i = 0
3: while 1Tnt

(
|α̈ − α̃|

)
> ε or i = 0 do

4: increment i = i+ 1.
5: update the initial values α̈[i] = α̃[i−1].
6: solve problem (35) using CVX and calculate

v[i],α[i], α̃[i].
7: until Convergence.
8: end while
9: Find uk and pk of each user from v as in (25) and (26).

Remark 2: There is an alternative approach for designing
the transmit precoder based on maximizing the worst case of
signal-to-leakage-noise ratio (SLNR). The SLNR is defined
as the ratio of received signal power at the desired user to
received signal power at the other users (the leakage) [24].
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The average SLNRk at the kth user can be expressed as

SLNRk
N→∞
→

E
[
pk
∣∣hHk uk ∣∣2]

E

[
pk
∑K

q=1
q 6=k

∣∣∣hHq uk ∣∣∣2 + σ 2
zk

] (36)

=
pk
∑nt

m=1 gk,mu
2
k,m

pk
∑K

q=1
q 6=k

∑nt
m=1 gq,mu

2
k,m + σ

2
zk

. (37)

The proof of (37) is similar to the proof of (17) in Theorem 1.
The optimization solution for maximizing the worst case
SLNR of (37), (max-min SLNR), jointly among all users pro-
vides the same performance as in the proposed optimal PSP
SINR precoder, (max-min SINR).

D. COMPUTATIONAL COMPLEXITY ANALYSIS
FOR THE PSP PRECODERS
In this section, we quantify the computational complexity
for the proposed PSP precoders for the optimal and the
suboptimal solutions. The computational process is done
based on the size of input data, the floating point operation
(FLOPs), the type of the optimization problems, the number
of the required iterations, and the methods used in finding the
solution.

1) COMPLEXITY OF SUBOPTIMAL SOLUTIONS
The notion of FLOPs is introduced. We use the total number
of FLOPs to measure the computational complexity of matrix
operations. We summarize the total FLOPs needed for some
matrix operations below [25]:
• Multiplication of m × n and n × p complex matrices:
O(8mnp− 2mp);

• Inversion of an m × m real matrix using Gauss-Jordan
elimination: O(4m3/3).

• GSP to an m × n (m ≥ n) complex matrix:
O(8n2(m− n/3)).

• Hadamard product for two m× m matrices: O(m).
• L2-norm of an m× 1 real vector: O(3m).
According to the aforementioned summary of FLOPs
operations, the computational complexity of the subop-
timal PSP precoder is

O
(
K
(
13nt −

8
3

))
. (38)

2) COMPLEXITY OF OPTIMAL SOLUTION
Now, we calculate the complexity of optimizing the down-
link PSP precoder which is formulated as a linear program-
ming (LP) problem in (35). The computational complexity
of such LP problems has been studied in Chapter 6 in [26]
where the complexity is calculated in terms of the number
of optimization variables n, number of constraints m and the
size of input data dim(p), where p is the vector of input
data. To apply the complexity evaluation steps given in chap-
ter 6 in [26], problem (35) is recast into its standard LP form.
This can be achieved by replacing the min operator in the

objective function by new slack variable π and K scalar
constraints (see (39d)). Therefore, (39) is an equivalent and
standard LP recast of the original problem (35). Note that the
constraint (35d) is linearized in a similar way as used for (35e)
since the used CVX’s solvers such as SDPT3 and SeDuMi do
not support the exponential function.

maximise
v, αk , α̃k , π
k∈[1,K ]

π (39a)

subject to 1Tnt v ≤ P̄, (39b)

v ≥ 0, (39c)

αk − α̃k ≥ π, ∀k, (39d)

eα̂k
(
1+ αk − α̂k

)
≤ wTk v, ∀k, (39e)

eα̈k
(
1+ α̃k − α̈k

)
≥ w̄Tk v+ 1, ∀k. (39f)

Problem (39) contains n = (nt+2)K+1 scalar variables,m =
(nt +3)K scalar constraints, and require the input data vector
p = [n, m, wT1 , . . . , w

T
K , w̄

T
1 , . . . , w̄

T
K , α̂1, . . . , α̂K ,

α̈1, . . . , α̈K ]. According to these problem parameters,
the complexity of achieving a per-iteration solution within the
an accuracy ε is [26]

O(1)
√
m+ n ln

(
dim(p)+ ‖p‖1 + ε

2

ε

)
, (40)

where O(1) is the complexity of a real operation. According
to (40) and the aforementioned problem parameters, the per-
iteration complexity asymptotically (as nt , K → ∞ and
nt � K ) converges to

O
(
Knt

[
ln(2K 2nt )+ ln

(1
ε

)])
. (41)

Obviously, from (38) and (41), the optimal PSP precoder
has lower computational complexity than the suboptimal PSP
precoders, where the main parameters are the total number of
users K and the total number of transmit antennas nt . We will
explore more on the comparison between (38) and (41) in
Section V.

IV. DIFFERENTIAL DETECTION FOR MASSIVE MIMO
WITH DOWNLINK TRANSMISSION
In this section, the differential encoding and decoding process
for the downlink transmission in a massive MIMO system is
discussed. Here, we assume that neither the transmitter nor
the receiver has prior knowledge of the CSI.

A. MULTIPLE SYMBOLS DIFFERENTIAL DETECTION
The simpler suboptimal method of implementing DD with
massiveMIMO is to encode the transmitted data differentially
and to decode only the last two consecutive received symbols,
e.g. N = 2, without any knowledge of the CSI. In contrast,
the optimal method is to decode a block of N consecutive
information symbols jointly without any knowledge of the
CSI by performing MSDD, e.g. N � 2, which results in a
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3dB performance improvement compared to DD3 [12], [13].
In MSDD for the downlink system, the differential trans-
missions are implemented in blocks, in which each user
k receives the sum of all the transmit waveforms of other
users; then, the received signal blocks for each user must
be detected independently. The measurements at the receiver
are collected by spatial autocorrelation, and then we resort
to the generalized likelihood ratio test (GLRT) optimization
criterionwhereby themaximization of the likelihood function
is performed not only over the unknown symbols but also over
unknown channels [27].

When using the M -ary PSK constellation, the MSDD
detection problem can be simplified as [13]

b̂k = argmax
b̃k∈MN+1,b̃o=1

b̃kY k b̃
H
k (42)

= argmax
b̃k∈MN+1,b̃o=1

<

{
N∑
τ=1

b̃∗k,τ

τ−1∑
l=0

b̃k,l · yk,l,τ

}
, (43)

where Y k = yHk yk ∈ C(N+1)×(N+1) is the autocorrelation
matrix of the received signal comprised of the correlation
coefficients yk,l,τ , τ = 1, . . . ,N , l = 0, . . . , τ − 1, between
the lth and the τ th received differential signals. As we are
interested in the information symbols sk , it can be seen that
sk is directly obtained as

sk,τ = bk,τ · b∗k,τ−1. (44)

In (42), the differential decoder uses one side of the
complex-conjugate symmetry of the correlation coefficients,
thus yk,l,τ = y∗k,τ,l . Further, the diagonal elements of Y k can
be neglected as they do not influence the decision metrics,
i.e., yk,l,l = yk,τ,τ = 0.

B. DECISION FEEDBACK DIFFERENTIAL DETECTION
In order to improve the performance further, DFDD is
adopted in this paper. This approach leads to better perfor-
mance compared to MSDD. Different from [14], we con-
struct the DFDD for the downlink transmission instead of
the uplink. In DFDD, the decisions are made successively,
adding all previous decisions in the decision of the current
symbol. In this decoding algorithm, the decoder detects sym-
bols one by one. After finding the best candidate for the
first symbol, the effects of this symbol in all of the receiver
equations are added and considered. Then, the second symbol
is detected from the new sets of equations. The effects of
the first and second detected symbols are added and then
considered to derive a new set of equations. The process con-
tinues until all symbols are detected. Of course, the order in
which the symbols are detected will impact the end solution.
The algorithm includes three steps, i.e. decision, process, and
ordering.

3In MSDD, there is a 3dB gain when using large values of N , yet the car-
dinality of the search set grows exponentially with N , i.e., |M| =MN+1.
However, to achieve low complexity design, one can resort to using an edge
computing platform or the conventional DD.

1) DECISION PROCESS
From the description given above and starting with bk,0 = 1,
the decision process means that the information symbols
in (43) are detected one by one as

b̂k,τ = argmax
b̃k,τ∈MN+1

<

{
b̃∗k,τ

τ−1∑
l=0

b̃k,l · yk,l,τ
}

(45)

= exp
(
j · θPSK

{ τ−1∑
l=0

b̃k,l · yk,l,τ
})
, (46)

where

θPSK{x}
def
=

2π
M
·

⌊
M
2π
· arg(x)

⌉
, (47)

and

1θPSK{x}
def
=

∣∣∣∣ arg { exp (j · ( arg(x)− θPSK(x)))}∣∣∣∣ (48)

quantizes the phase of a complex number x ∈ C to the M
phase values of M -ary PSK, and computes the quantization
error, respectively. The operation bxe in (47) takes as input
a real number x and gives as output a reduction into the
interval [π, 2π ]. The purpose of this step is to decide which
transmitted symbol to detect at each stage of the decoding.

2) OPTIMUM DECISION ORDERING
It is well known from decision feedback equalization in
MIMO systems, also known as BLAST [28], that sorting the
decisions in an optimized order improves performance. The
symbol with lowest quantization error in (48) is the best in
this step. The decision order can be achieved by reordering the
columns and rows of the Y k matrix. That is, we first denote
the index for the best transmitted symbols in the Y k matrix by
(τ̂0, τ̂1, · · · , τ̂N ), where τ̂i, τ̂l ∈ {0, · · · ,N }, τ̂i 6= τ̂l for i 6= l.
Then, we define the symbols transmitted in the τ̂ith index by
(bk,τ̂0 , bk,τ̂1 , · · · , bk,τ̂i , · · · , bk,τ̂N ).
Now, we start by setting the initial transmitted symbol to

identity, i.e., bk,τ̂0 = 1. Then, the first decided symbol should
be the τ̂1th symbol, where

[τ̂0, τ̂1] = argmin
l∈{0,··· ,N },τ∈{1,··· ,N }

l≤τ

∣∣∣∣1θPSK{yk,l,τ }∣∣∣∣, (49)

and the estimate for the bk,τ̂1 symbol is obtained from

bk,τ̂1 = exp
(
j · θPSK

{
yk,τ̂0,τ̂1

})
. (50)

Taking the previous decision into account, the symbol that is
decided next can be obtained successively from

τ̂i = argmin
τ∈{1,··· ,N }
/{τ̂0,··· ,τ̂i−1}

∣∣∣∣1θPSK{ i−1∑
l=0

bk,τ̂l · yk,τ̂l ,τ

}∣∣∣∣, (51)

and its value can be obtained from

bk,τ̂i = exp
(
j · θPSK

{ i−1∑
l=0

bk,τ̂l · yk,τ̂l ,τ̂i
})
. (52)
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TABLE 1. The values of PSP parameters to be used in (13).

This ordering scheme has attempted to provide reliable deci-
sions for the first decided symbols, which will impact the
decision for subsequent symbols, and thus improve perfor-
mance. Further, it must be noted that the actual realizations
of the channel vectors {hk} are not needed to decode the
information signals.

V. SIMULATION RESULTS AND DISCUSSION
In this section, the performance of the differential mas-
sive MIMO downlink transmission is examined. We assume
the channel is modeled as quasi-static, where the block
fading channel between the transmitter and receiver is
constant (but unknown) during N successive channel
uses, i.e., the block length of the coherence time inter-
vals. The fast fading coefficients for each user h̃k =
[h̃k,1, · · · , h̃k,nt ]

T are mutually independent and modeled
as independent and identically distributed (i.i.d.) complex
Gaussian random variable with zero-mean and unit-variance,
i.e., h̃k,m ∼ CN (0, 1).

Throughout this section, we assume the following; urban
area cellular radio model for γ , one receive antenna per user,
the noise power σ 2

zk = 0 dB, the constellation size is 4-PSK,
the length of the transmission block is set toN = 200, and we
use the DFDD detection technique for differential detection.
Table 1 shows the values of PSP parameters to be used in (13)
whenever needed throughout the simulation section. Note that
using ζ without the superscript k means that the values of ζ
are equal for all users, i.e., ζ1 = · · · = ζK = ζ . The Monte
Carlo simulation is used to evaluate the performance in terms
of bit error rate (BER).

A. SINGLE-USER SCENARIO
The BER performance curve is first simulated and plotted
for only one user. We assume that the user’s location is in
front of the center of the antenna array, i.e., m1 = 50.
The BS has nt = 100 transmit antennas. We examined
this case using the three proposed precoders, e.g., matched
PSP precoder, orthogonal PSP precoder, and optimal PSP
precoder. In addition to this we compared them against the
unity precoder (equal power allocation), where the precoder
vector elements are all set to one, i.e., {uk} = 1nt and then
normalized. The channel parameter is set to ζ = 10. When
there is no interference, Fig. 3 shows that the performance of

FIGURE 3. BER performance of the proposed differential MIMO downlink
transmission with single user. nt = 100, ζ = 10.

the proposed precoders schemes, e.g., matched, orthogonal,
and optimal precoders, outperforms the one that does not
perform any kind of optimization for the precoding vector,
e.g., the unity precoder. Clearly, in the interference-free sys-
tem, the performance of the optimal PSP precoder is slightly
better than the other two precoders but the difference is very
small. It should be noted that in a coherent system, it is well
known that the matched (to the channel) filter maximizes the
SNR for the single user case. This is valid for both conven-
tional and massive MIMO systems. However, in a noncoher-
ent system, the matched PSP precoder is matched only to
the PSP and not to the channel itself. Therefore, the matched
PSP precoder does not necessarily maximize the SNR. In the
optimal PSP precoder design, the optimizer tends to allocate
the power to the channels that have significant gains. In other
words, as the PSP coefficients are positive, the optimized
precoder (that maximizes the SNR and improves the BER)
will have only coefficients corresponding to the largest coef-
ficients of the PSP greater than zero and the rest are equal to
zero.

B. MULTIPLE-USER SCENARIO
Fig. 4 shows the coefficients of the proposed precoders,
i.e., matched, orthogonal, and optimal PSP in the case of
K = 3 users and nt = 100. The users are placed in front
of the uniform array at equal distance lk from the BS but
with different positions (angles) m1 = 20, m2 = 50, and
m3 = 80. Since we assume lk is equal for all users, then
ζ1 = ζ2 = ζ3 = ζ = 15. In Fig 4-(a), the BS first
uses (13) to generate the PSP, {gk}, for each user, in which
the BS uses them as an input to the three designed precoders.
Fig 4-(a) shows the generated PSP for the three users (blue:
user 1; red: user 2; black: user 3). We observe that in the
matched PSP precoder in Fig 4-(b), the precoder coefficients
for the three users overlap significantly. For the orthogonal
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FIGURE 4. The proposed coefficients for the precoders of different users for K = 3, nt = 100,
and ζ = 15. (a) normalized PSP of different users, (b) normalized matched PSP precoder’s
coefficients, (c) normalized orthogonal PSP precoder’s coefficients, (d) normalized optimal PSP
precoder’s coefficients.

precoder in Fig 4-(c), the overlap between the precoder coef-
ficients is reduced by using the Gram-Schmidt process. In the
optimal PSP precoder in Fig 4-(d), the overlap between the
precoder coefficients is minimized and the user is mostly
separated. It is worth mentioning that if the following three
conditions are satisfied, namely nt is very large, ζk is small,
and lk is small, we have gTk uq ≈ 0 for k 6= q. The
value of ζk is affected by the user’s distance lk from the
BS, the shorter the user’s distance to the BS the smaller
the value of ζk , which minimizes the interference between
users.

FIGURE 5. BER performance of the proposed differential MIMO downlink
transmission with K = 3, nt = 100. The values of PSP parameter are
ζ = 3, ζ = 5 and ζ = 10.

In Fig. 5, we compare the performance of the proposed
PSP precoders in terms of BER. We assume K = 3,

m1 = 20, m2 = 50, m3 = 80, nt = 100. In Fig. 5, for
any value of ζ , the performance of the optimal PSP pre-
coder outperforms the other precoders. The matched PSP
precoder is not robust against interference at high BS power
and thus has the worst performance. In the case of ζ = 3
for all users, the performance of the precoders is almost
the same and this is because of using small value of ζ in
which the users do not overlap and hence are separated very
well.

In Fig. 5 also, in the presence of interference between users,
the value of the power profile parameters such as ζ can impact
the precoders’ performance. In Fig. 5, we show the effect of
adjusting ζ on the performance of the matched, orthogonal,
and optimal precoders. Note that when we increase the value
of channel variance for all users from ζ = 3 to ζ = 5
and then ζ = 10, the power profile significantly overlaps
between users hence causing a degradation in the system
performance. Hence, for large orthogonality between users’
channels (small value of channel parameter ζ ), the perfor-
mance of matched precoder design is close to the optimal
design performance. The larger the orthogonality the closer
the performance.

In Fig. 6, we investigate the impact of increasing the num-
ber of users on the system performance in terms of BER using
the three proposed precoders. We considered: nt = 100,
ζ = 5, and K = 2, K = 4, and K = 5. For K = 2,
the positions are set to [25 75], for K = 4, the positions
are set to [20 40 60 80], and for K = 5, the positions
are set to [20 35 50 65 80]. It is shown that differential
massive MIMO systems with fewer users outperform those
with a large number of users. However, using an optimal PSP
precoder with the most appropriate number of nt and/or value
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FIGURE 6. BER performance of the proposed differential MIMO downlink
transmission with nt = 100, ζ = 5. Users cases are K = 2, K = 4, and
K = 5.

FIGURE 7. BER performance of the proposed differential MIMO downlink
transmission with K = 3, nt = 100, and nt = 200, using different values of
channel variance between users; ζ1 = 5, ζ2 = 10, and ζ3 = 15.

of ζ can minimize the overlap between users and thereby
reduce loss of performance.

In Fig. 7, we examine the influence of increasing the num-
ber of transmit antennas, e.g., nt = 100 to nt = 200,
on the system performance using the optimal PSP precoder.
Three users, K = 3, are placed in front of the uniform
array at different positions [20 50 80] and different distance
lk from the BS, which yields ζ1 = 5, ζ2 = 10, and
ζ3 = 15. From Fig. 7, it can be seen that differential massive
MIMO systems with higher number of transmit antennas
outperform those with lower number of antennas. Therefore,
as nt → ∞ the degree of orthogonality between users
becomes large which can minimize the interference between
users and improve the overall performance of the system.
The larger the number of transmit antennas the better the
performance.

In Fig. 8 and Fig. 9, we show the computational complexity
of the system. In Fig. 8, we first set the number of users
to K = 6 and increase the number of transmit antenna nt .

FIGURE 8. Comparison of the computational complexity for suboptimal
PSP precoders and optimal PSP precoder with K = 6 and ε = 0.5.

FIGURE 9. Comparison of the computational complexity for suboptimal
PSP precoders and optimal PSP precoder with nt = 100 and ε = 0.5.

Similarly, in Fig. 9, the number of transmit antennas is fixed
to be nt = 100 while the number of users in the system
increases gradually. From both figures, the computational
complexity of the suboptimal PSP precoders are higher than
the optimal PSP precoder. We also observe that varying the
number of transmit antennas at the BS has higher impact on
the complexity than varying the number of users. Therefore,
the optimal PSP precoder yields a low complexity scheme
while providing good performance.

VI. CONCLUSION
This paper proposed three precoding schemes, namely the
matched, orthogonal and optimal PSP precoders, for down-
link transmission in massive MIMO systems with differential
encoding and detection. With a large number of transmit
antennas at the BS and full knowledge of the PSP, the pro-
posed low-complexity downlink precoding techniques allow
MAI between users to be eliminated. In a multiuser sce-
nario, the optimal PSP precoder can effectively separate the
data streams of different users, thus enhancing the system
performance. In the detection scenario, the DFDD tech-
nique is used to detect the differential information signals.
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Simulations show that the proposed schemes are effective
precoding techniques for a massive MIMO system in a sce-
nario where the channel is unknown at both the transmitter
and receiver.

For future work, it is of interest to investigate the follow-
ing; the estimation of gk,m in real wireless communication
systems; the capacity of noncoherent massiveMIMO systems
and compare it with that of coherent massiveMIMO systems;
a Rician fading channel could be tested as it is more suitable
for the case of small cells; and finally the case of correlated
transmitted symbols.

APPENDIX I. PROOFS OF THEOREM 1
The expected value of SINRk at the kth user can be expressed
as follows

SINRk = E
{

pk |hHk uk |
2∑K

q=1
q 6=k

pq|hHk uq|2 + σ 2
zk

}
(53)

=

(
pk E

{
|hHk uk |

2
})

E
{

1∑K
q=1
q 6=k

pq|hHk uq|2 + σ 2
zk

}
.

(54)

To calculate the expected value of the norm |hHk uk |
2, we first

expand it as follows

|hHk uk |
2
=

nt∑
m=1

|h̃k,m|2 gk,mu2k,m

+

∑
I
h̃∗k,ih̃k,j

√
gk,igk,juk,iuk,j, (55)

where I =
{
{k, i}i × {k, j}j | {k, i} 6= {k, j}

}
. Since

E{|h̃k,m|2} = 1 and E{h̃∗k,ih̃k,j} = 0 are always true,4 then
we have

E
{
|hHk uk |

2
}
=

nt∑
m=1

gk,mu2k,m. (56)

By using the result of (56) in (54), we have

SINRk =
(
pk

nt∑
m=1

gk,mu2k,m

)
×E

{
1∑K

q=1
q 6=k

pq|hHk uq|2 + σ 2
zk

}
. (57)

Now, we consider the expectation E
{

1∑K
q=1
q 6=k

pq|hHk uq|
2+σ 2zk

}
.

By using the Taylor series expansion, we can write this
expectation as [29]

E
{

1∑K
q=1
q6=k

pq|hHk uq|2 + σ 2
zk

}

4Please note that the expectation is over the fast-fading randomness.

= E
{
Xk
Yk

}
=

E{Xk}
E{Yk}

−
cov (Xk ,Yk)

(E{Yk})2
+

var (Yk)E{Xk}
(E{Yk})2 E{Yk}

, (58)

where Xk = 1 and Yk =
∑K

q=1
q 6=k

pq|hHk uq|
2
+ σ 2

zk . Now,

we calculate the values of E{Yk} and var(Yk ). Following
similar calculation used to obtain (55) and (56), we have
E{|hHk uq|2} =

∑nt
m=1 gk,mu

2
q,m. Therefore

E{Yk} =
K∑
q=1
q 6=k

pq
nt∑
m=1

gk,mu2q,m + σ
2
zk . (59)

On the other hand, we have

var{Yk} = E
{∣∣∣Yk − E{Yk}

∣∣∣2}
=

K∑
q=1
q 6=k

p2q E
{∣∣∣∑

I
h̃∗k,ih̃k,j

√
gk,igk,juq,iuq,j

∣∣∣2}

=

K∑
q=1
q 6=k

p2q
∑
I
gk,igk,ju2q,iu

2
q,j. (60)

Based on (59), (60) and the orthogonality between gk and uq
as nt → ∞ for k 6= q, the following inequality (E{Yk})2 �
var(Yk ) is true. Further, cov(Xk ,Yk ) = 0. Applying these
results to the series expansion in (58) we get

E
{

1∑K
q=1
q 6=k

pq|hHk uq|2 + σ 2
zk

}

≈
E{Xk}
E{Yk}

=
1∑K

q=1
q6=k

pq
∑nt

m=1 gk,mu
2
q,m + σ

2
zk

. (61)

Substituting (61) into (57), we obtain

SINRk =
pk
∑nt

m=1 gk,mu
2
k,m∑K

q=1
q 6=k

pq
∑nt

m=1 gk,mu
2
q,m+σ

2
zk

. (62)

This concludes the proof.
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