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Abstract: Several important processes and analyses at the LHC are sensitive to higher-

order perturbative corrections beyond what can currently be calculated at fixed order. The

formalism of High Energy Jets (HEJ) calculates the corrections systematically enhanced for

a large ratio of the centre-of-mass energy to the transverse momentum of the observed jets.

These effects are relevant in the analysis of e.g. Higgs-boson production in association with

dijets within the cuts devised to enhance the contribution from Vector Boson Fusion (VBF).

HEJ obtains an all-order approximation, based on logarithmic corrections which are

matched to fixed-order results in the cases where these can be readily evaluated. In this

paper we present an improved framework for the matching utilised in HEJ, which for merging

of tree-level results is mathematically equivalent to the one used so far. However, by starting

from events generated at fixed order and supplementing these with the all-order summation,

it is computationally simpler to obtain matching to calculations of high multiplicity.

We demonstrate that the impact of the higher-multiplicity matching on predictions is

small for the gluon-fusion (GF) contribution of Higgs-boson production in association with

dijets in the VBF-region, so perturbative stability against high-multiplicity matching has

been achieved within HEJ. We match the improved HEJ prediction to the inclusive next-to-

leading order (NLO) cross section and compare to pure NLO in the h→ γγ channel with

standard VBF cuts.
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1 Introduction

Fixed-order perturbation theory delivers a good description of inclusive rates of collider-

processes involving jets; however, logarithmic corrections of various origins are important

for observables in different regions of phase space. For example, the detailed description

of the dependence of the cross-section on jet-sizes R receives systematic logarithmic per-

turbative corrections of the type αns lnn 1/R [1, 2]. These logarithms are controlled by

DGLAP-like evolution equations, which also govern the formalism of parton showers [3–5].

While corners of phase space characterised by large ratios of transverse scales are well de-

scribed by the parton-shower formalism, measurements at D0 at 1.96 TeV [6] and ATLAS

at 7 TeV [7] indicate clearly that even when matched with fixed-order matrix elements, the

parton showers do not describe well the regions of large invariant mass or large rapidity

spans of the jet systems. This region of phase space is of particular interest in the process

pp → Hjj, with contributions (at Born level) of α2
w through weak boson fusion and α4

s

through gluon-fusion (GF). It is reasonable to distinguish the two contributions to the

same final state, since the quantum interference is negligible [8–10]. The impact of the

radiative corrections to each process is rather different though; in particular, the t-channel

colour octet exchange in the gluon-fusion process leads to increased jet-activity [11], which

allows for a distinction of the production mechanism within the phase space populated

by weak boson fusion. The two jets in weak boson fusion are often separated by a large

– 1 –



J
H
E
P
0
8
(
2
0
1
8
)
0
9
0

invariant mass and rapidity span. This is the phase-space region where the perturbative

corrections for the QCD processes contain logarithms of log(ŝjj/p
2
t ) from Balitsky-Fadin-

Kuraev-Lipatov (BFKL) [12–15]. These logarithms are contained within the formalism of

High Energy Jets , where the systematic treatment is obtained by a power-expansion of the

scattering matrix element in ŝ/p2t [16, 17]. The first sub-leading corrections were presented

for the process of Hjj in ref. [18] by calculating the leading behaviour of certain sub-leading

processes. This constitutes control of a well-defined set of NLL BFKL logarithms within

HEJ. These logarithms drive the pattern of further emissions from the QCD process [11],

which will allow for a better discrimination between the GF and VBF processes than what

could be performed by investigating the dynamics of just two jets in the event.

The formalism of HEJ captures leading logarithmic terms to processes with at least two

jets at large partonic centre-of-mass energy, of the form αks ln(ŝ/p2⊥)k ' αks∆y
k
jf jb

, where

∆yjf jb is the rapidity-difference between the jets forward and backward in rapidity. The

systematic treatment of these terms is based on a logarithmic all-order expansion point-

by-point in phase space of the leading virtual corrections to all orders, combined with a

power-expansion (in ŝ/p2t ) of the square of the tree-level matrix elements, again point-

by-point in the n-particle phase space. Upon integration, the leading power-expansion of

the square of the matrix elements ensure the appropriate logarithmic accuracy of cross

sections. The contributions for n > 2 are numerically integrated over phase space, allowing

for detailed jet clustering and event analyses.

Within the formalism of HEJ, the m-jet rates entering each prediction are matched to

tree-level accuracy point-by-point in phase space, by the following procedure for mapping

the n-parton resummation phase space point into a m-parton tree-level phase space point,

described in more detail in ref. [19] and section 2:

1. cluster the n-parton phase space point into jets with a chosen jet algorithm and jet

pt-threshold (e.g. anti-kt clustering, with a threshold of 30 GeV)

2. remove the partons not forming part of the hard jets from the event, and distribute

the sum of their transverse momenta onto the hard jets

3. adjust the energy and longitudinal momentum of each jet such that it is on-shell,

while keeping their rapidities fixed

4. adjust the momenta of the incoming partons such that energy and momentum con-

servation is restored

The result of this procedure is a set of momenta for which the on-shell m-jet tree-level

matrix element can be evaluated. This in turns allows for the weight of the generated event

to be reweighted to full tree-level m-jet accuracy, thus obtaining full tree-level accuracy up

to the multiplicity for which the tree-level matrix elements can be evaluated in reasonable

time. This method for matching the all-order results to fixed-order high-multiplicity matrix

elements has been used for matching all results obtained with HEJ: jets, and γ, Z, W plus

at least two jets with matching up to 4 jets, and H with at least two jets, with matching

up to 3 jets.
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The matching procedure described here can thus be viewed as merging the results of

fixed-order calculations by use of the power-expanded matrix elements of HEJ coupled with

the logarithmic virtual corrections, similarly to the CKKW-L-method [20, 21] of using the

logarithmic accuracy of a shower-algorithm to merge fixed-order cross sections of varying

multiplicity. This paper will present a complete reformulation of the procedure for merging

and all-order summation. With the same input (as in use of the same matrix elements to

the same order), the results are unchanged, but the new procedure for obtaining the all-

order results and the merging will allow for merging results beyond tree-level, and will be

computationally much more efficient.

In section 2 we describe the original mechanism for matching leading-order samples

within HEJ before a detailed discussion of the new formulation. This includes both ana-

lytical aspects and practical aspects of implementation. In section 3 we study the results

obtained in the new formalism in the context of Higgs boson plus dijets in three studies.

Firstly we confirm that when matching to fixed order samples is limited to a maximum

of three jets, we find consistent results with the previous formalism. Secondly, we study

the impact of increasing the multiplicity in the fixed-order samples, now possible for the

first time. Thirdly, we compare the matched all-order results of HEJ with those obtained

at next-to-leading order accuracy. In section 4, we conclude with a final discussion.

2 Matching

In the original formulation, the cross sections within HEJ are calculated by explicitly con-

structing the all-order result by first generating a 2 → n+l kinematic point for each number

of partons n = 2, . . . , N , where N is chosen sufficiently large (in practice around 22), and

l describes the non-partonic particles produced, e.g. Z,W,H or their decay products. In

order to simplify the notation we will only discuss the purely partonic case. Likewise,

we will restrict our discussion to the leading-logarithmic contribution. Note that all our

arguments apply equally to the more general scenario. We demonstrate this by showing

results for the production of a Higgs boson in association with at least two jets, including

recently computed sub-leading corrections [18].

The high-energy limit is dominated by Fadin-Kuraev-Lipatov (FKL) configurations,

where two partons scatter in such a way that there is no radiation outside the rapidity

range spanned by the scattering partons and only gluons are emitted inside this range. To

ensure the high-energy limit applied is valid, it is required that the extremal (in rapidity)

partons are perturbative (hard in terms of transverse momentum), and are members of

the extremal jets. The transverse momenta of the remaining partons are all generated

down to effectively 0 GeV, technically to a very small scale of order 200 MeV (which can be

varied), below which there is perfect cancellation between the subtraction terms (used in the

organisation of the cancellation of the IR divergences [18]) and the real-emission terms. The

matching to LO accuracy for all m-jet rates, m ≤ n, is then obtained by first projecting the

kinematics of the generated all-order events into Born kinematics according to the number

of hard jets as described in the previous section. The event weight is multiplied with a ratio

of the square of the full Born-level matrix element to the HEJ approximation of the same.
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The cross section (and kinematic distributions) is then obtained through the formula:-

σresum,match
2j =

∑
f1,f2

∞∑
n=2

∫ p1⊥=∞

p1⊥=p⊥,min

d2p1⊥
(2π)3

∫ pn⊥=∞

pn⊥=p⊥,min

d2pn⊥
(2π)3

n−1∏
i=2

∫ pi⊥=∞

pi⊥=λ

d2pi⊥
(2π)3

× Ty

n∏
i=1

(∫
dyi
2

)
× |M

reg
HEJ({pi})|

2

ŝ2
×
∑
m

Oemj({pi}) wLO
m−jet

× xafa,f1(xa, Qa) xbfb,f2(xb, Qb) (2π)4 δ2

(
n∑
i=1

pi⊥

)
,

(2.1)

where |Mreg
HEJ({pi})|2 is the square of the regularised all-order matrix element within HEJ

for the 2→ n phase space point (see ref. [18] for further details), and

wLO
m−jet ≡

∣∣∣Mf1f2→f1g···gf2
LO

({
pBJl({pi})

})∣∣∣2∣∣∣Mf1f2→f1g···gf2
LO, HEJ

({
pBJl({pi})

})∣∣∣2 (2.2)

is the ratio between the square of the matrix element evaluated at full tree-level accuracy

and within HEJ for the state projected to tree-level 2→ m kinematics described by the jet

momenta
{
pBJl({pi})

}
. Oemj({pi}) is the exclusive m-jet measure applied to the generated

event kinematics. Ty indicates rapidity ordering. The limits of the integral over the

transverse momentum of the extremal partons combined with the two-jet measure is set

to guarantee that the extremal partons carry the dominant momentum of the extremal

jets. We choose a cut-off p⊥,min corresponding to 90% of the transverse momentum of

the respective extremal jet.1 We use here the phrase ‘kinematics of the generated all-

order event’ to mean the n-parton kinematic point of the resummation event sampled in

eq. (2.1). In order to match each m-jet rate to tree-level accuracy, each generated event in

the all-order phase-space is mapped to a m-jet tree-level kinematic point, and requires an

evaluation of the full m-jet matrix element.

The scale-variation of the normalisation of the cross sections is determined by the tree-

level matrix elements, and mostly unchanged by the leading logarithmic (LL) high-energy

resummation implemented in HEJ. This could be reduced by extending the reweighting

factor wm−jet to next-to-leading order accuracy. However, in order to do this, one would

have to integrate over all m+1 parton real emission phase space resulting in a specific m-jet

Born level kinematics. This would be prohibitively time-consuming. An opposite approach

is to begin with fixed order samples of exclusive jet rates and then merge these using HEJ

to generate all-order results. We demonstrate how to do this in the next subsection and

find significant benefits already at tree-level accuracy. In particular, each phase space point

used for the tree-level matrix element maps into all the relevant resummation phase space

points which leads to fewer evaluations of the tree-level matrix elements. This in turn

allows for matching to higher multiplicity for a given CPU envelope.

1This is a slightly more sophisticated cut than that investigated in refs. [18, 19, 22, 23], and ensures

that the soft divergence which would be regulated at next-to-leading logarithmic accuracy of the extremal

currents does not impact the result obtained with the leading-logarithmic currents even for jets at large

transverse momentum.
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2.1 Supplementing fixed order samples with HEJ resummation

The reformulation of the resummation and matching should reproduce the results of

eq. (2.1). Starting from this equation, we introduce a δ-functional and an integration

over the Born level kinematics of the on-shell, reshuffled jets {jiB} reconstructed from the

resummed kinematics. Eq. (2.1) is rewritten to

σresum,match
2j =

∑
f1,f2

∑
m

m∏
j=1

(∫ pBj⊥=∞

pBj⊥=0

d2pBj⊥
(2π)3

∫
dyBj

2

)
(2π)4 δ(2)

(
m∑
k=1

pBk⊥

)

× xBa fa,f1(xBa , Q
B
a ) xBb fb,f2(xBb , Q

B
b )

∣∣∣Mf1f2→f1g···gf2
LO

({
pBj
})∣∣∣2

(ŝB)2

× wm−jet∣∣∣Mf1f2→f1g···gf2
LO

({
pBj
})∣∣∣2 × (2π)−4+3m 2m

×
∞∑
n=2

∫ p1⊥=∞

p1⊥=p⊥,min

d2p1⊥
(2π)3

∫ pn⊥=∞

pn⊥=p⊥,min

d2pn⊥
(2π)3

n−1∏
i=2

∫ pi⊥=∞

pi⊥=λ

d2pi⊥
(2π)3

(2π)4 δ(2)

(
n∑
k=1

pk⊥

)

× Ty

n∏
i=1

(∫
dyi
2

)
Oemj

(
m−1∏
l=1

δ(2)(pBJl⊥ − jl⊥)

) (
m∏
l=1

δ(yBJl − yJl)
)

(2.3)

× xafa,f1(xa, Qa) xbfb,f2(xb, Qb)

∣∣∣Mf1f2→f1g···gf2
HEJ ({pi})

∣∣∣2
ŝ2

× (ŝB)2

xBa fa,f1(xBa , Q
B
a ) xBb fb,f2(xBb , Q

B
b )
.

The first two lines are now the phase space integration over the LO matrix element, which

can be represented in terms of (potentially weighted) tree-level events. Obviously, the

Born-level partonic momenta are identical with the Born-level jet momenta, i.e. pBi ≡ pBJi ,
so that

wm−jet∣∣∣Mf1f2→f1g···gf2
LO

({
pBj
})∣∣∣2 =

∣∣∣Mf1f2→f1g···gf2
LO, HEJ

({
pBj
})∣∣∣−2 (2.4)

only depends on the Born-level HEJ approximation to the matrix element. Lines 4–6 are

the integration of the HEJ matrix elements over all of the resummation phase space, which

map onto the given fixed-order kinematics. Finally, line 7 removes the factors introduced

in the first line of eq. (2.3) compared to eq. (2.1) in order to write the matching in terms

of a standard phase space integration over fixed-order PDFs and matrix elements.

The δ-functionals of the fifth line in eq. (2.3) connect the reconstructed Born-level

kinematics with the kinematics of the jets arising from the resummation. The algorithm

devised for projecting the jet momenta of the resummation onto Born-level kinematic

gives [19]

pBJl⊥ = jl⊥ ≡ pJl⊥ + q⊥
|pJl⊥|
P⊥

, (2.5)
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Figure 1. The distribution of the minimum transverse momentum of jets used in the matching,

pB⊥,min, for Higgs boson plus dijet production of transverse momenta larger than 30 GeV. The fact

that the distribution falls off quickly below the jet analysis scale ensures the resummation phase

space with a given minimum jet transverse momentum is covered by a fixed-order generation with

a slightly smaller requirement on the jet transverse momentum. For example, a generation of

fixed-order events with a minimum jet transverse momentum of 20 GeV is sufficient for an analysis

requiring a transverse momentum of at least 30 GeV.

plus the constraint that the rapidities of the jets are kept fixed. Here pBJl is the momentum

of the fixed-order, matching level jet, q⊥ is the sum of the transverse momenta of partons

outside jets after resummation, which equals minus the transverse momentum of the jets

after resummation. P⊥ is the scalar sum of the jet transverse momenta after resummation.

This algorithm can be straightforwardly applied when the resummation event has been

constructed, and had a jet-clustering applied. If, however, we want to start from fixed-order

generated events, the algorithm needs to be inverted, such that all resummation-momenta

on the right-hand side of eq. (2.5) are explored for a given Born-level kinematic point.

While eq. (2.3) is mathematically equivalent to eq. (2.1), it does not prove that the

approach is viable. The first challenge is to ensure that in fact, the integration over the

matching, or fixed-order phase space, in the first line of eq. (2.3) does not actually extend

to zero transverse momentum of the matching jets. This would lead to a divergence in

the fixed-order cross section and invalidate the starting point. In figure 1 we investigate

the minimum transverse momentum of jets used in the matching for the evaluation of

fixed-order matrix elements. The plot shows dσ/dpB⊥,min, where pB⊥,min is the minimum

jet transverse momentum used in the merging with matrix elements (i.e. the minimum

transverse momentum in the resulting on-shell Born level kinematics after reshuffling) for

Higgs-boson production in association with at least two jets with transverse momentum of

at least 30 GeV. One sees that the matrix element sample needs to include events with a

– 6 –
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minimum jet transverse momentum below the final analysis scale — but not too far below.

It is observed that this distribution gets broader, and that the weight for small pB⊥,min is

relatively more important, both for larger rapidity spans, and if more hard jets are required

(obviously these two requirements are linked).

The next challenge is to generate all resummation kinematics corresponding to a spe-

cific fixed-order or matching kinematics. This is not an obvious switch to make: substitut-

ing a requirement on (N)LO kinematics to result in a given Born level jet configuration with

that of the full resummation event resulting in a given Born level jet kinematics. However,

the formalism will offer a number of benefits. Statistical convergence can be controlled

at a more fine-grained level. Stability can be ensured first at the fixed-order stage before

attempting resummation, and each jet multiplicity can be considered separately. We are

free to choose whichever generators we find most suitable for producing fixed-order events.

A further improvement is due to the fact that the fixed-order matrix element is evalu-

ated only once for each fixed-order kinematic point, so we expect a significantly enhanced

computational efficiency, especially for high jet multiplicities.

2.2 Phase space generation

In order to perform the resummation, we are tasked with the numerical evaluation of the

last four lines of eq. (2.3). In principle, we have to integrate over the phase space of ar-

bitrarily many further real emissions. This is made feasible by the fact that for a given

fixed-order configuration with finite rapidity span, only a limited number of additional

gluons actually lead to a non-negligible contribution in the resummation. Still, the typical

multiplicities in the interesting region of large rapidity separations will be quite high and

we are required to inspect the corresponding high-dimensional phase space carefully for

an efficient integration. In the following, we discuss how to construct an efficient impor-

tance sampling.

2.2.1 Gluon multiplicity

The typical number of extra emissions depends strongly on the rapidity span of the un-

derlying fixed-order event. Let us, for example, consider a fixed-order FKL-type multi-jet

configuration with rapidities yjf , yjb of the most forward and backward jets, respectively.

By construction of the matching algorithm of ref. [19], the jet multiplicity and the rapidity

of each jet are conserved when adding resummation. This implies that additional hard radi-

ation is restricted to rapidities y within a region yjb . y . yjf . Within HEJ, we require the

most forward and most backward emissions to be hard in order to avoid divergences [19],

so this constraint in fact applies to all additional radiation.

To simplify the remaining discussion, let us remove the FKL rapidity ordering

Ty

n∏
i=1

∫
dyi
2

=
1

n!

n∏
i=1

∫
dyi
2
, (2.6)

where all rapidity integrals now cover a region which is approximately bounded by yjb and

yjf . Each of the m jets has to contain at least one parton; selecting random emissions we

– 7 –
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〉
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Figure 2. Average number of additional gluon emissions ng as a function of the rapidity span

between the extremal jets. The bin entries show the observed numbers in the production of a Higgs

boson in association with at least two jets. The solid line shows the function used for the phase

space generation.

can rewrite the phase space integrals as

1

n!

n∏
i=1

∫
[dpi] =

(
m∏
i=1

∫
[dpi] Ji(pi)

)
1

ng!

m+ng∏
i=m+1

∫
[dpi] (2.7)

with jet selection functions

Ji(p) =

{
1 p clustered into jet i

0 otherwise
(2.8)

and ng ≡ n−m. Here and in the following we use the short-hand notation [dpi] to denote

the phase-space measure for parton i. As is evident from eq. (2.7), adding an extra emission

ng + 1 introduces a suppression factor 1
ng+1 . However, the additional phase space integral

also results in an enhancement proportional to ∆yjf jb = yjf − yjb . This is a result of the

rapidity-independence of the MRK limit of the integrand, consisting of the matrix elements

divided by the flux factor. Indeed, we observe that the typical number of gluon emissions

is to a good approximation proportional to the rapidity separation and the phase space

integral is dominated by events with ng ≈ ∆yjf jb .

For the actual phase space sampling, we assume a Poisson distribution and extract the

mean number of gluon emissions in different rapidity bins and fit the results to a linear

function in ∆yjf jb , finding a coefficient of 0.975 for the inclusive production of a Higgs

boson with two jets. In figures 2 and 3 we compare the fit with the actual outcome.

– 8 –
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Figure 3. Number of additional gluon emissions ng for two different rapidity spans between the

extremal jets. The estimates are based on Poisson distributions with mean values taken from the

fit function in figure 2 for ∆yjf jb = 1.75 and ∆yjf jb = 5.75.

2.2.2 Number of gluons inside jets

For each of the ng gluon emissions we can split the phase-space integral into a (discon-

nected) region inside the jets and a remainder:∫
[dpi] =

∫
[dpi] θ

( m∑
j=1

Jj(pi)
)

+

∫
[dpi]

[
1− θ

( m∑
j=1

Jj(pi)
)]

. (2.9)

We choose an importance sampling which is flat in the plane spanned by the azimuthal

angle φ and the rapidity y. This is observed in BFKL and valid in the limit of Multi-Regge-

Kinematics (MRK). Furthermore, we assume anti-kt jets, which cover an area of πR2 [24].

In principle, the total accessible area in the y-φ plane is given by 2π∆yfb, where

∆yfb ≥ ∆yjf jb is the a priori unknown rapidity separation between the most forward

and backward partons. In most cases the extremal jets consist of single partons, so that

∆yfb = ∆yjf jb . For the less common case of two partons forming a jet we observe a

maximum distance of R between the constituents and the jet centre. In rare cases jets

have more than two constituents. Empirically, they are always within a distance of 5
3R to

the centre of the jet [25], so ∆yfb ≤ ∆yjf jb + 10
3 R. In practice, the extremal partons are

required to carry a large fraction of the jet transverse momentum (cf. section 2) and will

therefore be much closer to the jet axis.

In summary, for sufficiently large rapidity separations we can use the approximation

∆yfb ≈ ∆yjf jb . If there is no overlap between jets, the probability pJ ,> for an extra gluon

to end up inside a jet is then given by (cf. figure 4)

pJ ,> =
(m− 1)R2

2∆yjf jb
. (2.10)

For a very small rapidity separation, eq. (2.10) obviously overestimates the true probability.

The maximum phase space covered by jets in the limit of a vanishing rapidity distance

between all partons is 2mR∆yfb. We therefore estimate the probability for a parton to
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Figure 4. Estimated phase space areas for the emission of extra gluons for sample three-jet

configurations. The left panel shows the case of a large rapidity separation. On the right we

illustrate the estimate for a very small rapidity span.
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Figure 5. Estimated probability for an extra emission to end up inside a jet compared to the

fraction observed in the exclusive production of a Higgs boson with two (green dotted line), three

(red dashed line), and four (black solid line) jets.

end up inside a jet as

pJ = min

(
(m− 1)R2

2∆yjf jb
,
mR

π

)
. (2.11)

In figure 5 we compare this estimate with the actually observed fraction of additional

emissions into jets. We observe good agreement over the whole rapidity range and for

different jet multiplicities.

2.2.3 Gluons outside jets and observed jet momenta

Using our estimate for the probability of a gluon to be a jet constituent, we arrive at a

number ng,J of gluons inside jets. Before integrating over their remaining phase space, we

first have to determine the momenta pJi of the observed (resummation) jets from eq. (2.5).
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To this end, we have to determine the total transverse momentum q⊥ of the gluons outside

jets. After generating soft transverse momenta for these ng − ng,J gluons, we solve the

nonlinear system eq. (2.5) using GSL routines [26]. Note that we have to postpone the

rapidity integration, since at this point the rapidity span in the phase space integral is not

yet known. The most forward and backward partons have to be part of the extremal jets.

Therefore, their momenta will only be determined in the next step.

2.2.4 Gluons inside jets

Recall that after the first step in the phase space parametrisation, eq. (2.7), each jet has

exactly one constituent. We now assign each of the ng,J gluons to a random jet. For jets

with a single constituent, the parton momentum is fixed completely by the constraints in

eq. (2.3). In the case of two constituents, we observe that the partons are always inside

the jet cone with radius R and often very close to the jet centre. This allows an efficient

integration by choosing a distance to the jet centre and an azimuthal angle with respect

to the jet axis for one of the partons, which determines all momentum components of

both constituents.

As is evident from figure 5, jets with three or more constituents are rare and an

efficient phase-space sampling is less important. For such jets, we exploit the observation

that partons with a distance larger than Rmax = 5
3R [25] to the jet centre are never

clustered into the jet. Assuming N constituents, we choose distances, angles, and transverse

momenta for N − 1 of them and determine the momentum of the last constituent from the

requirement that the constituent momenta have to add up to the jet momentum. Since this

last momentum may lie outside the jet cone, it is mandatory to check explicitly whether

all candidates are actually clustered into the considered jet. This is to ensure the correct

coverage of phase space.

After constructing the resummation jets, we are now in the position to evaluate the

rapidity integrals for the partons outside the jets. Finally, we use fastjet [27] to recluster

all emitted partons into jets again to check whether the reshuffling conditions imposed by

eq. (2.3) are fulfilled. We also ensure that all partons are assigned as intended, i.e. the

ng,J designated jet constituents are indeed part of their respective jet and all remaining

partons end up outside jets.

We have now outlined the practical steps necessary to implement the rewritten formula

of eq. (2.3). In the following section we discuss the results obtained with the new formalism

in the key process of Higgs boson production in association with at least two jets. Firstly

we confirm that if we limit ourselves to matching with fixed order samples with up to

three jets that we reproduce the results obtained with the previous formalism, but now

with a much higher efficiency. We will then show and discuss the impact of now being

able to increase the multiplicity in the fixed order samples and also compare our results to

fixed-order next-to-leading order predictions.

3 Results

The matching procedure described in this work is significantly more efficient and flexible

than the approach used in previous versions of HEJ. To illustrate this, we present new
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results for the production of a Higgs boson in association with at least two jets matched

to leading-order events with up to four jets. Previously, matching of HEJ to just three jets

was achieved for this process, while using significantly more CPU resources than necessary

with the current approach. In its new formulation, the matching is in practice only limited

by the capabilities of the underlying fixed-order generator. For instance, the generation

of one set of 1000 unweighted leading-order events for the production of a Higgs boson

with four jets typically took a few CPU days using MadGraph5 aMC@NLO [28]. It is then

just a few additional CPU seconds to generate 100 weighted resummation events from each

of the fixed-order 4-jet events, so 100 000 weighted trial resummation configurations in

total. In the previous matching approach, generating 100 000 resummation configurations

would require the same number of computationally expensive fixed-order matrix element

evaluations.2 Since the resummation is not followed by any computationally intensive steps,

we only consider the generation of weighted events here. Nonetheless, we also observe a

marked improvement in a short test simulation with unweighted events.

This section will present the results obtained with the new procedure for matching and

resummation. Section 3.1 describes the cuts and analysis used. Section 3.2 compares new

results with matching up to three jets with those obtained previously, and demonstrates

that the two methods yield equivalent results. Section 3.3 investigates the stability of the

results obtained by investigating the impact of increasing the order to which matching

is achieved. In general, the matching to higher multiplicities should have little impact

for configurations where the four-jet contribution is insignificant or the approximation

within HEJ already provides a good description. Conversely, the corrections from matching

to successive multiplicities can serve to indicate the stability of the HEJ predictions for

observables sensitive to additional hard radiation. Finally, in section 3.4 we match the

inclusive Hjj-cross section to NLO accuracy, thus obtaining the most precise predictions

for Hjj-production, including the effects of VBF cuts and central jet vetos. These results

are compared to those obtained at fixed next-to-leading order accuracy.

3.1 Setup

To facilitate the comparison with previous results we will adopt the cuts of the experimental

analysis of ref. [29], and the parameters of our analysis in ref. [18]. To recapitulate, we

consider the gluon-fusion-induced production of a Higgs boson together with at least two

anti-kt jets with transverse momenta p⊥,j > 30 GeV, rapidities |yj | < 4.4, and radii R =

0.4 at the 13 TeV LHC. While it is obviously irrelevant for the considerations of the

QCD corrections considered in this paper, we consider the Higgs boson decay into two

photons with

|yγ | < 2.37, 105 GeV < mγ1γ2 < 160 GeV,

p⊥,γ1 > 0.35mγ1γ2 , p⊥,γ2 > 0.25mγ1γ2 , (3.1)

and separations ∆R(γ, j),∆R(γ1, γ2) > 0.4 from the jets and each other. To be consistent

with our previous analysis we set the Higgs-boson mass to mH = 125 GeV, a width of

2Note, however, that for our specific setup a direct comparison between both approaches is not possible

since there is no analogue to the concept of unweighted fixed-order events in the “old” approach.
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ΓH = 4.165 MeV and a branching fraction of 0.236% for the decay into two photons. We

use the CT14nlo PDF set [30] as provided by LHAPDF6 [31].

In addition to inclusive quantities with the basic cuts listed above, we also consider

additional VBF-selection cuts applied to the hardest jets as in [29]:

|yj1 − yj2 | > 2.8, mj1j2 > 400 GeV. (3.2)

In the first step, we generate leading-order events with two, three and four jets. With

our new matching procedure we are free to use an arbitrary fixed-order event generator for

this purpose. For the present analysis we employ version 2.5.5 of MadGraph5 aMC@NLO [28].

For each jet multiplicity we produce about 2000 sets of unweighted events, each comprising

10 000 events for the sets with two or three jets and 1000 events for sets with four jets.

As the transverse momenta of the jets are modified during resummation (cf. eq. (2.5)),

we have to generate at least a fraction of events with Born-jet momenta below the threshold

of 30 GeV required from the observed jets. As already shown in figure 1 the contribution

after the resummation from such tree-level configurations in the matching drops off very

rapidly below the jet transverse momentum analysis scale of 30 GeV. Passing this infor-

mation to the underlying fixed-order generator, such that only a small fraction of events

are generated below the nominal transverse momentum threshold could improve the sam-

pling considerably. Having such an option would therefore be highly desirable. For the

time being, we manually generate 200 additional sets of Born-level events with transverse

momenta down to 20 GeV for each jet multiplicity.

Events with more exclusive jets than can be reasonably evaluated in

MadGraph5 aMC@NLO are unmatched and generated with a custom built Monte Carlo

generator based on tree-level HEJ matrix elements instead of full leading-order ones. In

this way, we can supplement the fixed-order input with events including up to ten jets

obtained within the HEJ approximation. These events are simply passed through the same

matching mechanism based on eq. (2.3) just as the lower-multiplicity events obtained

using MadGraph5 aMC@NLO. The maximum multiplicity of ten is an arbitrary cut-off, based

on an explicit check that the impact on observables at this multiplicity is negligible.

Since the final kinematics required for a kinematic scale setting are not known at the

point of generating fixed-order events, we use a fixed renormalisation and factorisation

scale of µr = µf = mH during the fixed-order generation. After resummation the events

are rescaled to a central scale of µr = µf = HT /2. In order to assess the scale depen-

dence, we independently vary both the renormalisation and factorisation scales by factors

{1/2, 1/
√

2, 1,
√

2, 2} and discard combinations with µr/µf < 1/2 or µr/µf > 2. In the

effective Higgs-gluon coupling, we keep the renormalisation scale at the Higgs-boson mass

and apply the limit of an infinite top-quark mass. These scale settings and even the use of

the infinite top-mass limit are however not inherent to the use of the high-energy resum-

mation of HEJ, but can be included with modified components of the amplitudes, similar

to ref. [32].

After generating the tree-level input events, we apply resummation as presented in the

previous sections. Recent progress described in [18] allows us to apply resummation not just

for FKL-ordered matching-events, but also the sub-leading contribution from events with
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Figure 6. Comparison of the new matching procedure to previous HEJ results obtained in [18].

The panels show the transverse momentum distributions of the Higgs boson for (a) inclusive cuts

and (b) VBF cuts.

three jets or more, where the rapidity-ordering of the two most forward or most backward

jets is flipped compared to FKL ordering. This corresponds to a gluon emission outside

a rapidity-interval delimited by quark jets. For each resummation-type tree-level event,

we generate 100 weighted trial configurations in the resummation phase space. For the re-

maining sub-leading events we cannot add resummation and simply adjust the factorisation

and renormalisation scales as described above.

3.2 Comparison to previous results

In order to demonstrate the validity of the new approach we compare here first our results

with leading-order matching up to three jets to those obtained in our previous work [18].

We find good agreement within the statistical errors. As examples, we show the transverse

momentum distributions for the Higgs boson for inclusive and VBF cuts in figure 6. The

previous and new method of organising the calculation are equivalent. For the comparison,

we have adjusted our settings to match those in [18] as closely as possible. Apart from re-

stricting the fixed-order matching to configurations with at most three jets, this also means

that the extremal partons are required to have a fixed minimum transverse momentum of

27 GeV instead of a fraction of the corresponding jet momentum, as discussed in section 2.

3.3 Impact of four-jet matching on distributions

The HEJ approximation is exact in the limit of Multi-Regge kinematics, i.e. for large rapidity

separation between hard jets. An equivalent characterisation is to demand the centre-of-

mass energy and the invariant masses between all final-state jets to be much larger than

the typical transverse momenta of these. If these conditions are fulfilled, we expect a good

HEJ prediction and hence small matching corrections. In order to assess the perturbative

stability of the final predictions, we will here study the impact on the resummed and
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Figure 7. Distribution of the invariant mass between the hardest jets. Panel (a) shows the

fractional contributions from exclusive two-, three-, and four-jet events. Panel (b) depicts the

effects of fixed-order matching up to two, three, and four jets.

matched cross section of scale variations and of successive matching to two-jet, three-jet

and four-jet tree-level events.

One of the main goals of HEJ is to improve the prediction of the gluon-fusion back-

ground to Higgs-boson production in weak-boson fusion. Standard VBF cuts project out

a kinematic region with a large invariant mass between the hardest jets, where the gluon

fusion receives significant contributions from higher jet multiplicities. Figure 7(a) displays

the relative contribution of the exclusive two-, three- and four-jet component to the dis-

tribution on the invariant mass between the two hardest (in transverse momentum) jets.

The relative contribution from exclusive three- and four-jet-events increases with increasing

mj1j2 . Figure 7(b) displays the impact of matching of successive multiplicity on the distri-

bution of the invariant mass between the two hardest (in transverse momentum) jets. The

effect of the four-jet matching is small but non-zero even at large mj1j2 . This is because

even in this limit a large separation between all jets is not guaranteed.

The contribution from jet multiplicities of more than or equal to 5 is less than 5% for

an invariant mass of at least 1 TeV. We conclude that the uncertainty on the distribution

of mj1j2 from terminating the matching at the four-jet contribution is insignificant, and

well within the quoted scale variation.

A central prediction of BFKL, which arises also within HEJ, is a linear increase in the

number of jets for a growing rapidity span between the most backward and forward jets.3

This behaviour is demonstrated in figure 8, which also investigates the impact of matching

to tree-level of successive multiplicities. Although the contribution from higher jet multi-

plicities increases with the rapidity separation, the effect of fixed-order matching on this

observable actually decreases. This confirms our expectation that the HEJ approximation

3This growth continues until the invariant mass of just the forward and backward jets is so large that

no other jets can be emitted due to energy and momentum constraints. The fixed-oder NLO results

have a similar behaviour at small ∆yjf ,jb until the average jet multiplicity is saturated by the fixed-

order truncation.
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Figure 8. Average number of jets for fixed-order matching up to two, three, and four jets. In (a)

we show the average total number of jets vs. the maximum rapidity-separation. In (b) we show the

number of jets in the rapidity region of the two hardest jets.

works well for large ∆yjf ,jb . It is this linear increase in the average number of jets versus

increasing rapidity span which can be exploited to suppress the gluon-fusion contribution

with a central jet veto.

In contrast to this, if the two hardest jets are tagged, and only jets in-between these

are counted as a function of the rapidity difference between the hardest jets, then the initial

linear growth stalls at an average number of jets of around 2.3. The difference in behaviour

to the VBF contribution is therefore less pronounced by tagging the hardest jets, rather

than the most forward and backward hard jets. This was investigated further in ref. [33].

Also, the impact of the matching corrections remains sizeable for all rapidity separations.

In observables which are neither dominated by higher jet multiplicities nor completely

described by the HEJ approximation we observe that the matching corrections are converg-

ing, but the corrections from four-jet matching are non-negligible. In figure 9 we show the

distribution of the Higgs-boson transverse momentum with inclusive and with VBF cuts.

While there is a notable difference between the matching to fixed-order predictions up to

two and three jets, the effect of four-jet matching is much smaller. In all cases the matching

corrections are well inside the scale variation.

The azimuthal angle between jets is of particular interest for the extraction of the

CP -properties of the effective coupling between the Higgs boson and gluons. Figure 10

shows the effects of fixed-order matching on the distribution of the angle between the two

hardest jets. Similar to the transverse momentum distribution in figure 9 the corrections

from four-jet matching are uniformly moderate.

In order to achieve a greater reduction of the gluon-fusion background to weak-boson

fusion within the VBF-cuts, a veto on further jets can be applied. This has the added

benefit of reducing the contribution from higher jet multiplicities, which is harder to predict

in perturbation theory. The effectiveness of such a cut relies on the difference in the

quantum corrections to the processes of VBF and GF [11]. Since this difference is due to

the t-channel colour-octet exchange of the GF process, we will apply a central jet veto only
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Figure 9. Distribution of the Higgs-boson transverse momentum with (a) inclusive and (b) VBF

cuts.
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Figure 10. Distribution of the azimuthal angle between the two hardest jets with (a) inclusive

and (b) VBF cuts.

in the regions away from the tagging jets, since the collinear regions have similar emissions

in VBF and GF. This is a slight improvement on the normal central jet veto cuts, and is

inspired by the Zeppenfeld variable [34]. Here, we consider a veto of events with jets within

a rapidity distance yc to the rapidity centre of either (a) most forward and backward jets

or (b) the hardest jets (see also [33, 34]). In case (b), we only consider vetoing on further

jets which are in between the two hardest jets. The results are shown in figure 11. As

expected, the cross section in case (a) converges for large yc to the exclusive prediction

for the production of a Higgs boson with exactly two jets, irrespective of the fixed-order

matching to higher multiplicities. When applying the jet veto between the hardest jets in

case (b), the overall reduction in the GF component is considerably smaller.
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Figure 11. Effect of a jet veto between (a) the most forward and backward jets and (b) the two

hardest jets. Events with additional jets within a distance of yc to the rapidity centre are discarded.

3.4 Matching and comparison to fixed next-to-leading order

The complete reformulation of the formalism for matching and all-order summation de-

scribed in section 2 has allowed for matching to higher jet multiplicities in HEJ. The impact

of the four-jet matching on the studied distributions is small. The method presented in the

earlier sections has been concerned with a point-by-point matching of the resummation to

full high-multiplicity tree-level accuracy. As extensively demonstrated in section 3.3, this

achieves perturbatively stable results for the shapes of distributions. In order to reduce

the scale variation and benefit from the full NLO results for Hjj-production, we will now

rescale the results for HEJ within the inclusive cuts of eq. (3.1) to the NLO cross section

for each choice of factorisation and renormalisation scale. Thereby, full NLO accuracy is

obtained for all dijet observables, LO accuracy for trijet observables, and the impact on the

shape of distributions from four-jet contributions is accounted for at LO. This method was

applied also in ref. [33]. While this approach does not change the shape of distributions,

the scale variation is reduced to the level of NLO predictions.

We will here compare these predictions to those obtained at fixed NLO using

MCFM [35, 36] and SHERPA [5]. Figure 12 compares the predictions for the distribu-

tion on the invariant mass between the two hardest jets. The scale variation on the HEJ

results is vastly reduced to that of figure 7, as generally expected by the inclusion of the

full NLO corrections. The distribution obtained with HEJ for the invariant mass between

the two hardest (in transverse momentum) jets is still significantly steeper than that at

pure NLO, as a result of the possibility of significantly higher jet multiplicity, and the fact

that hard central jets have a slightly smaller PDF-suppression than hard forward jets, and

therefore the two hardest jets tend to also be central. This means that the prediction for

the cross section within the VBF cuts is significantly smaller with HEJ than for NLO, and

indeed lies outside the scale-variation band obtained at NLO. In numbers, the cross sections

obtained (at NLO) for pp → h(→ γγ)jj for inclusive cuts and with a central scale choice

of µr = µf = HT /2 is 6.58+0.08
−0.57 fb. This is obviously the same as that obtained with HEJ
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fixed-order matching up to 4 jets is shown by the solid black line. The MCFM NLO prediction

corresponds to the dashed blue line. The central renormalisation and factorisation scale is set to

HT /2, and they are varied independently by a factor of two.

0 200 400 600 800 1000

mj1j2[GeV]

100

101

d
σ
/d
m
j 1
j 2

[a
b
/G

eV
]

pp→ h(→ γγ)jj

LHC@13 TeV, µ = max(mh,mj1j2)

anti− kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4

HEJ

NLO

Figure 13. Distribution of the invariant mass between the two hardest jets, for a central scale

choice of mj1j2 . The HEJ result with fixed-order matching up to 4 jets is shown by the solid black

line. The SHERPA NLO prediction corresponds to the dashed blue line.
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for inclusive cuts, once the cross sections are normalised to NLO accuracy. For the VBF

cuts, the NLO cross section is 0.872+0.024
−0.090 fb, and that obtained for HEJ is 0.561+0.031

−0.067 fb.

Even though the inclusive cross section for HEJ is normalised to that obtained at NLO, a

sizeable difference in the cross section within the VBF cuts arises due to a difference in the

slope of distribution in mj1j2 and the requirement of mj1j2 > 400 GeV for the VBF cuts.

The VBF cuts cause a similar reduction in the cross section to 13.2% (NLO) and 8.5%

(HEJ) of the inclusive cross section respectively.

Comparing the results of figure 12 and figure 13 we observe that a choice of a central

scale for the NLO calculation of µr = µf = HT /2 leads to a suspiciously small scale

variation - and indeed the central scale choice gives results close to the extremum obtained

with the variations, despite the scales being varied either side of the central choice of

µr = µf = HT /2. Such a behaviour of the scale variation often indicates that the NLO scale

variation obtained with this scale choice is underestimating the theoretical uncertainty [37].

Indeed, ref. [37] investigated the distribution in mj1j2 for dijet production at NNLO

at the LHC, and found that at large mj1j2 this scale choice is favoured over pT based on

perturbative convergence. The invariant mass between the two hardest jets obviously is

not a stable perturbative scale choice for all bins in the distribution, which extends to very

low values of mj1j2 . With a central scale choice of µf = µr = max(mh,mj1j2), the central

scale choice leads to predictions in the centre of the variation band. The scale variation

bands obtained with NLO and HEJ also overlaps in each bin of the distribution. With this

central scale choice, the cross sections obtained at NLO for inclusive cuts is 6.23+1.11
−1.22 fb.

For the VBF cuts, the NLO cross section is 0.542+0.156
−0.125 fb, and that obtained for HEJ is

0.359+0.045
−0.061 fb. The VBF cuts cause a similar reduction in the cross section to 8.7% (NLO)

and 5.8% (HEJ) of the inclusive cross section respectively.

It is worth noting that (ignoring the mass of each jet) since m2
j1j2

= 2p⊥j1p⊥j2(cosh(yj1−
yj2)−cos(φj1−φj2))a central scale choice of µr = mj1j2 systematically runs αs such that

αs∆yj1j2 tends to a constant for large ∆yj1j2 . This would seem to spoil the standard

argument of BFKL noting large and systematic leading logarithmic corrections of the form

(αs∆yjf jb)
k at large ∆yjf jb , at least for ∆yj1j2 sufficiently large that mj1j2 is close to

the hadronic collision energy that only two jets exists, because hard radiation beyond the

two jets required is suppressed. For events with more than two jets, there is no direct

correlation between ∆yj1j2 and ∆yjf jb . The results for the scale choice of µr = µf = mj1j2

are discussed further in appendix A. Here we just note that the apparent convergence of the

perturbative series (i.e. a comparison of the LO and NLO results and scale variation) is not

significantly different for the two scale choices. The scale variation around µr = µf = HT /2

is accidentally small, since the central scale choice leads to the maximum cross section

within the variation.

Figure 14(a) and figure 14(b) investigates the potential for using perturbative cor-

rections in the form of additional jet-radiation as a means of identifying the gluon-fusion

production channel. For the same event selection, the figure compares the results for the

average number of jets counting additional jets (a) between the most forward and back-

ward jets, and (b) in-between the two hardest jets only. The results on figure 14(a) are

relevant for e.g. jet vetos between the most forward and most backward hard jet, whereas

figure 14(b) is relevant if the veto is applied between just the two hardest jets in the event.
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Figure 14. Comparison of HEJ results with fixed-order matching up to 4 jets (solid black line)

with NLO predictions from MCFM (dashed blue line). The shown observables are (a) the average

jet multiplicity, (b) the number of jets in between the two hardest jets, the distribution of the

Higgs-boson transverse momentum with (c) inclusive and (d) VBF cuts, and the distribution of the

azimuthal angle between the hardest jets with (e) inclusive and (f) VBF cuts.
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The results for HEJ are identical to those for 4-jet matching in figure 8 (since just the

total cross section has been adjusted to the NLO result for Hjj), but the results are here

compared to those obtained using the NLO calculation for Hjj-production. As observed

also in previous analyses [38], the results obtained at NLO tends towards 2.5, where the

exclusive, hard three-jet cross section is as large as the two-jet cross section. This clearly

illustrates the slow convergence of the perturbative series. The results for NLO and for

HEJ start diverging already at small ∆yjf jb . It is worth noting that the linear growth in

the number of hard jets vs. ∆yjf jb has been experimentally confirmed [6, 39] for several

processes with colour octet exchanges in the t-channel.

Even though exactly the same events are involved, the breakdown of the convergence

is less obvious in figure 14(b). The number of jets in-between the two hardest is obviously

smaller, and both the results for HEJ and for NLO appear to asymptote to a value for the

average number of jets of 2.2 for NLO and 2.3 for HEJ.

Figure 14 also shows the predictions for the Higgs transverse momentum spectrum

obtained at NLO and with HEJ both for inclusive (c) and VBF-cuts (d). The distributions

are very similar for inclusive cuts, with a peak around 80 GeV, and the spectrum from HEJ

slightly harder. For VBF cuts, the prediction for HEJ is lower than that for NLO, as a

result of the steeper spectrum in mj1j2 and the requirement of mj1j2 > 400 GeV. The two

predictions for the high-p⊥ tail within the VBF cuts coincide, but in this region the infinite

top-mass approximation is certainly not trustworthy.

Finally, figure 14(c) and (d) compares the azimuthal angle between the two hardest

jets for (c) inclusive and (d) VBF cuts respectively. In both the distributions, the region

of back-to-back jets at φ = ±π is slightly suppressed in HEJ compared to NLO. The valley

at φ = 0 for the inclusive cut is due to the jet-algorithm removing the collinear region.

The result within the VBF cuts on figure 14(f) show that the reduction in the cross section

within the VBF cuts for HEJ compared to NLO predominantly is in the region of back-to-

back jets and jets in the same azimuthal direction. The region at φj1j2 = 0 is not collinear

within the VBF cuts, and so the structure induced by the jet algorithm within the inclusive

cuts of figure 14(e) is not present within the VBF cuts of figure 14(f).

4 Conclusions

We have presented a reformulation of the matching formalism within HEJ, which recasts the

calculation as one of merging fixed-order samples of increasing multiplicity. The merging

is performed respecting the resummation of perturbative terms logarithmically enhanced

at large ŝ/p2t . While the formalism is mathematically equivalent to that previously used,

stable results are obtained using orders of magnitudes less CPU time. This allows matching

to be performed to higher multiplicity.

The new formalism was used in a study of Higgs-boson production in association

with dijets. The impact of the higher-multiplicity merging is minimal on the shape of

distributions important for the application of VBF cuts. For a central scale choice of

µf = µr = HT /2, the VBF cuts reduce the inclusive cross section of 6.58+0.08
−0.57 fb on the

h → γγ-channel to 13% (0.872+0.024
−0.090 fb) at NLO, or 8.5% (0.561+0.031

−0.067 fb) once both NLO
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and the HEJ-corrections are accounted for. The further suppression within HEJ is due

to a steeper falling spectrum in the invariant mass between the two hardest jets. The

NLO scale dependence is estimated by varying the renormalisation and factorisation scale

independently by a factor of two. However, the scale variation around HT /2 is artificially

small, since the central scale choice achieves a value close to the maximum within the

variations. With a scale choice of µr = µf = mj1j2 (but bounded from below by mh), the

spectrum is similar at NLO and with the further HEJ-corrections. With the scale choice, the

inclusive NLO cross section for h(→ γγ)jj-cross section is 6.23+1.11
−1.22 fb, and 0.542+0.156

−0.125 fb

within the VBF cuts. The result for HEJ within the VBF cuts is 0.359+0.045
−0.061 fb. The VBF

cuts cause a similar reduction in the cross section to 8.7% (NLO) and 5.8% (HEJ) of the

inclusive cross section respectively.

The formalism presented in this report will be instrumental in the further develop-

ments, including an account of heavy quark mass effects, and mergings of NLO cross sec-

tions.
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A Result for the central scale choice of mj1j2

Figure 15 shows the same distributions for NLO and HEJ (with the inclusive cross section

scaled to that of NLO for each scale choice) as those investigated on figure 14, but for

predictions obtained using a central scale of µf = µr = max(mh,mj1j2). Panel (a) shows

the average number of hard jets vs. the rapidity difference between the forward-backward

jet pair. The result for NLO is similar to that obtained with the scale HT /2, but the

NLO scale variation is reduced (even though the scale variation on the NLO cross section

themselves is increased by using mj1j2 instead of HT /2). The rise in the number of hard

jets is slightly stronger for HEJ than with the scale of HT /2.

Figure 15(b) shows the average number of jets, counting only additional jets if their

rapidity is in-between that of the two hardest jets. The behaviour of the NLO prediction

for small ∆yj1j2 is similar to that displayed on figure 14(b) until ∆yj1j2 ∼ 3, after which

the average number of jets decreases. This behaviour is a result of the decreasing value of

αs for large ∆yj1j2 with this scale choice.

The remaining plots on figure 15(c)-(f) all show similar features to those of figure 14,

but with a smaller cross section and larger scale variation for the results at NLO.

– 23 –



J
H
E
P
0
8
(
2
0
1
8
)
0
9
0

0 1 2 3 4 5 6 7

∆yjf jb

2.0

2.5

3.0

3.5

4.0

A
vg

.
nu

m
b

er
of

je
ts

pp→ h(→ γγ)jj

LHC@13 TeV

anti− kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4

HEJ

NLO

(a)

0 1 2 3 4 5 6 7

∆yj1j2

2.0

2.1

2.2

2.3

2.4

A
vg

.
nu

m
b

er
of

je
ts

ex
cl

ud
in

g
je

ts
ou

ts
id

e
th

e
tw

o
ha

rd
es

t

pp→ h(→ γγ)jj

LHC@13 TeV

anti− kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4

HEJ

NLO

(b)

0 100 200 300 400 500

pH,⊥[GeV]

0

10

20

30

40

50

d
σ
/d
p H

,⊥
[a

b
/G

eV
]

pp→ h(→ γγ)jj

LHC@13 TeV

anti− kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4

HEJ

NLO

(c)

0 100 200 300 400 500

pH,⊥[GeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

d
σ
/d
p H

,⊥
[a

b
/G

eV
]

pp→ h(→ γγ)jj

LHC@13 TeV

anti− kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4

|yj1 − yj2 | > 2.8,mj1j2 > 400 GeV

HEJ

NLO

(d)

−3 −2 −1 0 1 2 3

φj1j2[rad]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

d
σ
/d
φ
j 1
j 2

[f
b
/r

ad
]

pp→ h(→ γγ)jj

LHC@13 TeV

anti− kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4

HEJ

NLO

(e)

−3 −2 −1 0 1 2 3

φj1j2[rad]

0.00

0.05

0.10

0.15

0.20

0.25

d
σ
/d
φ
j 1
j 2

[f
b
/r

ad
]

pp→ h(→ γγ)jj

LHC@13 TeV

anti− kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4

|yj1 − yj2 | > 2.8,mj1j2 > 400 GeV

HEJ

NLO

(f)

Figure 15. Comparison of HEJ results with fixed-order matching up to 4 jets (solid black line)

with NLO predictions from SHERPA (dashed blue line) for a central scale choice of µr = µf =

max(mh,mj1j2). The shown observables are (a) the average jet multiplicity, (b) the number of jets

in between the two hardest jets, the distribution of the Higgs-boson transverse momentum with (c)

inclusive and (d) VBF cuts, and the distribution of the azimuthal angle between the hardest jets

with (e) inclusive and (f) VBF cuts.
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