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Abstract. Floodplain and terrace features can provide information about current and past fluvial processes,
including channel response to varying discharge and sediment flux, sediment storage, and the climatic or tectonic
history of a catchment. Previous methods of identifying floodplain and terraces from digital elevation models
(DEMs) tend to be semi-automated, requiring the input of independent datasets or manual editing by the user.
In this study we present a new method of identifying floodplain and terrace features based on two thresholds:
local gradient, and elevation compared to the nearest channel. These thresholds are calculated statistically from
the DEM using quantile–quantile plots and do not need to be set manually for each landscape in question. We
test our method against field-mapped floodplain initiation points, published flood hazard maps, and digitised
terrace surfaces from seven field sites from the US and one field site from the UK. For each site, we use high-
resolution DEMs derived from light detection and ranging (lidar) where available, as well as coarser resolution
national datasets to test the sensitivity of our method to grid resolution. We find that our method is successful in
extracting floodplain and terrace features compared to the field-mapped data from the range of landscapes and
grid resolutions tested. The method is most accurate in areas where there is a contrast in slope and elevation
between the feature of interest and the surrounding landscape, such as confined valley settings. Our method
provides a new tool for rapidly and objectively identifying floodplain and terrace features on a landscape scale,
with applications including flood risk mapping, reconstruction of landscape evolution, and quantification of
sediment storage and routing.

1 Introduction

Identifying the location of floodplains and fluvial terrace fea-
tures can provide important insights into geomorphic and hy-
drological processes. Understanding the controls on flood-
plain inundation carries increasing societal importance, as
the frequency of flood events is predicted to increase with

the rise in global temperatures and varying patterns of pre-
cipitation caused by climate change (Schreider et al., 2000;
Booij, 2005; Hartmann et al., 2013). Although there are still
large uncertainties regarding the impacts of climate change
on flood frequency (Booij, 2005), identifying floodplains is
crucial for forecasting and planning purposes. On longer
timescales, the morphology and structure of fluvial terraces
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can provide important information on channel response to
climatic, tectonic, and base-level variations (Bull, 1991; Mer-
ritts et al., 1994; Pazzaglia et al., 1998); the relative impor-
tance of lateral and vertical channel incision (Finnegan and
Dietrich, 2011); and sediment storage and dynamics (Pazza-
glia, 2013; Gran et al., 2013).

Attempts to identify floodplains can be classified into two
broad families of methods: (i) flood risk mapping and hydro-
logical modelling, and (ii) geometric terrain classification.
Traditionally, identification of floodplains has relied upon
the creation of flood hazard maps, produced through de-
tailed hydraulic modelling studies (e.g. Noman et al., 2001;
Grimaldi et al., 2013). These studies tend to incorporate his-
torical flood event information, hydrological analyses, and
hydraulic flow propagation models (Degiorgis et al., 2012).
These mature techniques can lead to accurate flood inun-
dation predictions down to the level of a single building
(e.g. Horritt and Bates, 2002; Cobby et al., 2003; Guzzetti
et al., 2005; Hunter et al., 2007; Kim et al., 2012). However,
these models can be computationally expensive and time-
consuming to run, even in one dimension, requiring the cal-
ibration of large numbers of parameters, all with their own
uncertainties (e.g. Beven, 1993; Horritt and Bates, 2002; Liu
and Gupta, 2007). This means that hydraulic simulations are
usually performed at cross sections across the channel and
interpolated to cover the rest of the stream network (Noman
et al., 2001; Dodov and Foufoula-Georgiou, 2006). For ex-
ample, floodplain mapping tools have been developed that
incorporate either field-based or modelled stage-duration in-
formation at multiple cross sections along the channel and
interpolate a three-dimensional water surface between these
sections (e.g Yang et al., 2006; Belmont, 2011).

The introduction of high-resolution digital elevation mod-
els (DEMs) has provided the opportunity to map floodplain
features much more rapidly and over larger spatial scales
than previously possible (Noman et al., 2001). This had led to
the development of many different methods that rely on ex-
tracting a variety of topographic indices from DEMs, such as
local slope, contributing area, and curvature (Manfreda et al.,
2014). One common metric used to predict floodplains is the
topographic index (φ = ln(A/(tanβ))), where A is the con-
tributing area to each cell (m2) and β is the local slope in
degrees (e.g. Kirkby, 1975; Beven and Kirkby, 1979; Beven
et al., 1995; Quinn et al., 1995; Beven, 1997). The contribut-
ing area term reflects the tendency of water to accumulate
at certain regions of the basin, whereas the slope term rep-
resents the tendency for gravity to transport water downhill.
Therefore, high values of the topographic index represent ar-
eas which are likely to saturate first, as they have a large con-
tributing area compared to local slope (Beven, 1997). Man-
freda et al. (2011) suggested a modified version of the topo-
graphic index, changing the weighting on the area term by
raising it to an exponent n. This modification allows the rel-
ative importance of slope or contributing area to be changed
by varying the n parameter. They proposed that floodplains

can be identified as cells with a modified topographic index
(φm) greater than a threshold value, τ . However, this method
requires calibration of the parameters τ and n through com-
paring the output floodplain map with a pre-existing hazard
map and noting the occurrence of true and false positives and
negatives (Manfreda et al., 2011).

Another geometric method that has been developed to
identify floodplains uses a series of linear binary classifiers
for a number of topographic metrics (Degiorgis et al., 2012).
Five different parameters are sampled from the DEM (slope,
contributing area, elevation from nearest channel, distance
from nearest channel, and curvature), and each cell is classi-
fied as either 1 (floodplain) or 0 (non-floodplain) depending
on whether these parameters are above or below threshold
values. Each of these five metrics can be considered in isola-
tion or in pairs. The thresholds are calibrated using flood haz-
ard maps, where the number of true and false positives and
negatives are noted, similar to the approach of Manfreda et al.
(2011). For each parameter and threshold value the receiver
operating characteristics (ROC) curve (e.g. Fawcett, 2006) is
calculated, which is defined by the number of true and false
positives. The maximum area under the curve is determined
to allow the threshold value for each parameter to be cali-
brated, as well as comparisons between each parameter to be
found. The pair of best-performing features was identified as
the distance (D) and elevation (H ) from the nearest channel
(m). This method is also semi-automated, as it requires the
existence of flood hazard maps for at least some part of the
catchment in order to select the correct binary classifiers for
floodplain identification.

Dodov and Foufoula-Georgiou (2006) present an algo-
rithm for identifying floodplains over large scales based on
information on bankfull channel depths. They suggest that
the morphology of the floodplain is defined by the lateral
channel migration rate through time and controlled by the
transport of water and sediment by the channel. Therefore,
they assume that the geometry of the floodplain is related to
that of the channel, and demonstrate a relationship between
bankfull channel depths and floodplain inundation depths
which is linear over a range of scales (Dodov and Foufoula-
Georgiou, 2006). Floodplain delineation is carried out by lo-
cally filling the DEM up to the depth of inundation, which
is determined based on bankfull channel depths, calibrated
using data from United States Geological Survey (USGS)
gauging stations across Oklahoma and Kansas, along with
field measurements. The depth of inundation at points along
the channel network is then used to find the lateral extent of
the floodplain by using the planform curvature of the chan-
nel. This method also requires significant user input, as the
channel bankfull depths are required in order to estimate the
inundation depth.

The extraction of fluvial terraces (the remnants of previous
floodplains) represents a closely related problem to the delin-
eation of presently active floodplain surfaces. Previous stud-
ies have also used a geometric approach to identify terrace
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features from DEMs. For example, Demoulin et al. (2007)
identified terrace surfaces based on local slope and height
of each pixel compared to the channel. They used these at-
tributes in order to reconstruct palaeo-channel profiles from
terrace surfaces, but their methodology was not designed to
produce a map of terrace extents on a wider landscape scale.
Therefore, following on from their approach, Stout and Bel-
mont (2014) presented the TerEx toolbox, a semi-automated
tool to identify potential terrace surfaces based on thresholds
of local relief, minimum area, and maximum distance from
the channel. After potential terrace surfaces are identified,
their area and height above the local channel are measured.
The tool then allows the user to edit the terrace surfaces based
on comparison with field data. Hopkins and Snyder (2016)
evaluated the TerEx toolbox, along with two other semi-
automated methods for identifying terrace surfaces (Wood,
1996; Walter et al., 2007) at the Sheepscot River, Maine.
They found that all of the methods over-predicted terrace
areas compared to the field-mapped terraces, and the accu-
racy of the methods decreased in lower-relief landscapes.
These semi-automated methods allow the user to manually
clip over-predicted terrace surfaces based on field data and
DEM observations, and remove selected surfaces that do not
represent terraces, such as roads, alluvial fans, or water bod-
ies (Stout and Belmont, 2014).

The geomorphic methods of mapping both terraces and
floodplains outlined above are all semi-automated, requiring
independent datasets and significant user input. For exam-
ple, the method proposed by Manfreda et al. (2011) requires
the parameters to be optimised using flood inundation maps
from hydraulic simulations. The linear binary classifiers out-
lined by Degiorgis et al. (2012) and tested by Manfreda et al.
(2014) use flood hazard maps to select the correct thresh-
old for floodplain prediction from the geomorphic indices.
The TerEx toolbox, developed by Stout and Belmont (2014),
requires significant user input in order to manually edit the
predicted terrace surfaces. No existing approach to mapping
either floodplains or terraces from topographic data includes
objective criteria for setting the thresholds that identify flood-
plains and terraces. As a result, the different thresholds that a
user might select can result in varying floodplain and terrace
maps for the same input DEM, complicating efforts to con-
sistently map geomorphic features between different land-
scapes.

Here we introduce a new method of identifying floodplain
and terrace surfaces from topographic data. This method
uses two geometric thresholds that can be readily extracted
from DEMs: the gradient of each pixel, and the elevation of
each pixel relative to the nearest channel. Importantly, this
method does not require calibration using any independent
datasets, as the thresholds are statistically calculated from
the DEM using quantile–quantile plots. We test our method
against field-mapped floodplain initiation points, published
flood hazard maps, and digitised terrace surfaces from seven
field sites throughout the US and one site in the UK (Fig. 1).
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Figure 1. Maps of the US and UK showing the location of the eight
field sites in the study. Red stars represent floodplain sites; blue stars
represent terrace sites. RR: Russian River, CA; ER: South Fork Eel
River, CA; MR: Mattole River, CA; CR: Clearwater River, WA; LS:
Le Sueur River, MN; MBR: Mid Bailey Run, OH; CL: Coweeta
Hydrologic Laboratory, NC; RS: River Swale, Yorkshire, UK.

For each site, where available, we use high-resolution lidar-
derived DEMs, as well as the corresponding national eleva-
tion datasets (10 m resolution for the US and 5 m for the UK)
in order to test the sensitivity of our method to grid resolu-
tion.

2 Methodology

Floodplain and terrace surfaces can be defined as low relief,
quasi-planar areas capped by alluvium and found proximal
to the modern river channel. Therefore, field mapping cam-
paigns typically identify these surfaces as spatially contin-
uous areas with low gradients that occur next to the chan-
nel. We present a new geometric method which replicates
this field approach as closely as possible by using two met-
rics which can be readily extracted from the DEM: eleva-
tion compared to the nearest channel, and local gradient. Our
method is efficient to run and is based on the statistical se-
lection of topographic thresholds, requiring no input of in-
dependent datasets or field mapping. We outline below the
DEM pre-processing steps followed by the methodology for
identifying floodplain and terrace features.

2.1 DEM pre-processing

The first step of the algorithm is to smooth the DEM in or-
der to remove micro-topographic noise. Gaussian filters are
often used to smooth DEMs, where the smoothing can be de-
scribed by linear diffusion. A Gaussian filter results in the
DEM being smoothed uniformly at all locations and in all
directions (e.g. Lashermes et al., 2007). However, one con-
sequence of the Gaussian filtering is the loss of information
where there are sharp boundaries between features due to the
uniform smoothing. Therefore, we filter the input DEM using
a non-linear filter proposed by Perona and Malik (1990) and
applied to channel extraction from high-resolution topogra-
phy by Passalacqua et al. (2010a). The Perona–Malik filter is
an adaptive filter in which the degree of smoothing decreases
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as topographic gradient increases (Perona and Malik, 1990;
Passalacqua et al., 2010a). This non-linear diffusion equation
can be described as

∂th(x,y, t)=∇ · [p(|∇h|)∇h], (1)

where h is the elevation at location (x,y) and time t , ∇ is the
gradient operator, and p(|∇h|) is an edge-stopping function
that specifies where to stop diffusion across feature bound-
aries, where

p(|∇h|)=
1

1+ (|∇h|/λ)2 , (2)

where λ is a constant. Importantly for the identification of
low-gradient surfaces, the Perona–Malik filtering enhances
the transitions between features, such as the low-gradient val-
ley floor and the surrounding hillslopes, while preferentially
smoothing low-gradient reaches of the DEM. Following the
methodology of Passalacqua et al. (2010a), we set the num-
ber of iterations (t) to 50 and the calculation of λ as the 90 %
quantile. We keep these parameters constant across each site
tested in the study. A full explanation of these parameters
and derivation of the Perona–Malik filter is described by Pas-
salacqua et al. (2010a).

After the DEM is smoothed, we then extract the channel
network. Many studies have proposed different methods for
identifying channel networks from high-resolution topogra-
phy (e.g. Lashermes et al., 2007; Tarolli and Dalla Fontana,
2009; Passalacqua et al., 2010b, 2012; Pelletier, 2013; Clubb
et al., 2014). Grieve et al. (2016c) tested the validity of chan-
nel extraction algorithms at coarsening DEM resolution and
found that a geometric method of channel extraction was
consistent up to DEM resolutions of 30 m. This method, de-
scribed by Grieve et al. (2016b), uses an optimal Wiener filter
to remove micro-topographic noise from the DEM (Wiener,
1949; Pelletier, 2013). The optimal Wiener filter is only used
to extract the channel network: we use the Perona–Malik fil-
tering to extract the floodplains and terraces. Channelised
portions of the landscape are selected using a tangential
curvature threshold (Pelletier, 2013), which is defined us-
ing quantile–quantile plots as described by Lashermes et al.
(2007) and Passalacqua et al. (2010a). These channelised
portions of the landscape are combined into a channel net-
work using a connected components algorithm outlined by
He et al. (2008) and thinned using the algorithm of Zhang
and Suen (1984). We chose this algorithm for channel ex-
traction to allow consistency when running our method on
DEMs of varying grid resolutions.

2.2 Floodplain and terrace identification

After smoothing the DEM, the user can choose to run the
terrace and floodplain mapping algorithm across the whole

DEM or to extract the floodplains and terraces relative to a
specific channel of interest. If the algorithm is run on the
whole DEM, the local gradient, S, and relief relative to the
nearest channel, Rc, are calculated for each pixel. These two
parameters were chosen on the basis that floodplains and ter-
races tend to form low-gradient regions that are close to the
elevation of the modern channel. Local gradient has been
used in previous geometric methods of floodplain and ter-
race identification, both in the calculation of the topographic
index (Kirkby, 1975; Manfreda et al., 2011) and in combi-
nation with other topographic metrics (e.g. Degiorgis et al.,
2012; Stout and Belmont, 2014; Limaye and Lamb, 2016).
Local gradient was calculated by fitting a polynomial surface
to the DEM with a circular window (e.g. Lashermes et al.,
2007; Roering et al., 2010; Hurst et al., 2012; Grieve et al.,
2016a). The radius of the window is calculated by identify-
ing breaks in the standard deviation and interquartile range
of curvature with increasing window size, following Grieve
et al. (2016a). This allows the window size to be calculated
for each DEM to ensure that the slope values are represen-
tative at the hillslope scale, rather than being influenced by
smaller-scale variations from vegetation (e.g. Roering et al.,
2010; Hurst et al., 2012). Rc has also been used in previ-
ous geometric methods (e.g. Degiorgis et al., 2012; Manfreda
et al., 2014; Limaye and Lamb, 2016) and is calculated as
the difference in elevation between the starting pixel and the
nearest channel pixel, identified using a steepest descent flow
routing algorithm (O’Callaghan and Mark, 1984; Braun and
Willett, 2013). A threshold Strahler stream order is set by
the user such that the nearest channel must have a stream or-
der greater than the threshold. This is necessary so that each
pixel is mapped to the main channel along which floodplains
or terraces have formed, rather than narrow tributary valleys.
We found that a threshold of third-order channels was appro-
priate for each of our field sites, based on a visual inspection
of the DEM. One of the outputs of our software package is a
raster of the channel network labelled by the Strahler stream
order. The user can identify an appropriate threshold stream
order based on visual inspection of floodplain and terrace sur-
faces compared to this network.

As well as running the algorithm on the whole landscape,
the user can also choose to extract floodplains or terraces rel-
ative to a specific channel of interest. The user must provide
the latitude and longitude of two points defining the upstream
and downstream end of the channel. The algorithm then de-
fines a channel network between these points using a steep-
est descent flow routing algorithm (O’Callaghan and Mark,
1984; Braun and Willett, 2013). After the identification of
the channel, a swath profile is created along it following the
method outlined in Hergarten et al. (2014) and applied by
Dingle et al. (2016). The user must specify the width of the
swath, which can be estimated by a visual inspection of the
DEM, to provide a sufficiently wide swath compared to the
valleys in the landscape. The same two parameters (S and
Rc) are used for feature classification for each pixel in the
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swath profile, except that Rc is calculated compared to the
nearest point on the reference channel.

After the calculation of slope and Rc, we identify thresh-
olds for each metric in order to provide a binary classifica-
tion of each pixel as either floodplain/terrace (1) or hillslope
(0). A key feature of our new method is that the thresholds
for Rc and local gradient do not need to be set by the user
based on independent validation but are calculated statisti-
cally from the DEM. Many methods of channel extraction
employ statistical selection of topographic thresholds (e.g.
Lashermes et al., 2007; Thommeret et al., 2010; Passalacqua
et al., 2010a; Pelletier, 2013; Clubb et al., 2014), but this has
yet to be developed for the identification of floodplains or
terraces. We identify thresholds for Rc and S using quantile–
quantile plots, which have previously been used in the de-
tection of hillslope–valley transitions (e.g. Lashermes et al.,
2007; Passalacqua et al., 2010a). Quantile–quantile plots are
used to determine if a probability density function of real
data can be described by a Gaussian distribution. The transi-
tion between process domains can be determined by the value
at which the probability density function of the real data de-
viates from the Gaussian function (Lashermes et al., 2007).
The real data are plotted against the corresponding standard
normal variate, which indicates how many standard devia-
tions an element is from the mean. For example, if a value
has a standard normal variate (or z score) of 1, then it is 1
standard deviation above the mean, which has a z score of 0.
A Gaussian distribution plots as a straight line on a quantile–
quantile plot, and is modelled for each DEM based on a lower
and upper percentile of the real data. The percentiles chosen
to represent the reference Gaussian distribution can be set by
the user based on the landscape in question, but are gener-
ally set as the 25th and 75th percentile (Passalacqua et al.,
2010a). For each value of the real data, we calculate the dif-
ference between the real data and the Gaussian distribution
as a fraction of the range of the real data (Fig. 2). The thresh-
old values for Rc and slope are then identified as the lowest
value at which there is less than 1 % difference between the
two distributions. Figure 3 shows an example of the channel
relief and slope maps for the Russian River field site, with
the calculated thresholds for each field site presented in Ta-
ble 1. If the user wishes to extract only the terraces, then
a threshold height above the modern river channel must be
set: any pixels below this height will be identified as flood-
plain, and any pixels above this height will be identified as
terraces. This threshold height can also be determined based
on a visual inspection of the DEM. Our method allows the
analysis of spatial extent of floodplain and terrace features (if
run across the whole DEM) as well as the distribution along
a specific channel of interest (if run with the swath mode).
For example, in swath mode, the elevation and slope of the
terraces can be mapped as a function of distance upstream
along the channel network. This provides numerous poten-
tial applications of the method for understanding controls on
terrace formation and morphology.

Table 1. Channel relief and slope threshold for each field site

Field site Channel relief Slope
threshold threshold

Mid Bailey Run, OH 23.69 0.15
Coweeta, NC 32.80 0.11
Russian River, CA 43.51 0.81
River Swale, UK 39.40 0.05

South Fork Eel River, CA 42.96 0.05
Le Sueur River, MN 9.42 0.05
Mattole River, CA 50.25 0.17
Clearwater River, WA 12.67 0.06

2.3 Comparison with published data

In order to test the results of our method we compare the pre-
dicted floodplain and terrace locations to field-mapped flood-
plain initiation points, published flood hazard maps, and digi-
tised terrace surfaces. In order to quantify the performance
of our methods compared to these datasets, we assess the
rates of true positives (TP), false positives (FP), true nega-
tives (TN), and false negatives (FN) (e.g. Heipke et al., 1997;
Molloy and Stepinski, 2007; Tarolli et al., 2010; Orlandini
et al., 2011; Manfreda et al., 2014; Clubb et al., 2014). Each
pixel is assigned to one of the four categories:

1. True positive, TP: the pixel is identified as flood-
plain/terrace by both the geomorphic method and the
independent dataset.

2. False positive, FP: the pixel is identified as flood-
plain/terrace by the geomorphic method, but not by the
independent dataset.

3. True negative, TN: the pixel is not identified as flood-
plain/terrace by either dataset.

4. False negative, FN: the pixel is identified as flood-
plain/terrace by the independent dataset but not by the
geomorphic method.

We report the reliability (r), sensitivity (s), and overall
quality (Q) for each field site:

r =

∑
TP∑

TP+
∑

FP
, (3a)

s =

∑
TP∑

TP+
∑

FN
, (3b)

Q=

∑
TP∑

TP+
∑

FP+
∑

FN
. (3c)

The reliability, r , is a measure of the ability of the method
to not generate false positives. The r value can vary between
0 and 1: if the r value is low, then the method is predict-
ing a large amount of pixels as floodplain or terrace which
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Figure 2. Example quantile–quantile plots for Mid Bailey Run, Ohio, showing probability density function of relief relative to the channel
and slope. The probability density function of each is shown in blue, with the reference normal distribution shown by the red dashed line.
The threshold (black dashed line) is selected where there is less than 1 % difference between the real and reference distributions. The blue
box highlights the portion of the distribution identified as floodplain.

Figure 3. Maps showing (a) gradient and (b) relief relative to the nearest channel, Rc, for the Russian River field site. The areas of the
landscape identified as below the threshold are shown in white, with values above the threshold then grading to darker colours. In order to be
selected as floodplain, each pixel must be below the threshold for both gradient and Rc. The coordinate system is UTM Zone 10◦ N.

are not identified by the independent dataset, whereas high r
value indicates that the majority of pixels mapped as flood-
plain or terrace are also identified by the independent map.
The sensitivity, s, is a measure of the ability of the method
to not generate false negatives: a low s value indicates that
the method is not identifying many of the floodplain or ter-
race pixels selected by the published maps. The overall qual-
ity, Q, combines both the number of false positives and false
negatives to give an overall “goodness” of the feature clas-
sification. It also varies between 0 and 1, where 0 represents
no correlation between the predicted and observed features,
and 1 represents a perfect match (Heipke et al., 1997).

3 Study areas

We ran our new method on a total of eight field sites, located
in Fig. 1. Four of these field sites (the Russian River, CA; Mid
Bailey Run, OH; Coweeta NC; and the River Swale, UK)
were selected to test the ability of the algorithm to identify
floodplains, using published flood maps for the regions. The
remaining four sites were selected to validate the algorithm
against digitised terrace maps (South Fork Eel River, CA; Le
Sueur River, MN; Clearwater River, WA; and Mattole River,
CA). Table 2 summarises the mean annual precipitation and
mean annual temperature of each site, based on data from the
PRISM Climate Group (http://prism.oregonstate.edu) for the
US sites and the Met Office (http://www.metoffice.gov.uk/
public/weather/climate/) for the UK site. It also summarises
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Table 2. Details of climate and lithology for each field site.

Field site UTM
Zone

MAP
(mm)

MAT
(◦C)

Lithology Comparison datasets Grid
res. (m)

Russian River, CA 10◦ N 1396 14.1 Sandstones and shales,
Quaternary alluvial
deposits

FEMA flood hazard maps 1

Mid Bailey Run, OH 17◦ N 1005 10.9 Sandstones, siltstones,
shales

FEMA flood hazard maps
Field-mapped FIPs

1

Coweeta, NC 17◦ N 1792 12.3 Meta-sedimentary units FEMA flood hazard maps
Field-mapped FIPs

1

River Swale, UK 30◦ N 898 8.4 Limestones and
sandstones

EA flood hazard maps 5

South Fork Eel River,
CA

10◦ N 2009 12.7 Greywackes and shales Digitised terraces (Seidl
and Dietrich, 1992)

1

Le Sueur River, MN 15◦ N 793 7.5 Pleistocene tills and Or-
dovician dolostones

Digitised terraces (Gran
et al., 2009)

1

Mattole River, CA 10◦ N 2593 12.8 Sandstones and shales,
Quaternary alluvial
deposits

Digitised terraces (Dibblee
and Minch, 2008; Limaye
and Lamb, 2016)

10

Clearwater River, WA 10◦ N 3126 9.9 Sandstones with interbed-
ded shales

Digitised terraces (Weg-
mann and Pazzaglia, 2002;
Limaye and Lamb, 2016)

10

the underlying lithology, the source of the data used for vali-
dation, and the grid resolution. The algorithm was run based
on topographic data derived from 1 m lidar data for the sites
where these were available (the Russian River, CA; Mid Bai-
ley Run, OH; Coweeta, NC; the South Fork Eel River, CA;
and the Le Sueur River, MN). For the remaining field sites the
topographic data were generated from the United States Ge-
ological Survey National Elevation Dataset 1/3 arcsec DEM,
sampled at 10 m resolution for the US sites, and from the
Ordnance Survey Terrain 5 dataset for the UK site, sampled
at 5 m resolution. All DEMs were converted to the Univer-
sal Transverse Mercator (UTM) coordinate system using the
WGS84 datum.

4 Results

4.1 Comparison with mapped floodplains

We compare the floodplain extent predicted by our method to
field-mapped floodplain initiation points (FIPs) from two of
the four study areas: Mid Bailey Run, OH, and Coweeta, NC.
An FIP was defined as the upstream limit of low-gradient
surfaces at the same elevation as the channel banks. As the
valley opens out from its more confined upper reaches, these
surfaces transition from discontinuous depositional pockets
to more continuous floodplain surfaces (Jain et al., 2008). In
this study we consider the FIP to start at the onset of allu-
viation outside the channel banks: therefore, we mapped the
start of the discontinuous floodplain pockets at the FIPs in
each channel. The onset of alluviation often occurred at mul-

tiple locations along the same channel: in these cases we took
the location of each FIP downstream along the channel.

A total of 19 FIPs were mapped in Mid Bailey Run, OH,
during May–June 2011, and eight FIPs were mapped in the
Coweeta catchment, NC, in May 2014. FIPs in the Mid Bai-
ley Run catchment were mapped using a Trimble GeoXM
GeoExplorer 2008 series GPS with a mean horizontal accu-
racy of 6 m. Point locations in the Coweeta catchment were
mapped using a Trimble GeoXR GeoExplorer 6000 series
GPS with a mean horizontal accuracy of 1.01 m and a mean
precision of 1.3 m. Figure 4 shows the relationship between
the field-mapped initiation points and predicted floodplain
extent. In order to compare these field-mapped FIPs to our
predicted floodplain extents, we measured the flow distance
between the field-mapped point and the furthest upstream
point of the nearest predicted floodplain patch. The distances
for each FIP are reported in Table 3, where negative val-
ues indicate that the predicted floodplain initiation was up-
stream of the mapped, and vice versa for positive values. We
also report the r , s, and Q values for the predicted flood-
plain initiation points. Following the methodology of Orlan-
dini et al. (2011), we classify a point as a TP if the predicted
FIP is within a 30 m radius of the mapped FIP. The com-
parison with the mapped FIPs resulted in r = 0.83, s = 0.67,
and Q= 0.59 for Mid Bailey Run, and r = 0.78, s = 1, and
Q= 0.78 for Coweeta.

Along with these field-mapped floodplain initiation points,
we also compare our predicted floodplain extent to published
flood risk maps for three out of the four study areas. For the
sites in the US, flood risk maps were obtained from the Fed-
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Table 3. Flow distances between the field-mapped FIPs and predicted floodplain extents

Field site Mapped FIP Easting (m) Northing (m) Flow distance∗

Mid Bailey Run, OH T2FPI1 401 513 4 364 940 59
T3FPI1 401 622 4 364 773 85
T3FPI2 401 661 4 364 732 −49
WBT1FPI 400 090 4 363 977 −23
WBT2FPI1 399 865 4 364 215 −1
T4FPI 401 342 4 365 472 28
T5FPI2 401 072 4 365 675 0
T7FPI2 400 670 4 366 152 2
T5FPI1 401 208 4 365 807 0
T1FPI1 401 443 4 365 150 0
TX3D3-FPI0 400 718 4 366 277 −42
TX3FPI1 400 644 4 366 126 −5
MBFPI 400 449 4 366 130 −34
T7FPI1 400 600 4 366 074 −19
T4FPI2 401 391 4 365 514 92
T6FPI1 400 900 4 365 921 −20

Coweeta, NC SF5 277 212.380 3 882 554.000 −51
BC1 276 326.800 3 880 661.200 −3
HCW 277 641.5 3 881 694.2 2
BC3 277 584.633 3 881 138.653 −3
HW1 278 252.652 3 881 715.719 13
CB1 278 089.041 3 882 301.638 12
HB1 277 444.900 3 882 919.685 −16
CC2 277 098.745 3 882 348.108 −2

∗ The distance between the mapped FIP and the upstream extent of the nearest floodplain patch predicted by our
geomorphic method.
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Figure 4. Shaded relief maps of Mid Bailey Run and Coweeta field sites showing the relationship between the predicted floodplain (blue)
and the mapped floodplain initiation points (red). The UTM zone is 17◦ N.

eral Emergency Management Agency’s (FEMA) National
Flood Hazard Layer (https://msc.fema.gov/portal/). The Na-
tional Flood Hazard Layer is a compilation of GIS data
consisting of a US-wide flood insurance rate map. It con-
tains information on the flood zone, base flood elevation, and
floodway status for a location. Floodplain extents are calcu-
lated using a hydraulic model, such as HEC-RAS (Hydro-

logic Engineering Center-River Analysis System), incorpo-
rating discharge data, cross sectional survey data, and stream
characteristics. These studies can be expensive, with a de-
tailed survey on a mile-long reach typically costing between
USD 10 000 and 25 000 (Committee on FEMA Flood Maps,
2009). The original data were in the geographic projec-
tion NAD1983, and were converted to the projected UTM
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Figure 5. Shaded relief maps showing (a) FEMA flood risk map for the Russian River, CA, UTM Zone 10◦ N, and (b) EA flood risk map for
the River Swale, UK, UTM Zone 30◦ N. In some parts of the landscape the published flood maps do not extend all the way up the catchments.

WGS84 coordinate system (Ohio and NC Zone 17◦ N, Rus-
sian River Zone 10◦ N). We separate the flood zones into two
categories: areas within the 100-year flood (blue), with a 1 %
annual chance of flooding, and areas with a greater than 100-
year flood risk (less than 1 % annual risk of flooding). In or-
der to compare these maps to our method, we gridded the
FEMA flood risk maps with a resolution of 1 m. The Coweeta
field site in North Carolina did not have a complete flood risk
map for the catchment and therefore could not be included in
this analysis.

For the River Swale field site in the UK, flood risk maps
were obtained from the Environment Agency’s (EA) Risk
of Flooding from Rivers and Sea dataset, which divides the
landscape into 50 by 50 m cells (https://data.gov.uk/dataset/
risk-of-flooding-from-rivers-and-sea1). Each cell is cate-
gorised into one of four flood risk likelihood categories: high
(3.3 % annual chance of flooding), medium (between 3.3 and
1 %), low (between 1 and 0.1 %), or very low (< 0.1 %). The
dataset is created by hydraulic modelling, including informa-
tion about the state of flood defenses and local stage heights
as inputs to the model. The data were re-projected from the
British National Grid coordinate system to the UTM WGS84
datum, Zone 30◦ N. In order to keep the comparison con-
sistent with the sites from the US, each pixel was classified
into the same two categories as for the FEMA maps, with ar-
eas of flood risk identified as having greater than 1 % annual
chance of flooding. The dataset is provided as vector data: to
compare with the floodplain identified by the our method, we
gridded the vector dataset at 5 m resolution (the same as the
input DEM). Figure 5 shows examples of the FEMA and EA
flood maps for each study area.

The r , s, andQ values for each site are reported in Table 4,
with a visual comparison between the method and the pub-
lished flood maps shown in Fig. 6. We also report the qual-
ity values for floodplains extracted from the United States
Geological Survey’s 1/3 arcsec National Elevation Dataset
(NED), gridded at 10 m, in order to test the sensitivity of

Table 4. Results of the reliability (r), sensitivity (s), and overall
quality (Q) analysis for each site

Field site Grid r s Q

resolution
(m)

Mid Bailey Run, OH 1 0.73 0.76 0.59
10 0.77 0.80 0.65

Russian River, CA 1 0.74 0.97 0.67
10 0.70 0.96 0.68

River Swale, UK 5 0.84 0.65 0.58

South Fork Eel River, CA 1 0.65 0.72 0.52
Le Sueur River, MN 1 0.58 0.54 0.39
Mattole River, CA 10 0.58 0.65 0.44
Clearwater River, WA 10 0.56 0.55 0.39

our method to grid resolution. The USGS NED is a seam-
less dataset created for the conterminous US, using a vari-
ety of elevation products which is updated on a 2-month cy-
cle. The method was most similar to the flood risk maps for
the Russian River, CA, with the highest overall quality value
(Q= 0.67 for the 1 m DEM and 0.68 for the 10 m DEM).
The method has a higher sensitivity than reliability for both
DEM datasets, with s = 0.97 and r = 0.74 for the 1 m DEM,
compared to s = 0.96 and r = 0.70 for the 10 m DEM. For
both the Mid Bailey Run and Russian River field sites, the
sensitivity is higher than the reliability for all of the DEM
resolutions tested (Table 4). However for the River Swale
site, the reliability is higher than the sensitivity (r = 0.84,
s = 0.65).

4.2 Comparison with mapped terraces

We also compare the features extracted by our method to
field-mapped terraces from four field sites throughout the
US: the South Fork Eel River, CA (Seidl and Dietrich, 1992);
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(a) (b)
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Figure 6. Shaded relief maps for each field site showing a compar-
ison between the predicted floodplains (a, c, e) and the published
FEMA/EA maps (b, d, f). (a–b) Mid Bailey Run, OH. (c–d) Rus-
sian River, CA. (e–f) River Swale, UK.

the Le Sueur River, MN (Gran et al., 2009); the Mattole
River, CA (Dibblee and Minch, 2008); and the Clearwater
River, WA (Wegmann and Pazzaglia, 2002). Two of these
sites had 1 m lidar-derived DEMs (the South Fork Eel and Le
Sueur rivers). For the remaining two sites, 10 m DEMs were
derived from the USGS 1/3 arcsec NED, following Limaye
and Lamb (2016). Terraces in the South Fork Eel River and
the Le Sueur River were digitised from field mapping carried
out in previous studies (Seidl and Dietrich, 1992; Gran et al.,
2009), constrained by the hillshaded DEMs. Terraces from
the Mattole River and the Clearwater River were digitised by
Limaye and Lamb (2016) from geological maps, with the ter-
races mapped by Dibblee and Minch (2008) for the Mattole
River, and Wegmann and Pazzaglia (2002) for the Clearwa-
ter River. We ran our method in the swath setting for each of

these sites, so that the terraces were mapped compared to the
main stem channel of interest in each site. The thresholds for
terrace identification (Rc and S) were set statistically for each
site using the quantile–quantile plots. In order to quantify the
difference between our method and the digitised terraces, we
calculated the r and s values following the same methodol-
ogy as for the floodplain comparison (Table 4).

Figure 7 shows a visual comparison of the predicted and
digitised terraces from the two sites with 1 m lidar-derived
DEMs. In general there was good spatial correlation between
the two terrace datasets for each field site, although in some
cases the automated method did not identify all terraces at
high elevations compared to the modern channel. The South
Fork Eel River had the highest values of both r (0.65) and
s (0.72). The comparison between the two terrace datasets
for the field sites with 10 m DEMs is shown in Fig. 8. These
sites had lower r and s values than that of the South Fork Eel
River, but were comparable to the values for the Le Sueur
River (e.g. Table 4).

5 Discussion

5.1 Floodplains

The results outlined above compare our method of automatic
feature extraction to various datasets of both floodplains and
terraces. In order to test the ability of our method in iden-
tifying floodplains, we compared the delineated geomorphic
floodplain to both field-mapped floodplain initiation points
and hydrological modelling predictions. We found that our
method predicts the location of the field-mapped FIPs to
within tens of metres for both field sites (Mid Bailey Run,
OH, and Coweeta, NC). The reliability and sensitivity val-
ues were highest for the Coweeta field sites, with a value
of r = 0.78 and s = 1, which indicates that there were no
false negatives in this field site. Table 3 shows that in many
cases the error between the mapped and predicted FIPs is
within the same order of magnitude as the error on the field-
mapped coordinates (≈ 1 m for Coweeta and ≈ 6 m for Mid
Bailey Run). In isolated cases in the Mid Bailey Run site,
the error was higher between the mapped and predicted FIPs
(around 90 m for two of the points), where the mapped FIP
was located in narrow headwater valleys (Fig. 4). Further-
more, the predicted floodplain in the majority of cases was
located downstream of the mapped FIPs in Mid Bailey Run
(Table 3). This is not surprising, as our method is based on
identifying areas of low gradient, which is calculated based
on polynomial surface fitting with a specified window radius
(Sect. 2.2). Small pockets of alluviation in narrow valleys
may therefore be missed by the method if the width of the
floodplain is less than that of the window radius or the DEM
resolution.

We also validated our method against published flood
maps for three of our field sites (Mid Bailey Run, OH; Rus-
sian River, CA; and River Swale, UK). The quality analy-

Earth Surf. Dynam., 5, 369–385, 2017 www.earth-surf-dynam.net/5/369/2017/



F. J. Clubb et al.: Geomorphometric delineation of floodplains and terraces 379

1 km

1 km

1 km 1 km

(a) (b)

(c)

(d)

Figure 7. Shaded relief maps for the two field sites with lidar-
derived DEMs showing a comparison between the predicted ter-
races (red) and the digitised terraces (blue). The predicted terraces
are coloured by elevation compared to the channel, where darker red
indicates higher elevation. (a–b) South Fork Eel River, CA. Maxi-
mum terrace height is 43 m. (c–d) Le Sueur River, MN. Maximum
terrace height is 9.5 m.

sis for this comparison (Table 4 and Fig. 6) suggests that
there is in general a good correlation between our method
and the published flood maps, with high values for reli-
ability (r ≥ 0.7), sensitivity (s ≥ 0.65), and overall quality
(Q≥ 0.58) for each field site. The results for both the Rus-
sian River and Mid Bailey Run showed higher sensitivity val-
ues than reliability, suggesting that the our method predicted
more false positives than false negatives. In each field site,
the published flood maps were classified to define the 1 % an-
nual chance of flooding, or the 100-year return period flood
event. It may therefore be expected that our geomorphic-
based method would delineate a larger floodplain than is
flooded in a 100-year return period event. The results for the
River Swale, however, show a higher reliability than sensitiv-

ity, suggesting that more false negatives were predicted than
false positives. This may be due to methodological differ-
ences in the production of this flood map by the Environment
Agency (UK) compared to the US sites. Figure 6f shows the
published flood map for the River Swale site, which, in com-
parison to the FEMA flood maps (Fig. 6b and d), extends into
the headwaters of the channel network. As these areas do not
have low-gradient surfaces next to the channel, they may not
be selected by our method. This may account for the higher
number of false negatives predicted at this site.

Published flood maps are useful in providing an indepen-
dent estimate of likely floodplains in each field site. However,
there are potential limitations to these maps which must be
carefully considered and may result in some of the differ-
ences compared to geomorphic floodplain prediction tech-
niques. Hydrodynamic models have a large number of pa-
rameters, which require careful calibration with field and
hydraulic data, such as channel roughness and discharge
data from gauging stations. Furthermore, due to the time-
consuming and expensive nature of these studies, flood maps
are often not produced for small catchment sizes and may
therefore be incomplete on a landscape scale (e.g. Fig. 5).
There may also be differences in the methodology used in
producing these maps for each site, depending on the input
topographic data and modelling software used. However, de-
spite these discrepancies between the flood maps we find a
good spatial correlation between these and the predictions
from our method (Fig. 6).

In order to test the sensitivity of our method to grid resolu-
tion, we also ran the floodplain extraction using 10 m DEMs
derived from the USGS NED for two of the field sites (Rus-
sian River, CA, and Mid Bailey Run, OH), as well as testing
it on the River Swale in the UK (5 m resolution DEM). We
found there was little difference in the reliability and sen-
sitivity results when compared to the 1 m DEMs (Table 4).
This suggests that our method is relatively insensitive to
grid resolution, allowing the identification of floodplain fea-
tures on coarser-resolution DEMs. Furthermore, in the Mid
Bailey Run field site, the method performed better on the
10 m data compared to the 1 m DEM. High-resolution topo-
graphic data may contain both small-wavelength topographic
noise caused by tree throw and biotic activity (Roering et al.,
2010; Marshall and Roering, 2014), as well as synthetic noise
from point cloud processing (Liu, 2008; Meng et al., 2010).
This noise may affect the calculation of topographic metrics
(Grieve et al., 2016c), potentially leading to differences in
the location of extracted floodplains or terraces compared to
the lower-resolution data.

5.2 Terraces

We also tested the ability of our method to identify fluvial
terraces in four field sites (South Fork Eel River, CA; Le
Sueur River, MN; Mattole River, CA; and Clearwater River,
WA) by comparing to digitised terrace maps. Two of these

www.earth-surf-dynam.net/5/369/2017/ Earth Surf. Dynam., 5, 369–385, 2017



380 F. J. Clubb et al.: Geomorphometric delineation of floodplains and terraces

field sites had 1 m lidar-derived DEMs (Fig. 7), whereas two
had 10 m DEMs from the USGS NED (Fig. 8). The qual-
ity analysis for the 1 m DEMs showed the higher reliabil-
ity and sensitivity values for the South Fork Eel River site
(r = 0.65 and s = 0.72), with comparable values for the re-
maining three field sites. This may be due to the influence
of topographic structure on terrace identification. The por-
tion of the Eel River DEM analysed here has higher relief,
with a maximum elevation of 290 m above the nearest chan-
nel, compared to the lower-relief landscape covered by the
DEM for the Le Sueur River, with a maximum elevation of
40 m above the nearest channel. As our method relies on the
distribution of relief relative to the channel in order to se-
lect the threshold for terrace identification, it will work best
in areas where there is a greater contrast between the slope
and relief of the terrace surfaces compared to the surround-
ing topography, such as steep mountainous areas. This is
similar to other semi-automated terrace extraction methods
(e.g. Stout and Belmont, 2014; Hopkins and Snyder, 2016).
The Le Sueur River is currently incising through Pleistocene
tills, forming a low-gradient surface or plateau (Fisher, 2003;
Gran et al., 2009; Belmont et al., 2011a). High-altitude, low-
gradient surfaces, such as relict plateaus, may result in error
in the method due to the difficulty in distinguishing the dis-
tribution of terrace elevations from these low-relief surfaces.
The Le Sueur River basin is also heavily influenced by hu-
man land use, which makes feature extraction challenging
(Passalacqua et al., 2012). The results of the quality analysis
for the eight field sites (Table 4) showed that the method per-
formed better in the floodplain identification compared to the
terrace identification. This may be due to the fact that, with
the exception of the South Fork Eel River, the sites used for
terrace extraction are lower relief than those used to test the
floodplain extraction (e.g. Figs. 6–8).

Another potential cause of error between the predicted and
digitised terrace locations may be problems in distinguishing
whether features represent the modern floodplain or terraces.
In our method a minimum height above the modern channel
is set, where pixels above this height are classified as terrace
and below this height as floodplain. In some cases, partic-
ularly where the terraces are at a similar elevation to that
of the modern channel, our method may mistakenly iden-
tify terraces as being part of the modern floodplain, or vice
versa. An example of this may be the Clearwater River site,
where our method had lower indices of r and Q (Fig. 8c and
d and Table 4). In this site, the digitised terraces are close
in elevation to the modern channel, with a maximum terrace
height of 13 m. Furthermore, in some cases our method did
not select all of the terraces identified by the field mapping,
particularly at the highest elevations compared to the mod-
ern channel (e.g. Fig. 7c and d). This may be the case if the
threshold for elevation compared to the channel selected by
the quantile–quantile plot is lower than that of the highest
terrace elevations. This can be examined for the landscape in
question by a visual inspection of the quantile–quantile plots

(a) (b)

(c) (d)

1 km 1 km

1 km 1 km

Figure 8. Shaded relief maps for the two field sites with 10 m
resolution DEMs from the USGS NED showing a comparison be-
tween the predicted terraces (red) and the digitised terraces (blue).
The predicted terraces are coloured by elevation compared to the
channel, where darker red indicates higher elevation. (a–b) Mat-
tole River, CA. Maximum terrace height is 50 m. (c–d) Clearwater
River, WA. Maximum terrace height is 13 m.

and the location of the threshold compared to the distribu-
tion of channel relief (e.g. Fig. 2). Our method fits a Gaus-
sian distribution to the quantile–quantile plots, and selects
the thresholds as the deviation of the real data from this dis-
tribution, as a simple general model of elevation distributions
that can be applied across multiple landscapes. However, in
some landscapes, the distribution of elevations may not be
accurately represented by a Gaussian distribution. A future
avenue for development of this method may be to include
multiple models for elevation distributions from which to se-
lect the thresholds of elevation and gradient.

However, despite these limitations, the selection of the
threshold from quantile–quantile plots means that our
method does not require the input of any independent
datasets or field mapping. Semi-automated methods of ter-
race identification, where the terrace polygons are manually
edited by the user, are particularly useful in areas where inde-
pendent datasets of terrace locations are available for calibra-
tion, and may be more appropriate than our method on site-
specific scales (e.g. Stout and Belmont, 2014). However, the
selection of thresholds based on a statistical approach means
that our method can be applied in areas where these data do
not exist, on a broader landscape scale, or as a rapid first-
order predictor of terrace locations.

In addition to the field sites with lidar-derived DEMs, we
also tested our method against digitised terraces from two
sites with 10 m DEMs gridded from the USGS NED, to ex-
amine the performance of the method at lower grid resolu-
tion. Figure 8 shows the results of the terrace identification
on the 10 m resolution data. The reliability and sensitivity of
the method for these two sites (Table 4) was lower than that
of the South Fork Eel River, but comparable to that of the
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Le Sueur River. This suggests that the method is able to suc-
cessfully select terraces at lower grid resolutions. Although
there are some differences between the terraces predicted by
the method and those digitised in the field, the majority of
the terrace features evident from a visual inspection of the
hillshaded DEMs are correctly identified by the algorithm
(Fig. 8). In some cases, some terrace-like features that can be
seen on the hillshaded DEMs are not identified in the digi-
tised terrace maps (e.g. Fig. 8b). This may be due to error in
the mapping of terrace surfaces in the field, or discrepancies
resulting from the digitisation process.

An objective, landscape-scale method of identifying flood-
plain and terrace features has numerous applications in the
geomorphological and hydrological communities. For exam-
ple, terrace surfaces have been used to examine the response
of fluvial systems to tectonic and climatic perturbations (e.g.
Merritts et al., 1994), and to investigate the relative impor-
tance of lateral and vertical channel incision (e.g. Finnegan
and Dietrich, 2011). Analysis of terrace areas can be used
to quantify sediment budgets and estimate storage volumes
over millennial timescales (e.g. Trimble, 1999; Brown et al.,
2009; Belmont et al., 2011b; Blöthe and Korup, 2013). Our
new method facilitates the rapid extraction of terrace surfaces
either across the whole landscape or compared to a represen-
tative channel of interest. It allows the user to investigate how
various metrics, such as elevation compared to the channel,
slope, and curvature, vary both within and between individ-
ual terrace surfaces (e.g. Fig. 7). These metrics could be used
in order to examine how terrace heights vary with distance
along channel profiles, for example, or to identify signatures
of deformation corresponding to tectonic processes (Avouac
and Peltzer, 1993; Lavé and Avouac, 2000; Pazzaglia and
Brandon, 2001; Viveen et al., 2014).

5.3 Research needs: fully automated feature extraction

A key goal for the Earth surface research community is to
develop fully automated methods of feature extraction from
DEMs in order to avoid expensive and time-consuming field
mapping, and to investigate the controls on geomorphic pro-
cesses at a landscape scale. Our new method of floodplain
and terrace delineation attempts to meet some of these re-
search needs by allowing the statistical determination of the
thresholds for feature extraction. However, our method still
requires the input of some user-defined parameters. If the
method is run across the whole landscape, the user must set a
threshold stream order for the calculation of elevation com-
pared to the nearest channel. This is necessary so that each
pixel is mapped to the main channel along which floodplains
or terraces have formed, rather than narrow tributary valleys.
This threshold can be determined by the user based on a vi-
sual inspection of the DEM compared to the channel net-
work. If the user runs the method based on the swath mode,
the width of the swath profile must be set. This can also be
done based on a visual inspection of the DEM to provide a

sufficiently wide swath compared to the valleys in the land-
scape. Furthermore, if the method is run in the swath mode,
then a minimum terrace height must be set in order to delin-
eate between floodplains and fluvial terraces.

However, future development of new algorithms, such as
extraction of valley widths, would allow these parameters to
be set based on the topographic data alone. Our method rep-
resents a first step towards this goal of fully automated geo-
morphic feature identification, which can be improved upon
with future research. The combination of different algorithms
for terrain analysis, such as hillslope flow routing, channel
network extraction, floodplains, and fluvial terraces, would
allow an objective landscape-scale investigation of the con-
trols on geomorphic processes.

6 Conclusions

We have presented a novel method for the geomorphomet-
ric delineation of floodplain and fluvial terrace features from
topographic data. Unlike previous methods, which tend to
require calibration with additional datasets, our method se-
lects floodplain and terrace features using thresholds of lo-
cal gradient and elevation compared to the nearest channel,
which are calculated statistically from the DEM. Further-
more, the floodplain or terrace surfaces do not need to be
manually edited by the user at any point during the process.
Our method can be run either across the whole landscape or
from a topographic swath profile where features can be com-
pared to a specific channel of interest.

In order to test the performance of our method we have
compared it to field-mapped floodplains and terraces from
eight field sites with a range of topographies and grid resolu-
tions. We find that our method performs well when compared
to field-mapped floodplain initiation points, published flood
risk maps, and digitised terrace surfaces. Our method works
particularly well in higher-relief areas, such as the Russian
and South Fork Eel rivers (CA), where the floodplain and
terrace features are constrained within valleys. It is relatively
insensitive to grid resolution, allowing the successful extrac-
tion of floodplain and terrace features at resolutions of 1–
10 m.

Our new method has numerous applications in both the
hydrological and geomorphological communities. It can al-
low the rapid extraction of floodplain features in areas where
the data required for detailed hydrological modelling studies
are unavailable, facilitating investigation of flood response,
sediment transport, and alluviation. Furthermore, the auto-
mated extraction of terrace locations, heights, and other met-
rics could be used to examine the response of fluvial systems
to climatic and tectonic perturbations, as well as the relative
importance of lateral and vertical channel incision.
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Code and data availability. Our software is freely available for
download on GitHub as part of the Edinburgh Land Sur-
face Dynamics Topographic Tools package at https://github.com/
LSDtopotools. Full documentation on download, installation, and
using the software can be found at http://lsdtopotools.github.
io/LSDTT_book/. The software used in this study is available
in this release: https://github.com/LSDtopotools/LSDTopoTools_
FloodplainTerraceExtraction/releases/tag/v1.0 (Clubb et al., 2017).
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