
Algorithmica
https://doi.org/10.1007/s00453-018-0478-6

Temporal Network Optimization Subject to Connectivity
Constraints

George B. Mertzios1 ·Othon Michail2 · Paul G. Spirakis2,3

Received: 2 March 2016 / Accepted: 28 June 2018
© The Author(s) 2018

Abstract
In this work we consider temporal networks, i.e. networks defined by a labeling λ

assigning to each edge of an underlying graph G a set of discrete time-labels. The
labels of an edge, which are natural numbers, indicate the discrete time moments at
which the edge is available. We focus on path problems of temporal networks. In
particular, we consider time-respecting paths, i.e. paths whose edges are assigned by
λ a strictly increasing sequence of labels. We begin by giving two efficient algorithms
for computing shortest time-respecting paths on a temporal network. We then prove
that there is a natural analogue of Menger’s theorem holding for arbitrary temporal
networks. Finally, we propose two cost minimization parameters for temporal network
design. One is the temporality of G, in which the goal is to minimize the maximum
number of labels of an edge, and the other is the temporal cost of G, in which the goal
is to minimize the total number of labels used. Optimization of these parameters is
performed subject to some connectivity constraint. We prove several lower and upper
bounds for the temporality and the temporal cost of some very basic graph families
such as rings, directed acyclic graphs, and trees.

Keywords Temporal network · Graph labeling · Menger’s theorem · Optimization ·
Temporal connectivity · Hardness of approximation

This work was supported in part by (i) the Project “Foundations of Dynamic Distributed Computing
Systems” (FOCUS) which is implemented under the “ARISTEIA” Action of the Operational Programme
“Education and Lifelong Learning” and is co-funded by the European Union (European Social Fund) and
Greek National Resources, (ii) the FET EU IP Project MULTIPLEX under Contract No. 317532, and (iii)
the EPSRC Grants EP/P020372/1, EP/P02002X/1, and EP/K022660/1. A preliminary version of this work
has appeared in ICALP 2013 [18].

B George B. Mertzios
george.mertzios@durham.ac.uk

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0478-6&domain=pdf

Algorithmica

1 Introduction

A temporal (or dynamic) network is, loosely speaking, a network that changes with
time. This notion encloses a great variety of both modern and traditional networks
such as information and communication networks, social networks, transportation
networks, and several physical systems. In the literature of traditional communica-
tion networks, the network topology is rather static, i.e. topology modifications are
rare and they are mainly due to link failures and congestion. However, most modern
communication networks such as mobile ad hoc, sensor, peer-to-peer, opportunistic,
and delay-tolerant networks are inherently dynamic and it is often the case that this
dynamicity is of a very high rate. In social networks, the topology usually represents
the social connections between a group of individuals and it changes as the social
relationships between the individuals are updated, or as existing individuals leave, or
new individuals enter the group. In a transportation network, there is usually some
fixed network of routes and a set of transportation units moving over these routes
and dynamicity refers to the change of the positions of the transportation units in the
network as time passes. Physical systems of interest may include several systems of
interacting particles.

In this work, embarking from the foundational work of Kempe et al. [15], we con-
sider discrete time, that is, we consider networks in which changes occur at discrete
moments in time, e.g. days. This choice is not only a very natural abstraction of many
real systems but also gives to the resulting models a purely combinatorial flavor. In
particular, we consider those networks that can be described via an underlying graph G
and a labeling λ assigning to each edge of G a (possibly empty) set of discrete labels.
Note that this is a generalization of the single-label-per-edge model used in [15], as
we allow many time-labels to appear on an edge. These labels are drawn from the
natural numbers and indicate the discrete moments in time at which the correspond-
ing connection is available. For example, in the case of a communication network,
availability of a communication link at some time t may mean that a communication
protocol is allowed to transmit a data packet over that link at time t .

In this work, we initiate the study of the following fundamental network design
problem: “Given an underlying (di)graph G, assign labels to the edges of G so that
the resulting temporal graph λ(G) minimizes some parameter while satisfying some
connectivity property”. In particular, we consider two cost optimization parameters
for a given graph G. The first one, called temporality of G, measures the maximum
number of labels that an edge of G has been assigned. The second one, called temporal
cost of G, measures the total number of labels that have been assigned to all edges
of G (i.e. if |λ(e)| denotes the number of labels assigned to edge e, we are interested
in

∑
e∈E |λ(e)|). That is, if we interpret the number of assigned labels as a measure

of cost, the temporality (resp. the temporal cost) of G is a measure of the decentral-
ized (resp. centralized) cost of the network, where only the cost of individual edges
(resp. the total cost over all edges) is considered. Each of these two cost measures can
be minimized subject to some particular connectivity property P that the temporal
graph λ(G) has to satisfy. In this work, we consider two very basic connectivity prop-
erties. The first one, that we call the all paths property, requires the temporal graph to
preserve every simple path of its underlying graph, where by “preserve a path of G”

123

Algorithmica

Fig. 1 Path P2 forces a second
label to appear on either
(un−1, un) or (u1, u2)

u1

u2

u3u4

u5

un−1

un

P1

P2

we mean in this work that the labeling should provide at least one strictly increasing
sequence of labels on the edges of that path, in which case we also say that the path is
time-respecting.

Before describing our second connectivity property let us give a simple illustration
of temporality minimization. We are given a directed ring u1, u2, . . . , un and we want
to determine the temporality of the ring subject to the all paths property. That is, we
want to find a labeling λ that preserves every simple path of the ring and at the same
time minimizes the maximum number of labels of an edge. Looking at Fig. 1, it is
immediate to observe that an increasing sequence of labels on the edges of path P1
implies a decreasing pair of labels on edges (un−1, un) and (u1, u2). On the other
hand, path P2 uses first (un−1, un) and then (u1, u2) thus it requires an increasing pair
of labels on these edges. It follows that in order to preserve both P1 and P2 we have
to use a second label on at least one of these two edges, thus the temporality is at least
2. Next, consider the labeling that assigns to each edge (ui , ui+1) the labels {i, n + i},
where 1 ≤ i ≤ n and un+1 = u1. It is not hard to see that this labeling preserves all
simple paths of the ring. Since themaximum number of labels that it assigns to an edge
is 2, we conclude that the temporality is also at most 2. In summary, the temporality
of preserving all simple paths of a directed ring is 2.

The other connectivity property that we define, called the reach property, requires
the temporal graph to preserve a path from node u to node v whenever v is reachable
from u in the underlying graph. Furthermore, the minimization of each of our two
cost measures can be affected by some problem-specific constraints on the labels that
we are allowed to use. We consider here one of the most natural constraints, namely
an upper bound of the age of the constructed labeling λ, where the age of a labeling
λ is defined to be equal to the maximum label of λ minus its minimum label plus
1. Now the goal is to minimize the cost parameter, e.g. the temporality, satisfy the
connectivity property, e.g. all paths, and additionally guarantee that the age does not
exceed some given natural k. Returning to the ring example, it is not hard to see, that
if we additionally restrict the age to be at most n − 1 then we can no longer preserve
all paths of a ring using at most 2 labels per edge. In fact, we must now necessarily
use the worst possible number of labels, i.e. n − 1 on every edge.

123

Algorithmica

Minimizing such parameters may be crucial as, in most real networks, making
a connection available and maintaining its availability does not come for free. For
example, in wireless sensor networks the cost of making edges available is directly
related to the power consumption of keeping nodes awake, of broadcasting, of listening
to the wireless channel, and of resolving the resulting communication collisions. The
same holds for transportation networks where the goal is to achieve good connectivity
properties with as few transportation units as possible. At the same time, such a study
is important from a purely graph-theoretic perspective as it gives some first insight
into the structure of specific families of temporal graphs. To make this clear, consider
again the ring example. Proving that the temporality of preserving all paths of a ring
is 2 at the same time proves the following. If a temporal ring is defined as a ring in
which all nodes can communicate clockwise to all other nodes via time-respecting
paths then no temporal ring exists with fewer than n + 1 labels. This, though an easy
one, is a structural result for temporal graphs. Finally, we believe that our results are a
first step towards answering the following fundamental question: “To what extent can
algorithmic and structural results of graph theory be carried over to temporal graphs?”.
For example, is there an analogue of Menger’s theorem for temporal graphs? One of
the results of the present work is an affirmative answer to the latter question.

1.1 RelatedWork

Labeled Graphs Labeled graphs have been widely used in Computer Science and
Mathematics, e.g. in Graph Coloring [23]. In our work, labels correspond to moments
in time and the properties of labeled graphs that we consider are naturally temporal
properties. Note, however, that any property of a graph labeled from a discrete set of
labels corresponds to some temporal property if interpreted appropriately. For example,
a proper edge-coloring, i.e. a coloring of the edges in which no two adjacent edges
share a common color, corresponds to a temporal graph inwhich no two adjacent edges
share a common label, i.e. no two adjacent edges ever appear at the same time. Though
we focus on properties with natural temporal meaning, our definitions are generic and
do not exclude other, yet to be defined, properties that may prove important in future
applications.

Single-label Temporal Graphs and Menger’s Theorem The model of temporal
graphs that we consider in this work is a direct extension of the single-label model
studied in [4] and [15] to allow for many labels per edge. The main result of [4] was
that in single-label networks the max-flow min-cut theorem holds with unit capaci-
ties for time-respecting paths. In [15], Kempe et al., among other things, proved that a
fundamental property of classical graphs does not carry over to their temporal counter-
parts. In particular, they proved that there is no analogue of Menger’s theorem, at least
in its original formulation, for arbitrary single-label temporal networks and that the
computation of the number of node-disjoint s-t time-respecting paths is NP-complete.
Menger’s theorem states that the maximum number of node-disjoint s-t paths is equal
to the minimum number of nodes needed to separate s from t (see [5]). In this work,
we go a step ahead showing that if one reformulates Menger’s theorem in a way that
takes time into account then a very natural temporal analogue of Menger’s theorem

123

Algorithmica

is obtained. Both of the above papers, consider a path as time-respecting if its edges
have non-decreasing labels. In the present work, we depart from this assumption and
consider a path as time-respecting if its edges have strictly increasing labels. Our
choice is very well motivated by recent work in dynamic communication networks. If
it takes one time unit to transmit a data packet over a link then a packet can only be
transmitted over paths with strictly increasing availability times.

Continuous Availabilities (Intervals) Some authors have assumed that an edge may
be available for a whole time-interval [t1, t2] or several such intervals and not just
for discrete moments as we assume here. This is a clearly natural assumption but the
techniques used in those works are quite different from those needed in the discrete
case [11,28].

Dynamic Distributed Networks In recent years, there is a growing interest in dis-
tributed computing systems that are inherently dynamic. This has been mainly driven
by the advent of low-cost wireless communication devices and the development of
efficient wireless communication protocols. Apart from the huge amount of work
that has been devoted to applications, there is also a steadily growing concrete set
of foundational work. A notable set of works has studied (distributed) computation
in worst-case dynamic networks in which the topology may change arbitrarily from
round to round subject to some constraints that allow for bounded end-to-end com-
munication [10,17,22,25]. Population protocols [2] and variants [20] are collections
of finite-state agents that move arbitrarily like a soup of particles and interact in pairs
when they come close to each other. The goal is there for the population to compute
(i.e. agree on) something useful in the limit in such an adversarial setting. Another
interesting direction assumes that the dynamicity of the network is a result of random-
ness. Here the interest is on determining “good” properties of the dynamic network
that hold with high probability, such as small (temporal) diameter, and on design-
ing protocols for distributed tasks [3,7]. For introductory texts on the above lines of
research in dynamic distributed networks the reader is referred to [6,21,26].

Distance Labeling A distance labeling of a graph G is an assignment of unique labels
to the vertices of G so that the distance between any two vertices can be inferred from
their labels alone.Thegoal is tominimize someparameter of the labeling and to provide
a (hopefully fast) decoder algorithm for extracting a distance from two labels [13,14].
There are several differences between a distance labeling and the time-labelings that
we consider in this work. First of all, a distance labeling is being assigned on the
vertices and not on the edges. Moreover, in distance labeling, one usually seeks the
most compact set of labels (in binary length) that still guarantees efficient decoding.
That is, the labeling parameter to be minimized is the binary length of an appropriate
encoding, which is quite different from our cost parameters. Finally, the optimization
constraint there is efficient decoding while in our case the constraints have to do with
connectivity properties of the labeled graph.

Also, we encourage the interested reader to see [19] for a recent introductory text
on the recent algorithmic progress on temporal graphs.

123

Algorithmica

1.2 Contribution

In Sect. 2, we formally define the model of temporal graphs under consideration and
provide all further necessary definitions. The rest of the paper is partitioned into two
parts. Part I focuses on journey problems for temporal graphs. In particular, in Sect. 3,
we give two efficient algorithms for computing shortest time-respecting paths. Then
in Sect. 4 we present an analogue of Menger’s theorem which we prove valid for
arbitrary temporal graphs. We apply our Menger’s analogue to simplify the proof of a
recent result on distributed token gathering. Part II studies the problem of designing
a temporal graph optimizing some parameters while satisfying some connectivity
constraints. Specifically, in Sect. 5 we formally define the temporality and temporal
cost optimization metrics for temporal graphs. In Sect. 5.1, we provide several upper
and lower bounds for the temporality of some fundamental graph families such as
rings, directed acyclic graphs (DAGs), and trees, as well as an interesting trade-off
between the temporality and the age of rings. Furthermore, we provide in Sect. 5.2
a generic method for computing a lower bound of the temporality of an arbitrary
graph w.r.t. the all paths property, and we illustrate its usefulness in cliques, close-
to-complete bipartite subgraphs, and planar graphs. In Sect. 5.3, we consider the
temporal cost of a digraph G w.r.t. the reach property, when additionally the age
of the resulting labeling λ(G) is restricted to be the smallest possible. We prove
that this problem is hard to approximate, i.e. there exists no PTAS unless P=NP.
To prove our claim, we first prove (which may be of interest in its own right) that
the Max-XOR(3) problem is APX-hard via a PTAS reduction from Max-XOR. In
the Max-XOR(3) problem, we are given a 2-CNF formula φ, every literal of which
appears in at most 3 clauses, and we want to compute the greatest number of clauses
of φ that can be simultaneously XOR-satisfied. Then we provide a PTAS reduction
from Max-XOR(3) to our temporal cost minimization problem. On the positive side,
we provide an (r(G)/n)-factor approximation algorithm for the latter problem, where
r(G) denotes the total number of reachabilities in G. Finally, in Sect. 6 we conclude
and give further research directions that are opened by our work.

2 Preliminaries

2.1 AModel of Temporal Graphs

Given a (di)graph G = (V , E),1 a labeling of G is a mapping λ : E → 2N, that is, a
labeling assigns to each edge of G a (possibly empty)2 set of natural numbers, called
labels.

1 The reason that we do not consider only digraphs and then allow undirected graphs to result as their
special case, is that in that way an undirected edge would formally consist of two antiparallel edges. This
would allow those edges to be labeled differently, unless we introduced an additional constraint preventing
it. We’ve chosen to avoid this by considering explicit undirected graphs (whenever required) with at most
one bidirectional edge per pair of nodes.
2 The reader may be wondering whether it is pointless to allow the assignment of no labels to an edge e
of G, as it would have been equivalent to delete e from G in the first place. Even though this is true for
temporal graphs provided as input, it isn’t for temporal graphs that will be designed by an algorithm based

123

Algorithmica

Definition 1 Let G = (V , E) be a (di)graph and λ be a labeling of G. Then λ(G) is
the temporal graph (or dynamic graph3) of G with respect to λ. Furthermore, G is the
underlying graph of λ(G).

We denote by λ(E) the multiset of all labels assigned to the underlying graph by
the labeling λ and by |λ| = |λ(E)| their cardinality (i.e. |λ| = ∑

e∈E |λ(e)|). We also
denote by λmin = min{l ∈ λ(E)} the minimum label and by λmax = max{l ∈ λ(E)}
the maximum label assigned by λ. We define the age of a temporal graph λ(G) as
α(λ) = λmax − λmin + 1. Note that in case λmin = 1 then we have α(λ) = λmax. For
every graph G we denote by LG the set of all possible labelings λ of G. Furthermore,
for every k ∈ N, we define LG,k = {λ ∈ LG : α(λ) ≤ k}.

2.2 Further Definitions

For every time r ∈ N, we define the r th instance of a temporal graph λ(G) as
the static graph λ(G, r) = (V , E(r)), where E(r) = {e ∈ E : r ∈ λ(e)} is the
(possibly empty) set of all edges of the underlying graph G that are assigned label
r by labeling λ. A temporal graph λ(G) may be also viewed as a sequence of static
graphs (G1, G2, . . . , Gα(λ)), where Gi = λ(G, λmin + i − 1) for all 1 ≤ i ≤ α(λ).
Another, often convenient, representation of a temporal graph is the following.

Definition 2 The static expansion4 of a temporal graph λ(G) is a static digraph H =
(S, A), and in particular a DAG, defined as follows. If V = {u1, u2, . . . , un} then
S = {ui j : λmin − 1 ≤ i ≤ λmax, 1 ≤ j ≤ n} and A = {(u(i−1) j , ui j ′) : if j = j ′ or
(u j , u′

j) ∈ E(i) for some λmin ≤ i ≤ λmax}. In words, we create α(λ)+1 copies of V
representing the nodes over time (time-nodes) and addoutgoing edges from time-nodes
of one level only to time-nodes of the next level. In particular, we connect a time-node
u(i−1) j to its own subsequent copy ui j and to every time node ui j ′ s.t. (u j , u′

j) is an
edge of λ(G) at time i .

A journey (or time-respecting path) J of a temporal graph λ(G) is a path (e1, e2,
. . . , ek) of the underlying graph G = (V , E), where ei ∈ E , together with labels
l1 < l2 < · · · < lk such that li ∈ λ(ei) for all 1 ≤ i ≤ k. In words, a journey is a
path that uses strictly increasing edge-labels. If labeling λ defines a journey on some
path P of G then we also say that λ preserves P . A natural notation for a journey
is (e1, l1), (e2, l2), . . . , (ek, lk). We call each (ei , li) a time-edge as it corresponds
to the availability of edge ei at some time li . We call l1 the departure time and lk

Footnote 2 continued
on an underlying graph. In the latter case, it is the algorithm’s task to decide whether some of the provided
edges need not be ever made available.
3 Even though both names are almost equally used in the literature, in this paper we have chosen to use
the term “temporal” in order to avoid confusion of readers that are more familiar with the use of the term
“dynamic” to refer to dynamically updated instances, with which usually an algorithm has to deal in an
online way (including the rich literature of problems in which the algorithm has tomaintain a graph property
that is being disturbed by adversarial graph modifications).
4 The notion of static expansion is related to the notion of time-expanded graphs of temporal graphs such
as periodic, or resulting from public transportation networks (cf. [24,27]).

123

Algorithmica

the arrival time of journey J and denote them by d(J) and a(J), respectively. A
(u, v)-journey J is called foremost from time t if d(J) ≥ t and a(J) is minimized.
Formally, let J be the set of all (u, v)-journeys J with d(J) ≥ t . A J ∈ J is
foremost if a(J) = minJ ′∈J {a(J ′)}. A journey J is called fastest if a(J) − d(J) + 1
is minimized. We call a(J) − d(J) + 1 the duration of the journey. A journey J is
called shortest if k is minimized, that is it minimizes the number of nodes visited (also
called number of hops).

We say that a journey J leaves from node u (arrives at node u, resp.) at time t
if (u, v, t) ((v, u, t), resp.) is a time-edge of J . Two journeys are called out-disjoint
(in-disjoint, respectively) if they never leave from (arrive at, resp.) the same node at
the same time.

Given a set J of (s, v)-journeys we define their arrival time as a(J) = maxJ∈J
{a(J)}. We say that a set J of (s, v)-journeys satisfying some constraint c (e.g. con-
taining at least k journeys and/or containing only out-disjoint journeys) is foremost if
a(J) is minimized over all sets of journeys satisfying the constraint.

If, in addition to the labeling λ, a positive weight w(e) > 0 is assigned to every
edge e ∈ E , then we call a temporal graph a weighted temporal graph. In case of a
weighted temporal graph, by “shortest journey” we mean a journey that minimizes the
sum of the weights of its edges.

Throughout the text we denote by n the number of nodes and by m and mt the
number of edges of graphs and temporal graphs, respectively. In case of a temporal
graph, by “number of edges” we mean “number of time-edges”, i.e. mt = |λ|. By
d(G)we denote the diameter of a (di)graph G, that is the length of the longest shortest
path between any two nodes of G. By δu we denote the degree of a node u ∈ V (G)

(in case of an undirected graph G).

Part I

3 Journey Problems

3.1 Foremost Journeys

We are given (in its full “offline” description) a temporal graph λ(G), where G =
(V , E), a distinguished source node s ∈ V , and a time λmin ≤ tstart ≤ λmax and we
are asked for all w ∈ V \{s} to compute a foremost (s, w)-journey from time tstart .

Theorem 1 Algorithm 1 correctly computes for all w ∈ V \{s} a foremost (s, w)-
journey from time tstart . The running time of the algorithm is O(nλmax + mt).

Proof Assume that at the end of round t − 1 all nodes in R have been reached by
foremost journeys from s. Let (u, v, t) be a time-edge s.t. u ∈ R and v /∈ R and let
f (s, u) denote the foremost journey from s to u.We claim that J = f (s, u), (u, v, t) is
a foremost journey from s to v. Recall that we denote the arrival time of J by a(J). To
see that our claim holds assume that there is some other journey J ′ s.t. a(J ′) < a(J).
So there must be some time-edge (w, z, t ′) forw ∈ R, z /∈ R and t ′ < t . However, this
contradicts the fact that z /∈ R as the algorithm should have added it in R at time t ′.

123

Algorithmica

Algorithm 1 FJ
Require: Temporal graph λ(G) (full “offline” description), source node s ∈ V , and time tstart , where

λmin ≤ tstart ≤ λmax. The input is represented by an array Av with λmax − λmin + 1 entries for every
node v, where the entry Av[t] stores a pointer to the linked list of the adjacent nodes of v at time step t .

Ensure: For all v ∈ V \{s} a foremost (s, v)-journey from time tstart . In particular, outputs for every v a
pair (p[v], a[v]), where p[v] is the predecessor node of v on the journey and a[v] is the arrival time of
the journey at v (the pair as a whole may be viewed as the predecessor time-node of v on the journey).

1: R ← {s}, t ← tstart
2: for each v ∈ V \{s} do
3: p[v] ← ∅
4: a[v] ← ∞
5: while R
= V and t
= λmax + 1 do
6: C ← ∅
7: for each u ∈ R do
8: for each (u, v) ∈ E(t) do
9: if p[v] = ∅ then {that is, v /∈ R}
10: p[v] ← u
11: a[v] ← t
12: C ← C ∪ {v}
13: R ← R ∪ C
14: t + +

The proof follows by induction on t beginning from t = tstart at which time R = {s}
(s has trivially been reached by a foremost journey from itself so the claim holds for
the base case).

We now prove that the time complexity of the algorithm is O(nλmax + mt). In the
worst-case, the last node may be inserted at step λmax, so the while loop is executed
O(λmax) times. In each execution of thewhile loop, the algorithmvisits the O(n) nodes
of the current set R in the worst-case (e.g. when all nodes but one have been added into
R from the first step). For each such node v and for each time λmin ≤ t ≤ λmax the
algorithm first locates the entry Av[t] in the array Av in constant time and then it visits
the whole linked list of the adjacent nodes of v at time step t . All these operations can
be performed in O(nλmax + mt) time in total. �

3.2 Shortest Journeys withWeights

Theorem 2 Let λ(G), where G = (V , E), be a weighted temporal graph with n
vertices and m edges. Assume also that |λ(e)| = 1 for all e ∈ E, i.e. there is a single
label on each edge (this implies also that mt = m). Let s, t ∈ V . Then, we can compute
a shortest journey J between s and t in λ(G) (or report that no such journey exists)
in O(m logm + ∑

v∈V δ2v) = O(n3) time, where δv is the degree of v in λ(G).

Proof First, we may assume without loss of generality that λ(G) is a connected graph,
and thus m ≥ n −1. For the purposes of the proof we construct from λ(G) a weighted
directed graph H with two specific vertices s′, t ′, such that there exists a journey J
in λ(G) between s and t if and only if there is a directed path P in H from s′ to t ′.
Furthermore, if such paths exist, then the weight of the shortest journey J of λ(G)

between s and t equals the weight of the shortest directed path P of H from s′ to t ′.

123

Algorithmica

First consider the (undirected) graph G ′ that we obtain when we add two vertices
s0 and t0 to λ(G) and the edges s0s and t t0. Assign to these two new edges the weight
zero and assign to them the time labels λ(s0s) = 0 and λ(t t0) = λmax + 1. Then,
clearly there exists a time-respecting path between s and t in λ(G) if and only if there
exists a time-respecting path between s0 and t0 in G ′, while the weights of these two
paths coincide. For simplicity of the presentation, denote in the following by V and E
the vertex and edge sets of G ′, respectively. Then we construct H = (VH , EH) from
G ′ = (V , E) as follows. Let VH = E . Furthermore, for every vertex v ∈ V , denote
by M(v) = {vu : u ∈ N (v)} the set of all incident edges to v in G ′. For every pair
e1, e2 ∈ M(v) for some v ∈ V , add the arc ê1e2 to EH if and only if λ(e1) < λ(e2).
In this case, we assign to the arc ê1e2 of EH the weight wH (̂e1e2) = w(e2).

Suppose first that G ′ has a journey between s0 and t0. Let J = (u0, u1, . . . , uk),
where u0 = s0 and uk = t0, be the shortest among them with respect to the weight
functionw ofG ′. Then, by the definition ofG ′, s0s and t t0 are the first and the last edges
of J . Furthermore, by the definition of a time-respecting path, λ(ui−1ui) < λ(ui ui+1)

for every i = 1, 2, . . . , k − 1. Therefore, by the above construction of H , there
exists the directed path Q = (e0, e1, . . . , ek−1) in H , where ei = ui ui+1 for every
i = 0, 1, . . . , k−1. Note that e0 = s0s and that ek−1 = t t0. Furthermore, in the weight
function wH of H , wH (êi ei+1) = w(ei+1) for every i = 0, 1, . . . , k − 2. Note that
wH (̂ek−2ek−1) = w(ek−1) = w(uk−1uk), i.e. wH (̂ek−2ek−1) = w(t t0) = 0. Thus,
the total weight w(J) of J in G ′ equals the total weight wH (Q) of Q in H .

Let now sH = s0s and tH = t t0. Suppose now that H has a path between sH and
tH . Let Q = (e0, e1, . . . , ek), where e0 = sH and ek = tH , be the shortest among
them with respect to the weight functionwH of H . Since Q is a directed path between
sH and tH , λ(ei) < λ(ei+1) for every i = 0, 1, . . . , k − 1 by the construction of H .
Furthermore, the edges ei and ei+1 of G ′ are incident for every i = 0, 1, . . . , k − 1.
Denote now by pi the common vertex of the edges ei and ei+1 in G ′ for every i =
0, 1, . . . , k − 1. We will prove that pi
= pi+1 for every i = 0, 1, . . . , k − 2. Suppose
otherwise that pi = pi+1 for some 0 ≤ i ≤ k − 2. Then the edges ei , ei+1 , and ei+2
of G ′ are as it is shown in Fig. 2, where ei = ad, ei+1 = bd, ei+2 = cd, and d = pi =
pi+1 is the common point of the edges ei , ei+1, and ei+2. However, since λ(ei) <

λ(ei+1) and λ(ei+1) < λ(ei+2), it follows that λ(ei) < λ(ei+2), and thus there exists
the arc êi ei+2 in the directed graph H . Furthermore wH (êi ei+2) = wH (̂ei+1ei+2) =
w(ei+2), and thuswH (êi ei+1)+wH (̂ei+1ei+2) > wH (êi ei+2). Therefore there exists
in H the strictly shorter directed path Q′ = (e0, e1, . . . , ei , ei+2 . . . , ek) between
e0 = sH and ek = tH . This is a contradiction, since Q is the shortest directed path
between sH and tH . Therefore pi
= pi+1 for every i = 0, 1, . . . , k − 2. Thus, we can
denote now ei = pi−1 pi for every i = 1, 2, . . . , k, where p0 = s0 and pk = t0. That
is, J = (p0, p1, . . . , pk+1) is a walk in G ′ between p0 = s0 and pk = t0.

Since Q is a simple directed path, it follows that every edge of J appears exactly
once in J , and thus J is a path of G ′. Now we will prove that J is actually a simple
path of G ′. Suppose otherwise that pi = p j for some 0 ≤ i < j ≤ k + 1. If p j = pk ,
i.e. p j = t0, then the subpath (p0, p1, . . . , pi) of J implies a strictly shorter directed
path Q′ than Q between sH and tH in H , which is a contradiction. Therefore p j
= pk .
Then, since λ(pi−1 pi) < λ(pi pi+1) for every i = 0, 1, . . . , k − 1 by the construction
of the directed graph H , it follows in particular that λ(pi−1 pi) < λ(p j p j+1), and thus

123

Algorithmica

Fig. 2 A forbidden configuration

ei

ei+1ei+2

d = pi = pi+1

a

bc

êi e j+1 is an arc in the directed graph H . Thus the path (p0, p1, . . . , pi , p j+1, . . . , pk)

of G ′ implies a strictly shorter directed path Q′ than Q between sH and tH in H , which
is again a contradiction. Therefore pi
= p j for every 0 ≤ i < j ≤ k + 1 in J , and
thus J is a simple path in G ′ between p0 = s0 and pk = t0. Finally, it is easy to check
that the weight w(J) of J in G ′ equals the weight wH (Q) of Q in H .

Summarizing, there exists a journey J in G ′ between s0 and t0 if and only if there
is a directed path Q in H from sH to tH . Furthermore, if such paths exist, then the
weight of the shortest journey J of G ′ between s0 and t0 equals the weight of the
shortest directed path Q of H from sH to tH .

Moreover, the above proof immediately implies an efficient algorithm for com-
puting the graph H from λ(G) (by first constructing the auxiliary graph G ′ from
λ(G)). This can be done in O(

∑
v∈V δ2v) time. Indeed, for every vertex v of G ′

we add at most 2
(
δv

2

) = δv(δv − 1) arcs to H . That is, |VH | = m + 2 and
|EH | ≤ ∑

v∈V (G ′) δv(δv −1) = O(
∑

v∈V δ2v). After we construct H , we can compute
a shortest directed path between sH and tH in O(|EH | + |VH | log |VH |) time using
Dijkstra’s algorithm with Fibonacci heaps [12]. That is, we can compute a shortest
directed path Q in H between sH and tH in O(m logm + ∑

v∈V δ2v) time. Once we
have computed the path Q, we can easily construct the shortest undirected journey J
in λ(G) between s and t in O(m + n) time. This completes the proof of the theorem.

�

4 AMenger’s Analogue for Temporal Graphs

In [15], Kempe et al. proved that Menger’s theorem, at least in its original formula-
tion, does not hold for single-label temporal networks in which journeys must have
non-decreasing labels (and not necessarily strictly increasing as in our case). For a
counterexample, it is not hard to see in Fig. 3 that there are no two disjoint time-
respecting paths from v1 to v4 but after deleting any one node (other than v1 or v4)
there still remains a time-respecting v1-v4 path. Moreover, they proved that the viola-
tion of Menger’s theorem in such temporal networks renders the computation of the
number of disjoint s-t paths NP-complete.

We prove in this section that, in contrast to the above important negative result, there
is a natural analogue of Menger’s theorem that is valid for all temporal networks. In

123

Algorithmica

Fig. 3 A counterexample of
Menger’s theorem for temporal
networks (adopted from [15]).
Each edge has a single
time-label indicating its
availability time

v

v3

v4

v2

v1 2 6

7

3

4

5

1

Theorem 3, we define this analogue and prove its validity. Then as an illustration
(Sect. 4.1), we show how using our theorem can simplify the proof of a recent token
dissemination result.

When we say that we remove node departure time (u, t) we mean that we remove
all time-edges leaving u at time t, i.e. we remove label t from all (u, v) edges (for all
v ∈ V). In case of an undirected graph, we replace each edge by two antiparallel edges
and remove label t only from the outgoing edges of u. So, when we ask how many
node departure times are needed to separate two nodes s and v we mean how many
node departure timesmust be selected so that after the removal of all the corresponding
time-edges the resulting temporal graph has no (s, v)-journey.5

Theorem 3 (Menger’s Temporal Analogue) Take any temporal graph λ(G), where
G = (V , E), with two distinguished nodes s and v. The maximum number of out-
disjoint journeys from s to v is equal to the minimum number of node departure times
needed to separate s from v.

Proof Assume, in order to simplify notation, that λmin = 1. Take the static expansion
H = (S, A) of λ(G). Let {ui1} and {uin} represent s and v over time, respectively
(first and last columns, respectively), where 0 ≤ i ≤ λmax. We extend H as follows.
For each ui j , 0 ≤ i ≤ λmax − 1, with at least 2 outgoing edges to nodes different
than u(i+1) j , e.g. to nodes u(i+1) j1 , u(i+1) j2 , . . . , u(i+1) jk , we add a new node wi j and
the edges (ui j , wi j) and (wi j , u(i+1) j1), (wi j , u(i+1) j2), . . . , (wi j , u(i+1) jk). We also
define an edge capacity function c : A → {1, λmax} as follows. All edges of the form
(ui j , u(i+1) j) take capacity λmax and all other edges take capacity 1. We are interested
in the maximum flow from u01 to uλmaxn . As this is simply a usual static flow network,
the max-flow min-cut theorem applies stating that the maximum flow from u01 to
uλmaxn is equal to the minimum of the capacity of a cut separating u01 from uλmaxn . So
it suffices to show that (i) the maximum number of out-disjoint journeys from s to v is
equal to the maximum flow from u01 to uλmaxn and (ii) the minimum number of node
departure times needed to separate s from v is equal to the minimum of the capacity
of a cut separating u01 from uλmaxn .

5 Note that this is a different question from how many time-edges must be removed and, as we shall see,
the latter question does not result in a Menger’s analogue. Of course, removing a node departure time again
results in the removal of some time-edges, but a Menger’s analogue based on the number of those edges
would not work. Instead, what turns out to work is an analogue based on counting the number of node
departure times.

123

Algorithmica

For (i) observe that any set of h out-disjoint journeys from s to v corresponds to a set
of h disjoint paths from u01 to uλmaxn w.r.t. diagonal edges (edges in E\{(ui j , u(i+1) j)})
and inversely, so their maximums are equal. Next observe that any set of h disjoint
paths from u01 to uλmaxn w.r.t. diagonal edges corresponds to an integral u01-uλmaxn

flow on H of value h and inversely. As the maximum integral u01-uλmaxn flow is equal
to the maximum u01-uλmaxn flow (the capacities are integral and thus the integrality
theorem of maximum flows applies) we conclude that the maximum u01-uλmaxn flow
is equal to the maximum number of out-disjoint journeys from s to v.

For (ii) observe that any set of r node departure times that separate s from v

corresponds to a set of r diagonal edges leaving ui j nodes (ending either in wi j or
in u(i+1) j ′ nodes) that separate u01 from uλmaxn and inversely. Finally, observe that
there is a minimum u01-uλmaxn cut on H that only uses such edges: for if a minimum
cut uses vertical edges we can replace them by diagonal edges and we can replace all
edges leaving a wi j node by the edge (ui j , wi j) without increasing the total capacity.

�

Corollary 1 By symmetry we have that the maximum number of in-disjoint journeys
from s to v is equal to the minimum number of node arrival times needed to separate
s from v.

Corollary 2 The following alternative statements are both valid:

• The maximum number of time-node disjoint journeys from s to v is equal to the
minimum number of time-nodes needed to separate s from v.

• The maximum number of time-edge disjoint journeys from s to v is equal to the
minimum number of time-edges needed to separate s from v.6

The following version is though violated: “the maximum number of out-disjoint
(or in-disjoint) journeys from s to v is equal to the minimum number of time-edges
needed to separate s from v” (see Fig. 4). The same holds for the original statement
of Menger’s theorem as discussed in the beginning of this section (see [15]).

4.1 An Application: Foremost Dissemination (Journey Packing)

Consider the following problem. We are given a temporal graph λ(G), where G =
(V , E), a source node s, a sink node v and an integer q. We are asked to find the
minimum arrival time of a set of q out-disjoint (s, v)-journeys or even the minimizing
set itself.

By exploiting the Menger’s analogue proved in Theorem 3 (and in order to provide
an example application of it), we give an alternative (and probably simpler to appre-
ciate) proof of the following Lemma from [10] (stated as Lemma 1 below) holding
for a special case of temporal networks, namely those that have connected instances.
Formally, a temporal network λ(G) is said to have connected instances if λ(G, t) is

6 By time-node disjointness we mean that they do not meet on the same node at the same time (in terms
of the expansion graph the corresponding paths should be disjoint in the classical sense) and by time-edge
disjointness that they do not use the same time-edge (which again translates to using the same diagonal
edge on the expansion graph).

123

Algorithmica

1

3

2 5

5

6,8

9

10

7

s v

Fig. 4 A violation of an invalid Menger’s analogue. Both edges labeled 5 must be removed to separate s
from v however there are no two out-disjoint journeys from s to v (all (s, v)-journeys must use some edge
labeled 5)

connected at all times t ∈ N. The problem under consideration is distributed k-token
dissemination: there are k tokens assigned to some given source nodes. In each round
(i.e. discrete moment in the temporal network), each node selects a single token to be
sent to all of its current neighbors (i.e. broadcast). The current neighbors at round i are
those defined by E(i). The goal of a distributed protocol (or of a centralized strategy
for the same problem) is to deliver all tokens to a given sink node v as fast as possible.
We assume that the algorithms know the temporal network in advance.

Lemma 1 Let there be k ≤ n tokens at given source nodes and let v be an arbitrary
node. Then, all the tokens can be sent to v using broadcasts in O(n) rounds.

Let S = {s1, s2, . . . , sh} be the set of source nodes and let k(si) be the number of
tokens of source node si , so that

∑
1≤i≤h k(si) = k. Clearly, it suffices to prove the

following lemma.

Lemma 2 We are given a temporal graph λ(G) with connected instances and age
α(λ) = n+k. We are also given a set of source nodes S ⊆ V , a mapping k : S → N≥1
so that

∑
s∈S k(s) = k, and a sink node v. Then there are at least k out-disjoint journeys

from S to v such that k(si) journeys leave from each source node si .

Proof We conceive k(s) as the number of tokens of source s. Number the tokens
arbitrarily. Create a supersource node s′ and connect it to the source node with token i
by an edge labeled i . Increase all other edge labels by k. Clearly the new temporal graph
D = λ′(G ′) has asymptotically the same age as the original and all properties have
been preserved (we just shifted the original temporal graph in the time dimension).
Moreover, if there are k out-disjoint journeys from s′ to v in D then by construction
of the edges leaving s′ we have that precisely k(s) of these journeys must be leaving
from each source s ∈ S. So it suffices to show that there are k out-disjoint journeys
from s′ to v. By Theorem 3 it is equivalent to show that the minimum number of
departure times that must be removed from D to separate s′ from v is k. Assume that
we remove y < k departure times. Then for more than n rounds all departure times
are available (as we have n + 2k rounds and we just have y < k removals). As every
instance of G is connected, we have that there is always an edge in the cut between the
nodes that have been reached by s′ already and those that have not, unless we remove
some departure times. As for more than n rounds all departure times are available it
is immediate to observe that s′ reaches v implying that we cannot separate s′ from v

with less that k removals and this completes the proof. �

123

Algorithmica

Part II

5 Minimum Cost Temporal Connectivity

In this section, we introduce some cost measures for maintaining different types of
temporal connectivity. According to these temporal connectivity types, individuals are
required to be capable to communicate with other individuals over the dynamic net-
work, possibly with further restrictions on the timing of these connections. We initiate
this study by considering the following fundamental problem: Given a (di)graph G,
assign labels to the edges of G so that the resulting temporal graph λ(G) minimizes
some parameter and at the same time preserves some connectivity property of G in
the time dimension. For a simple illustration of this, consider the case in which λ(G)

should contain a journey from u to v if and only if there exists a path from u to v in G.
In this example, the reachabilities of G completely define the temporal reachabilities
that λ(G) is required to have.

We consider two cost optimization criteria for a (di)graph G. The first one, called
temporality of G, measures the maximum number of labels that an edge of G has been
assigned. The second one, called temporal cost of G, measures the total number of
labels that have been assigned to all edges of G. That is, if we interpret the number
of assigned labels as a measure of cost, the temporality (resp. the temporal cost) of
G is a measure of the decentralized (resp. centralized) cost of the network, where
only the cost of individual edges (resp. the total cost over all edges) is considered.
We introduce these cost parameters in Definition 3. Each of these two cost measures
can be minimized subject to some particular connectivity property P that the labeled
graph λ(G) has to satisfy. For simplicity of notation, we consider in Definition 3 the
connectivity property P as a subset of the set LG of all possible labelings λ on the
(di)graph G. Furthermore, the minimization of each of these two cost measures can
be affected by some problem-specific constraints on the labels that we are allowed to
use. We consider here one of the most natural constraints, namely an upper bound on
the age of the constructed labeling λ.

Definition 3 Let G = (V , E) be a (di)graph, αmax ∈ N, and P be a connectivity
property. Then the temporality of (G,P, αmax) is

τ(G,P, αmax) = min
λ∈P∩LG,αmax

max
e∈E

|λ(e)|

and the temporal cost of (G,P, αmax) is

κ(G,P, αmax) = min
λ∈P∩LG,αmax

∑

e∈E

|λ(e)|

Furthermore τ(G,P) = τ(G,P,∞) and κ(G,P) = κ(G,P,∞).

Note that Definition 3 can be stated for an arbitrary property P of the labeled graph
λ(G) (e.g. some proper coloring-preserving property). Nevertheless, we only consider
hereP to be a connectivity property ofλ(G). In particular, we investigate the following
two connectivity properties P:

123

Algorithmica

• all-paths (G) = {λ ∈ LG : for all simple paths P of G, λ preserves P},
• reach (G) = {λ ∈ LG : for all u, v ∈ V where v is reachable from u in G, λ

preserves at least one simple path from u to v}.

5.1 Basic Properties of Temporality Parameters

5.1.1 Preserving All Paths

We begin with some simple observations on τ(G, all paths). Recall that given a
(di)graph G our goal is to label G so that all simple paths of G are preserved by
using as few labels per edge as possible. From now on, when we say “graph” we will
mean a directed one and we will state it explicitly when our focus is on undirected
graphs.

Another interesting observation is that if p(G) is the length of the longest path in
G then we can trivially preserve all paths of G by using p(G) labels per edge. Give to
every edge the labels {1, 2, . . . , p(G)} and observe that for every path e1, e2, . . . , ek

of G we can use the increasing sequence of labels 1, 2, . . . , k due to the fact that
k ≤ p(G). Thus, we conclude that the upper bound τ(G, all paths) ≤ p(G) holds for
all graphs G. Of course, note that equality is easily violated. For example, a directed
line has p(G) = n but τ(G, all paths) = 1.

Observation 1 τ(G, all paths) ≤ p(G) for all graphs G.

Directed Rings The following proposition states that if G is a directed ring then the
temporality of preserving all paths is 2. This means that theminimum number of labels
per edge that preserve all simple paths of a ring is 2. As the proof was already sketched
in Sect. 1, we don’t provide a proof here.

Proposition 1 τ(G, all paths) = 2 when G is a ring and τ(G, all paths) ≥ 2 when G
contains a ring.

Directed Acyclic Graphs A topological sort of a digraph G is a linear ordering of its
nodes such that if G contains an edge (u, v) then u appears before v in the ordering. It
is well known that a digraph G can be topologically sorted iff it has no directed cycles
that is iff it is a DAG. A topological sort of a graph can be seen as placing the nodes
on a horizontal line in such a way that all edges go from left to right; see e.g. [8, page
549].

Proposition 2 If G is a DAG then τ(G, all paths) = 1.

Proof Take a topological sort u1, u2, . . . , un of G. Clearly, every edge is of the form
(ui , u j) where i < j . Give to every edge (ui , u j) label i , that is λ(ui , u j) = i for all
(ui , u j) ∈ E . Now take any node ul . Each of its incoming edges has some label l ′ < l
and all its outgoing edges have label l. Now take any simple path p = v1, v2, . . . , vk

of G. Clearly, vi appears before vi+1 in the topological sort for all 1 ≤ i ≤ k − 1,
which implies that λ(vi , vi+1) < λ(vi+1, vi+2), for all 1 ≤ i ≤ k − 2. This proves
that p is preserved. As we have preserved all simple paths with a single label on every
edge, we conclude that τ(G, all paths) = 1 as required. �

123

Algorithmica

5.1.2 Preserving All Reachabilities

Now, instead of preserving all paths, we impose the apparently simpler requirement
of preserving just a single path between every reachability pair u, v ∈ V . We claim
that it is sufficient to understand how τ(G, reach), behaves on strongly connected
digraphs. Let C(G) be the set of all strongly connected components of a digraph G.
The following lemma proves that, w.r.t. the reach property, the temporality of any
digraph G is equal to the maximum temporality of its components.

Lemma 3 τ(G, reach) = max{1,maxC∈C(G) τ (C, reach)} for every digraph G with
at least one edge. In the case of no edge, τ(G, reach) = 0 trivially.

Proof Take anydigraphG.Now take theDAG D of the strongly connected components
of G. The nodes of D are the components of G and there is an edge from component C
to component C ′ if there is an edge in G from some node of C to some node of C ′. As
D is a DAG, we can obtain a topological sort of it which is a labeling C1, C2, . . . , Ct

of the t components so that all edges between components go only from left to right.
In the case where at least one component has at least 2 nodes (in which case

maxC∈C(G) τ (C, reach) ≥ 1), we have to prove that we can label G by using at most
max1≤i≤t τ(Ci , reach) labels per edge and thatwe cannot do better than this. Consider
the following labeling process. For each componentCi define di = minλ∈Ci (λmax(λ)−
λmin(λ)), where Ci is the set of all labelings of Ci that preserve all of its reachabilities
using at most τ(Ci , reach) labels per edge. Note that any Ci can be labeled beginning
from any desirable λmin with at most τ(Ci , reach) labels per edge and with λmax

equal to λmin +di . Now, label component C1 with λmin = 1 and λmax = 1+d1. Label
all edges leaving C1 with label d1 + 2. Label component C2 with λmin = d1 + 3 and
λmax = (d1 + 3) + d2 and all its outgoing edges with label (d1 + 3) + d2 + 1. In
general, label componentCi with λmin = 1+∑

1≤ j≤i−1(d j +2) and λmax = λmin+di

and label all edges leaving Ci with label λmax + 1. It is not hard to see that this
labeling scheme preserves all reachabilities of G using just one label on each edge of
G corresponding to an edge of D and at most τ(Ci , reach) labels per edge inside each
component Ci . Thus, it uses at most max1≤i≤t τ(Ci , reach) labels on every edge. By
observing that for each strongly connected component Ci , τ(Ci , reach) must be paid
by any labeling of G that preserves all reachabilities in that component, the equality
τ(G, reach) = maxC∈C(G) τ (C, reach) follows.

In the extreme case where all components are just single nodes (in which case
maxC∈C(G) τ (C, reach) = 0), it holds that D = G, therefore G itself is a DAG and
we only need 1 label per edge (as in Proposition 2) and, thus, τ(G, reach) = 1. �

Lemma 3 implies that any upper bound on the temporality of preserving the reacha-
bilities of strongly connecteddigraphs canbeused as anupper boundon the temporality
of preserving the reachabilities of general digraphs. In view of this, we focus on
strongly connected digraphs G.

We begin with a few simple but helpful observations. Obviously, τ(G, reach) ≤
τ(G, all paths) as any labeling that preserves all paths trivially preserves all reach-
abilities as well. If G is a clique then τ(G, reach) = 1 as giving to each edge a
single arbitrary label (e.g. label 1 to all) preserves all direct connections (one-step

123

Algorithmica

reachabilities) which are all present. If G is a directed ring (which is again strongly
connected) then it is easy to see that τ(G, reach) = 2. An interesting question is
whether there is some bound on τ(G, reach) either for all digraphs or for specific
families of digraphs. The following lemma proves that indeed there is a very satisfac-
tory generic upper bound.

Lemma 4 τ(G, reach) ≤ 2 for all strongly connected digraphs G.

Proof As G is strongly connected, if we pick any node u then for all v there is a (v, u)

and a (u, v)-path. As for any v there is a (v, u)-path, then we may form an in-tree Tin

rooted at u (that is a tree with all directions going upwards to u). Now beginning from
the leaves give any direction preserving labeling (just begin from labels 1 at the leaves
and increase them as you move upwards). Say that the depth is k which means that
you have increased up to label k. Now consider an out-tree Tout rooted at u that has
all edge directions going from u to the leaves. To make things simpler create second
copies of all nodes but u so that the two trees are disjoint (w.r.t. to all nodes but u).
In fact, one tree passes through all the first copies and arrives at u and the other tree
begins from u and goes to all the second copies. Now we can begin the labeling of
Tout from k + 1 increasing labels as we move away from u on Tout . This completes
the construction.

Now take any two nodes w and v. Clearly, there is a time-respecting path from
w to u and then a time-respecting path from u to v using greater labels so there is a
time-respecting path from w to v. Finally, notice that for any edge on Tin there is at
most one copy of that edge on Tout thus clearly we use at most 2 labels per edge. �

Combining Lemmas 3 and 4 gives the following theorem:

Theorem 4 τ(G, reach) ≤ 2 for all digraphs G.

5.1.3 Restricting the Age

Now notice that for all G we have τ(G, reach, d(G)) ≤ d(G); recall that d(G)

denotes the diameter of (di)graph G. Indeed it suffices to label each edge by
{1, 2, . . . , d(G)}. Since every shortest path between two nodes has length at most
d(G), in this manner we preserve all shortest paths and thus all reachabilitities arriv-
ing always at most by time d(G), thus we also preserve the diameter. Thus, a clique
G has trivially τ(G, reach, d(G)) = 1 as d(G) = 1 and we can only have large
τ(G, reach, d(G)) in graphs with large diameter. For example, a directed ring G
of size n has τ(G, reach, d(G)) = n − 1 (note that on a ring it always holds that
τ(G, reach, k) = τ(G, all paths, k), as on a ring it happens that satisfying all reach-
abilities also satisfies all paths while the inverse is true for all graphs). Indeed, assume
that from some edge e, label 1 ≤ i ≤ n − 1 is missing. It is easy to see that there is
some shortest path between two nodes of the ring that in order to arrive by time n − 1
must use edge e at time i . As this label is missing, it uses label i + 1, thus it arrives by
time n which is greater than the diameter. In this particular example we can preserve
the diameter only if all edges have the labels {1, 2, . . . , n − 1}.

On the other hand, there are graphswith large diameter inwhich τ(G, reach, d(G))

is small. This may also be the case even if G is strongly connected. For example,

123

Algorithmica

consider the graph with nodes u1, u2, . . . , un and edges (ui , ui+1) and (ui+1, ui)

for all 1 ≤ i ≤ n − 1. In words, we have a directed line from u1 to un and an
inverse one from un to u1. The diameter here is n − 1 (e.g. the shortest path from
u1 to un). On the other hand, we have τ(G, reach, d(G)) = 1: simply label one
path 1, 2, ..., n − 1 and label the inverse one 1, 2, ..., n − 1 again, i.e. give to edges
(ui , ui+1) and (un−i+1, un−i+2) label i . The reason here is that there are only two pairs
of nodes that must necessarily use the long paths (u1, un) and (un, u1) and preserve
the diameter n − 1. All other smaller shortest paths between other pairs of nodes have
now a big gap of n − 1 to exploit.

We will now demonstrate what makes τ(G, reach, d(G)) grow. It happens when
many maximum shortest paths (those that determine the diameter of G) between
different pairs of nodes that are additionally unique (the paths), in the sense that we
must necessarily take them in order to preserve the reachabilities (it may hold even
if they are not unique but this simplifies the argument), all pass through the same
edge e but use e at many different times. It will be helpful to look at Fig. 5. Each
(ui , vi)-path is a unique shortest path between ui and vi and has additionally length
equal to the diameter (i.e. it is also a maximum one), so we must necessarily preserve
all 5 (ui , vi)-paths. Note now that each (ui , vi)-path passes through e = (u1, v5) via
its i-th edge. Each of these paths can only be preserved without violating d(G) by
assigning the labels 1, 2, . . . , d(G), however note that then edge e must necessarily
have all labels 1, 2, . . . , d(G). To see this, notice simply that if any label i is missing
from e then there is some maximum shortest path that goes through e at step i . As i
is missing it cannot arrive sooner than time d(G) + 1 which violates the preservation
of the diameter.

Undirected Tree Now consider an undirected tree T .

u1

u2

u3

u4

u5

v5

v1

v2

vs

v4

Fig. 5 An example graph in which τ(G, reach, d(G)) = d(G). All paths longer than length 5 that are
formed are not shortest paths, e.g. there is a path (the dashed one) of length at most 5 from u2 to v1 and the
same for all other such pairs

123

Algorithmica

Corollary 3 If T is an undirected tree then τ(T , all paths, d(T)) ≤ 2.

Proof This follows as a simple corollary of Lemma 4. If we replace each undirected
edgeby twoantiparallel edges, thenT is a strongly connecteddigraph and, additionally,
for every ordered pair of nodes (u, v) there is precisely one simple path from u to v. The
latter implies that preserving all paths of T is equivalent to preserving all reachabilities
of T . So, all assumptions of Lemma 4 are satisfied and therefore τ(T , all paths) ≤ 2.
Finally, recall that the labeling of the construction in the proof of Lemma 4 starts
increasing labels level-by-level from the leaves to the root and then from the root to
the leaves, therefore the number of increments (i.e., the maximum label used) is upper
bounded by the diameter of T , thus, τ(T , all paths, d(T)) ≤ 2 as required. �

Trade-off on a Ring We shall now prove that there is a trade-off between the tem-
porality and the age. In particular, we consider a directed ring G = (e1, e2, . . . , en),
where the ei are edges oriented clockwise. As we have already discussed, if α = n −1
then τ(G, all paths, α) = n −1 (which is the worst possible) and if α = 2(n −1) then
τ(G, all paths, α) = 2 (which is the best possible). We now formalize the behavior
of τ as α moves from n − 1 to 2(n − 1).

Theorem 5 If G is a directed ring and α = (n − 1) + k, where 1 ≤ k ≤ n − 1,
then τ(G, all paths, α) = �(n/k) and in particular � n−1

k+1 � ≤ τ(G, all paths, α) ≤
� n

k+1� + 1. Moreover, τ(G, all paths, n − 1) = n − 1 (i.e. when k = 0).

Proof The proof of the upper bound is constructive. In particular, we present a labeling
that preserves all paths of the ring G using at most � n

k+1�+1 labels on every edge and
maximum label (n − 1)+ k. Let the ring be e1, e2, . . . , en and clockwise. We say that
an edge ei is satisfied if there is a journey of length n − 1 beginning from ei (clearly,
considering only those journeys that do not use a label greater than α = (n − 1) + k).
Consider the following labeling procedure.

• For all i = 0, 1, 2, . . . , � n
k+1� − 2

– Assign label 1 to edge e j=i(k+1)+1.
– Beginning from edge e j+1, assign labels 2, 3, . . . , (n − 1) + k clockwise.

• For i = � n
k+1� − 1, assign label 1 to edge e j=i(k+1)+1 and beginning from edge

e j+1 assign labels 2, 3, . . . , (n − 1) + (n − j) clockwise.

Note that in each iteration i we satisfy edges ei(k+1)+1, ei(k+1)+2, . . . , e(i+1)(k+1),
i.e. k +1 new edges, without leaving gaps. It follows that in � n

k+1� iterations all edges
have been satisfied. The first iteration assigns at most two labels on edge e1 and every
other iteration, apart from the last one, assigns one label on e1 (and clearly at most
one on every other edge), thus e1 gets a total of at most � n

k+1�+1 labels (and all other
edges get at most this).

Now, for the lower bound, take an arbitrary edge, e.g. e1. Given an edge ei and a
journey J from ei to e1 that uses label l1 on e1, define the delay of J as l1 − l(J),
where l(J) is the length of journey J i.e. n − i + 2. In words, the delay of a (ei , e1)-
journey is the difference between the time at which the journey visits e1 minus the
fastest time that it could have visited e1. Now, beginning from en count k + 1 times

123

Algorithmica

counterclockwise, i.e. consider edge en−k . We show that in order to satisfy en−k we
must necessarily use one of the labels {k + 2, k + 3, . . . , 2k + 2} on e1. To this end,
notice that the delay of any journey that satisfies some edge can be at most k, the
reason being that a delay of k +1 or greater implies that the journey cannot visit n −1
edges in less than (n − 1) + (k + 1) time, thus it will have to use some label greater
than α = (n − 1) + k, which is the maximum allowed. Thus, the maximum label by
which a journey that satisfies en−k can go through e1 is l(en−k) + k = 2k + 2, where
l(ei) denotes the length of the path beginning from the tail of ei and ending at the head
of e1. Moreover, the minimum label by which any journey from en−k can go through
e1 is l(en−k) = k + 2. Thus, we conclude that any journey that satisfies en−k has to
use one of the labels {k + 2, k + 3, . . . , 2k + 2} on e1.

It is not hard to see that the above idea generalizes as follows. For all i =
0, 1, . . . , � n−1

k+1 �−1, in order to satisfy edge en−i(k+1)+1 (note that en+1 = e1) wemust
necessarily use one of the labels {i(k +1)+1, i(k +1)+2, . . . , (i +1)(k +1)} on e1.
For example, for i = 0 we get {1, 2, . . . , k + 1}, for i = 1 we get {k + 2, . . . , 2k + 2},
for i = 2 we get {2k + 3, . . . , 3k + 3}, and so on. In summary, as the above sets are
disjoint, if we begin from e1 and move counterclockwise then for every k + 1 edges
we encounter we must pay for another (new) label on e1 thus we pay at least � n−1

k+1 �. �

5.2 A Generic Method for Computing Lower Bounds for Temporality

Proposition 1 showed that graphs with directed cycles need at least 2 labels on some
edge(s) in order for all paths to be preserved. Now a natural question to ask is
whether we can preserve all paths of any graph by using at most 2 labels (i.e. whether
τ(G, all paths) ≤ 2 holds for all graphs). We shall prove that there are graphs G
for which τ(G, all paths) = 	(p(G)) (recall that p(G) denotes the length of the
longest path in G), that is graphs in which the optimum labeling, w.r.t. temporality, is
very close to the trivial labeling λ(e) = {1, 2, . . . , p(G)}, for all e ∈ E , that always
preserves all paths.

Definition 4 Call a set K = {e1, e2, . . . , ek} ⊆ E(G) of edges of a digraph G an
edge-kernel if for every permutation π = (ei1 , ei2 , . . . , eik) of the elements of K
there is a simple path P of G that visits all edges of K in the ordering defined by the
permutation π .

We will now prove that an edge-kernel of size k needs at least k labels on some
edges. Our proof is constructive. In particular, given any labeling using k − 1 labels
on an edge-kernel of size k, we present a specific path that forces a kth label to appear.

Theorem 6 (Edge-kernel Lower Bound) If a digraph G contains an edge-kernel of
size k then τ(G, all paths) ≥ k.

Proof Let K = {e1, e2, . . . , ek} be such an edge-kernel of size k. Assume for con-
tradiction that there is a path-preserving labeling using on every edge at most k − 1
labels. Then there is a path-preserving labeling that uses precisely k − 1 labels on
every edge (just extend the previous labeling by arbitrary labels). On every edge ei ,
1 ≤ i ≤ k, sort the labels in an ascending order and denote by λl(e) the lth smallest

123

Algorithmica

label of edge e; e.g. if an edge e has labels {1, 3, 7}, then λ1(e) = 1, λ2(e) = 3, and
λ3(e) = 7. Note that, by definition of an edge-kernel, all possible permutations of
the edges in K appear in paths of G that should be preserved. We construct a per-
mutation π = (e j1 , e j2 , . . . , e jk) of the edges in K which cannot be time-respecting
without using a kth label on some edge. As e j1 use the edge with the maximum λ1,
that is argmaxe∈K λ1(e). Then as e j2 use the edge with the maximum λ2 between the
remaining edges, that is argmaxe∈K\{e j1 } λ2(e), and define e j3 , e j4 , . . . analogously.
It is not hard to see that π satisfies λi (e ji) ≥ λi (e ji+1) for all 1 ≤ i ≤ k − 1. This,
in turn, implies that for π to be time-respecting it cannot use the labels λ1, . . . , λi−1
at edge e ji , for all i ≥ 2, which shows that at edge e jk it can use none of the k − 1
available labels, thus a kth label is necessarily needed and the theorem follows. �

Lemma 5 If G is a complete digraph of order n then it has an edge-kernel of size
�n/2�.

Proof Note that �n/2� is the size of a maximum matching M of G. As all possible
edges that connect the endpoints of the edges in M are available, M is an edge-kernel
of size �n/2�. �

Now, Theorem 6 implies that a complete digraph of order n requires at least
�n/2� labels on some edge in order for all paths to be preserved, that is �n/2� ≤
τ(G, all paths). At the same time we have the trivial upper bound τ(G, all paths) ≤
n − 1 which follows from the fact that the longest path of a clique is hamiltonian, thus
has n − 1 edges, and for any graph G the length of its longest path is an upper bound
on τ(G, all paths).

The above, clearly remain true for the following (close to complete) bipartite
digraph. There are two partitions A = {ui : 1 ≤ i ≤ k} and B = {vi : 1 ≤ i ≤ k}
both of size k. The edge set consists of (ui , vi) for all i and (vi , u j) for all i, j . In
words, from A to B we have only horizontal connections while from B to A we have
all possible connections.

Lemma 6 There exist planar graphs G with n vertices having edge-kernels of size

	(n
1
3).

Proof The proof is done by construction. Consider the grid graph G = G2n2,2n , i.e. G
is formed as a part of the infinite grid having width of 2n2 vertices and height of 2n
vertices. Note that G is a planar graph. For simplicity of the presentation, we consider
the grid graph G on the Euclidean plane, where the vertices have integer coordinates
and the lower left vertex has coordinates (1, 1). Furthermore denote by vi, j the vertex
of G that is placed on the point (i, j), where 1 ≤ i ≤ 2n2 and 1 ≤ j ≤ 2n. For every
i ∈ {1, 2, . . . , n} denote pi = v(2i−1)n,n and qi = v(2i−1)n+1,n . We define the edge
subset S = {ei = pi qi : 1 ≤ i ≤ n}.

We now prove that S is an edge-kernel of G. Let π = (ei1 , ei2 , . . . , ein) be an
arbitrary permutation of the edges of S = {e1, e2, . . . , en}. We construct a simple
path P in G that visits all the edges of S in the order of the permutation π . That
is, we construct a path P = (pi1 , qi1 , P1, pi2 , qi2 , P2, . . . pin−1 , qin−1 , Pn−1, pin , qin).
In order to do so, it suffices to define iteratively the simple paths P1, P2, . . . , Pn−1

123

Algorithmica

e1 e2 e3 e4 e5 e6
p2 q2p1 q1 p3 q3 p4 q4 p5 q5 p6 q6

a5 b5

c5 d5

Fig. 6 The edge-kernel S = (e1, e2, . . . , en} of the grid graph with dimension 2n2 × 2n, where n = 6,
and a path P that visits the edges of S in the order of the permutation π = (ei1 , ei2 , ei3 , ei4 , ei5 , ei6) =
(e2, e5, e3, e4, e1, e6)

such that no two of these paths share a common vertex. The path P1 starts at qi1 and
continues upwards on the column of qi1 in the grid, until it reaches the top 2nth row
of the grid. Then, if i2 > i1 (resp. if i2 < i1), the path P1 continues on this top row to
the right (resp. to the left), until it reaches the column of vertex pi2 of the grid. Finally
it continues downwards on this column until it reaches pi2 , where P1 ends.

Consider now an index t ∈ {2, 3, . . . , n − 1}. In a similar manner as P1, the path
Pt starts at vertex qit . Then it continues upwards on the column of qit in the grid as
much as possible, such that it does not reach any vertex of a path Pk , where k ≤ t − 1.
Note that, if no path Pk , k ≤ t − 1, passes through any vertex of the column of qit

in the grid, then the path Pt reaches the top 2n th row of the grid in this column. On
the other hand, note that, since qit = v(2it −1)n+1,n and t ≤ n − 1, at most the upper
t − 1 ≤ n − 2 vertices of the column of qit in the grid can possibly belong to a path
Pk , where k ≤ t − 1. Thus the path Pt can always continue upwards from qit by at
least one edge. Let at be the uppermost vertex of Pt on the column of qit of the grid
(cf. Fig. 6 for t = 5 and ei5 = e1).

Assume that it+1 > it , i.e. vertex pit+1 lies to the right of vertex qit on the nth row
of the grid. Then, the path Pt continues from vertex at to the right, as follows. If Pt

can reach the column of pit without passing through a vertex of a path Pk , k ≤ t − 1,
then it does so; in this case the path Pt continues downwards until it reaches vertex pit ,
where it ends (cf. Fig. 6 for t = 3 and ei3 = e3). Suppose now that Pt can not reach
the column of Pt without passing through a vertex of a path Pk , k ≤ t − 1 (cf. Fig. 6
for t = 5 and ei5 = e1). Then, Pt continues on the row of vertex at to the right as
much as possible (say, until vertex bt), such that it does not reach any vertex of a path
Pk , k ≤ t − 1. In this case the path Pt continues from vertex bt downwards as much
as possible until it reaches a vertex ct that is not neighbored to its right to any vertex
of a path Pk , k ≤ t − 1 (cf. Fig. 6 for t = 5 and ei5 = e1). Furthermore Pt continues
from vertex ct to the right as much as possible until it reaches a vertex dt that is not
neighbored from above to any vertex of a path Pk , k ≤ t − 1. Then, Pt continues from
dt in a similar way until it reaches the column of vertex pit+1 (cf. Fig. 6 for t = 5,
ei5 = e1, and ei6 = e6), and then it continues downwards until it reaches pit+1 , where
Pt ends. Note that, by definition of the edge set S, there exist at least 2n columns of
the grid between any two edges of the set S. Furthermore there exist n − 1 rows of the
grid below every edge of S. Thus, since there exist at most t − 1 ≤ n − 2 previous
paths Pk , k ≤ t − 1, it follows that there exists always enough space for the path Pt

123

Algorithmica

in the grid to (a) reach vertex dt and (b) continue from dt until it reaches vertex pit+1 ,
where Pt ends.

Assume now that it+1 < it , i.e. vertex pit+1 lies to the left of vertex qit on the nth
row of the grid. In this case, when we start the path Pt at vertex qit , we first move one
edge downwards and then two edges to the left (cf. Fig. 6 for t = 2 and ei2 = e5, as
well as for t = 4 and ei4 = e4). After that point we continue constructing the path Pt

similarly to the case where it+1 > it (cf. Fig. 6).
Therefore, we can construct in this way all the paths P1, P2, . . . , Pn−1, such that

no two of these paths share a common vertex, and thus the path P = (pi1 , qi1 , P1, pi2 ,

qi2 , P2, . . . pin−1 , qin−1 , Pn−1, pin , qin) is a simple path of G that visits all the edges of
S in the order of the permutation π . An example of the construction of such a path P
is given in Fig. 6. In this example S = (e1, e2, . . . , e6) and π = (e2, e5, e3, e4, e1, e6).
That is, using the above notation, i1 = 2, i2 = 5, i3 = 3, i4 = 4, i5 = 1, and i6 = 6. In
this figure we also depict for t = 5 the vertices at , bt , ct that we defined in the above
construction of the path Pit .

Since such a path P exists for every permutation π of the edges of the set S, it
follows by Definition 4 that S is an edge-kernel of G, where G is a planar graph.
Finally, since G = (V , E) has by construction |V | = 4n3 vertices and |S| = n, it

follows that the size of the edge-kernel S is 	(|V | 13). This completes the proof of the
lemma. �

5.3 Computing the Cost

5.3.1 Hardness of Approximation

Consider a boolean formula φ in conjunctive normal form with two literals in every
clause (2-CNF). Let τ be a truth assignment of the variables of φ and α = (�1 ∨ �2)

be a clause of φ. Then α is XOR-satisfied (or NAE-satisfied) in τ , if one of the literals
{�1, �2} of the clause α is true in τ and the other one is false in τ . The number of clauses
of φ that are XOR-satisfied in τ is denoted by |τ(φ)|. The formula φ isXOR-satisfiable
(or NAE-satisfiable) if there exists a truth assignment τ of φ such that every clause of
φ is XOR-satisfied in τ . The Max-XOR problem (also known as the Max-NAE-2-SAT
problem) is the following maximization problem: given a 2-CNF formula φ, compute
the greatest number of clauses of φ that can be simultaneously XOR-satisfied in a truth
assignment τ , i.e. compute the greatest value for |τ(φ)|. The Max-XOR(k) problem is
the special case of the Max-XOR problem, where every variable of the input formula
φ appears in at most k clauses of φ. It is known that a special case of Max-XOR(3),
namely the monotone Max-XOR(3) problem, is APX-hard (i.e. it does not admit a
PTAS unless P=NP [9,16]), as the next lemma states [1]. In this special case of the
problem, the input formula φ is monotone, i.e. every variable appears not negated in
the formula. The monotone Max-XOR(3) problem essentially encodes the Max-Cut
problem on 3-regular (i.e. cubic) graphs, which is known to be APX-hard [1].

Lemma 7 ([1]) The (monotone) Max-XOR(3) problem is APX-hard.

Now we provide a reduction from the Max-XOR(3) problem to the problem of
computing κ(G, reach, d(G)). Let φ be an instance formula of Max-XOR(3) with n

123

Algorithmica

. . .

. . .

uxi
1

vxi
1 vxi

2

uxi
2

sxi

uxi
6

vxi
6

uxi
7,1 uxi

8,1

vxi
7,3 vxi

8,3

vxi
7,1 vxi

8,1

vxi
7,2 vxi

8,2

uxi
7,2 uxi

8,2

uxi
7,3

uxi
8,3

txi
1

txi
2

txi
3

Fig. 7 The gadget Gφ,i for the variable xi

variables x1, x2, . . . , xn and m clauses. Since every variable xi appears in φ (either as
xi or as xi) in at most 3 clauses, it follows that m ≤ 3

2n. We will construct from φ a
graph Gφ having length of a directed cycle at most 2. Then, as we prove in Theorem 7,
κ(Gφ, reach, d(Gφ)) ≤ 39n−4m −2k if and only if there exists a truth assignment τ
of φ with |τ(φ)| ≥ k, i.e. τ XOR-satisfies at least k clauses of φ. Since φ is an instance
of Max-XOR(3), we can replace every clause (xi ∨ x j) by the clause (xi ∨ x j) in φ,
since (xi ∨ x j) = (xi ∨ x j) in XOR. Furthermore, whenever (xi ∨ x j) is a clause of
φ, where i < j , we can replace this clause by (xi ∨ x j), since (xi ∨ x j) = (xi ∨ x j) in
XOR. Thus, we can assume without loss of generality that every clause of φ is either
of the form (xi ∨ x j) or (xi ∨ x j), where i < j .

For every i = 1, 2, . . . , n we construct the graph Gφ,i of Fig. 7. Note that
the diameter of Gφ,i is d(Gφ,i) = 9 and the maximum length of a directed
cycle in Gφ,i is 2. In this figure, we call the induced subgraph of Gφ,i on
the 13 vertices {sxi , uxi

1 , . . . , uxi
6 , v

xi
1 , . . . , v

xi
6 } the trunk of Gφ,i . Furthermore, for

every p ∈ {1, 2, 3}, we call the induced subgraph of Gφ,i on the 5 vertices
{uxi

7,p, uxi
8,p, v

xi
7,p, v

xi
8,p, t xi

p , } the pth branch of Gφ,i . Finally, we call the edges uxi
6 uxi

7,p

and v
xi
6 v

xi
7,p the transition edges of the pth branch of Gφ,i . Furthermore, for every

i = 1, 2, . . . , n, let ri ≤ 3 be the number of clauses in which variable xi appears in
φ. For every 1 ≤ p ≤ ri , we assign the pth appearance of the variable xi (either as xi

or as xi) in a clause of φ to the pth branch of Gφ,i .
Consider now a clause α = (�i ∨ � j) of φ, where i < j . Then, by our

assumptions on φ, it follows that �i = xi and � j ∈ {x j , x j }. Assume that the
literal �i (resp. � j) of the clause α corresponds to the pth (resp. to the qth)
appearance of the variable xi (resp. x j) in φ. Then we identify the vertices of
the pth branch of Gφ,i with the vertices of the qth branch of Gφ, j as follows. If
� j = x j then we identify the vertices uxi

7,p, uxi
8,p, v

xi
7,p, v

xi
8,p, t xi

p with the vertices

v
x j
7,q , v

x j
8,q , u

x j
7,q , u

x j
8,q , t

x j
q , respectively (cf. Fig. 9a).Otherwise, if � j = x j thenwe iden-

123

Algorithmica

uxi
1

vxi
1 vxi

2

uxi
2

sxi

uxi
6

vxi
6

1

1 2

2 3 4 5 6

2 3 3 4 4 5 5 6 6 7

uxi
3

vxi
3

uxi
4

vxi
4

uxi
5

vxi
5

(a)

uxi
1

vxi
1 vxi

2

uxi
2

sxi

uxi
6

vxi
6

1
12

2 3 4 5 6

23 34 45 56 67

uxi
3

vxi
3

uxi
4

vxi
4

uxi
5

vxi
5

(b)

Fig. 8 The labels of the edges of the trunk of Gφ,i , where a x = 0 and b x = 1

tify the vertices uxi
7,p, uxi

8,p, v
xi
7,p, v

xi
8,p, t xi

p with the vertices u
x j
7,q , u

x j
8,q , v

x j
7,q , v

x j
8,q , t

x j
q ,

respectively (cf. Fig. 9b). This completes the construction of the graph Gφ . Note that,
similarly to the graphs Gφ,i , 1 ≤ i ≤ n, the diameter of Gφ is d(Gφ) = 9 and the
maximum length of a directed cycle in Gφ is 2. Furthermore, note that for each of the
m clauses of φ, one branch of a gadget Gφ,i coincides with one branch of a gadget
Gφ, j , where 1 ≤ i < j ≤ n, while every Gφ,i has three branches. Therefore Gφ has
exactly 3n −2m branches which belong to only one gadget Gφ,i , and m branches that
belong to two gadgets Gφ,i , Gφ, j .

Theorem 7 There exists a truth assignment τ of φ with |τ(φ)| ≥ k if and only if
κ(Gφ, reach, d(Gφ)) ≤ 39n − 4m − 2k.

Proof (⇒) Assume that there is a truth assignment τ that XOR-satisfies k clauses
of φ. We construct a labeling λ of Gφ with cost 39n − 4m − 2k as follows. Let
i = 1, 2, . . . , n. If xi = 0 in τ , we assign labels to the edges of the trunk of Gφ,i as in
Fig. 8a. Otherwise, if xi = 1 in τ , we assign labels to the edges of the trunk of Gφ,i

as in Fig. 8b. We now continue the labeling λ as follows. Consider an arbitrary clause
α = (�i ∨ � j) of φ, where i < j . Recall that �i = xi and � j ∈ {x j , x j }. Assume
that the literal �i (resp. � j) of the clause α corresponds to the pth (resp. to the qth)
appearance of variable xi (resp. x j) in φ. Then, by the construction of Gφ , the pth
branch of Gφ,i coincides with the qth branch of Gφ, j .

Assume that � j = x j (cf. Fig. 9a). Then by our construction uxi
7,p = v

x j
7,q , uxi

8,p =
v

x j
8,q , v

xi
7,p = u

x j
7,q , v

xi
8,p = u

x j
8,q , and t xi

p = t
x j
q (cf. Fig. 9a). Let α be XOR-satisfied in

τ , i.e. xi = x j . If xi = x j = 0 then we label the edges of the pth branch of Gφ,i

(equivalently, the edges of the qth branch of Gφ, j), the transition edges of the pth
branch of Gφ,i , and the transition edges of the qth branch of Gφ, j , as illustrated in
Fig. 10a. In the symmetric case where xi = x j = 1 we label these edges in the same

123

Algorithmica

txi
p = t

xj
q

uxi
6

vxi
6

v
xj

6

u
xj

6

uxi
7,p

vxi
7,p

= u
xj

7,q

uxi
8,p

= v
xj

8,q= v
xj

7,q

vxi
8,p

= u
xj

8,q

(a)

txi
p = t

xj
q

uxi
6

vxi
6

uxi
7,p

vxi
7,p

uxi
8,p

vxi
8,p

v
xj

6

u
xj

6

= u
xj

7,q = u
xj

8,q

= v
xj

8,q= v
xj

7,q

(b)

Fig. 9 The gadgets for a the clause (xi ∨ x j) and b the clause (xi ∨ x j), where xi appears in the pth branch
of Gφ,i and x j (resp. x j) appears in the qth branch of Gφ, j

txi
p = t

xj
q

uxi
6

vxi
6

v
xj

6

u
xj

6

uxi
7,p

vxi
7,p

uxi
8,p

vxi
8,p

7

7

7 8 8 9

8
9

(a)

txi
p = t

xj
q

uxi
6

vxi
6

v
xj

6

u
xj

6

uxi
7,p

vxi
7,p

uxi
8,p

vxi
8,p

7

8
9

9

9988

8

7

(b)

Fig. 10 The labeling of the edges of Fig. 9a for the clause α = (xi ∨ x j), where a α is XOR-satisfied and
xi = x j = 0 in τ and b α is XOR-unsatisfied and xi = x j = 0 in τ

way as in Fig. 10a, with the only difference that we exchange the role of u’s and v’s.
Let now α be XOR-unsatisfied in τ , i.e. xi = x j . If xi = x j = 0 then we label the
edges of the pth branch of Gφ,i (equivalently, the edges of the qth branch of Gφ, j), the
transition edges of the pth branch of Gφ,i , and the transition edges of the qth branch
of Gφ, j , as illustrated in Fig. 10b. In the symmetric case where xi = x j = 1 we label
these edges in the same way as in Fig. 10b, with the only difference that we exchange
the role of u ’s and v’s. For the case where � j = x j we label the edges of Fig. 9b
similarly to the case where � j = x j (cf. Fig. 10).

Finally consider any of the 3n − 2m branches that belong to only one gadget Gφ,i ,
where 1 ≤ i ≤ n. Let this be the pth branch of Gφ,i . If xi = 0 then we label the edges
of this branch and its transition edges as illustrated in Fig. 10a (by ignoring in this
figure the vertices u

x j
6 , v

x j
6). In the symmetric case where xi = 1, we label these edges

in the same way, with the only difference that we exchange the role of u’s and v’s. This
finalizes the labeling λ of Gφ . It is easy to check that λ preserves all reachabilities of
Gφ and its greatest label is d.

Summarizing, for every i ∈ {1, 2, . . . , n}, the edges of the trunk of Gφ,i are labeled
with 18 labels (cf. Fig. 8), and thus λ uses in total 18n labels for the trunks of all Gφ,i ,
i ∈ {1, 2, . . . , n}. Furthermore, for every i ∈ {1, 2, . . . , n} and every p ∈ {1, 2, 3}, λ

123

Algorithmica

uses 1 label for the two transition edges of the pth branch of Gφ,i (cf. Fig. 10), and
thus λ uses in total 3n labels for the transition edges of all Gφ,i , i ∈ {1, 2, . . . , n}.
Moreover, for each of the 3n − 2m branches that belong to only one gadget Gφ,i ,
where 1 ≤ i ≤ n, λ uses 6 labels for the edges of this branch of Gφ,i , and thus λ

uses in total 6(3n − 2m) labels for all these 3n − 2m branches. Finally consider any
of the remaining m branches of Gφ , each of which corresponds to a clause α of φ

(i.e. this branch belongs simultaneously to a gadget Gφ,i and a gadget Gφ, j , where
1 ≤ i < j ≤ n). If α is XOR-satisfied in τ , then λ uses 6 labels for the edges of
this branch (cf. for example Fig. 10a). Otherwise, if α is XOR-unsatisfied in τ , then
λ uses 8 labels for the edges of this branch (cf. for example Fig. 10b). Therefore,
since τ XOR-satisfies by assumption k of the m clauses of φ, it follows λ uses in
total 18n + 3n + 6(3n − 2m) + 6k + 8(m − k) = 39n − 4m − 2k labels, and thus
κ(Gφ, reach, d(Gφ)) ≤ 39n − 4m − 2k.

(⇐) Assume that κ(Gφ, reach, d(Gφ)) ≤ 39n − 4m − 2k and let λ be a labeling
of Gφ that maintains all reachabilities and has minimum cost (i.e. has the smallest
number of labels); that is, |λ| ≤ 39n − 4m − 2k. Let i ∈ {1, 2, . . . , n}. Note that for
every z ∈ {1, 2, . . . , 6}, the vertices uxi

z and v
xi
z reach each other in Gφ with a unique

path (of length one). Therefore, each of the directed edges
〈
uxi

z v
xi
z

〉
and

〈
v

xi
z uxi

z
〉
, where

z ∈ {1, 2, . . . , 6}, receives at least one label in every labeling, and thus also in λ.
Similarly it follows that each of the directed edges

〈
uxi

z,pv
xi
z,p

〉
and

〈
uxi

z,pv
xi
z,p

〉
, where

z ∈ {7, 8} and p ∈ {1, 2, 3}, receives at least one label in every labeling, and thus also
in λ.

For every i ∈ {1, 2, . . . , n}, define now the two paths Pi = (sxi , uxi
1 , uxi

2 , . . . , uxi
6)

and Qi = (sxi , v
xi
1 , v

xi
2 , . . . , v

xi
6). Furthermore, for every p ∈ {1, 2, 3}, define the

paths P(i, p) = (Pi , uxi
7,p, uxi

8,p, t xi
p) and Q(i, p) = (Qi , v

xi
7,p, v

xi
8,p, t xi

p). Note that

P(i, p) and Q(i, p) are the only two paths inGφ from sxi to t xi
p with distance d(Gφ) =

9. Thus, since λ preserves all reachabilities of Gφ with maximum label 9, it follows
that for every i ∈ {1, 2, . . . , n} and every p ∈ {1, 2, 3}, the edges of P(i, p) or the
edges of Q(i, p) are labeled with the labels 1, 2, . . . , 9 in λ.

Assume that there exists an i ∈ {1, 2, . . . , n} such that all edges of the path Pi

and all edges of the path Qi are labeled in λ. Note that, if there exists no value
p ∈ {1, 2, 3} such that all edges of P(i, p) (resp. of Q(i, p)) are labeled, then
we can remove all labels from P(i, p) (resp. from Q(i, p)) and construct another
labeling λ′ that still maintains all reachabilities of Gφ but has fewer labels than
λ, which is a contradiction to the minimality assumption of λ. Therefore, there
must exist values p, q ∈ {1, 2, 3} such that all edges of P(i, p) and all edges of
Q(i, q) are labeled in λ. Then, in both cases where p = q and p
= q , we mod-
ify λ into a labeling λ′ as follows. We remove the labels from the seven edges of
the path (Qi , v

xi
7,q), and we add labels (if they do not already have labels) to the

six edges 〈uxi
6 uxi

7,z〉, 〈uxi
7,zuxi

8,z〉, 〈uxi
8,z t xi

z 〉, where z ∈ {1, 2, 3}\{p} . Note that, in this
new labeling λ′, we can always preserve all reachabilities of the vertices by choosing
the appropriate labels for the edges

〈
uxi
1 v

xi
1

〉
,
〈
v

xi
1 uxi

1

〉
,
〈
uxi
2 v

xi
2

〉
,
〈
v

xi
2 uxi

2

〉
, . . . ,

〈
uxi
6 v

xi
6

〉
,

〈vxi
6 uxi

6 〉, 〈uxi
7,zv

xi
7,z〉, 〈vxi

7,zuxi
7,z〉, 〈uxi

8,zv
xi
8,z〉, 〈vxi

8,zuxi
8,z〉, where z ∈ {1, 2, 3}, cf. for exam-

ple the labelings of Figs. 8 and 10. However, by construction, the new labeling λ′ uses
a smaller number of labels than the initial labeling λ, which is a contradiction. There-

123

Algorithmica

fore, we may assume without loss of generality that for every i ∈ {1, 2, . . . , n}, it is
not the case that all edges of both paths Pi and Qi are labeled in λ, i.e. either all edges
of Pi or all edges of Qi are labeled in λ.

We now construct a truth assignment τ for the formula φ as follows. For every
i ∈ {1, 2, . . . , n}, if all edges of the path Pi are labeled in λ, then we define xi = 0
in τ . Otherwise, if all edges of the path Qi are labeled in λ, then we define xi = 1
in τ . We will prove that |τ(φ)| ≥ k, i.e. that τ XOR-satisfies at least k clauses of the
formula φ.

Let i ∈ {1, 2, . . . , n}. Recall that each of the directed edges
〈
uxi

z v
xi
z

〉
and

〈
v

xi
z uxi

z
〉
,

where z ∈ {1, 2, . . . , 6}, receives at least one label in λ. Therefore, since all six edges
of Pi or all six edges of Qi are labeled in λ, it follows that λ uses for the trunk of Gφ,i

at least 18 labels. Thus, λ uses in total at least 18n labels for the trunks of all Gφ,i ,
i ∈ {1, 2, . . . , n}.

Let now p ∈ {1, 2, 3}. Then, since P(i, p) = (Pi , uxi
7,p, uxi

8,p, t xi
p) and Q(i, p) =

(Qi , v
xi
7,p, v

xi
8,p, t xi

p) are the only two paths in Gφ from sxi to t xi
p with distance d(Gφ) =

9, it follows that λ uses at least one label for the pair of the transition edges {〈uxi
6 uxi

7,p〉,
〈vxi

6 v
xi
7,p〉} of the pth branch of Gφ,i . Thus, λ uses in total at least 3n labels for the

transition edges of all Gφ,i , i ∈ {1, 2, . . . , n}.
Consider an arbitrary branch of Gφ , e.g. the pth branch of Gφ,i , where i ∈

{1, 2, . . . , n} and p ∈ {1, 2, 3}. Since P(i, p) and Q(i, p) are the only two paths
in Gφ from sxi to t xi

p with distance d(Gφ) = 9, it follows that λ assigns at least one
label to each of the edges {〈uxi

7,puxi
8,p〉, 〈uxi

8,pt xi
p 〉}, or at least one label to each of the

edges {〈vxi
7,pv

xi
8,p〉, 〈vxi

8,pt xi
p 〉}. Furthermore recall that each of the edges

〈
uxi

z,pv
xi
z,p

〉
and

〈
v

xi
z,puxi

z,p
〉
, where z ∈ {7, 8}, receives at least one label in λ. Therefore, λ uses at least

6 labels for an arbitrary branch of Gφ .
Consider now one of the clauses α = (�i ∨ � j) of φ that are not XOR-satisfied in τ

that we defined above. Note that there exist exactly m − |τ(φ)| such clauses in φ. Let
i < j , and thus �i = xi and � j ∈ {x j , x j }. Assume that the literal �i (resp. � j) of the
clause α corresponds to the pth (resp. to the qth) appearance of variable xi (resp. x j)
in φ. Then, by the construction of Gφ , the p th branch of Gφ,i coincides with the qth
branch of Gφ, j . Suppose first that � j = x j . Then xi = x j , since α is not XOR-satisfied
in τ . By the construction of the truth assignment τ from the labeling λ, it follows that
either all edges of P(i, p) and all edges of P(j, q) are labeled in λ (in the case where
xi = x j = 0), or all edges of Q(i, p) and all edges of Q(j, q) are labeled in λ (in
the case where xi = x j = 1). Since � j = x j , note by the construction of Gφ that the
last two edges of P(i, p) are different from the last two edges of P(j, q), while the
last two edges of Q(i, p) are different from the last two edges of Q(j, q) . Therefore,
since each of the edges 〈uxi

z,pv
xi
z,p〉 and 〈vxi

z,puxi
z,p〉, where z ∈ {7, 8}, receives at least

one label in λ, it follows that λ uses for the pth branch of Gφ,i (equivalently for the
qth branch of Gφ, j) at least 8 labels, if � j = x j .

Suppose now that � j = x j . Then xi = x j , since α is not XOR-satisfied in τ .
Similarly to the case where xi = x j , it follows that either all edges of P(i, p) and all
edges of Q(j, q) are labeled in λ (in the case where xi = x j = 0), or all edges of
Q(i, p) and all edges of P(j, q) are labeled in λ (in the case where xi = x j = 1).
Since � j = x j , note by the construction of Gφ that the last two edges of P(i, p)

123

Algorithmica

are different from the last two edges of Q(j, q), while the last two edges of Q(i, p)

are different from the last two edges of P(j, q). Therefore, since each of the edges
〈uxi

z,pv
xi
z,p〉 and 〈vxi

z,puxi
z,p〉, where z ∈ {7, 8}, receives at least one label in λ, it follows

that λ uses for the pth branch of Gφ,i (equivalently for the qth branch of Gφ, j) at least
8 labels, if � j = x j .

Summarizing, λ uses in total at least 18n labels for the edges of the trunks of
all Gφ,i , at least 3n labels for the transition edges of all Gφ,i , at least 6 labels for
an arbitrary branch of Gφ , and at least 8 labels for each of the branches of Gφ that
corresponds to a clause α of φ that is not XOR-satisfied in τ . Therefore, since Gφ

has in total 3n − m branches and φ has m − |τ(φ)| XOR-unsatisfied clauses in τ , it
follows that λ uses at least 18n + 3n + 6(3n − m − (m − |τ(φ)|)) + 8(m − |τ(φ)|) =
39n − 4m − 2|τ(φ)| labels. However |λ| ≤ 39n − 4m − 2k by assumption. Therefore
39n − 4m − 2|τ(φ)| ≤ |λ| ≤ 39n − 4m − 2k, and thus τ XOR-satisfies |τ(φ)| ≥ k
clauses in φ. This completes the proof of the theorem. �

Using Theorem 7, we are now ready to prove the main theorem of this section.

Theorem 8 (Hardness of Approximating the Temporal Cost) The problem of comput-
ing κ(G, reach, d(G)) is APX-hard, even when the maximum length of a directed
cycle in G is 2.

Proof Denote now by OPTMax-XOR(3)(φ) the greatest number of clauses that can be
simultaneously XOR-satisfied by a truth assignment of φ. Then Theorem 7 implies
that

κ(Gφ, reach, d(Gφ)) ≤ 39n − 4m − 2 · OPTMax-XOR(3)(φ) (1)

Note that a random assignment XOR-satisfies each clause of φ with probability 1
2 ,

and thus we can easily compute (even deterministically) an assignment τ that XOR-
satisfies m

2 clauses of φ. Therefore OPTMax-XOR(3)(φ) ≥ m
2 , and thus, since every

variable xi appears in at least one clause of φ, it follows that

n

2
≤ m ≤ 2 · OPTMax-XOR(3)(φ) (2)

Assume that there is a PTAS for computing κ(G, reach, d(G)). Then, for every ε > 0
we can compute in polynomial time a labeling λ for the graph Gφ , such that

|λ| ≤ (1 + ε) · κ(Gφ, reach, d(Gφ)) (3)

Given such a labeling λ we can compute by the sufficiency part (⇐) of the proof of
Theorem 7 a truth assignment τ of φ such that 39n − 4m − 2|τ(φ)| ≤ |λ|, i.e.

2|τ(φ)| ≥ 39n − 4m − |λ| (4)

Therefore it follows by (1), (2), (3), and (4) that

2|τ(φ)| ≥ 39n − 4m − (1 + ε) · κ(Gφ, reach, d(Gφ))

≥ 39n − 4m − (1 + ε) · (
39n − 4m − 2 · OPTMax-XOR(3)(φ)

)

123

Algorithmica

= ε (4m − 39n) + 2(1 + ε) · OPTMax-XOR(3)(φ)

≥ ε (4m − 78m) + 2(1 + ε) · OPTMax-XOR(3)(φ)

≥ −74εm + 2(1 + ε) · OPTMax-XOR(3)(φ)

≥ −74ε · 2OPTMax-XOR(3)(φ) + 2(1 + ε) · OPTMax-XOR(3)(φ)

= 2(1 − 73ε) · OPTMax-XOR(3)(φ)

and thus
|τ(φ)| ≥ (1 − 73ε) · OPTMax-XOR(3)(φ) (5)

That is, assuming a PTAS for computing κ(G, reach, d(G)), we obtain a PTAS for
theMax-XOR(3) problem,which is a contradiction byLemma7. Therefore computing
κ(G, reach, d(G)) is APX-hard. Finally, since the graph Gφ that we constructed
from the formula φ has maximum length of a directed cycle at most 2, it follows that
computing κ(G, reach, d(G)) is APX-hard even if the given graph G has maximum
length of a directed cycle at most 2. �

5.3.2 Approximating the Cost

In this section, we provide an approximation algorithm for computing κ(G, reach,

d(G)), which complements the hardness result of Theorem 8. Given a digraph
G define, for every u ∈ V , u’s reachability number r(u) = |{v ∈ V : v

is reachable from u}| and r(G) = ∑
u∈V r(u), that is r(G) is the total number of

reachabilities in G.

Theorem 9 There is an r(G)
n−1 -factor approximation algorithm for computing κ(G,

reach, d(G)) on any weakly connected digraph G.

Proof First of all, note that OPT ≥ n − 1, where OPT is the cost of the optimal
solution. The reason is that if a labeling labels less than n −1 edges then the subgraph
of G induced by the labeled edges is disconnected (not even weakly connected) thus
clearly fails to preserve some reachabilities. To see this, take any two components C1
and C2. G either has an edge from C1 to C2 or from C2 to C1 (or both). The two cases
are symmetric so just consider the first one. Clearly some node from C1 can reach
some node from C2 but this reachability has not been preserved by the labeling.

Now consider the following labeling algorithm.

1. For all u ∈ V , compute a BFS out-tree Tu rooted at u.
2. For all Tu , give to each edge at distance i from the root label i .
3. Output this labeling λ.

Clearly, the maximum label used by λ is d(G): indeed if an edge e was assigned
some label l > d(G) then this would imply that on some BFS out-tree e appeared
at distance > d(G) which is a contradiction. Moreover, λ preserves all reachabilities
as for every u the corresponding tree rooted at u reaches all nodes that are reachable
from u and the described labeling clearly preserves the corresponding paths. Finally,
we have that the cost paid by our algorithm is ALG = |λ| = r(G). To see this, notice

123

Algorithmica

that for all u we use (i.e. we label) precisely r(u) edges in Tu , thus, in total, we use∑
u∈V r(u) = r(G) edges by definition of r(G).
We conclude that

ALG

OPT
≤ r(G)

n − 1
⇒ ALG ≤ r(G)

n − 1
OPT

�

6 Conclusions and Further Research

There are many open problems related to the findings of the present work. We have
considered several graph families in which the temporality of preserving all paths is
very small (e.g. 2 for rings) and others in which it is very close to the worst possible
(i.e. 	(n) for cliques and 	(n1/3) for planar graphs). There are still many interesting
graph families to be investigated like regular or bounded-degree graphs. Moreover,
though it turned out to be a generic lower-bounding technique related to the existence
of a large edge-kernel in the underlying graph G, we still do not know whether there
are other structural properties of the underlying graph that could cause a growth of the
temporality (i.e. the absence of a large edge-kernel does not necessarily imply small
temporality). Similar things hold also for the reach property. There are also many
other natural connectivity properties subject to which optimization is to be performed
that we haven’t yet considered, like preserving a shortest path from u to v whenever
v is reachable from u in G, or even depart from paths and require the preservation of
more complex subgraphs (for some appropriate definition of “preservation”). Another
interesting direction which we didn’t consider in this work is to set the optimization
criterion to be the age of λ e.g. w.r.t. the all paths or the reach connectivity properties.
In this case, computing α(G, all paths) is NP-hard, which can be proved by reduction
from HAMPATH. On the positive side, it is easy to come up with a 2-factor approxi-
mation algorithm for α(G, reach, 2), where we have restricted the maximum number
of labels of an edge (i.e. the temporality) to be at most 2. Additionally, there seems
to be great room for approximation algorithms (or even randomized algorithms) for
all combinations of optimization parameters and connectivity constraints that we have
defined so far, or even polynomial-time algorithms for specific graph families. Finally,
it would be valuable to consider other models of temporal graphs and in particular
models with succinct representations, that is models in which the labels of every edge
are provided by some short function associated to that edge (in contrast to a complete
description of all labels). Such examples are several probabilistic models and several
periodic models which are worth considering.

Acknowledgements We would like to thank the anonymous reviewers of this article and its preliminary
versions. Their thorough reading and comments have helped us to improve our work substantially. Funding
was provided by Engineering and Physical Sciences Research Council (Grant No. EP/P020372/1), “ARIS-
TEIA”, European Union and Greek National Resources, Foundations of Dynamic Distributed Computing
Systems (FOCUS), MULTIPLEX - Future Emerging Technologies - European Union (Grant No. 317532).
Engineering and Physical Sciences Research Council (Grant No. EP/K022660/1), Engineering and Physical
Sciences Research Council (Grant No. EP/P02002X/1).

123

Algorithmica

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In: Proceedings of the
Third Italian Conference on Algorithms and Complexity (CIAC), pp. 288–298 (1997)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively
mobile finite-state sensors. Distrib. Comput. 18, 235–253 (2006)

3. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time of a simple
random walk on evolving graphs). In: Proceedings of the 35th International Colloquium on Automata,
Languages and Programming (ICALP), Part I, pp. 121–132. Springer (2008)

4. Berman, K.A.: Vulnerability of scheduled networks and a generalization of Menger’s theorem. Net-
works 28(3), 125–134 (1996)

5. Bollobás, B.: Modern Graph Theory, corrected edn. Springer, New York (1998)
6. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic net-

works. Int. J. Parallel Emerg. Distrib. Syst. 27(5), 387–408 (2012)
7. Clementi, A.E.F., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time in edge-markovian

dynamic graphs. In: Proceedings of the 27th ACMSymposium on Principles of Distributed Computing
(PODC), pp. 213–222 (2008)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT
Press and McGraw-Hill Book Company, New York (2001)

9. Creignou, N., Khanna, S., Sudan, M.: Complexity classifications of Boolean constraint satisfaction
problems. SIAM Monographs on Discrete Mathematics and Applications (2001)

10. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity of information
spreading in dynamic networks. In: Proceedings of the 24th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA) (2013)

11. Fleischer, L., Tardos, É.: Efficient continuous-time dynamic network flow algorithms. Oper. Res. Lett.
23(3), 71–80 (1998)

12. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algo-
rithms. J. ACM 34, 596–615 (1987)

13. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. In: Proceedings of the
12th Annual ACM-SIAM Symposium on Discrete algorithms (SODA), Philadelphia, PA, USA, pp.
210–219 (2001)

14. Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and connectivity. SIAM J.
Comput. 34(1), 23–40 (2004)

15. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. In:
Proceedings of the 32nd Annual ACM Symposium on Theory of computing (STOC), pp. 504–513
(2000)

16. Khanna, S., Motwani, R., Sudan, M., Vazirani, U.: On syntactic versus computational views of approx-
imability. SIAM J. Comput. 28(1), 164–191 (1999)

17. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of
the 42nd ACM Symposium on Theory of Computing (STOC), New York, NY, USA, 2010. ACM, pp.
513–522 (2010)

18. Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network optimization sub-
ject to connectivity constraints. In: Proceedings of the 40th International Colloquium on Automata,
Languages, and Programming (ICALP), Part II, pp. 657–668 (2013)

19. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4),
239–280 (2016)

20. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols. Theor. Comput. Sci.
412(22), 2434–2450 (2011)

21. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: New Models for Population Protocols. Morgan &
Claypool, San Rafael (2011)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica

22. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Causality, influence, and computation in possibly
disconnected synchronous dynamic networks. J. Parallel Distrib. Comput. 74(1), 2016–2026 (2014)

23. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method, vol. 23. Springer, New York
(2002)

24. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.D.: Timetable information: models and
algorithms. ATMOS 4359, 67–90 (2007)

25. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs. In: Proceedings of
the 2005 JointWorkshop on Foundations ofMobile Computing (DIALM-POMC), pp. 104–110 (2005)

26. Scheideler, C.: Models and techniques for communication in dynamic networks. In: Proceedings of
the 19th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pp. 27–49 (2002)

27. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: an empirical case study from public
railroad transport. J. Exp. Algorithm. 5, 12 (2000)

28. Xuan, B.B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic
networks. Int. J. Found. Comput. Sci. 14(02), 267–285 (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Affiliations

George B. Mertzios1 ·Othon Michail2 · Paul G. Spirakis2,3

Othon Michail
Othon.Michail@liverpool.ac.uk

Paul G. Spirakis
P.Spirakis@liverpool.ac.uk

1 Department of Computer Science, Durham University, Durham, UK

2 Department of Computer Science, University of Liverpool, Liverpool, UK

3 Department of Computer Engineering and Informatics, University of Patras, Patras, Greece

123

	Temporal Network Optimization Subject to Connectivity Constraints
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Preliminaries
	2.1 A Model of Temporal Graphs
	2.2 Further Definitions

	Part I
	3 Journey Problems
	3.1 Foremost Journeys
	3.2 Shortest Journeys with Weights

	4 A Menger's Analogue for Temporal Graphs
	4.1 An Application: Foremost Dissemination (Journey Packing)

	Part II
	5 Minimum Cost Temporal Connectivity
	5.1 Basic Properties of Temporality Parameters
	5.1.1 Preserving All Paths
	5.1.2 Preserving All Reachabilities
	5.1.3 Restricting the Age

	5.2 A Generic Method for Computing Lower Bounds for Temporality
	5.3 Computing the Cost
	5.3.1 Hardness of Approximation
	5.3.2 Approximating the Cost

	6 Conclusions and Further Research
	Acknowledgements
	References

