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Abstract

In this paper we study the long term evolution of a continuous time Markov chain
formed by two interacting birth-and-death processes. The interaction between the
processes is modelled by transition rates which are functions with suitable mono-
tonicity properties. This is in line with the approach proposed by Gauss G.F. and
Kolmogorov A.N. for modelling interaction between species in ecology. We obtain
conditions for transience/recurrence of the Markov chain and describe in detail its
asymptotic behaviour in special transient cases. In particular, we find that in some
of these cases the Markov chain escapes to infinity in an unusual way, and the cor-
responding trajectories can be rather precisely described.

1 Introduction

A birth-and-death process on Z+ = {0, 1, 2, . . .} is a continuous time Markov chain (CTMC)
that evolves as follows. Given a current state k it jumps either to k + 1, or to k − 1 (if
k > 0) at certain state dependent rates. The long term behaviour of a birth-and-death
process is well known. Namely, given a set of transition rates one can, in principle, determ-
ine whether the corresponding birth-and-death process is recurrent/positive recurrent, or
transient/explosive, and compute various characteristics of the process. These results can
be found in many books (e.g., see [6], [8] and [10]). The long term behaviour of multivariate
Markov processes with similar dynamics is less known.

In this paper we study the long term behaviour of CTMC ξ(t) = (ξ1(t), ξ2(t)) ∈ Z
2
+,

evolving as follows. Given ξ(t) = (x, y) ∈ Z
2
+ the Markov chain jumps to (x + 1, y) and

to (x, y + 1) at rates F (x)G(y) and F (y)G(x) respectively, where F and G are positive
functions on R+ = [0,∞). Also, the Markov chain jumps from (x, y) to (x − 1, y) at the
constant rate of 1, provided x > 0, and it jumps to (x, y − 1) at the same constant rate of
1, provided that y > 0.

The Markov chain is a two-dimensional analogue of integer valued birth-and-death
processes, and can be interpreted in terms of two interacting birth-and-death processes. The
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construction of the birth rates allows to model various types of both individual dynamics
and interaction between the Markov chain components. Function F determines, in terms
of statistical physics, the free dynamics of a component. Interaction between components
is modelled by choosing an appropriate function G. If, say, G ≡ 1, then ξ1(t) and ξ2(t) are
independent identically distributed birth-and-death processes. Given F , one can choose
a decreasing G in order to model a competitive interaction. If G is increasing, then a
component’s growth is accelerated by its neighbour.

Recall that a birth-and-death process on Z+ is a classic probabilistic model for the size
of a population. Therefore CTMC ξ(t) can be regarded as a stochastic model for two in-
teracting populations. The model is related to stochastic population models formulated in
terms of two interacting birth-and-death processes (e.g., see [1], [2], [3], [13], [14] and refer-
ences therein). In these models, which are stochastic versions of the famous Lotke-Volterra
model, a pair of birth-and-death processes typically evolves as follows. Given a current
state (x, y) of the components, the individual transition rates are linear in x and y, while
interaction terms, included usually in death rates (i.e. competitive interaction), are pro-
portional to xy. Our model is in the spirit of the more general approach proposed by Gauss
G.F. ([7]) and Kolmogorov A.N. ([9]) for modelling interactions in ecology. Although they
considered deterministic population models, the idea is rather general. According to this
approach, the interaction between species should be modelled by transition rates specified
by general functions with suitable (suggested by a motivating application) monotonicity
properties. A brief, but informative presentation of these ideas is given in [15], where fur-
ther references can be found. In our model the interaction is built into the birth rates,
though the model can be generalised by allowing for non-constant death rates. We do not
explore further the relationship of the Markov chain with stochastic population models and
focus on its long term behaviour which is of interest from a mathematical point of view.

It should be also noted that our Markov chain is a particular example of non-homogeneous
random walks. The long term behaviour of non-homogeneous random walks is much less
studied (e.g., see [11] and references therein) in contrast to homogeneous random walks in
domains with boundaries (e.g., see [5] and references therein).

We systematically apply the Lyapunov function approach in our proofs. This approach
is well known and widely used for determining whether a Markov process is recurrent or
transient (e.g., see [5], [11] and references therein). In Theorem 1 we establish whether
the Markov chain is transient or recurrent under fairly general assumptions on functions
F and G. Though the asymptotic behaviour of the Markov chain in this theorem can be
guessed from approximate sketches of the vector field of its mean infinitesimal jumps (see
Figures 1 and 2), the Lyapunov function approach helps to formalize these intuitive ideas.
In Theorems 2 and 3 we obtain a more detailed description of the long term behaviour of
the Markov chain in some transient cases. It should be noted that the Lyapunov function
method is also a powerful tool for detecting phenomena that might not be immediately
visible and are more refined than just recurrence/transience. Theorem 3 below provides an
example of such a phenomenon. In particular we show that in a transient case specified by
polynomial functions F and G the Markov chain with probability one escapes to infinity in
the following way. Namely, the Markov chain is eventually absorbed to either a horizontal
strip {(x, y) : y ≤ k}, or a vertical strip {(x, y) : y ≤ k}, where k is explicitly computable.
Moreover, being eventually adsorbed by the horizontal (vertical) strip, the Markov chain

2



visits every line y = i, i = 0, . . . , k ( x = i, i = 0, . . . , k) infinitely often.

2 Results

Let (Ω,F ,P) be a probability space on which the Markov chain is defined. Denote by E

the expectation with respect to probability measure P. Recall that the embedded Markov
chain, corresponding to a CTMC, is a discrete time Markov chain (DTMC) with the same
state space, and that makes the same jumps as the CTMC with probabilities proportional
to the corresponding jump rates. Let ζ(t) = (ζ1(t), ζ2(t)) ∈ Z

2
+ be the DTMC corresponding

to the CTMC ξ(t). Note that we use the same symbol t for discrete time. Given a real
valued function f on Z

2
+ denote

mf(x, y, t) = E(f(ζ1(t), ζ2(t))|ζ(0) = (x, y))− f(x, y), (x, y) ∈ Z2
+, t ∈ Z+. (1)

It is easy to see that

mf (x, y, 1) =
Lf(x, y)

γ(x, y)
, (2)

where

Lf(x, y) = (f(x+ 1, y)− f(x, y))F (x)G(y) + (f(x− 1, y)− f(x, y))1{x>0} (3)

+ (f(x, y + 1)− f(x, y))F (y)G(x) + (f(x, y − 1)− f(x, y))1{y>0}

is the generator of CTMC ξ(t), and

γ(x, y) = F (x)G(y) + F (y)G(x) + 1{x>0} + 1{y>0}, (4)

is the total intensity of jumps of CTMC ξ(t). In the last two equations and in what follows,
1A denotes the indicator function of a set A. Note that γ(x, y) = γ(y, x).

Recall that a real valued function g is called non-decreasing (non-increasing) on a set
A ⊆ R, if g(x) ≤ g(y) (g(x) ≥ g(y)) for all x, y ∈ A, such that x ≤ y. Finally, throughout
the text we denote by Ci, i = 1, 2, ..., or, just C, various constants, whose exact values are
immaterial.

We are ready now to formulate the findings of our paper. We start with the classifica-
tion of the long term behaviour of the Markov chain under fairly general assumptions on
functions F and G.

Theorem 1 Let functions F and G be positive.

1) Let function F be non-increasing and limx→∞ F (x) = 0.

a) If one of the following two assumptions holds

– function G is non-increasing and limx→∞G(x) = 0,

– function G is non-decreasing, limx→∞G(x) = ∞ and limx→∞ F (x−1)G(x) = 0,

then CTMC ξ(t) is positive recurrent.

b) If function G is non-decreasing and limx→∞ F (x)G(x) = ∞, then CTMC ξ(t) is
transient.
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2) If function F is non-decreasing, limx→∞ F (x) = ∞ and one of the following two
assumptions holds

– function G is non-decreasing and limx→∞G(x) = ∞,

– function G is non-increasing, limx→∞G(x) = 0, and
either limx→∞ F (x)G(x) = 0, or limx→∞ F (x)G(x) = ∞,

then CTMC ξ(t) is transient.

Remark 1 It is easy to see that Theorem 1 describes the long term evolution of the Markov
chain in six different cases. Firstly, if both F (x) and G(x) are non-increasing and have limit
0 at infinity (and, hence, F (x)G(x) → 0 as x → ∞), then the Markov chain is positive
recurrent. Secondly, if both F (x) and G(x) increase to infinity (and, hence, F (x)G(x) → ∞
as x → ∞), then the Markov chain is transient. Approximate sketches of a vector field of
mean infinitesimal jumps of the Markov chain in other four cases are shown in Figure 1
and Figure 2.

Remark 2 It should be noted that assumptions of the theorem are mostly motivated by
the case of polynomial functions, e.g. F (x) = (x + 1)α, α ∈ R, and G(x) = (x + 1)β,
β ∈ R. Some of these assumptions can be slightly weakened without changing the proof.
For example, in Part 2) the infinite limit of the product FG at infinity in the case of non-
increasing G can be replaced by a sufficiently large limit (at least 2). Such generalizations
are not of much interest. Also, some of these assumptions can be weakened provided that
an additional information is available about functions F and G (e.g. see Remark 5 in
Appendix).

Remark 3 Let us also discuss assumption (A1): limx→∞ F (x − 1)G(x) = 0 in Part 1)a)
of the theorem. Ideally, we would like to replace it by the following assumption (A2):
limx→∞ F (x)G(x) = 0. Assumption (A1) is violated, for example, by functions F (x) =
e−x2

and G(x) = ex
2
/x. Note that assumptions (A1) and (A2) are equivalent in many

cases. Moreover, in many cases these assumptions are equivalent to the following stronger
assumption (A3): limx→∞ F (γx)G(x) = 0, where γ ∈ (0, 1). For example, this is the case
if F (x) is a regularly varying function of index α < 0. Equivalence can take place for a
non-regular varying F as well, for example, if F (x) = e−αx and G(x) ≤ eβx, where α, β > 0
and α > β.

Remark 4 It should be noted that there is a certain phase transition in the long term
behaviour of the Markov chain in the case of non-increasing and vanishing at infinity F .
Indeed, if G is also non-increasing with zero limit at infinity, then the Markov chain is
positive recurrent. If G increases, but F (x − 1)G(x) → 0 as x → ∞, then the CTMC is
still recurrent. If G increases sufficiently fast so that F (x)G(x) → ∞ as x → ∞, then the
Markov chain becomes transient and can be even explosive.

Before we formulate Theorems 2 and 3, we would like to consider an exponential case, i.e.
F (x) = eαx and G(x) = eβx, where α, β ∈ R. Note first that in this case Theorem 1 yields
the following. If α < 0 and α+β < 0, then CTMC ξ(t) is positive recurrent. Also, if either
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Figure 1: limx→∞ F (x) = 0, limx→∞ G(x) = ∞; Left: limx→∞ F (x − 1)G(x) = 0; Right:

limx→∞ F (x)G(x) = ∞.

Figure 2: limx→∞ F (x) = ∞, limx→∞ G(x) = 0; Left: limx→∞ F (x)G(x) = 0; Right:

limx→∞ F (x)G(x) = ∞.

α < 0, α+ β > 0, or α > 0, then CTMC ξ(t) is transient. A direct computation gives that

the CTMC is reversible with the following invariant measure eα
x(x−1)+y(y−1)

2
+βxy, (x, y) ∈ Z

2
+,

which is summable if and only if α < 0, α+β < 0. Thus, the sufficient condition of positive
recurrence in Theorem 1 is also a necessary one in the exponential case. Note that CTMC
ξ(t) in the exponential case is a particular case of a Markov chain studied in [16]. The
Markov chain in [16] describes evolution of a system of locally interacting birth-and-death
processes labelled by vertices of a finite connected graph. In terms of [16], CTMC ξ(t)
corresponds to the simplest graph with just two vertices. The following proposition is an
extract of results in [16] complementing Theorem 1 in the exponential case.

Proposition 1 1) If α < 0 and α + β = 0, then CTMC ξ(t) is transient and does not
explode.

2) If either α > 0, or α + β > 0, then CTMC ξ(t) is explosive.
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3) If α = 0 and β ≤ 0, then both CTMC ξ(t) and DTMC ζ(t) are null recurrent.

4) If α = 0 and β > 0, then DTMC ζ(t) is transient and CTMC ξ(t) is explosive.

5) Furthermore, (i) if α < 0 and α + β ≥ 0, or, if 0 < α < β, then P(ζ1(t) =
ζ2(t) infinitely often) = 1, (ii) if α > |β|, then with probability 1 eventually a single
component of DTMC ζ(t) grows while the other component stops changing at all.

Theorems 2 and 3 below are examples of statements that are similar to Proposition 1.
Namely, these theorems complement Theorem 1 by providing more detailed description of
the long term behaviour of the Markov chain under additional assumptions about functions
F and G. Theorem 2 complements Part 1)b) of Theorem 1. Theorem 3 describes a rather
unusual phenomenon in a transient case specified by polynomial functions F and G.

Theorem 2 Let functions F and G be positive. Suppose that function F is non-increasing
and limx→∞ F (x) = 0, function G is non-decreasing and limx→∞G(x) = ∞. Suppose also
that limx→∞ F (x)G(x) = ∞. Then, with probability 1,

1) ζ1(t) = ζ2(t) for infinitely many t;

2) if, in addition, limx→∞
F (x+a)G(x+b)

F (x)G(x)
= 1 for any a, b ∈ R, then given any δ ∈ (0, 1)

ζ(t) ∈ {(x, y) : δx ≤ y ≤ δ−1x} for all but finitely many t.

Theorem 3 Let F (x) = (x+ 1)λ1 and G(x) = (x+ 1)−λ2, where 0 < λ1 < λ2.

1) If 0 < λ1 ≤ 1, then CTMC ξ(t) is transient and non-explosive. Further, let k ∈ Z+

be such that λ1 + kλ2 ≤ 1 < λ1 + (k + 1)λ2. Then, with a positive probability p̃
(depending on an initial state), CTMC ξ(t) is eventually absorbed by horizontal strip
{(x, y) ∈ Z

2
+ : y ≤ k} and each of the following sets {t ∈ R+ : ξ2(t) = j}, j ≤ k,

is unbounded; with probability 1 − p̃, CTMC ξ(t) is eventually absorbed by vertical
strip {(x, y) : x ≤ k} and each of the following sets {t ∈ R+ : ξ1(t) = j}, j ≤ k, is
unbounded.

2) If λ1 > 1, then CTMC ξ(t) is transient and explodes with probability 1. Further, if
τexp is the time to explosion, then with probability 1 there exists a random integer m
and a random time τ < τexp such that min(ξ1(t), ξ2(t)) = m for all t ≥ τ . In other
words, with probability one there exists a random integerm such that the Markov chain
explodes by moving eventually along either a horizontal ray {(x, y) ∈ Z

2
+ : y = m},

or along a vertical ray {(x, y) ∈ Z
2
+ : x = m}.

3 Proofs

3.1 Proof of Theorem 1

Proof of Part 1)a) of Theorem 1. There are two cases to consider. If both functions F
and G are non-increasing and tend to zero at infinity, then positive recurrence of CTMC
ξ(t) is rather obvious and we omit the proof. In the second case, where limx→∞ F (x) = 0,
limx→∞G(x) = ∞ and limx→∞ F (x−1)G(x) = 0, we are going to prove positive recurrence
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of DTMC ζ(t). Positive recurrence of the DTMC will yield positive recurrence of CTMC
ξ(t) as the transition rates are uniformly bounded below.

To prove positive recurrence of the DTMC ζ(t) we are going to apply Theorem 2.2.4
from [5] which is a generalisation of the classical Foster criterion for positive recurrence of
irreducible DTMC’s (e.g., Theorem 2.2.3, [5]). According to this theorem, DTMC ζ(t) is
positive recurrent, if there exist positive functions f : Z2

+ → (0,∞) (the Lyapunov function)
and κ : Z2

+ → N = {1, 2, ...}, and ε > 0, such that f(x, y) → ∞ as (x, y) → ∞ in any
reasonable sense (e.g. x+ y → ∞), and

mf (x, y, κ(x, y)) ≤ −εκ(x, y), (5)

where mf is defined by (1), for all (x, y) outside a bounded neighbourhood of the origin.
Here we define functions f and κ as follows

f(x, y) =

{

αx− y, 0 ≤ y ≤ x,

αy − x, 0 ≤ x < y,

where α > 3, and

κ(x, y) =

{

1, y 6= x,

2, y = x.
(6)

It is easy to see that f(x, y) > 0 on Z
2
+ and f(x, y) → ∞ as x+ y → ∞. Let us verify that

inequality (5) is satisfied with these functions. Without loss of generality, suppose that
0 ≤ y ≤ x. Notice that, in this case, if x + y is large, then x is also necessarily large (at
least (x+ y)/2).

It is easy to see that if y < x, then inequality (5) becomes mf (x, y, 1) ≤ −ε, or,
equivalently,

(α− ε)F (x)G(y)− (1 + ε)F (y)G(x)− α + ε+ 1{y>0}(1 + ε) ≤ 0.

Monotonicity of both F and G imply that the left side of the preceding display can be
bounded by

(α− ε)F (x)G(x)− (1 + ε)F (0)G(x)− α + 1 + 2ε,

where the first term vanishes and negative second and third terms dominate for large x.
Let us show that

mf (x, x, 2) ≤ −2ε. (7)

Starting at (x, x) the Markov chain can reach in two steps the following states (x+ i, x+j),
where integers i and j are such |i| + |j| = 2. It is easy to see that under assumptions of
the theorem limx→∞ γ(x + a, x + b) = 2, and limx→∞ F (x + a)G(x + b) = 0. This means
that in a finite vicinity of the diagonal located sufficiently far from the origin the DTMC
jumps only either down or left with probabilities close to 1/2, and other jumps can be
neglected. This yields that starting at (x, x), where x is sufficiently large, ζ(2) takes values
(x − 2, x), (x − 1, x − 1) or (x, x − 2) with probabilities converging to 1/4, 1/2 and 1/4
respectively, as x→ ∞, and probabilities of other potentially reachable in two steps states
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tend to zero in the same limit. Also, the differences f(x+ i, x+ j)− f(x, x) are uniformly
bounded in x. Therefore,

mf (x, x, 2) =
f(x− 2, x)− 2f(x, x) + f(x, x− 2)

4
+
f(x− 1, x− 1)− f(x, x)

2
+ C(x)

=
3− α

2
+ C(x),

where C(x) → 0 as x→ ∞, which means that the left side of (7) is less than −2ε for some
ε > 0 for all sufficiently large x by the choice of α.

Proof of Part 1)b) of Theorem 1. We are going to show transience of DTMC ζ(t). Define
f(x, y) = x+ y and Da = {(x, y) : x+ y ≥ a} ∈ Z

2
+, where a > 0. Let us show that if a is

sufficiently large, then there exists ε > 0 such that for all (x, y) /∈ Da

mf(x, y, 1) ≥ ε. (8)

Notice that if x+ y ≥ a and 0 ≤ y ≤ x, then necessarily x ≥ a/2. It is easy to see that if
0 ≤ y ≤ x, then equation (8) is equivalent to the following one

(F (x)G(y) + F (y)G(x))(1− ε)− (1 + 1{y>0})(1 + ε) ≥ 0,

and the left side of the preceding inequality can be bounded below as follows

(F (x)G(y) + F (y)G(x))(1− ε)− (1 + 1{y>0})(1 + ε)

≥ F (y)G(x)(1− ε)− 2(1 + ε)

≥ F (x)G(x)(1 − ε)− 2(1 + ε)

≥ F (a/2)G(a/2)(1− ε)− 2(1 + ε)

It is easy to see that given ε ∈ (0, 1) the right side of the last inequality is positive for
sufficiently large a. Thus, inequality (8) holds, which implies, by Theorem 4, that DTMC
ζ(t) is transient.

Proof of Part 2) of Theorem 1. Recall that in this part F is non-decreasing and tends
to infinity as x → ∞. If also limx→∞G(x) = ∞, then transience of the Markov chain is
obvious. In the rest of the proof we assume that G is non-increasing and limx→∞G(x) = 0.
As in the proof of Part 1)b), we show transience of DTMC ζ(t). There are two cases to
consider: limx→∞ F (x)G(x) = ∞ and limx→∞ F (x)G(x) = 0.

Suppose first that limx→∞ F (x)G(x) = ∞. We are going to show that there exists ε > 0
such that for all (x, y) /∈ Da, where a = a(ε) is sufficiently large, inequality (8) holds with
the same function f(x, y) = x+ y as in the proof of Part 1)b). Without loss of generality,
suppose that 0 ≤ y ≤ x, in which case inequality (8) is equivalent to the following one

(F (x)G(y) + F (y)G(x))(1− ε)− (1 + 1{y>0})(1 + ε) ≥ 0.
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The left side of the preceding inequality can be bounded below as follows

(F (x)G(y) + F (y)G(x))(1− ε)− (1 + 1{y>0})(1 + ε)

≥ F (x)G(y)(1− ε)− 2(1 + ε)

≥ F (x)G(x)(1− ε)− 2(1 + ε)

≥ F (a/2)G(a/2)(1− ε)− 2(1 + ε).

It is easy to see that given ε ∈ (0, 1) the right side of the last inequality is positive for
sufficiently large a. Therefore, by Theorem 4 DTMC ζ(t) is transient.

Suppose now that limx→∞ F (x)G(x) = 0. Fix α ∈ (0, 1) and define the following
function

f(x, y) =











αx− y, 0 ≤ y < αx,

αy − x, 0 ≤ x < αy,

1, otherwise.

(9)

We are going to show that if (x, y) ∈ A = {y < αx − C, x ≥ a} ∪ {x < αy − C, y ≥ a},
where C > 1 and a is sufficiently large, then mf (x, y, 1) ≥ ε for 0 < ε < (1 − α)/2. Due
to symmetry between x and y it suffices to show this bound for 0 ≤ y < x, in which case
inequality mf(x, y, 1) ≥ ε is equivalent to the following one

F (x)G(y)(α− ε)− F (y)G(x)(1 + ε) + 1− α− ε(1 + 1{y>0}) ≥ 0.

If 0 < y < x, then F (x)G(y) ≥ F (x)G(x) and −F (y)G(x) ≥ −F (x)G(x), therefore the left
side of the preceding display can be bounded below as follows

F (x)G(y)(α− ε)− F (y)G(x)(1 + ε) + 1− α− ε(1 + 1{y>0})

≥ (α− 1− 2ε)F (x)G(x) + 1− α− 2ε

≥ (α− 1− 2ε)F (a)G(a) + 1− α− 2ε,

and the right side of the last inequality is positive for sufficiently large a, as 1−α− 2ε > 0
and lima→∞ F (a)G(a) = 0. Now we apply again Theorem 4 with function (9) and set A to
finish the proof.

3.2 Proof of Theorem 2

Proof of Part 1) of Theorem 2. Define the following function

f(x, y) =

{

x− y, 0 ≤ y ≤ x,

y − x, y > x.

If 0 ≤ y ≤ x, then

mf(x, y, 1) =
F (x)G(y)− F (y)G(x)− 1 + 1{y>0}

γ(x, y)
≤ F (x)G(y)− F (y)G(x)

γ(x, y)
≤ 0,

as−F (y) ≤ −F (x) andG(y) ≤ G(x). Symmetry between x and y implies thatmf (x, y, 1) ≤
0 holds in the case y > x as well. This yields that η(t) = f(ζ1(t ∧ τ), ζ2(t ∧ τ)), where τ =
min{t : ζ1(t) = ζ2(t)}, is a non-negative supermartingale. Therefore, η(t) converges almost
surely to a finite limit as t→ ∞. This necessarily implies that τ = min{t : ζ1(t) = ζ2(t)} is
almost surely finite as |η(t+1)− η(t)| = 1 for t < τ , and, hence, with probability 1 DTMC
ζ(t) hits the diagonal y = x infinitely many times.

9



Proof of Part 2) of Theorem 2. Given δ ∈ (0, 1) define Kδ = {(x, y) : δx ≤ y ≤ δ−1x} and
σ = inf{t : ζ(t) /∈ Kδ}.
Proposition 2 There exists ε > 0 such that inf(x,y)∈Kδ

P(σ = ∞|ζ(0) = (x, y)) > ε.

Proof of Proposition 2. Given δ > 0 define the following functions

f(x, y) =

{

y − δx, y ≤ x,

x− δy, x < y,

and

κ(x, y) =

{

1, x 6= y,

n, x = y,

where n = n(δ) is sufficiently large and to be chosen later. We are going to show that

mf (x, y, κ(x, y)) ≥ ε′, (10)

for some ε′ > 0. Indeed, if 0 < y < x, then inequality (10) becomes mf (x, y, 1) ≥ ε′, which
is equivalent to

(1− ε′)F (y)G(x)− (δ + ε′)F (x)G(y)− 1 + δ − 2ε′ ≥ 0.

It is easy to see that the left side of the preceding display can be bounded below as follows

(1− ε′)F (y)G(x)− (δ + ε′)F (x)G(y)− 1 + δ − 2ε′

≥ (1− δ − 2ε′)F (x)G(x)− 1− 2ε′ + δ ≥ 0.

Due to symmetry between x and y inequality (10) holds for 0 < x < y as well.
If y = x then we are going to show that, given 0 < δ < 1, there exists n = n(δ) such

that mf (x, x, n) ≥ ε′, for some ε′ > 0. Indeed, assumption limx→∞
F (x+a)G(x+b)

F (x)G(x)
= 1 implies

that given integers n, i and j such that |i|+ |j| ≤ n the DTMC jumps from (x+ i, x+ j) up
and right with probabilities that tend to 1/2 as x → ∞. In turn, this yields that starting
at (x, x), where x is sufficiently large, ζ(n) takes values (x+k, x+n−k), k = 0, . . . , n with
probabilities that tend to the binomial probabilities

(

n

k

)

2−n, k = 0, . . . , n as x → ∞, and
probabilities of other states reachable in n steps tend to zero in the same limit. Therefore,

mf (x, x, n) = E (f(x+ Y, x+ n− Y ))− f(x, x) + C(x),

where Y is a Binomial random variable with parameters n and p = 1/2, and C(x) → 0 as
x → ∞. Notice also, that f(x+ a, x + b) = f(x + b, x + a) for any a, b ∈ Z. Without loss
of generality, assume that n = 2m+ 1. A direct computation (we skip some details) gives
that

E (f(x+ Y, x+ n− Y ))− f(x, x) =
1

2n−1

m
∑

k=0

(

n

k

)

(k − δ(n− k))

=
1 + δ

2n−1

m
∑

k=0

(

n

k

)

k − δn

2n−1

m
∑

k=0

(

n

k

)

=
1 + δ

2n−1

(

n2n−1 − n

2

(

2m

m

))

− δn

≈ 1− δ

2

(

n− C
1 + δ

1− δ

√
n

)

> ε′,
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for some ε′ > 0, if n is large enough. Given (x0, y0) define the following sequence of
random times n0 = 0 and nt = nt−1 + κ(ζ(nt−1)), t ≥ 1, and the following random process
S(t) = f(ζ(nt)), t ≥ 0. By construction, S(t) ≥ 0 if and only if ζ(nt) ∈ Kδ. Define also
τ0 = inf(t : S(t) < 0). It is easy to see that event {τ0 = ∞} implies event {σ = ∞}.
Inequality (10) yields that E(S(t + 1) − S(t)|S(t)) ≥ ε′ and, therefore, by Theorem 5,
we obtain that there exists ε > 0 such that P(τ0 = ∞|ζ(0) ∈ Kδ) > ε. Consequently,
P(σ = ∞|ζ(0) ∈ Kδ) > ε. Proposition 2 is proved.

Part 1) of the theorem implies that with probability 1 DTMC ζ(t) returns to set
Kδ. Define Am = {the DTMC leaves setKδ at leastm times}. By Proposition 2, we have
that P(Am|Am−1) ≤ 1 − ε, where ε ∈ (0, 1). Consequently, this yields that P(Am) =
P(Am|Am−1) · · ·P(A1) ≤ (1 − ε)m, so that with probability 1 DTMC ξ(t) leaves set Kδ

finitely many times. The proof of Part 2) of the theorem is finished.

3.3 Proof of Theorem 3

First we note that if 0 < λ1 < λ2 then F (x) = (x+ 1)λ1 → ∞, G(x) = (x+ 1)−λ2 → 0 and
F (x)G(x) → 0 as x → ∞. Therefore transience of the CTMC ξ(t) in both parts of the
theorem is implied by Theorem 1.

3.3.1 Proof of Part 1 of Theorem 3

The proof is divided on steps given by Propositions 3, 4 and 5, Corollary 1, and Lemmas 1
and 2. The lemmas form the cornerstone of the proof and based on the so called Lyapunov
functions approach (e.g., see [5]) widely used for study the long term behaviour of Markov
processes.

We start with showing non-explosiveness of the CTMC.

Proposition 3 Let F (x) = (x+1)λ1 and G(x) = (x+1)−λ2, where 0 < λ1 ≤ 1 and λ2 > 0.
Then CTMC ξ(t) is non-explosive with probability 1.

Proof of Proposition 3. Let γ(x, y) be a total intensity of jumps of the CTMC at state
(x, y). It is easy to see that

γ(x, y) = (x+ 1)λ1(y + 1)−λ2 + (y + 1)λ1(x+ 1)−λ2 + 1{x>0} + 1{y>0}

≤ (x+ 1)λ1 + (y + 1)λ1 + 2

≤ 2(max(x, y) + 1)λ1 + 2,

and, hence, γ−1(x, y) ≥
[

2(max(x, y) + 1)λ1 + 2)
]−1

. Let (xn, yn), n ∈ Z+, be a traject-
ory of the Markov chain, such that limn→∞max(xn, yn) = ∞, and consider any of its
subsequences (xnk

, ynk
), k ∈ Z+, such that max(xnk

, ynk
) = k. It is easy to see that

∞
∑

n=1

1

γ(xn, yn)
≥

∞
∑

k=1

1

γ(xnk
, ynk

)
≥

∞
∑

k=1

1

2((k + 1)λ1 + 1)
= ∞.

Thus
∑∞

n=1 γ
−1(xn, yn) = ∞, and, hence, by the well-known criterion of non-explosiveness,

the Markov chain is not explosive. Proposition 3 is proved.
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Proposition 4 Let F (x) = (x + 1)λ1 and G(x) = (x + 1)−λ2, where 0 < λ1 ≤ 1 and
λ1 < λ2. Let τ0 = inf{t : min(ξ1(t), ξ2(t)) = 0}. Then there exists ε > 0 such that for any
initial state (x, y)

E(τ0|ξ(0) = (x, y)) ≤ min(x, y)/ε.

Proof of Proposition 4. Note first that by Proposition 3 CTMC ξ(t) is non-explosive.
Denote η(t) = min(ξ1(t), ξ2(t)) and define Yt = η(t ∧ τ0). If (ξ1(t), ξ2(t)) = (x, y), where
0 ≤ y ≤ x, then η(t) = ξ2(t) = y and

E(Y (t + dt)− Y (t)|ξ(t) = (x, y)) = ((x+ 1)−λ2(y + 1)λ1 − 1)dt+ ō(dt)

≤ ((x+ 1)λ1−λ2 − 1)dt+ ō(dt) ≤ −εdt,

on {t < τ0}, for some ε > 0, and where ō(dt)/dt→ 0 as dt→ 0. By the symmetry between
x and y we get that

E(Y (t + dt)− Y (t)|ξ(t) = (x, y)) ≤
(

(max(x, y) + 1)λ1−λ2 − 1
)

dt+ ō(dt) ≤ −εdt,

for all (x, y) ∈ Z
2
+, on {t < τ0}. Proposition 4 is now implied by Theorem 6 in Appendix.

Proposition 3 and Proposition 4 yield the following corollary.

Corollary 1 Under assumptions of Proposition 4 set {t ∈ R+ : min(ξ1(t), ξ2(t)) = 0} is
unbounded with probability 1.

The next lemma states that with a positive probability the Markov chain stays forever in
a strip along one of the coordinate axis.

Lemma 1 Let F (x) = (x + 1)λ1 and G(x) = (x + 1)−λ2, where 0 < λ1 ≤ 1 and λ2 > 0.
Let k ∈ Z+ be such that λ1+(k+1)λ2 > 1. Given N ∈ Z+ define D1,k,N = {x ≥ N, y ≤ k}
and τ1,k,N = inf{t : ξ(t) /∈ D1,k,N}. Similar, define D2,k,N = {x ≤ k, y ≥ N} and τ2,k,N =
inf{t : ξ(t) /∈ D2,k,N}. If N is sufficiently large then there exists δ > 0 such that

inf
(x,y)∈D1,k,N

P(τ1,k,N = ∞|ξ(0) = (x, y)) > δ (11)

and
inf

(x,y)∈D2,k,N

P(τ2,k,N = ∞|ξ(0) = (x, y)) > δ. (12)

Lemma 1 is proved in Section 3.4.
We are interested in the minimal k satisfying the requirement of Lemma 1. Namely, let

kmin be such that λ1+λ2kmin ≤ 1 < λ1+λ2(kmin+1). As the Markov chain is transient, we
can assume for the rest of the proof that N is so large that i) sets D1,kmin,N and D2,kmin,N

are disjoint; ii) bounds (11) and (12) hold.

Proposition 5 With a positive probability p̃, depending on ξ(0), CTMC ξ(t) is eventually
absorbed by horizontal strip D1,kmin,N , and with probability 1 − p̃ CTMC ξ(t) is eventually
absorbed by vertical strip D2,kmin,N .
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Proof of Proposition 5. Note first that by Corollary 1 CTMC ξ(t) returns to set {x ≥
N, y ≤ kmin}∪ {x ≤ kmin, y ≥ N} with probability 1. Further, by Lemma 1, if the Markov
chain is in either of these strips, then it remains there with a probability bounded away
from zero. Consequently, with probability 1 CTMC ξ(t) is eventually absorbed by the
union of these strips. This can be shown in the same way as the similar fact in the proof of
Part 2) of Theorem 2 (i.e. absorption by cone Kδ). Finally, it is obvious that absorption by
strip {x ≥ N, y ≤ kmin} and absorption by strip {x ≤ kmin, y ≥ N} are mutually exclusive
events, as the strips are disjoint by assumption. Proposition 5 is proved.

Lemma 2 Define τk,1 = inf(t ≥ 0 : ξ1(t) = k) and τk,2 = inf(t ≥ 0 : ξ2(t) = k). If
0 < λ1 < 1, λ2 > 0 and integer k ≥ 1 are such that λ1 + kλ2 ≤ 1, then

P(τk,1 <∞|ξ1(0) = 0) = P(τk,2 <∞|ξ2(0) = 0) = 1.

Lemma 2 is proved in Section 3.5. Now we use this lemma to finish the proof. Lemma 2
and Corollary 1 yield that if CTMC ξ(t) is absorbed by horizontal strip {x ≥ N, y ≤ kmin},
then it visits each of the following sets y ≡ i, i = 0, . . . , kmin, infinitely many times. Similar,
if CTMC ξ(t) is absorbed by vertical strip {x ≤ kmin, y ≥ N}, it visits each of the following
sets x ≡ i, i = 0, . . . , kmin, infinitely many times.

Part 1) of Theorem 3 is now proved.

3.3.2 Proof of Part 2) of Theorem 3

Given m ∈ Z+ and 0 < ν < λ1 − 1, define the following function

f(x, y) =

{

x−ν , y = m, x > 0

1, y 6= m or x = 0.
(13)

It is easy to see that

Lf(x,m) =

(

1

(x+ 1)ν
− 1

xν

)

(x+ 1)λ1

(m+ 1)λ2
+

(

1

(x− 1)ν
− 1

xν

)

+

(

1− 1

xν

)(

(m+ 1)λ1

(x+ 1)λ2
+ 1

)

, (14)

≤ −C1x
−ν−1+λ1 + νx−ν−1 +

(m+ 1)λ1

(x+ 1)λ2
+ 1 ≤ −ε,

for some ε > 0 and for all x ≥ Nm, where Nm is sufficiently large. Bound (14) implies that
conditioned to stay in set Km,N CTMC ξ(t) explodes, with a positive probability depending
on m, by Theorem 1.12, [12]. By symmetry between x and y we immediately obtain the
same for any vertical ray {y ≥ Nm, x = m}. Let τexp be the time to explosion, τ0 =
inf{t : min(ξ1(t), ξ2(t)) = 0} (as in Proposition 4) and τ = min(τexp, τ0). One can show, by
repeating verbatim the proof of Proposition 4, that there exists ε > 0 such that E(τ |ξ(0) =
(x, y)) ≤ min(x, y)/ε. This bound and conditional explosion along a horizontal and a
vertical ray yield that P(τexp <∞) = 1. Next, it is easy to see that min(ξ1(t), ξ2(t)) jumps
with uniformly bounded rates, therefore it changes finitely many times before explosion.
This yields that the Markov chain eventually explodes being absorbed by either a horizontal
ray {y = const} or a vertical ray {x = const}.
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3.4 Proof of Lemma 1

Due to symmetry between x and y it suffices to prove bound (11) only. It should be noted
that the proof is reminiscent of the proof of the well known criteria for transience of a
countable Markov chain (e.g., Theorem 2.2.2, [5]). In particular, it consists in constructing
a bounded positive function f such that random process f(ξ(t)) is supermartingale.

Fix an integer k ≥ 1 such that 0 < λ1 ≤ 1 < λ1 + (k + 1)λ2. Suppose there exists a
positive function fk on Z

2
+ such that

1. maxy≤k fk(x, y) → 0 as x→ ∞,

2. Lfk(x, y) ≤ 0 for all (x, y) ∈ {x ≥ N, y ≤ k},

3. supx≥N maxi=0,...,k fk(x, i) ≤ N−β , where N, β > 0, and

4. fk(x, y) = 1 for all (x, y) /∈ {x ≥ N, y ≤ k}.

Define τ = inf(t : ξ(t) /∈ {x ≥ N, y ≤ k}). The properties of fk imply that random process
η(t) = fk(ξ1(t ∧ τ), ξ2(t ∧ τ)) is a positive supermartingale and, hence, it almost surely
converges to a finite limit η∞ that can take only values 1 and 0. By Fatou’s Lemma

E(η∞|ξ(0) = (x, y)) = P(τ <∞|ξ(0) = (x, y)) ≤ E(η(0)|ξ(0) = (x, y))

= fk(x, y) ≤ N−β ,

for all (x, y) ∈ {x ≥ N, y ≤ k}, and, hence, P(τ = ∞|ξ(0) = (x, y)) ≥ 1 − N−β , for all
(x, y) ∈ {x ≥ N, y ≤ k}. In the rest of the proof we provide functions fk.

Function f0. Fix 0 < ν < λ1 + λ2 − 1 and define the following function

f0(x, y) =

{

1, y > 0 or x = 0,

x−ν , y = 0, x > 0.
(15)

The following bound is obvious

sup
x≥N

f0(x, 0) ≤ N−ν . (16)

Let us show that, if x ≥ N , where N is sufficiently large, then Lf0(x, 0) ≤ 0. Indeed, a
direct computation gives that

Lf0(x, 0) =

(

1

(x+ 1)ν
− 1

xν

)

(x+ 1)λ1 +

(

1

(x− 1)ν
− 1

xν

)

+

(

1− 1

xν

)

(x+ 1)−λ2

≤ −C1x
−ν−1+λ1 + νx−ν−1 + C2x

−λ2 ≤ 0,

for all sufficiently large x, as λ1 + λ2 − 1 > ν.
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Functions fk, k ≥ 1. If k = 1, then we define

f1(x, y) =











1, y ≥ 2 or x = 0,

x−ν1 , y = 1, x > 0,

x−ν1 − x−ν1−ν2, y = 0, x > 0,

(17)

where ν1 > 0 and ν2 > 0 are such that ν1 + ν2 < λ2 and λ1 + λ2 + ν2 > 1 (it is easy to see
that such numbers ν1 and ν2 exist). If k ≥ 2, then we define

fk(x, y) =



















1, y ≥ k + 1 or x = 0,

x−ν1 , y = k, x > 0,

x−ν1 − x−ν1−ν2 , y = k − 1, x > 0,

x−ν1 − x−ν1−ν2 − . . .− x−ν1−ν2−...−νk+1−y , y = 0, . . . , k − 2, x > 0,

(18)

where positive real numbers ν1, . . . , νk+1 satisfy the following system of inequalities











λ2 > ν1 + ν2,

0 < νi < λ2, i = 3, . . . , k + 1,

1 < λ1 + λ2 + ν2 + . . .+ νk+1.

(19)

It is easy to see that system of inequalities (19) has many solutions and for all k ≥ 1 the
following bound holds

sup
x≥N

max
0≤i≤k

fk(x, i) ≤ sup
x≥N

fk(x, k) ≤ N−ν1 . (20)

A direct computation gives that

Lf1(x, 1) =

(

1

(x+ 1)ν1
− 1

xν1

)

(x+ 1)λ1

2λ2
+

(

1

(x− 1)ν1
− 1

xν1

)

+

(

1− 1

xν1

)

2λ1

(x+ 1)λ2
− 1

xν1+ν2
,

and, hence,
Lf1(x, 1) ≤ −C1x

−1−ν1+λ1 + C2x
−λ2 − x−ν1−ν2 ≤ 0,

Lf1(x, 0) ≤ xλ1(−C1x
−1−ν1 + C2x

−ν1−ν2−λ1−λ2) ≤ 0,

for all sufficiently large x, as λ2 > ν1 + ν2 and λ1 + λ2 + ν2 > 1.
If k ≥ 2, then a direct computation gives that

Lfk(x, k) ≤
(

1

(x+ 1)ν1
− 1

xν1

)

(x+ 1)λ1

(k + 1)λ2
+

(

1

(x− 1)ν1
− 1

xν1

)

+

(

1− 1

xν1

)

(k + 1)λ1

(x+ 1)λ2
− 1

xν1+ν2

≤ −C1x
−1−ν1+λ1 + C2x

−λ2 − x−ν1−ν2 ≤ 0,
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for sufficiently large x, as λ2 > ν1 + ν2. Further, given i = 2, . . . , k, we get in a similar way
that

Lfk(x, k + 1− i) ≤ xλ1(−C1x
−1−ν1 + C2x

−ν1−...−νi−λ1−λ2 − x−ν1−ν2−...−νi+1−λ1).

Notice that the second inequality of (19) implies that

−ν1 − . . .− νi − λ1 − λ2 < −ν1 − ν2 − . . .− νi+1 − λ1,

and, hence, Lfk(x, k − i+ 1) ≤ 0, provided that x is sufficiently large.
Finally, the bottom inequality in (19) implies that

Lfk(x, 0) ≤ xλ1(−C1x
−1−ν1 + C2x

−ν1−...−νk+1−λ1−λ2) ≤ 0,

for sufficiently large x.
The lemma is proved.

3.5 Proof of Lemma 2

Due to symmetry between x and y it suffices to prove only that P(τk,2 <∞|ξ2(0) = 0) = 1.
It should be noted that the proof is reminiscent of the proof of the well-known criteria for
recurrence of a countable Markov chain (e.g., Theorem 2.2.1, [5]). In particular, it consists
in constructing an unbounded positive function g such that random process g(ξ(t)) is a
supermartingale.

Given an integer k ≥ 1, we are going to construct function gk satisfying the following
conditions

1. gk(x, i) → ∞ as x → ∞ for all 0 ≤ i < k,

2. gk(x, y) = 1 on {x = 0} ∪ {y ≥ k},
3. Lgk(x, y) ≤ 0 for all (x, y) ∈ {x ≥ N, y ≤ k − 1}, where N > 0.

Properties of such function gk imply that the random process ηk(t) = gk(ξ(t ∧ τk,2)) is a
positive supermartingale and, hence, converges almost surely. If (x, y) ∈ {x ≥ N, y ≤ k−1},
then the Markov chain jumps to the right with a rate that is approximately equal to xλ1

for sufficiently large x → ∞, while rates of jumps down, up or left are uniformly bounded
over states (x, y) ∈ {x ≥ N, y ≤ k − 1}. It means that conditioned to stay in strip
{x ≥ N, y ≤ k − 1} component ξ1(t) tends to infinity as t → ∞ and, by construction, so
does ηk(t), which contradicts its convergence, unless P(τk,2 <∞) = 1.

In the rest of the proof we construct the functions gk, k ≥ 1. Note that in what follows
we write ψ(x) ≈ φ(x) for all sufficiently large x, if limx→∞ ψ(x)/φ(x) = 1.

Function g1. Suppose that λ1 + λ2 ≤ 1 and define

g1(x, y) =

{

1, y ≥ 1 or x = 0,

xν1 , x > 0, y = 0,

where 0 < ν1 < 1. It is easy to see that

Lg1(x, 0) ≈ ν1x
ν1−1+λ1 − xν1−λ2,

for all sufficiently large x. If λ1 + λ2 < 1, then ν1 − 1 + λ1 < ν1 − λ2, hence, Lg1(x, 0) ≤ 0.
If λ1 + λ2 = 1, then Lg1(x, 0) ≈ (ν1 − 1)xν1−λ2 < 0 for all sufficiently large x, as ν1 < 1.
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Function g2. If λ1 + 2λ2 ≤ 1, then we define

g2(x, y) =











1, y ≥ 2 or x = 0,

xν1 , y = 1, x > 0,

xν1 +B1x
ν1−ν2, y = 0, x > 0,

where
{

λ2 < ν2 < ν1, ν2 < 1− λ1 − λ2, B1 = 1, ifλ1 + 2λ2 < 1,

ν2 = λ2 < ν1 < B1 < 2λ1 , ifλ1 + 2λ2 = 1.
(21)

It is easy to see that Lg2(x, 0) ≈ ν1x
ν1−1+λ1 − B1x

ν1−ν2−λ2 for all sufficiently large x.
If λ1 + 2λ2 = 1, then Lg2(x, 0) ≤ 0, because of the bottom line in condition (21). If
λ1 + 2λ2 < 1, then the upper line in condition (21) yields that ν1 − 1 + λ1 < ν1 − ν2 − λ2,
and, hence, Lg2(x, 0) ≤ 0 for all sufficiently large x.

Further, it is easy to see that Lg2(x, 1) ≈ 2−λ2ν1x
ν1−1+λ1 + B1x

ν1−ν2 − 2λ1xν1−λ2 for all
sufficiently large x. If λ1 + 2λ2 = 1, then both positive terms are smaller than 2λ1xν1−λ2 ,
as ν1 − 1 + λ1 < ν1 − λ2 and B1 < 2λ1 respectively. If λ1 + 2λ2 < 1, then the negative
term dominates both positive terms because ν1 − 1 + λ1 < ν1 − λ2 (as λ1 + λ2 < 1), and
ν1 − ν2 < ν1 − λ2 (as λ2 < ν2). Hence, we have again that Lg2(x, 1) ≤ 0 for all sufficiently
large x.

Functions gk, k ≥ 3. If λ1 + kλ2 ≤ 1, where k ≥ 3, then we define function gk as follows

gk(x, y) =



















1, y ≥ k or x = 0,

xν1 , y = k − 1, x > 0,

xν1 +B1x
ν1−ν2, y = k − 2, x > 0,

xν1 +B1x
ν1−ν2 + . . .+Bi−1x

ν1−ν2−...−νi, y = k − i, i = 3, . . . , k, x > 0,

where
{

Bi = 1, i = 1, . . . , k − 1, λ2 < νi, i = 2, . . . , k,

ν2 + . . .+ νk < min(1− λ1 − λ2, ν1), if λ1 + λ2k < 1,
(22)

and
{

B1 < kλ1 , λ2(k − 1) < ν1 < Bk−1,

Bi < (k − i+ 1)λ1Bi−1, i = 2, . . . , k − 2, νi = λ2, i = 2, . . . , k, if λ1 + λ2k = 1.
(23)

A direct computation gives that

Lgk(x, 0) ≈ ν1x
ν1−1+λ1 − Bk−1x

ν1−ν2−...−νk−λ2

= xν1−1+λ1(ν1 −Bk−1x
1−λ1−λ2−ν2−...−νk),

for all sufficiently large x, where if λ1 + λ2k = 1, then the right hand side is xν1−1+λ1(ν1 −
Bk−1) < 0 by condition (23), and if λ1 + λ2k < 1, then the right hand side is negative by
condition (22).
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Further, a direct computation gives that

Lgk(x, k − i) ≈ ν1(k − i+ 1)−λ2xν1−1+λ1 − (k − i+ 1)λ1Bi−1x
ν1−ν2−...−νi−λ2

+Bix
ν1−ν2−...−νi−νi+1,

for i = 2, . . . , k−2, for all sufficiently large x. As before, consider two cases. If λ1+λ2k = 1,
then

xν1−1+λ1(ν1 − (k − i+ 1)λ1Bi−1x
1−λ1−λ2−ν2−...−νi) < 0,

as 1−λ1−λ2−ν2−. . .−νi = 1−λ1−iλ2 > 0, so that the first positive term is asymptotically
dominated by the negative one. Also, comparing the negative term with the second positive
one we get that

Bix
ν1−ν2−...−νi−νi+1 − (k − i+ 1)λ1Bi−1x

ν1−ν2−...−νi−λ2

= xν1−iλ2(Bi − (k − i+ 1)λ1Bi−1) < 0,

by (23). If λ1+λ2k < 1, then condition (22) implies that ν1−1 < ν1−ν2− . . .−νi−λ1−λ2
and ν1 − ν2 − . . .− νi − λ1 − λ2 > ν1 − ν2 − . . .− νi − νi+1 − λ1, so that Lfk(x, k − i) ≤ 0
for all sufficiently large x.

Finally, we get that

Lgk(x, k − 1) ≈ ν1k
−λ2xν1−1+λ1 +B1x

ν1−ν2 − kλ1xν1−λ2 ≤ 0,

for all sufficiently large x. Indeed, if λ1 + λ2k ≤ 1, k ≥ 3, then ν1 − 1 + λ1 < ν1 − λ2,
so that term kλ1xν1−λ2 is larger (for sufficiently large x) than ν1x

ν1−1+λ1 . To deal with
another positive term in the preceding display, we consider two cases. If λ1+λ2k < 1, then
ν1 − ν2 < ν1 − λ2, because of condition (22). If λ1 + λ2k = 1, then ν1 − ν2 = ν1 − λ2, but
B1 < kλ1 . Thus, in both cases B1x

ν1−ν2 < kλ1xν1−λ2 for all sufficiently large x.
The lemma is proved.

Appendix

Remark 5 It should be noted that our results imply transience of CTMC ξ(t) in the case
of polynomial functions F (x) = (x + 1)λ1 and G(x) = (x + 1)−λ2 for any λ1, λ2 > 0.
Indeed, if 0 < λ1 < λ2 then, as it is mentioned at the beginning of the proof of Theorem 3,
Theorem 1 applies. If 0 < λ1 ≤ 1 and λ2 > 0, then Lemma 1 implies transience. If λ1 > 1,
then (whatever λ2 is) transience is implied the criteria for transience of a countable Markov
chain (e.g. Theorem 2.2.2, [5]) which applies in this case with Lyapunov function (13).
Further, condition 0 < λ1 < λ2 in Theorem 3 is not necessary to show just transience.
We essentially use this condition in both parts of Theorem 3 to describe how exactly the
Markov chain escapes to infinity.

For the reader’s convenience we provide some facts that were used in our paper. Theorem
4 is a version of Theorem 2.2.7, [5], Theorem 5 is a version of Theorem 2.1.9, [5], and
Theorem 6 is Lemma 7.3.6 in [11].
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Theorem 4 (Theorem 2.2.7, [5]). Let η(t) be an irreducible aperiodic discrete time Markov
chain on a countable space A. For η(t) to be transient, it suffices that there exist a positive
function f(η), η ∈ A, a bounded positive integer valued function κ(η), η ∈ A, and numbers
ε, C > 0 such that, setting AC = {η ∈ A : f(η) ≥ C} 6= ∅, the following conditions hold:

1) supη∈A κ(η) <∞;
2) E(f(η(t+ κ(η))|η(t) = η)− f(η) ≥ ε for all η ∈ AC;
3) for some d > 0, the inequality |f(η′)−f(η′′)| > d implies that the transition probability

from η′ to η′′ is zero.

Theorem 5 (Theorem 2.1.9, [5]). Let η(t), t ∈ Z+, be R+-valued process adapted to a
filtration (Ft, t ∈ Z+). Define τC = min(t ≥ 1 : η(t) ≤ C}, where C > 0. Suppose that
its jumps η(t + 1) − η(t), t ∈ Z+, are uniformly bounded and there exists ε > 0 such that
E(η(t+ 1)|Ft) ≥ η(t) + ε, on {t ≤ τC}, and η(0) > C. Then P(τC = ∞) > 0.

Theorem 6 (Lemma 7.3.6, [11]). Let (η(t), t ∈ R+) be an R+-valued process adapted to a
filtration (Ft, t ∈ R+) and let τ = inf(t : η(t) = 0). Suppose that there exists ε > 0 such
that E(η(t+ dt)− η(t)|Ft−) ≤ −εdt, on {t ≤ τ}. Then E(τ |F0) ≤ ε−1η(0).
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