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Abstract 25 

Winter thaw episodes, especially when accompanied by rain, can significantly deplete the 26 

winter snowpack, which is a critical water storage component in the mountainous headwater 27 

regions of the major river basins of western Canada. Here we identify the characteristic 28 

synoptic-scale mid-tropospheric atmospheric circulation regimes that tend to foster such 29 

extreme hydrologic events using self-organizing map analysis of meteorological reanalysis 30 

data from 1949-2012. Daily winter 500 hPa geopotential height fields over the Pacific Ocean 31 

and western Canada are classified into 12 dominant synoptic types, for which conditional 32 

probabilities of above-freezing temperatures and rainfall are then calculated and mapped 33 
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using daily high-resolution gridded data. Results show that above-freezing surface air 34 

temperatures and rain events in winter are commonly associated with the occurrence of a 35 

ridge of high pressure over western Canada, which induces southwesterly advection of 36 

relatively warm, moist maritime air masses into the continental interior, and that the intensity 37 

and spatial footprint of the surface climate response is related to the strength and position of 38 

the ridge. Conversely, the development of a ridge of high pressure over the Pacific Ocean 39 

and adjacent trough of low pressure over western Canada, which favours northwesterly to 40 

westerly mid-tropospheric flow over the continental interior in winter, tends to suppress the 41 

occurrence of above-freezing temperatures and rain. The synoptic type most strongly 42 

associated with winter thaw and rain events underwent a statistically significant step-change 43 

increase in mean frequency in 1977, accompanied by a corresponding step-change decrease 44 

in the frequency of the dominant synoptic type depicting westerly (zonal) circulation, 45 

coinciding with a well-documented shift to a positive phase of the Pacific Decadal 46 

Oscillation.   47 
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Introduction  48 

The availability of freshwater in western Canada is strongly dependent upon winter 49 

snowpack, particularly in the mountain headwater regions of major river basins (Barnett et 50 

al., 2005; Stewart, 2009). Spring freshet, typically the largest hydrologic event in cold 51 

regions, is dominated by snowmelt at lower elevations, while the high-elevation snowpack 52 

continues to contribute to streamflow throughout the summer. A deficit of water during 53 

critical periods threatens numerous biophysical and socio-economic systems, including 54 

agricultural productivity (Pentney and Ohrn, 2008), hydroelectricity generation (Filion, 55 

2000; Roberts et al., 2006), and aquatic ecosystems (Wrona et al., 2006; Burn et al., 2008; 56 

Wrona et al., 2016).  Furthermore, a lack of adequate winter snow accumulation or 57 

anomalously early melt can intensify summer drought conditions (Bonsal et al., 2011; 58 

Hanesiak et al., 2011).  Recent climate change has affected the magnitude of winter snow 59 

accumulation and timing of melt, raising concerns over diminishing water security (Walker 60 

and Sydneysmith, 2008; Sauchyn and Kulshreshtha, 2008) and the potential for extreme 61 

hydrologic events (Bates et al., 2008), such as mid-winter river ice break-up (Beltaos, 2002; 62 

Newton et al., 2017) and flooding (Anderson and Larson, 1996; Marks et al., 1998; McCabe 63 

et al., 2007). There is thus a growing need to understand the complex drivers of climatic and 64 

hydrologic variability to effectively inform water resource management (McGregor, 2017). 65 

The magnitude of snow accumulation is a function of hydroclimate throughout the 66 

winter season. The onset of snow accumulation and melt are strongly associated with air 67 

temperatures falling below and rising above freezing (Bonsal and Prowse, 2003; Brown and 68 

Mote, 2009), while end-of-season snow water equivalent (SWE) is related to the amount and 69 

phase of cold season precipitation and any winter melt events. There is considerable 70 
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hydroclimatic variability across western Canada, both spatially and temporally (Whitfield 71 

and Cannon, 2000; Zhang et al., 2000; Edwards et al., 2008; Shabbar et al., 2011; Vincent et 72 

al., 2015; Edwards et al., 2017). In addition to this variability, snow accumulation has 73 

decreased and snowmelt has occurred earlier in western Canada over recent decades.  For 74 

example, O’Neil et al. (2017a) quantify snow accumulation and timing of melt in major river 75 

basins in western Canada using high-resolution gridded climate data, from 1950-2010, and a 76 

temperature-index snow accumulation and melt model and find widespread declines in both 77 

snow accumulation and melt. Kang et al. (2016) find that snowpack in the Fraser River basin 78 

declined between 1949 and 2006, with the snowmelt-driven freshet occurring 10 days earlier. 79 

Najafi et al. (2017) report declines in spring (1 April) SWE in the upper Peace, Fraser, and 80 

upper Columbia river basins. Similarly, declines in spring snow cover extent are detected 81 

(Déry and Brown, 2007; Brown and Mote, 2009; Choi et al., 2010; Hernández-Henríquez et 82 

al., 2015) with the most vulnerable regions being the Western Cordillera (Brown and Mote, 83 

2009; Choi et al., 2010) at low- to mid-elevations (Brown and Mote, 2009; Hernández-84 

Henríquez et al., 2015). The integrity of the snowpack is vulnerable to extreme winter 85 

weather. In particular, anomalously cold or warm conditions and precipitation phase can 86 

affect the structure of the snowpack and are linked to the generation of hydrologic extremes 87 

(e.g. Doyle and Costerton, 1993). In relation to this, Newton (2018) find that the frequency 88 

and magnitude of winter (DJFM) above-freezing temperatures and rainfall increased in 89 

western Canada from 1946-2012, particularly during January and March.  90 

Large-scale atmospheric circulation is responsible for the movement and distribution 91 

of water and energy (Trenberth and Stepaniak, 2003), and directly impacts the climatic 92 

variability in western Canada. Specifically, the mid-troposphere is characterized by a series 93 
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of mid-latitude troughs and ridges resulting in meridional flow, or, in the absence of troughs 94 

and ridges, zonal flow (Holton, 1979). These patterns of airflow direct the movement of 95 

surface high- and low-pressure systems and the movement of warm or cold, moist or dry air 96 

masses.  97 

Numerous studies evaluate links between atmospheric circulation patterns and 98 

surface climate and hydrology. A mid-tropospheric ridge of high pressure centred over 99 

western Canada is linked to above-average temperatures and below-average precipitation 100 

while a ridge of high pressure centred over the Pacific Ocean and adjacent trough over the 101 

continent is associated with below-average temperatures and above-average precipitation in 102 

western Canada (Romolo et al., 2006a,b; Newton et al., 2014a; Bonsal et al., 2017; Bonsal 103 

and Cuell, 2017). Romolo et al. (2006a) determine that winter snow accumulation in the 104 

Peace River Basin increased with a higher frequency of zonal flow or a trough of low pressure 105 

over western Canada, in contrast to conditions when high pressure persisted over western 106 

Canada.  In the same region, Romolo et al. (2006b) find that a mid-tropospheric ridge of high 107 

pressure over western Canada is linked to the onset of spring snowmelt. Newton et al. (2014a) 108 

determine that a strong ridge of high pressure in the mid-troposphere, whether centred over 109 

the Pacific Ocean or western Canada, exhibits strong persistence, often occurring over 110 

multiple consecutive days.  111 

The persistent meridional flow associated with high-amplitude ridges and troughs is 112 

linked to extreme weather in North America (Francis and Vavrus, 2012; Petoukhov et al., 113 

2013; Screen and Simmonds, 2014). Newton et al. (2017) find that a persistent ridge of high 114 

pressure over western Canada is a contributing driver to numerous mid-winter river ice break-115 

up events. Fitzharris (1987) describe patterns of surface high- and low-pressure systems as 116 
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they relate to major avalanche winters in southwestern British Columbia and determine that 117 

persistent cold Arctic outbreaks followed by warm, Pacific frontal systems are conducive to 118 

major avalanche activity, highlighting the sequencing of large-scale circulation for the 119 

generation of extreme events. Hydrological responses may not be linear functions of climatic 120 

variability, but rather nonlinear functions or the product of a threshold exceedance (Ali et al., 121 

2015; McGregor, 2017; Scaife and Band, 2017), emphasizing the importance of 122 

understanding links between persistence and extreme weather and hydrologic phenomena.  123 

Variability of climate in western Canada is linked to large-scale teleconnection 124 

patterns that act on interannual and interdecadal time scales, including El Niño-Southern 125 

Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the Pacific North American 126 

Pattern (PNA). The PNA is a metric of 500 hPa anomalies in the Northern Hemisphere 127 

(Wallace and Gutzler, 1981). Winters dominated by positive PNA are associated with a 128 

higher frequency of a ridge of high pressure over western North America, below average 129 

snow accumulation, and anomalously early snowmelt (Romolo et al. 2006a; Pederson et al. 130 

2013). The surface climate responses to positive and negative phases of ENSO and the PDO 131 

are a function of the influence of these teleconnections on the frequency of dominant 132 

atmospheric circulation patterns (Romolo et al., 2006a,b; Stahl et al., 2006; Newton et al., 133 

2014a). El Niño (negative Southern Oscillation Index; SOI) and positive phases of the PDO 134 

are associated with above-average winter temperatures and below-average precipitation in 135 

western Canada, while La Niña (positive SOI) and negative phases of the PDO are associated 136 

with below-average temperatures and above-average precipitation (Shabbar and Khandekar, 137 

1996; Shabbar et al., 1997; Bonsal et al., 2001). Recently, Newton et al. (2014a) describe an 138 

increase in the frequency of a ridge of high pressure over western Canada during El Niño and 139 
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positive phases of the PDO, particularly when these two teleconnection patterns coincide. 140 

Conversely, a ridge of high pressure over the Pacific Ocean and adjacent trough of low 141 

pressure over western Canada, as well as zonal flow over western North America, occur with 142 

a higher frequency during La Niña and negative phases of the PDO (Newton et al., 2014a). 143 

Although several studies have examined relationships between surface climate and 144 

mid-tropospheric circulation patterns or atmospheric/oceanic teleconnections, none have 145 

assessed the role of atmospheric circulation on the frequency and magnitude of winter above-146 

freezing temperatures and rainfall. Given the high risk posed by diminishing snowpack for 147 

water security in western Canada and the potential for the generation of hydrologic extremes, 148 

it is valuable to improve our understanding of large-scale atmospheric drivers of winter 149 

climate variability. Therefore, this research identifies the synoptic-scale mid-tropospheric 150 

circulation patterns associated with temperature and precipitation patterns conducive to 151 

snowmelt or degradation of the snowpack during the winter season in western Canada.  152 

Specifically, dominant atmospheric circulation patterns in the mid-troposphere are identified 153 

and conditional probabilities of above-freezing temperatures and associated rainfall are 154 

calculated. 155 

 156 
 157 

 158 
Study Area  159 

  160 
This research focuses on major river basins in western Canada, spanning varied 161 

hydroclimatic and physiographic regions including the Western Cordillera, boreal forest, and 162 

Prairies (Figure 1). The Liard River flows from alpine headwaters through boreal regions in 163 

northeastern British Columbia and southeastern Yukon Territory and is a major tributary of 164 
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the Mackenzie River.  Similarly, the Peace and Athabasca rivers flow from mountain 165 

headwaters, across the Parkland and Boreal forest regions to the Peace-Athabasca Delta, and 166 

are also tributaries of the Mackenzie River. The Saskatchewan River flows east from the 167 

Rocky Mountain headwaters and across the Prairies, ultimately contributing to the Nelson 168 

River and draining into Hudson Bay. The Stikine, Nass, and Skeena rivers are located on the 169 

north coast of British Columbia and drain into the Pacific Ocean. The Fraser and Columbia 170 

rivers originate on the western slopes of the Rocky Mountains and eastern slopes of the 171 

Columbia Mountains and drain into the Pacific Ocean. These rivers are snowmelt-dominated, 172 

with peak flows occurring in late spring or early summer, coinciding with snowmelt. Summer 173 

streamflow is a function of high-elevation snowmelt, rainfall and glacier melt. Flows 174 

decrease in the autumn and remain low throughout the winter, with many rivers developing 175 

an ice cover.   176 

The winter climate of western Canada is strongly influenced by warm, moist air 177 

masses originating over the Pacific Ocean and cold, dry air masses originating over the Arctic 178 

Ocean and northern Canada.  Precipitation is highest along the coast and decreases with 179 

increasing distance from the Pacific Ocean. The convergence of moist Pacific and cold Arctic 180 

air masses can result in heavy, dense snowfall, particularly near coastal British Columbia 181 

(Geng et al., 2012). Atmospheric rivers, originating over the sub-tropical Pacific Ocean, are 182 

infrequent, but have the potential to deliver a concentrated band of moisture and heat over 183 

western Canada (Roberge et al., 2009). The windward slopes of mountain regions receive 184 

higher precipitation as moist air masses are forced to rise and release moisture, while leeward 185 

regions such as the Fraser Plateau and the Prairies receive lower precipitation. Chinook 186 

winds, dry adiabatically warmed air masses that descend the leeward side of mountains, 187 
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frequently occur to the east of the Rocky Mountains, particularly in southern Alberta 188 

(Longley, 1967; Goulding, 1978). 189 

 190 
Data and Methods  191 

Daily winter (DJFM) geopotential height (GPH) data at 500 hPa, between 30°N and 192 

70°N and 100°W and 170°W, from 1949-2012, obtained from the National Centers for 193 

Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR; 194 

Kalnay et al., 1996), are classified into a set of dominant patterns using the Self-Organizing 195 

Maps (SOM) Toolbox for Matlab (Vesanto et al., 2000). This synoptic domain captures 196 

atmospheric flow pathways from the Pacific and Arctic Oceans as well as circulation features 197 

over western North America. SOM is public domain software, available from the Laboratory 198 

of Computer and Information Science Adaptive Informatics Research Centre at Aalto 199 

University in Espoo, Finland (http://www.cis.hut.fi/research/som-research/). SOM is a 200 

statistical tool in the field of artificial neural networks that clusters data and arranges them 201 

onto a topologically ordered array such that spatial and temporal relationships between daily 202 

patterns are preserved (Kohonen, 2001). Daily atmospheric circulation patterns are not 203 

discrete and the evolution of atmospheric states is captured through SOM classification. 204 

Maximum variance exists in the opposite corners of the array while neighbouring patterns 205 

are most similar. Thus, SOM presents an advantage over alternative methods of 206 

classification, such as Principal Components Analysis (Hewitson and Crane, 2002; Reusch 207 

et al., 2005; Jiang et al., 2012). The organizational capabilities of SOM give rise to a visual 208 

representation of atmospheric states that facilitates analyses among synoptic types and with 209 

surface climate variables. A comprehensive description of SOM is found in Kohonen (2001) 210 
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and SOM applications to synoptic circulation classification can be found in Hewitson and 211 

Crane (2002), Reusch et al. (2005), Reusch (2010), Sheridan and Lee (2011), and Newton et 212 

al. (2014a,b). 213 

A number of metrics are used to statistically describe the relationships among and 214 

temporal evolution of atmospheric states. The frequency of each synoptic type is calculated 215 

for each winter season and trends are evaluated using the Mann-Kendall non-parametric test 216 

(MK; Mann, 1945; Kendall, 1975), using the p < 0.05 significance level and noting trends at 217 

the p < 0.10 level. The direction and magnitude of the trends is calculated using Sen’s method 218 

for slope estimation, which is a robust method for non-parametric data and is largely 219 

unaffected by outliers (Sen, 1968). Synoptic type frequencies are evaluated for change points 220 

to determine if there is an abrupt shift in the time series. Three statistics are selected to 221 

evaluate change points: mean, standard deviation, and slope. For the distribution of each 222 

synoptic type, the point at which the statistical metric changes most abruptly is identified 223 

using change point analysis in the Matlab programming platform. The time series for each 224 

synoptic type is then divided into two segments based on the change point identified for each 225 

metric and compared using the two-sample non-parametric Kolmogorov-Smirnov (KS) test 226 

to evaluate whether the two series are from the same continuous distribution.   227 

High-resolution (1/16-degree), gridded daily winter (DJFM) minimum and maximum 228 

air temperature (°C) and precipitation (mm) data for western Canada, from 1949 to 2012, are 229 

used to evaluate surface climate variables associated with synoptic types.  The dataset was 230 

developed using a thin-plate spline interpolation of climate station data, using ClimateWNA 231 

(western North America) climatology (Wang et al., 2012) as a covariate (Werner et al., 232 

2019). Daily maximum and minimum temperatures are averaged to estimate mean daily 233 
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temperature. This method of calculating mean daily temperature produces similar results 234 

compared with other methods, including using mean hourly temperature (Weiss and Hays 235 

2005). Days when the mean daily temperature is above freezing (Tmean > 0°C) are identified 236 

and accumulated melting degree-days (MDD) are calculated as the sum of mean daily 237 

temperatures above freezing throughout the winter season. Rainfall is identified using a 238 

temperature-index precipitation phase equation, whereby precipitation of at least 0.2 mm 239 

falling on days when the mean daily temperature is equal to or above 1°C is considered rain, 240 

and below 1°C is snow, as used in previous studies (USACE, 1956; Rohrer, 1989; L’hôte et 241 

al., 2005; Yuter et al., 2006; Lundquist et al., 2008; Kienzle, 2008). The greatest uncertainty 242 

for precipitation phase determination exists between 0°C and 2°C (Feiccabrino et al., 2012) 243 

and at temperatures nearing 0°C precipitation may be mixed rain and snow, slush, graupel, 244 

or hail; however, these precipitation types may be associated with sufficient heat energy to 245 

generate snowmelt (USACE, 1956).  246 

Relationships between atmospheric circulation patterns and the frequency of above-247 

freezing temperatures and rainfall are calculated as conditional probabilities for identified 248 

synoptic types using the formulas, 249 

𝑃𝑃(𝐴𝐴𝐴𝐴i|𝑆𝑆𝑆𝑆i)  =  𝑃𝑃(𝑆𝑆𝑆𝑆i ∩ 𝐴𝐴𝐴𝐴i)
𝑃𝑃(𝑆𝑆𝑆𝑆i)

       (1) 250 

𝑃𝑃(𝑅𝑅i|𝑆𝑆𝑆𝑆i)  =  𝑃𝑃(𝑆𝑆𝑆𝑆i ∩ 𝑅𝑅i)
𝑃𝑃(𝑆𝑆𝑆𝑆i)

         (2) 251 

 252 
where STi is the total number of days classified as a particular synoptic type, A0i and Ri are 253 

the subset of days within that synoptic type that are above-freezing and rainfall occurs, 254 

respectively. Therefore, the probabilities of above-freezing temperatures or rainfall for a 255 
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given condition (synoptic type) are determined. Probabilities are expressed as percentages 256 

and are mapped to corresponding synoptic types.    257 

  258 
   259 

 260 
Results 261 

Mid-tropospheric circulation  262 
 263 

Daily winter 500 hPa GPH are classified into 12 types on a topologically organized 264 

3 × 4 array using SOM, which is large enough to identify dominant atmospheric circulation 265 

patterns and small enough to capture differences between patterns (Figure 2). The synoptic 266 

types are numbered according to the position on the array. Atmospheric flow direction in the 267 

mid-troposphere is roughly parallel to the contour lines and directs surface high- and low-268 

pressure systems (Holton, 1979).  Types 1 and 4 in the top left corner of the SOM array are 269 

characterized by a strong ridge of high pressure extending over the Pacific Ocean and Alaska 270 

and adjacent trough of low pressure over western Canada, indicative of northerly meridional 271 

advection of cold Arctic air over western Canada. Conversely, a ridge of high pressure over 272 

western Canada (Types 7-12) directs warm Pacific air masses toward coastal BC and blocks 273 

the movement of cold, Arctic air masses from entering the region. These circulation types 274 

are linked to anomalously warm, dry surface climate, where the magnitude of the surface 275 

climate response is related to the strength and position of the ridge (Bonsal et al., 2001; Stahl 276 

et al., 2006; Newton et al., 2014a). Zonal flow patterns (Types 2, 3, 5, and 6) indicate a lack 277 

of surface high- and low-pressure systems and unobstructed airflow from the Pacific Ocean 278 

over the study region. Zonal flow during the winter season is associated with above-average 279 
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precipitation and below-average temperatures (Romolo et al., 2006a,b; Newton et al., 280 

2014a). 281 

Synoptic type frequency, persistence, and trajectory describe the evolution and 282 

dominant states of atmospheric circulation. Synoptic types in the four corners of the SOM 283 

array, Types 1, 3, 10, and 12, occur with the greatest frequency (Figure 3a), while 284 

intermediate types, particularly in the centre of the SOM array (Types 5 and 8) are infrequent 285 

transition patterns, facilitating the shift from one dominant atmospheric state to another. 286 

Types characterized by a strong ridge of high pressure, 1, 10, and 12, are the most persistent, 287 

with an average persistence of 76%, 70%, and 73%, respectively (Figure 3b). Type 1 persists 288 

for an average of four days, but has persisted for up to 34 consecutive days. Similarly, Types 289 

10 and 12 persist for an average of three and four days and up to 19 days and 28 days, 290 

respectively. Extreme weather phenomena are linked to persistent atmospheric circulation 291 

patterns, particularly those characterized by strong meridional flow, such as Types 1, 10, and 292 

12 (Francis and Vavrus, 2012; Petoukhov et al., 2013; Screen and Simmonds 2014). Zonal 293 

flow (Type 3) is also highly persistent (average of 67%), occurring for an average of three 294 

days, and persisting for up to 14 consecutive days. Trajectory (Figure 3c) indicates preferred 295 

shifts from one synoptic type to neighbouring patterns, where the length of the arrow is 296 

proportional to the frequency of shifts from one pattern to another. It is evident that the 297 

preferred trajectory follows the outer patterns along the array with approximately equal 298 

frequency in either direction. 299 

Significant decreases in frequency are seen in Type 1 (p < 0.05) and Type 3 (p < 300 

0.10), while Type 10 has significantly increased (p < 0.05) over the study period (Figure 4). 301 

These trends indicate a decrease in both high-pressure ridging over the Pacific Ocean and 302 
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zonal flow, and an increase in ridging over British Columbia.  Interannual variability of 303 

synoptic type frequency is high, particularly for the four dominant patterns, Types 1, 3, 10, 304 

and 12 (Figure 4). For example, the frequency of Type 1 ranges from 0 to 36% of winter 305 

days, while Type 12 ranges from 0 to 50%. High-frequency peaks exceeding two standard 306 

deviations above the mean frequency are evident in the time series of each synoptic type. 307 

These peaks are more apparent in the synoptic types on the left side of the SOM array (Types 308 

1-6) during the first half of the study period (1949-1980) and on the right side of the SOM 309 

array (Types 7-12) during the second half  (1981-2012). The high-frequency peaks in Types 310 

10 and 12 coincide with previously identified El Niño and/or positive PDO (Type 10: 2010, 311 

Type 12: 1983, 1986, 1995, 1998), while high-frequency peaks in Type 1 (1950, 1957) 312 

coincide with La Niña and/or negative PDO (Bonsal et al. 2001; Shabbar and Bonsal 2004). 313 

This is consistent with Bonsal et al. (2001) and Newton et al. (2014a) who find that a ridge 314 

of high pressure over western Canada dominates winters categorized by positive phases of 315 

the PDO and negative phases of the SOI (El Niño), particularly when positive PDO and El 316 

Niño occurred simultaneously, and a ridge of high pressure over the Pacific Ocean and 317 

adjacent trough over western Canada occurred with a greater frequency during negative 318 

phases of the PDO and La Niña. 319 

Types 3 and 10 have a change point in 1977 for all three metrics, and the KS test 320 

shows that for both Type 3 and Type 10, the two distributions, 1949-1976 and 1977-2012 are 321 

significantly different (p < 0.05). Despite the appearance of a change in frequency and 322 

variability of Type 12, the analysis failed to detect a change point that divided the time series 323 

into two significantly different distributions. The mean frequency of Type 3 is higher from 324 

1949-1976 compared with 1977-2012, presenting an alternate to the linear increase detected 325 
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by the MK test (Figure 4). Conversely, the mean frequency of the 1949-1976 time series of 326 

Type 10 is lower than 1977-2012 (Figure 4). Additionally, the average seasonal persistence 327 

of synoptic types, measured as the percentage of days each winter when that type occurs for 328 

consecutive days, is evaluated for trend and change points. A significant increasing trend and 329 

a step-change increase in 1977 in the mean persistence are detected for Type 10 (Figure 5). 330 

These step-changes coincide with a documented shift from a predominantly negative to 331 

positive phase of the PDO (Mantua et al., 1977; Mantua and Hare, 2002), which is associated 332 

with anomalous surface climate and streamflow in western Canada, including links between 333 

positive phases of the PDO and positive winter temperature anomalies (Bonsal et al., 2001), 334 

lower precipitation, particularly in coastal regions (Fleming and Whitfield, 2010), and lower 335 

streamflow (Mantua et al., 1997; Déry and Wood, 2005), with opposite hydroclimatic 336 

impacts during negative phases of the PDO.   337 

 338 
Surface above-freezing air temperature and associated rainfall  339 
 340 

The frequency of days when the mean daily temperature is above freezing for each 341 

synoptic type is calculated as a percentage of the total distribution at each grid point 342 

(conditional probability). The position of each pattern of above-freezing surface air 343 

temperatures corresponds to the synoptic type in the same position on the SOM array (Figure 344 

6). The frequency of above-freezing temperatures increases gradually from the upper left 345 

corner (Type 1) to the lower right corner (Type 12) of the array. The frequency is high across 346 

much of the study region during days when there is a ridge of high pressure over western 347 

Canada, and the strength of the surface climate response is dependent on the strength and 348 

position of the ridge (Types 9-12). For example, the frequency of above-freezing 349 
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temperatures associated with Type 12 approaches 100% along the coastal region, 50% in the 350 

low-elevation regions of the Fraser and Columbia basins and the upper Saskatchewan basin, 351 

and 40% in portions of the upper Peace and upper Athabasca basins. Above-freezing 352 

temperatures associated with Types 8, 9, and 11 are similar to Type 12, albeit with a lower 353 

frequency. Conversely, Type 1 in the opposite corner of the array is associated with very few 354 

days when the mean daily temperature is above freezing, with up to 60% of winter days in 355 

near-shore coastal areas and up to 20% of winter days in the Fraser, Columbia, and north-356 

coastal basins above freezing. Type 3 exhibits a low frequency of above-freezing 357 

temperatures, primarily seen in the southern half of the study region. These patterns of above-358 

freezing temperatures are consistent with negative temperature anomalies associated with a 359 

ridge of high pressure over the Pacific Ocean and adjacent trough of low pressure over 360 

western Canada, directing the flow of cold, dry air masses from the Arctic to western Canada 361 

and westerly zonal flow from the Pacific Ocean over the study region, and the positive 362 

temperature anomalies associated with a ridge of high pressure over western Canada (Bonsal 363 

et al., 2001; Romolo et al., 2006b; Newton et al., 2014a).  364 

The conditional probability of all winter precipitation is calculated for the given 365 

synoptic types (Figure 7) to provide a reference precipitation total with which to compare 366 

rainfall probabilities. In general, winter precipitation is low east of the Rocky Mountains and 367 

high along the coast, particularly during days when there is a ridge of high pressure over 368 

western Canada (Types 7-12). Precipitation is slightly higher in this region during days when 369 

there is a ridge of high pressure over the Pacific Ocean and adjacent trough over western 370 

Canada.  Synoptic types located on the top row of the SOM array (Types 1, 4, 7, and 10) are 371 

associated with low precipitation compared with those types along the bottom row (Types 3, 372 
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6, 9, and 12). Specifically, Type 1 is associated with low precipitation across the study region 373 

with slightly higher precipitation along the coast while Type 10 is related to higher 374 

precipitation along the coast, but very low precipitation inland. Type 10 is characterized by 375 

a strong ridge of high pressure and a ridge axis centred near the coast, which effectively 376 

blocks moisture inflow to the study region. Days with zonal flow (Type 3) see higher 377 

precipitation along the coast and the Rocky Mountains with low-to-moderate precipitation in 378 

the remainder of the study region.  Type 12, a ridge of high pressure over western Canada, is 379 

associated with high precipitation along the coast and minimal precipitation east of the Rocky 380 

Mountains. 381 

The percentage of winter days when rainfall occurs for each grid point is calculated 382 

for each synoptic type (Figure 8). A very low frequency of rainfall, confined to the southern 383 

coastal region of the study area, is associated with Types 1, 2 and 3. A moderate to high 384 

frequency of rainfall (> 50%) is seen along the coast and low (< 30%), but widespread rainfall 385 

is found in the Columbia, Fraser, upper Peace, and north coastal basins during days classified 386 

as Type 12. Similar spatial patterns of rainfall frequency, at a smaller magnitude, are 387 

associated with Types 9 and 11. These synoptic types are characterized by a ridge of high 388 

pressure over western Canada, which effectively blocks the advection of moisture into the 389 

study region, particularly east of the Rocky Mountains; however, these types are associated 390 

with a high frequency of above-freezing temperatures, increasing the likelihood of 391 

precipitation falling as rain. Type 10 is also characterized by a blocking ridge of high pressure 392 

over western Canada, with a ridge axis centred near the coast, and is associated with lower 393 

rainfall across the study region compared with Types 9, 11 and 12. Types 5 and 8 are 394 

infrequent transition patterns, but are associated with a low (< 20%) frequency of rainfall 395 
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across the Saskatchewan and Athabasca river basins. Zonal flow (Type 3) is associated with 396 

a very low frequency of rainfall, except along the coast. Zonal flow is conducive to moisture 397 

advection from the Pacific Ocean over the study region; however, it is also associated with a 398 

relatively low frequency of above-freezing temperatures. Thus, the precipitation seen with 399 

Type 3 falls primarily as snow. 400 

 401 
 402 
High frequency, persistent circulation 403 
 404 

The topological organization of the SOM array, where neighbouring patterns exhibit 405 

similar characteristics, enables the grouping of synoptic types into regimes to facilitate 406 

analysis of synoptic regime persistence. Individual synoptic types exhibit persistence (Figure 407 

3b), but the calculations of persistence of a single type fails to detect instances of longer-term 408 

persistence punctuated by short (1-2 day) shifts to a neighbouring pattern. Additionally, 409 

synoptic type trajectories (Figure 3c) demonstrate the preferred shifts from one type to a 410 

neighbouring pattern, suggesting that when a particular type occurs with a high frequency 411 

throughout the season, a shift to a neighbouring pattern is far more likely than a shift to distant 412 

pattern.  For example, when Type 10, in the top right corner (Figure 2) occurs with a high 413 

frequency, neighbouring patterns (Types 7,8,9, 11, and 12) also tend to occur with an above 414 

average frequency, while distant patterns (Types 1-6) tend to occur with an average or below 415 

average frequency.  416 

On the left side of the SOM array, Types 1 and 4, characterized by a ridge of high 417 

pressure over the Pacific Ocean and adjacent trough over western Canada, and Types 2, 3, 5 418 

and 6, depicting zonal flow over the study region elicit a similar surface climate response 419 

with respect to the frequency of above-freezing temperatures and rainfall. Additionally, 420 
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neither of these two flow types on their own dominate a winter season, and there is a tendency 421 

for these two flow types to co-occur with an above-average to high frequency; therefore, they 422 

are grouped into a single regime (LS). The regime on the right side (RS) consists of Types 423 

7-12, which are characterized by a ridge of high pressure over western Canada, of various 424 

strengths and ridge axis positions.   425 

The two synoptic regimes occur with nearly equal average frequency over the study 426 

period. The average winter frequencies of the LS and RS regimes are 50.2% and 49.8%, 427 

respectively; however, as evidenced by the interannual variability of individual synoptic 428 

types (Figure 4), there are numerous years when one of these regimes is dominant and highly 429 

persistent. For example, in 1983, synoptic types in the RS regime (Types 7-12) occur 91.7% 430 

of winter days and persist up to 80 consecutive days. Similarly, in 2009, synoptic types in 431 

the LS regime occur 82.6% of winter days (56 days of the zonal flow type and 44 days of a 432 

ridge of high pressure over the Pacific Ocean) and persist up to 68 consecutive days. The two 433 

synoptic type regimes are evaluated for change-points in mean frequency and persistence 434 

using the metrics applied to individual synoptic types. For the LS regime, a step change 435 

decrease in the mean frequency occurs in 1977 (Figure 9a) and in 1978 for persistence (Figure 436 

10a). Conversely, a step change increase in the mean frequency (Figure 9b) and persistence 437 

(Figure 10b) occurs in 1977 for the RS regime. This indicates a broad shift in dominant mid-438 

tropospheric circulation regimes favouring a persistent ridge of high pressure over western 439 

Canada in the second half of the study period.    440 

To capture the surface climate response to the two synoptic regimes over western 441 

Canada, composite winter accumulated MDD and total rainfall anomalies are calculated for 442 

winters when each regime is dominant. The winter frequencies for each regime are ranked, 443 
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and the top 20% for each regime were selected (Table 1). The average accumulated MDD 444 

and rainfall of winters in the top 20% of each regime are calculated and subtracted from the 445 

mean accumulated MDD and rainfall for the total time series to determine anomalies.  Several 446 

years with strong El Niño events appear in the top 20% of the RS distribution, including 447 

1983, 1992 and 1998 (Bonsal et al. 2001; Shabbar and Bonsal 2004; Newton et al. 2014a), 448 

which also coincide with the warm, or positive phase of the PDO (Bonsal et al. 2001; Newton 449 

et al. 2014a), indicating a strong influence of these teleconnections on atmospheric 450 

circulation persistence. Similarly, 1950, 1962, and 2009 are in the top 20% of the LS 451 

distribution, La Niña and negative PDO index. Composites of accumulated MDD and rainfall 452 

are calculated for the top 20% for the LS and RS regimes and the mean accumulated MDD 453 

and rainfall are subtracted to calculate anomalies for each variable at each grid point.    454 

Results reveal negative accumulated MDD anomalies in the LS regime and positive 455 

anomalies in the RS regime (Figure 11). In particular, winters dominated by Types 7-12 (RS) 456 

are characterized by accumulated MDD that are up to 140 MDD above normal along the 457 

coast and low-elevation river valleys in the Fraser and Columbia river basins, and up to 50 458 

MDD above normal in the upper Saskatchewan, and 25 MDD above normal in the upper 459 

Athabasca and upper Peace river basins. Similarly, rainfall is higher than normal when the 460 

RS regime dominates mid-tropospheric circulation (Figure 12). Winter rainfall anomalies of 461 

up to 100 mm fall in the north-coastal, upper Peace, Fraser, and Columbia river basins, except 462 

for coastal areas of these watersheds, with higher rainfall at lower elevations.    463 

 464 
Discussion and Conclusions  465 
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This research advances understanding of the atmospheric drivers of above-freezing 466 

winter temperatures and associated rainfall in major river basins in western Canada. The 467 

majority of annual streamflow in these rivers originates as winter snowpack and the loss of 468 

seasonal snowpack threatens water security and has the potential to generate hydrologic 469 

extremes (Sauchyn and Kulshreshtha, 2008; Walker and Sydneysmith, 2008). Daily winter 470 

(DJFM) mid-tropospheric GPH data are classified using SOM to identify dominant 471 

circulation patterns and conditional probabilities of above-freezing temperatures and rainfall 472 

are calculated for all synoptic types. Patterns on the right half of the array depict varying 473 

strengths and locations of a ridge of high pressure over western Canada, while patterns in the 474 

upper left corner are characterized by a ridge of high pressure over the Pacific Ocean and 475 

trough over western Canada, and patterns in the lower left corner are indicative of zonal flow. 476 

This facilitates the grouping of synoptic types into two regimes to evaluate broader regime 477 

frequency and persistence. 478 

 A ridge of high pressure over western Canada is associated with a high frequency of 479 

above-freezing temperatures across the study region and the magnitude of the surface 480 

response is related to the strength and position of the ridge. Additionally, the greatest and 481 

most spatially widespread frequency of rainfall is associated with a ridge of high pressure 482 

over western Canada; however, rainfall is largely confined to the coastal, upper Peace, Fraser, 483 

and Columbia river basins, suggesting that these river basins are at the greatest risk of winter 484 

rainfall or rain-on-snow, which can contribute both rain and snowmelt volume to runoff 485 

(USACE, 1956; Colbeck, 1975; Male and Gray, 1981).  486 

This research relies upon a temperature-index rainfall determination where 487 

precipitation falling on days when the mean daily temperature is equal to or above 1°C is 488 
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considered rain. A rain-snow separation threshold greater than 1°C may improve 489 

precipitation phase determination in the region east of the Rocky Mountains (e.g. Kienzle, 490 

2008); however, results of this research indicate that the probability of rainfall is very low 491 

for this region and would not substantially change by applying multiple region-dependent 492 

rain-snow thresholds. Two of the synoptic types with the strongest high-pressure ridging are 493 

seen in Type 10, in the upper right corner of the SOM array, and Type 12 in the lower right 494 

corner. These two types are frequent, persistent, and elicit a strong surface climate response, 495 

suggesting that these types could produce a high volume of winter runoff.  496 

A ridge of high pressure over the Pacific Ocean and adjacent trough of low pressure 497 

over western Canada (Types 1 and 4) is associated with a low frequency of above-freezing 498 

temperatures and rainfall. This surface response is unsurprising given that this type of 499 

circulation directs cold, Arctic air over western Canada and is associated with negative 500 

surface air temperature anomalies in the study region (Romolo et al., 2006b; Newton et al., 501 

2014a). Similarly, zonal flow (Types 2, 3, 5 and 6) is associated with a low frequency of 502 

above-freezing temperatures and rainfall, but a high probability of precipitation. This is 503 

consistent with previous research that identifies negative temperature anomalies and positive 504 

precipitation anomalies with zonal flow (Romolo et al., 2006a,b; Newton et al., 2014a). 505 

Given the relatively low frequency of above-freezing temperatures, precipitation during days 506 

with mid-tropospheric zonal flow is likely falling as snow; however, projections of increasing 507 

winter temperatures (e.g., O’Neil et al., 2017b; Dibike et al., 2017), suggests that zonal flow 508 

has the potential to generate more frequent winter rainfall in the future.  509 

The frequency of Type 1, a strong ridge of high pressure over the Pacific Ocean and 510 

trough of low pressure over western Canada, significantly decreased over the study period, 511 
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indicating a decrease of circulation conducive to the suppression of above-freezing 512 

temperatures and associated rainfall. Similarly, the frequency of Type 3, characterized by 513 

zonal flow, significantly decreased over the study period; however, step-change analysis 514 

reveals a step-change decrease in 1977 resulting in a lower mean frequency. A significantly 515 

increasing trend and step-change increase in 1977 are detected in the mean frequency of Type 516 

10. Additionally, the persistence of Type 10 has a step-change increase in 1977. An increase 517 

in the frequency of Type 10 and corresponding surface response, combined with a decrease 518 

in Type 1 and Type 3, is consistent with trends in above-freezing temperatures and rainfall 519 

reported by Newton (2018) and decreasing snowpack and earlier snowmelt found in western 520 

Canada (O’Neil et al., 2017a), the Fraser River Basin (Kang et al., 2014, 2016), the Peace 521 

River Basin (Romolo et al., 2006a,b), and the upper Peace, Fraser, and upper Columbia river 522 

basins (Najafi et al., 2017).  523 

The presence of step-changes in synoptic-scale mid-tropospheric circulation pattern 524 

frequency and persistence is indicative of nonlinear changes in the atmospheric system. 525 

Additionally, step-changes can be problematic as they result in a rapid shift in average 526 

hydroclimatic conditions and may reduce the ability of a system to adapt. The timing of the 527 

step-changes seen in Types 3 and 10 indicate a relationship with the PDO. Newton et al. 528 

(2014a) reports linkages between the frequencies of several dominant mid-tropospheric 529 

circulation patterns and winters with a strong positive or negative average seasonal PDO 530 

index value. This suggests the existence of both linear and nonlinear atmospheric responses 531 

to fluctuations in the PDO and the potential for parallel responses in climatic and hydrologic 532 

systems. Given the decadal or multi-decadal nature of PDO regimes (Mantua et al., 1997; 533 

Mantua and Hare, 2002), additional step-changes may be evident in longer historic and future 534 
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time series. While the PDO is an important mode of atmospheric, climatic and hydrologic 535 

variability, the predictive skill of the PDO is currently insufficient to anticipate future regime 536 

shifts (Liu and Di Lorenzo, 2018). The surface climates associated with mid-tropospheric 537 

circulation patterns presented here represent the average conditions related to each synoptic 538 

type, but given the step-changes evident in Types 3 and 10, it is likely that there are 539 

corresponding, but spatially and/or temporally variable step-changes in temperature and 540 

precipitation. McGregor (2017) raises the possibility that thresholds in atmospheric states 541 

may be required to generate a climatic or hydrologic response, and results from this research 542 

suggest thresholds exist in certain atmospheric states. Further analysis is required to evaluate 543 

these thresholds and examine associated climate and hydrologic responses.    544 

The SOM array is divided into two regimes, each populated with six individual 545 

synoptic types. Winters dominated by the regime depicting various strengths of a ridge of 546 

high pressure over western Canada, on the right side of the SOM array (RS), result in strong 547 

and widespread positive accumulated MDD and moderate to strong rainfall anomalies, 548 

particularly in watersheds in BC. Conversely, winters dominated by zonal flow or a trough 549 

of low pressure over western Canada, on the left side of the SOM array (LS), are associated 550 

with negative accumulated MDD and rainfall anomalies, suggesting that persistent and/or 551 

frequent LS-type regimes result in fewer days when the mean daily temperature is above 552 

freezing and when rainfall occurs. Large interannual variability and step-changes in dominant 553 

circulation regimes are evident in the time series of the LS and RS regime frequencies and 554 

persistence. These step-changes occur in 1977 except for RS persistence, which occurs in 555 

1978. The step-changes signify broad shifts in seasonal mid-tropospheric circulation regimes 556 

from a regime dominated by persistent, frequent zonal flow and trough of low pressure over 557 
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western Canada to a regime dominated by a ridge of high pressure over western Canada. 558 

Surface climate responses to these atmospheric drivers suggest that a shift in hydroclimatic 559 

conditions, namely toward higher winter accumulated MDD and rainfall, has likely occurred 560 

in tandem with these step-changes. Persistence of meridional atmospheric circulation is 561 

associated with extreme weather (e.g., Francis and Vavrus, 2012; Petoukhov et al., 2013; 562 

Screen and Simmonds, 2014) and hydrologic phenomena (e.g., Newton et al., 2017). An 563 

increase in the persistence of a ridge of high pressure over western Canada signifies an 564 

increased potential for the generation of snowmelt. RS-dominated winters are expected to 565 

have a higher probability of an extreme hydrologic event, given the contribution of both 566 

rainfall and snowmelt to runoff.  RS-dominated winters are also expected to have a thinner 567 

snowpack, which decreases the available water during the spring freshet and may result in a 568 

lower freshet volume. Additionally, it increases the risk of low water supply during the warm 569 

season, threatening water supply for hydroelectricity generation (Filion, 2000; Roberts et al., 570 

2006), agricultural productivity (Pentney and Ohrn, 2008), and exacerbating summer drought 571 

conditions (Bonsal et al., 2011; Hanesiak et al., 2011).    572 

This research enhances our knowledge of atmospheric circulation patterns conducive 573 

to snowmelt-generating above-freezing winter temperatures and rainfall in western Canada.  574 

Additionally, it provides new insight into winter hydroclimatic conditions, particularly as it 575 

relates to persistence of atmospheric regimes through the grouping of synoptic types into 576 

similar regimes. Previous studies evaluate trends in the frequency of synoptic types (e.g., 577 

Newton et al., 2014a,b; Bonsal et al., 2017; Bonsal and Cuell, 2017); however, this study 578 

uses a new approach to identify statistical step-changes in synoptic type frequency, which 579 

may be beneficial for the evaluation of thresholds related to system changes or the generation 580 



 26 

of extremes (e.g., McGregor, 2017). An important aspect not explored in this research is 581 

within-type climatic trends and variability, driven by air mass thermodynamic characteristics 582 

(e.g. Kassomenos and McGregor 2006; Cassano et al. 2007). The delineation of surface 583 

climate changes induced by trends in dominant atmospheric circulation regimes and those 584 

produced by changes to temperature and atmospheric moisture content within air masses will 585 

be instrumental to the understanding of historic and future climate change in western Canada. 586 

This research has provided valuable information regarding the role of atmospheric 587 

circulation, particularly that of persistence, in winter hydroclimatic variability; however, the 588 

potential for hydrologic extremes and large-scale threats to winter snowpack merits 589 

continued research.   590 
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