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ABSTRACT
The total number and luminosity function of the population of dwarf galaxies of the Milky Way
(MW) provide important constraints on the nature of the dark matter and on the astrophysics
of galaxy formation at low masses. However, only a partial census of this population exists
because of the flux limits and restricted sky coverage of existing Galactic surveys. We combine
the sample of satellites recently discovered by the Dark Energy Survey (DES) with the satellites
found in Sloan Digital Sky Survey (SDSS) Data Release 9 (together these surveys cover nearly
half the sky) to estimate the total luminosity function of satellites down to MV = 0. We apply
a new Bayesian inference method in which we assume that the radial distribution of satellites
independently of absolute magnitude follows that of subhaloes selected according to their
peak maximum circular velocity. We find that there should be at least 124+40

−27 (68 per cent
CL, statistical error) satellites brighter than MV = 0 within 300 kpc of the Sun. As a result of
our use of new data and better simulations, and a more robust statistical method, we infer a
much smaller population of satellites than reported in previous studies using earlier SDSS data
only; we also address an underestimation of the uncertainties in earlier work by accounting
for stochastic effects. We find that the inferred number of faint satellites depends only weakly
on the assumed mass of the MW halo and we provide scaling relations to extend our results
to different assumed halo masses and outer radii. We predict that half of our estimated total
satellite population of the MW should be detected by the Large Synoptic Survey Telescope.
The code implementing our estimation method is available online.1
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1 IN T RO D U C T I O N

Proposed in the 1980s (e.g. Peebles 1982; Davis et al. 1985), the �

cold dark matter (�CDM) model has proved remarkably success-
ful at predicting numerous observable properties of the Universe
and their evolution over time; as a result, it has become the ‘stan-
dard model’ of cosmology (see Frenk & White 2012; Weinberg
et al. 2015, for recent reviews). Hierarchical structure formation is
fundamental to this model, which predicts that dark matter (DM)
haloes form by mergers of smaller haloes and smooth mass accre-
tion. Merged (sub)haloes that are not completely disrupted are de-
tectable today as satellite galaxies and, potentially, as non-luminous
substructures.

The Milky Way (MW) halo and its associated satellite galaxies
offer an ideal environment in which to probe hierarchical growth
which, in turn, can be used to constrain the faint end of galaxy
formation and the properties of the DM. However, the current census
of MW satellite galaxies is highly incomplete. The most recent

� E-mail: oliver.j.newton@durham.ac.uk
1This is available from Newton & Cautun (2018).

surveys – such as the Sloan Digital Sky Survey (SDSS; Alam
et al. 2015) and the Dark Energy Survey (DES; Bechtol et al.
2015; Drlica-Wagner et al. 2015) – do not cover the entirety of
the sky and are also subject to detectability limits that depend on
the surface brightness of and distance to the satellite galaxies. The
goal of this paper is to overcome some of these limitations and,
using theoretical priors based on cosmological simulations of MW-
like haloes, to estimate the expected total number of MW satellite
galaxies.

In the 1990s, DM-only CDM simulations showed that many
more subhaloes survive within MW-like haloes than there are vis-
ible satellites orbiting the MW (Klypin et al. 1999; Moore et al.
1999; Springel et al. 2008). This disparity is often referred to as
the ‘missing satellites problem for cold dark matter.’ This rather
unfortunate nomenclature is very misleading if, as is common us-
age, the word ‘satellite’ is taken to mean a visible galaxy: DM-only
simulations have, of course, nothing to say about visible galaxies.
Simple processes, at the heart of galaxy formation theory, such as
the reionization of hydrogen in the early universe and supernovae
feedback, make it impossible for visible galaxies to form in the
vast majority of CDM haloes. Such processes were first discussed
and calculated in this context using semi-analytic techniques with
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different approximations in the early 2000s (Bullock, Kravtsov &
Weinberg 2000; Benson et al. 2002a,b; Somerville 2002). For ex-
ample, Benson et al. (2002a) showed how the abundance and stellar
content of dwarf galaxies are driven by reionization and supernovae
feedback. Their model produced an excellent match to the lumi-
nosity function of the (11 ‘classical’ – the only known at the time)
satellites of the MW and predicted that the MW halo should host
a large population of fainter satellites. Just such a population was
discovered several years later in the SDSS (Koposov et al. 2008,
and references therein).

The early semi-analytic results have been confirmed using full
hydrodynamic simulations (e.g. Okamoto et al. 2005; Macciò et al.
2007). For example, the most recent such simulations have con-
firmed that below a certain halo mass, typically ∼1010 M�, dwarf
galaxy formation is strongly suppressed, and that the majority of
haloes with masses �109 M� should not host a luminous compo-
nent (stellar mass greater than 104 M�) (Shen et al. 2014; Sawala
et al. 2015, 2016a; Wheeler et al. 2015).

In recent years, alternatives to CDM have elicited considerable
interest. Some of these, such as Warm Dark Matter (WDM, Avila-
Reese et al. 2001; Bode, Ostriker & Turok 2001), models with
interactions besides gravity between DM particles and photons or
neutrinos (Bœhm et al. 2014) and axionic DM (Marsh 2016), predict
a cut-off in the primordial matter power spectrum on astrophysically
relevant scales, which would suppress the formation of small galax-
ies (Bode et al. 2001; Polisensky & Ricotti 2011; Lovell et al. 2012;
Schewtschenko et al. 2015). The abundance of the faintest galaxies
can thus, in principle, reveal or rule out the presence of a power
spectrum cut-off. By requiring that WDM models should produce
at least enough substructures to match the observed Galactic satel-
lite count, constraints on the mass and properties of the DM particle
can be derived (Macciò & Fontanot 2010; Kennedy et al. 2014;
Lovell et al. 2014; Schneider 2016; Bose et al. 2017; Lovell et al.
2017).

Past and current surveys have now discovered a plethora of
satellites around the MW, with the count currently standing at 56:
11 classical satellites, 17 discovered in each of the SDSS and DES
surveys, and 11 found in other surveys. Despite this relatively large
number of known satellites, current estimates suggest that there
could be at least a factor of 3–5 times more still waiting to be dis-
covered (Koposov et al. 2008; Tollerud et al. 2008; Hargis, Willman
& Peter 2014). These estimates were made prior to the DES and are
based only on SDSS data. These predictions start from an assumed
radial profile for the distribution of Galactic satellites: either that
it follows the DM density profile – as in Koposov et al. (2008),
which is not a good assumption – or that it follows the subhalo
number density profile (as in the other studies cited above). Then,
for each observed satellite, they calculate the number of satellites
in the entire fiducial volume that must be present in order to have,
on average, one object with the corresponding properties within the
survey volume.

This paper improves upon previous estimates of the Galactic
satellite count in three major ways. First, while previous studies
were based on SDSS data alone, our result makes use of the com-
bined SDSS and DES data, which together cover an area equivalent
to nearly half of the sky. Secondly, to properly account for stochas-
tic effects, we introduce a new Bayesian approach for estimating
the total satellite count. Stochastic effects – which we find to be the
leading cause of uncertainty – have been overlooked in previous
studies, resulting in a significant underestimation of their errors.
Finally, we make use of a set of five high-resolution simulated host
haloes – taken from the AQUARIUS project (Springel et al. 2008) –

to characterize uncertainties arising from host-to-host variation. In
2016 December, Jethwa, Erkal & Belokurov (2018) presented a
Bayesian estimate of the total number of Galactic satellites. Their
result is the outcome of applying abundance matching to the SDSS
observations and, while it properly accounts for stochastic effects,
it depends on more and uncertain assumptions (mostly related to
abundance matching) than the result presented here.

We organize this paper as follows. Section 2 introduces the ob-
servational data set used in this analysis and Section 3 describes,
tests, and compares our Bayesian technique with previous works.
We present our main results in Section 4, detailing their sensitivity
to the assumed MW halo mass and the radial dependence of the
satellite count. Section 5 discusses the implications of our results
and considers some of the limitations of our method. We present
concluding remarks in Section 6.

2 O BSERVATIONA L DATA

Very few of the current set of MW satellites were known prior to
the start of the 21st century. Discoveries made after this time, us-
ing a multitude of techniques, together with data from SDSS data
release 2 (DR2) and the Two Micron All-Sky Survey (2MASS)
– before a major advance with SDSS DR5 (Adelman-McCarthy
et al. 2007) – brought the total to 23 dwarf galaxies. Since then,
the SDSS area has nearly doubled and DES is now electronically
available. Combining the two surveys produces a sky coverage area
of 47 per cent, with SDSS and DES contributing 14 555 and 5000
square degrees, respectively. An analysis of DES data added a fur-
ther 17 dwarf galaxies to the running total (Bechtol et al. 2015;
Drlica-Wagner et al. 2015; Kim et al. 2015; Koposov et al. 2015a),
which, together with other discoveries, brings the total number
of dwarf galaxies, as of 2018 February, to 56. These are listed in
Tables A1 and A2 of Appendix A.

These discoveries resulted from the use of advanced search al-
gorithms that comb through survey data and identify overdensities
of stars which could signal the presence of a faint dwarf galaxy.
For example, the SDSS has been analysed with two such search
algorithms, by Koposov et al. (2008) and Walsh, Willman & Jerjen
(2009), to find that both techniques recover the same number of
dwarf galaxies – although the latter is sensitive to fainter objects.
Each algorithm has a response function that – among other fac-
tors such as the survey surface brightness limits – is dependent on
the absolute magnitude of the objects being searched for. Assum-
ing isotropy, the number of observed satellites per unit magnitude,
dNsat/dMV, is given by

dNsat

dMV
=

∫ ∞

0

∫ ∞

0
�r2 d3Nsat

dr dMV drsat
ε(r,MV, rsat) dr drsat, (1)

where the first integral is over the survey volume, with � the survey
solid angle and r the radial distance from the Sun. The second inte-
gral is over the satellite size, rsat; N is the distribution of satellites
as a function of radial distance from the Sun, absolute magnitude,
MV, and size, rsat. The last term, ε, denotes the efficiency of the
search algorithm for identifying a satellite of magnitude, MV, and
size, rsat, at distance, r, averaged over the survey’s sky-footprint.
At fixed absolute magnitude, most of the satellites detected in the
SDSS have similar sizes and the detection efficiency, ε, is approx-
imately equal for all objects (Koposov et al. 2008; Walsh et al.
2009). Thus, for the observed satellites, the dependence on rsat

in equation (1) can be approximated as a dependence on MV

alone.
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Table 1. The parameters of equation (3) quantifying the dependence on
absolute V-band magnitude of the effective radius in the SDSS and DES.
The Koposov et al. (2008) parameters are taken from fits by Walsh et al.
(2009).

Survey Algorithm a∗ b∗

SDSS
Koposov et al. (2008, K08) 0.205 1.72
Walsh et al. (2009, W09) 0.187 1.58

DES Jethwa et al. (2016, J16) 0.228 1.45

The detection efficiency, ε, at fixed MV, is a function of the radial
distance and shows a rapid transition with radius from a 100 per cent
to a 0 per cent chance of detection. We may therefore define an
equivalent effective detection volume such that, on average, this ef-
fective volume includes the same number of satellites of magnitude
MV as predicted by equation (1). The effective radius, Reff (MV),
corresponding to this effective detection volume, is computed by
solving the equation,

dNsat

dMV
=

∫ Reff (MV)

0
�r2 dr

d2Nsat

dr dMV
, (2)

where the left-hand term is given by equation (1) and Reff appears
as the upper limit of the integral. The value of Reff depends on both
the radial dependence of ε and the radial distribution of satellites.
As long as the radial distribution of satellites is nearly constant
in the interval where the detection efficiency drops from 100 to
0 per cent, Reff can be approximated as the radius at which the de-
tection efficiency is 50 per cent, which is the value that we use in the
rest of this paper. This approximation is reasonable as ε decreases
from 1 to 0 over a narrow radial range (e.g. see fig. 15 in Walsh
et al. 2009). Making another choice for the effective radius, such as
ε = 0.9 (as used in Hargis et al. 2014), would underestimate the
effective volume and thus overestimate the inferred satellite count.
Both Koposov et al. (2008) and Walsh et al. (2009) show that, to
good approximation, the effective detection radius, which corre-
sponds to ε = 0.5, is given by

Reff (MV) = 10(−a∗MV−b∗) Mpc, (3)

where a∗ and b∗ are fitting parameters associated with the search
algorithm response function. These values are provided in Table 1
for different algorithms.

The dependence of the effective radius on absolute V-band mag-
nitude for the SDSS and DES surveys is shown in the upper panel of
Fig. 1. For clarity, in the case of the SDSS we show only the Walsh
et al. (2009) response function. For DES we give the Jethwa, Erkal &
Belokurov (2016) response function that was shown to give a good
match to the actual detections. This is equal to the Koposov et al.
(2008) response function as fitted by T08, but shifted to account for
the additional depth of the DES compared to SDSS; however, this
response function has not been verified at the same level of in-depth
analysis as in e.g. Walsh et al. (2009). The figure shows that for
the same absolute magnitude, DES is deeper and thus can detect
satellites out to greater distances than SDSS. All bright dwarfs, i.e.
MV < −5.5 for SDSS and MV < −4.0 for DES, that are within
the survey footprint and within our fiducial choice of outer radius,
Rout = 300 kpc, should have been detected within their respective
surveys. Thus, the surveys may be considered ‘complete’ – for the
purposes of this analysis – at the absolute magnitudes at which
Reff is greater than 300 kpc. Fainter objects can be detected only if
they are closer than 300 kpc from the observer, with the faintest,

Figure 1. Upper panel: the effective detection radius, Reff, of satellites as a
function of absolute magnitude, MV, for the SDSS and DES. The horizontal
dashed line indicates our fiducial choice of outer radius, Rout = 300 kpc,
for the MW satellite population. Bottom panel: the ratio of the effective
volume surveyed by the SDSS and DES, as a function of MV, to the volume
enclosed within 300 kpc. The dashed line shows the combined SDSS plus
DES effective volumes. The two panels show the response functions of the
W09 and J16 search algorithms, which are given in Table 1.

MV = 0, dwarfs being detected only if they are within ∼30 kpc of
the Sun.

To obtain a more informative perspective on the survey complete-
ness, the bottom panel of Fig. 1 shows the ratio between the effec-
tive volume of each survey and the total volume enclosed within
our fiducial radius of 300 kpc. Even when combining the SDSS
and DES footprints, the observations cover only ∼10 per cent of the
fiducial volume at MV = −4 and less than 0.1 per cent of the same
volume at MV = 0.

3 M E T H O D O L O G Y

We require two key ingredients to estimate the total population of
satellite galaxies from a given survey of the MW. First, we need

MNRAS 479, 2853–2870 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/479/3/2853/4990653
by University of Durham user
on 12 July 2018



2856 O. Newton et al.

Table 2. The DM particle mass, mp, softening length, ε, and host halo mass,
M200, of the AQUARIUS simulations used in this work. Here, M200 denotes the
mass inside the radius, R200, within which the mean density equals 200 times
the critical density.

Simulation mp (M�) ε (pc) M200
(
1012 M�

)

Aq-A1 1.712 × 103 20.5 1.839
Aq-A2 1.370 × 104 65.8 1.842
Aq-B2 6.447 × 103 65.8 0.819
Aq-C2 1.399 × 104 65.8 1.774
Aq-D2 1.397 × 104 65.8 1.774
Aq-E2 9.593 × 103 65.8 1.185

a prior for the radial distribution of satellites. For this we take the
radial number density of subhaloes in simulations of MW analogues
from the AQUARIUS project, which, when subhaloes are selected
by vpeak – the highest maximum circular velocity achieved in the
subhalo’s history – is the same as the radial distribution of luminous
satellites in hydrodynamic simulations and that of observed MW
satellites (see Section 3.1). Secondly, we introduce and test our
Bayesian framework used to infer the total number of satellites
(Section 3.2). The need for a new methodology is motivated by
several shortcomings of previous approaches, which we discuss in
detail in Section 3.3.

We assume that the classical satellites, i.e. those with MV ≤ −8.8,
are bright enough to have been observed by pre-SDSS surveys and
that the observations are complete at these magnitudes (therefore
ignoring the possible existence of obscured satellites in the Zone of
Avoidance). As such, the inferred luminosity function at the bright
end will always match the observations, in line with previous studies
(e.g. Tollerud et al. 2008). The inference method is only applied to
fainter satellites, that is, those with MV > −8.8.

3.1 Tracer population

Any estimation of the total satellite count from incomplete obser-
vations needs a prior for the radial number density of these objects,
which we estimate from N-body simulations. An ideal simulation
from which to extract a tracer population should have high enough
resolution for the density profile to be well sampled, and should also
offer access to multiple realizations of MW-like haloes to account
for host-to-host variations.

The AQUARIUS suite of simulations (Springel et al. 2008) achieves
this. It consists of a set of six �CDM DM-only N-body simulations
of isolated MW-like haloes which were run using the P-GADGET3
code and were labelled Aq-A to Aq-F. In this work we use the
‘level 2’ simulations (L2, with a particle mass of ∼104 M�), which
corresponds to the highest resolution level available across all of
the AQUARIUS haloes. Details of these simulations are provided in
Table 2. The Aq-F halo experienced a late-time merger, making
it unsuitable as representative of the MW halo; consequently, it is
not used in this analysis. The cosmological parameters assumed
for these simulations are derived from the WMAP first-year data
release (Spergel et al. 2003): H0 = 73 km s−1 Mpc−1, �M = 0.25,

�� = 0.75, ns = 1.0, σ8 = 0.9.
Identifying subhaloes near the centre of simulated haloes us-

ing configuration space halo finders like SUBFIND can be difficult
(Springel et al. 2008; Onions et al. 2012). Subhalo finders are af-
fected by the resolution of the simulation to which they are applied;
these effects can be assessed by comparing haloes which have been
simulated at different resolution levels. One of the haloes in the
AQUARIUS suite (Aq-A) was simulated at extremely high resolution

(‘Level 1’ or L1, with particle mass of ∼103 M�). Even though
the resolution of L2 is still very high, the abundance of subhaloes
that are relevant to our analysis is suppressed relative to that at L1,
particularly in the inner regions of the halo. The difference between
the two levels is comparable to that seen across all other L2 profiles.
We can, however, correct for these resolution effects in a relatively
straightforward manner, by using the Durham semi-analytic model
GALFORM (Lacey et al. 2016; Simha & Cole 2017) to populate the
haloes and subhaloes in the AQUARIUS simulations with galaxies
and track their orbital evolution even after its halo is no longer re-
solved (the so-called ‘orphan’ galaxies). The detailed scheme we
used and a comparison of the subhalo samples, both before and after
application of GALFORM, are given in Appendix B.

A further factor that needs to be taken into account is the possible
destruction of satellite galaxies by tidal interactions with the cen-
tral galaxy in the halo. This effect has been calculated by Sawala
et al. (2017, fig. 4, upper panel) using the APOSTLE hydrodynamic
simulations that show that up to 40 per cent of satellites in the inner
∼30 kpc can be destroyed, although overall the fraction destroyed
is much smaller (see also D’Onghia et al. 2010; Errani et al. 2017;
Garrison-Kimmel et al. 2017). For our purposes this difference,
which changes the radial subhalo distribution, is fairly important
but it has the opposite effect to the omission of orphan galaxies and,
as we discuss below, the two effects partially cancel out. To cor-
rect for these baryonic effects, we downsample the z = 0 AQUARIUS

subhaloes according to the value of the radius-dependent depletion
rate derived by Sawala et al. (2017).2 The radial dependence of the
depletion factor and further details about this procedure are given
in Appendix C. We refer to this final population, which incorpo-
rates ‘orphan galaxies’ and baryonic effects, as our fiducial tracer
population. Unless otherwise stated, we use this subhalo population
throughout the rest of this paper.

We apply a selection cut to the fiducial AQUARIUS subhalo popula-
tions on the basis of their vpeak values, under the expectation that this
will provide a stronger correlation with the likelihood of a galaxy
forming within the subhalo (Sawala et al. 2016a) than, for example,
selecting by present-day maximum circular velocity or present-day
mass (Libeskind et al. 2005; Wang, Frenk & Cooper 2013). This
correlation has been shown to hold in the �CDM model, which is
one of the priors in our analysis. In Fig. 2 we show the radial num-
ber density of subhaloes normalized by the mean subhalo density
within R200. This is used to assess the appropriateness of applying
a vpeak selection, and to determine the vpeak value down to which
the profiles are consistent. We compare this against the radial distri-
bution of luminous satellites selected from a set of high-resolution
hydrodynamic simulations from the APOSTLE project (Fattahi et al.
2016; Sawala et al. 2016b). This is a suite of 12 cosmological zoom
resimulations of Local Group-like regions run with the P-GADGET3
code and EAGLE subgrid physics models (Crain et al. 2015; Schaye
et al. 2015). Of these, four regions – which contain eight MW and
M31 analogues – were re-run at much higher resolution and are
used here. The APOSTLE data are not used beyond the provision of
this reference profile as the simulation is unable to resolve ultrafaint
luminous satellites at the magnitudes we are considering here.

Fig. 2 shows that the radial profile of subhaloes is largely indepen-
dent of the value of vpeak, except for values below 10 km s−1, where
resolution effects come into play. Most importantly, we find that the

2There is an error in the values of the fitting parameters quoted by Sawala
et al. (2017); see Appendix C for further details and the correct values of
the parameters.
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Figure 2. The radial number density of fiducial subhaloes normalized to the
mean density within R200. The thin solid lines show the distributions for sub-
haloes with different vpeak cuts averaged over the five AQUARIUS haloes. The
thick dashed line and associated shaded region show the radial distribution
of luminous satellites and its associated 68 per cent scatter obtained using
eight haloes from the APOSTLE high-resolution hydrodynamic simulations.
The thick dotted line shows the best-fitting Einasto profile. For ease of com-
parison the profile with our chosen selection criterion of vpeak≥ 10 km s−1

is provided as a thick solid line.

profiles of samples selected with thresholds above this value are in
good agreement with the profile of the luminous APOSTLE satellites,
and that of observed MW satellites (see Section 3.1.2), making
this a good choice to model the radial distribution of satellites. We
therefore only consider subhaloes with vpeak ≥ 10 km s−1 in the rest
of our analysis.

3.1.1 Rescaling the AQUARIUS haloes to a fiducial MW halo mass

We would like to assess if the calculation of the total satellite count
is sensitive to the mass of the MW halo. This is important in view
of the large uncertainties in current estimates of the MW halo mass,
with values typically in the range (0.5–2.0)×1012 M� (e.g. Cautun
et al. 2014b; Piffl et al. 2014; Wang et al. 2015). To do this, we
rescale the AQUARIUS haloes to a fiducial MW halo mass, MMW, target,
and apply our Bayesian method to these rescaled haloes. When
expressed as a function of rescaled radial distances, r /R200, the
radial number density of subhaloes is largely independent of host
mass (Springel et al. 2008; Han et al. 2016; Hellwing et al. 2016).
Thus, we can rescale the original AQUARIUS haloes to different target
masses by multiplying the radial distance of each subhalo by the
ratio R200, target /R200, original. Unless specified otherwise, the results
presented in this paper are calculated for a fiducial MW halo mass,
MMW = 1.0 × 1012 M�. The variation of these results with MW
halo mass is analysed in Section 4.4.

3.1.2 Comparison to the MW satellite distribution

A further test of the appropriateness of a particular choice of tracer
population can be obtained by comparing its radial distribution with
that of the observed MW satellites. When calculating the latter, we

Figure 3. Comparison of the radial distribution of observed MW satellites
(dashed line) with that of vpeak-selected subhaloes from the five AQUARIUS

haloes (solid line) rescaled to a host halo mass of 1.0 × 1012 M�. The
sample of observed satellites was corrected for survey radial incompleteness
(see the text) and consists of the classical, SDSS, and DES satellites. We
further accounted for the possibility that many of the DES satellites may have
fallen in with the LMC by using the probabilities of association with the MW
given by Jethwa et al. (2016). The dark and light shaded regions represent
the 68 per cent CL and 95 per cent CL (statistical error) bootstrapped error
regions for the vpeak-selected subhalo distribution, respectively.

need to correct for the radial incompleteness in the surveys: faint
satellites can be detected only at small radial distances which, if un-
accounted for, leads to a biased, more centrally concentrated satellite
distribution. This radial profile, corrected for radial incompleteness,
is given by

dN(r)

dr
=

∑
i PMW, i δ (ri − r)∑

i PMW, i ε
(
r, MV, i

) , (4)

where the sum is over all the observed classical, SDSS and DES
satellites, ri and MV, i are the position and absolute magnitude of
the i-th satellite, and δ(ri − r) is the Dirac delta function. The
quantity, PMW, i, denotes the probability that a satellite is associated
with the MW, which we take to be 1 for all objects except the DES
satellites. Many of these are likely to have fallen in as satellites of
the Large Magellanic Cloud (LMC) and, being at first infall, are still
concentrated near the position of the LMC which is adjacent to the
relatively small region surveyed by the DES. For these objects we
use the probabilities of association given by Jethwa et al. (2016); we
discuss this point in greater detail in Section 4.1 below. The quantity,
ε, is the detection efficiency (see Section 2) at distance, r, for
satellites of magnitude, MV, and accounts for radial incompleteness.
The denominator of equation (4) is maximal for small r values,
where all observed satellites have 100 per cent detection efficiency,
and decreases at large r.

Fig. 3 shows that vpeak-selected subhaloes have the same radial
distribution as the observed MW satellites, as predicted by theo-
retical arguments (Libeskind et al. 2005). This comparison demon-
strates the validity of our fiducial choice for the radial distribution
of satellites. The subhalo distribution given in Fig. 3 corresponds to
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a MW halo mass of 1.0 × 1012 M� and using a slightly lower value
for the MW halo mass leads to an even better agreement between
the two radial distributions.

We also used equation (4) to compute the model-independent
radial number density for three different observational subsamples:
the classical, SDSS, and DES satellites. We find good agreement be-
tween the three subsamples (not shown), indicating that the data are
consistent with the radial distribution being independent of satellite
brightness. This is consistent with Fig. 2, where we find that the
radial profile of vpeak-selected objects is largely independent of the
value of vpeak.

3.1.3 A fit to the radial profile of subhaloes

In a later part of our analysis (Section 4.5), we will make use of a
functional form for the radial profile of satellites in order to scale
our results to different MW halo masses or fiducial volumes. For
this, we fit an Einasto profile (Einasto 1965; Navarro et al. 2004)3 to
the vpeak ≥ 10 km s−1 curve shown in Fig. 2. The Einasto profile – or
the very similar NFW profile (Navarro, Frenk & White 1995, 1996,
1997) – provides a good description of the radial number density
of substructures (Sales et al. 2007; Kuhlen et al. 2008; Springel
et al. 2008; Han et al. 2016). We can parametrize the Einasto
profile in terms of a shape parameter, α, and the concentration,
c200 = R200 / r−2, with r−2 the scale radius at which the logarith-
mic slope of the profile is −2. Using the scaled radial distance,
χ = r /R200, the Einasto profile is given by

n(χ )

〈n〉 = αc3
200

3
(α

2

) 3
α

γ
(

3
α
, 2

α
cα

200

) exp

[
− 2

α
(c200χ )α

]
, (5)

where 〈n〉 is the mean number density within R200 and the lower
incomplete Gamma function, γ , is defined as

γ (s, x) =
∫ x

0
t s−1 exp (−t) dt . (6)

We find that an Einasto profile with c200 = 4.9 and α = 0.24 provides
a good match to the radial number density of subhaloes, as may be
seen in Fig. 2.

3.2 The Bayesian inference method

We are interested in calculating the probability distribution func-
tion (PDF) of the total number of satellites, Ntot(< MV), if a survey
with effective volume, Veff(MV), has detected Nobs(< MV) satellites.
Note that both the effective volume and the number of satellites are
functions of absolute magnitude; however, for ease of readability,
we drop the explicit dependence on MV. Within the Bayesian for-
malism, the posterior probability of having a total of Ntot satellites
given that we observe Nobs objects within a volume, Veff, is given
by

P (Ntot |Nobs, Veff ) = P (Nobs |Ntot, Veff ) P (Ntot)

P (Nobs, Veff )
, (7)

where P(Nobs|Ntot, Veff) is the likelihood of having Nobs objects
within volume Veff if there is a total of Ntot satellites. For the prior,

3A fit to the DM density profile of this form was first introduced in Navarro
et al. (2004) but only referred to as the ‘Einasto profile’ in Merritt et al.
(2006).

P(Ntot), we take a flat distribution; the denominator is a normaliza-
tion factor. Thus, we have

P (Ntot |Nobs, Veff ) ∝ P (Nobs |Ntot, Veff ) . (8)

The method needs two more ingredients: (1) a prior for the ra-
dial distribution of satellites, which we take as that of AQUARIUS

vpeak-selected subhaloes, and (2) a sample of observed satellites,
which we take as that of the SDSS and DES surveys. Thus, Ntot

represents the inferred total number of MW satellites given these
priors.

In practice, it is computationally prohibitive to evaluate the
likelihood function over the full parameter space so we use Ap-
proximate Bayesian Computation (ABC). ABC methods approxi-
mate the likelihood by selecting model realizations that are con-
sistent with the data. For our study, ABC is an accurate way to
estimate the likelihood function because (i) we compare the re-
alizations with the actual data rather than with summary statis-
tics and (ii) our data set consists of a discrete number of satel-
lites and our method selects realizations that exactly reproduce the
observations.

The likelihood can be computed using a Monte Carlo method
applied to each AQUARIUS halo. We start by selecting the satellite
tracer population – i.e. the DM subhaloes – within our fiducial
MW halo radius and organizing them into a randomly ordered list.
Then, for each observed satellite, we estimate the required number
of satellites of equal brightness such that there is only one such
object inside the effective survey volume corresponding to that
observed dwarf galaxy. Starting with the brightest observed satellite,
we pick random numbers, Nrand, until we find that only one of the top
Nrand subhaloes is inside the corresponding effective survey volume.
The resulting Nrand value corresponds to one possible realization of
the total count of objects, Ntot(MV), of brightness equal to that
of the observed satellite. We then remove the top Nrand subhaloes
and repeat the same procedure for the next brightest observed
satellite.

We considered ordering the subhalo list according to their vpeak

values, which is equivalent to ordering them from brightest to
faintest, assuming that vpeak is a luminosity indicator. This ordering
would have the advantage of capturing correlations between the
luminosity of spatially close satellites as would happen in the case
of group accretion. For example, a massive satellite at first infall is
likely to bring with it other luminous galaxies (Wang et al. 2013;
Shao et al. 2016). In practice, we find that the effects of any such cor-
relations are insignificant compared to the uncertainties introduced
by host-to-host variability.

This Monte Carlo procedure generates one possible realization
of the dependence of the total number of satellites on absolute
magnitude, Ntot(<MV). To sample the full allowed space, the proce-
dure must be repeated many times, for different locations of the
survey volume, for different host haloes, and for new random-
izations of the subhalo list. The details of how we achieve this
are given in Section 3.2.1, together with a more computation-
ally efficient implementation of the Monte Carlo algorithm just
described.

Our Monte Carlo approach represents a discrete sampling of the
effective volume, Veff, which is a smooth function of MV. While
in principle this may lead to biases, in practice there are enough
observed satellites to sample densely the range of absolute magni-
tudes of interest; thus, any such effects are small, as may be seen in
Section 3.2.2.
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3.2.1 Practical implementation

For each AQUARIUS halo, we position an observer 8 kpc from the halo
centre at one of six vertices of an octahedron, and select a spherical
region of 300 kpc in radius centred on this point, similar to Tollerud
et al. (2008). All subhaloes within this region are sorted randomly
and assigned an index. We then select a conical region with its apex
at the observer position and its opening angle corresponding to the
sky coverage of the survey from which the observational data are
drawn. The maximum radial extent of the conical region, Reff, for
an observed object of given magnitude is calculated using equation
(3).

Starting with the brightest object in the survey, of magnitude
MV, 1, we sequentially select subhaloes from our sorted list until we
identify one object within our mock survey volume. This sets the
lower bound for Ntot(<MV, 1). To set the upper bound, we continue
down the sorted list of subhaloes until we find the largest subhalo
index which still corresponds to only one subhalo inside the mock
survey volume. Every choice between the lower and upper bounds is
equally consistent with the observation of one object of MV, 1 within
the survey volume; we therefore randomly select one number in
this interval and remove this many subhaloes from the beginning
of our ordered list. We then consider the next brightest object – of
magnitude MV, 2 – and repeat the above procedure, using the updated
list of subhaloes and the new effective survey volume, Veff(MV, 2).
We continue this process down to the faintest observed satellites in
the survey.

The procedure is repeated for 1000 pointings evenly distributed
across the simulated sky, and for six observer locations, creating
6000 realizations for each simulated halo. There are five AQUARIUS

haloes so, in total, we obtain 3 × 104 realizations that are used
to estimate the median and 68 per cent, 95 per cent and 98 per cent
uncertainties of the complete satellite luminosity function.

3.2.2 Validation

In order to validate the Bayesian inference method, one of the
authors (ON) tested it on a set of 100 mock SDSS observations
provided by another (MC). The results of these tests, and a sample
of 10 of the mocks, are shown in Fig. 4. The mock observations
were generated from a ‘blinded’ luminosity function – indicated in
the figure by the thick dotted line – and were obtained from the
Aq-A1 halo distribution of subhaloes with vpeak ≥ 10 km s−1 within
300 kpc. The selected subhaloes were then randomly assigned abso-
lute magnitudes according to the input luminosity function. Mock
observations were produced for 100 random pointings of a conical
region analogous to the SDSS volume within the halo, taking into
account the effective radius out to which satellites of different mag-
nitudes could be identified. To model better the observations, mocks
were generated using a radially dependent detection efficiency: for
a given magnitude, using equation (3), we calculated Reff, which
is the radius corresponding to a 50 per cent detection efficiency,
and then assumed that the detection efficiency decreases from 1
to 0 linearly in the radial range [0.5, 1.5] Reff. Satellites found in
regions where the detection efficiency is below unity were included
in the mocks using a probabilistic approach by comparing a random
number between 0 and 1 with the value of the detection efficiency.
The luminosity functions for a sample of 10 of the 100 resulting
mocks are shown as thin solid lines in Fig. 4. Even though all the
mocks survey the same halo, we find a large spread in the number
of observed satellites.

Figure 4. Tests of the Bayesian inference method using mock observations.
The thick dotted line shows the input luminosity function used to create 100
SDSS mock observations. The luminosity functions of a sample of 10 of
these are shown as thin solid lines. Each of the 10 mock observations was
used, in turn, to predict a cumulative satellite luminosity function. The
results are shown as thick solid lines. The shaded region represents the
68 per cent uncertainty from one of the mock predictions, shifted to lie on
top of the input luminosity function. The dashed lines bound the 68 per cent
confidence region over the medians of all 100 mock predictions.

Taking each mock survey data set in turn, we apply the Bayesian
inference method, producing 100 estimates of the total satellite lu-
minosity function, 10 of which are shown in Fig. 4 as thick solid
lines. To assess the method fully, we also illustrate the 68 per cent
uncertainty region, taken from one of the mocks and shifted so that
the centre of the region is aligned with the ‘true’ luminosity func-
tion. Most of the inferred satellite luminosity functions lie inside the
68 per cent uncertainty region, in line with statistical expectations,
thus demonstrating the success of the method at reproducing the
underlying true luminosity function. This uncertainty region, taken
from one mock, is comparable to the 68 per cent confidence region
obtained from the medians of all 100 mocks, which further demon-
strates that the method successfully estimates uncertainties. Note
also that our inference method assumes that the detection efficiency
is a step function at Reff, but the mocks were generated using a
radially varying detection efficiency. Thus, this test also shows that
assuming an effective detection radius is a good approximation and
does not bias the inferred total luminosity function.

3.3 Comparison to previous inference methods

As we discussed briefly in Section 1, the previous method used for
inferring the total satellite count has some drawbacks. The Tollerud
et al. (2008, T08) method, which was also employed by Hargis
et al. (2014), used a similar vpeak-selected radial distribution of sub-
haloes as us (although not accounting for unresolved subhaloes
or baryonic effects). However, the differences arise from the way
in which these distributions are used. The T08 method employs a
completeness volume, Vcomp, that is typically selected as the volume
where the detection efficiency, ε(MV), has a given non-zero thresh-
old value, e.g. ε(MV) = 0.9. Note that the T08 completeness volume
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Figure 5. Comparison of two different inference methods for the total
dwarf galaxy luminosity function: the Tollerud et al. (2008, T08) method
and the Bayesian approach introduced here. Both methods were applied to
the same data set, the SDSS. The median estimate (solid line) and associated
68 per cent uncertainties (shaded regions) for each method are shown. The
T08 method does not account for stochastic effects, so it underpredicts the
uncertainties.

can be different from the effective volume used in our Bayesian
method. To obtain an unbiased estimate, only observed satellites
within that completeness volume, i.e. satellites with detection ef-
ficiencies above the threshold value, should be used for inferring
the total satellite count. The T08 approach is based on calculating,
for each observed satellite, the fraction of vpeak-selected subhaloes
inside the completeness survey volume associated with that satel-
lite. This fraction, η = Nsub

(
< Vcomp

)
/Nmax sub, is the ratio of the

number of subhaloes, Nsub

(
Vcomp

)
, inside Vcomp to the total number

of subhaloes, Nmax sub, inside the halo. Then, for the i-th observed
satellite, the fiducial halo volume contains

1

ηiεi

(9)

satellites of absolute magnitude, MV, i , with εi the detection effi-
ciency associated to the i-th observed satellite.

Fig. 5 shows a comparison of the T08 approach, discussed above,
with our Bayesian inference approach. These methods were ap-
plied to the same SDSS DR9 data set using the Walsh et al.
(2009, W09) completeness function (see Table 1) and the sub-
halo distribution of a single simulated halo, Aq-A1, corrected for
‘orphan galaxies’ and baryonic effects. Here, when applying the
T08 method, we choose a completeness radius corresponding to
ε(MV) = 0.5, which is equal to the effective radius used by the
Bayesian method, and only use observed satellites with detection
efficiencies, ε ≥ 0.5. All the satellites detected by the W09 algo-
rithm have ε > 0.5 and thus pass this selection criterion. The me-
dian estimates produced by the T08 and Bayesian methods are
similar. However, as we show in extensive tests detailed in Ap-
pendix D, where we apply the T08 approach to mock observa-
tions similar to those in Fig. 4, the T08 method underestimates the
uncertainties.

Figure 6. Comparison of the dominant sources of uncertainty in estimates
of the total satellite luminosity function: the flattening of the subhalo dis-
tribution or the stochastic effects. The region labelled ‘fiducial subhalo
distribution’ corresponds to applying our method to the fiducial subhalo
population of the simulated halo, Aq-A1. This estimate is affected by both
the shape of the tracer distribution and stochastic effects. The region labelled
‘isotropized fiducial distribution’ assumes the same radial distribution of
subhaloes but with isotropized angular coordinates; this is affected only by
stochastic effects. Both approaches have approximately the same median
(solid line) and 68 per cent scatter (shaded region). Thus, stochastic effects
are a major source of uncertainty.

There are two main factors that introduce uncertainties. First, the
distribution of satellites is not isotropic but flattened. As a result,
surveying different regions of the halo can introduce variations in
the number of observed objects. Secondly, the presence or absence
of satellites in the observed volume is a stochastic process. Given
N satellites and the probability, η, of a satellite being inside the
survey volume, then the number of observed satellites in the survey
is a binomial distribution with parameters N and η. To determine
which of the two effects is dominant, we applied the Bayesian in-
ference method to the original subhalo distribution of the Aq-A1
halo and to many isotropized versions of it. These were generated
keeping the same radial distances and isotropizing the angular co-
ordinates. The results of this test, presented in Fig. 6, show that
while anisotropy makes a noticeable contribution to the uncertainty
at faint magnitudes, stochastic effects are the dominant source of
uncertainty.

The T08 method accounts for anisotropy, but it does not account
for stochastic effects, which leads to an underestimation of the
errors. This underestimate is clearly seen in the mock observation
tests detailed in Appendix D, where we find that most of the T08
estimates lie further than the 68 per cent uncertainty interval from
the input ‘true’ luminosity function. Given the probability, η, that
a satellite is inside the volume Veff, the T08 method predicts η−1

satellites within the halo – see equation (9) without the ε term. While
this is true on average, for any realization the number of satellites
in the halo is given by a negative-binomial distribution with mean
value η−1. The width of this distribution, which characterizes the
size of the stochastic effects, gives rise to an additional uncertainty
that is not included in the T08 methodology.
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4 R ESULTS

We now provide the results of our analysis using the AQUARIUS haloes
rescaled to a fiducial MW halo mass of 1.0 × 1012 M� and within a
fiducial radius, Rout = 300 kpc. Initially, we perform our analysis for
the SDSS and DES data separately, each requiring extrapolations
over large unobserved volumes. Combining both surveys reduces
the uncertainty because of the larger volume coverage. We also
address other issues, for example, the dependence of the inferred
total luminosity function on the assumed MW halo mass and on
radial distance.

4.1 Separate estimates from SDSS and DES

The results of applying our Bayesian inference method to the SDSS
DR9 data set are displayed in the left-hand panel of Fig. 7. Also
plotted here is the luminosity function of all satellite galaxies ob-
served in the SDSS DR9 survey for which absolute magnitude
measurements have been published to date; these data are provided
in Table A1. We adopt the response functions of the two search
algorithms detailed in Section 2, by K08 and W09. The counts in-
ferred using the K08 function are systematically higher than those
obtained using the W09 function at absolute magnitudes fainter
than MV ≈−5.5. This is expected and is a consequence of both
algorithms detecting the same number of satellites, but the W09
algorithm probing deeper at fainter magnitudes. The larger scatter
in the K08 estimate reflects the additional uncertainty introduced
by requiring an extrapolation over larger volumes of the halo. In the
remainder of this paper we will use the results obtained using the
W09 algorithm as it is able to detect – at least in principle – fainter
objects.

Down to magnitude MV = −2.7 (corresponding to the faintest
satellite considered by Tollerud et al.), the SDSS data imply that
there are at least 64+55

−26 (98 per cent CL, statistical error – note that
the 68 per cent CL is shown in the figure) dwarf galaxies within
a radial distance of 300 kpc. This is significantly lower than the
estimate by Tollerud et al., who inferred 322+144

−76 at 98 per cent CL.
The Tollerud et al. estimate is higher for two reasons. First, they
adopted the K08 response function which is shallower than the
W09 function. Secondly, their estimates were based on the SDSS
DR5 data release that observed 10 satellites over a footprint of
∼8000 square degrees. Since then, while SDSS DR9 has added an
additional ∼6500 square degrees of sky coverage, it has detected
only four new satellites brighter than MV =−2.7.

The result of applying our method to the DES is shown in the
right-hand panel of Fig. 7; in this case we adopt the Jethwa et al.
(2016) response function. No satellites are detected in DES with
magnitude in the range −8.9�MV �−4.5, so we interpolate be-
tween the values calculated at each end of the range. Including all the
DES satellites in the inference method returns twice as many satel-
lites with MV �−4 than inferred from the SDSS satellites alone.
This discrepancy is caused by the DES footprint being adjacent
to the two Magellanic Clouds which, models suggest, are on their
first infall (Kallivayalil et al. 2013; Jethwa et al. 2016). If that were
the case, then it is likely that the two Magellanic Clouds would
have contributed their own complement of satellite galaxies. These
are not distributed uniformly over the sky, but are still clustered
around the Magellanic Clouds (Sales et al. 2011). As many as
half of the satellites detected by DES could have come from the
LMC (Sales et al. 2007; Jethwa et al. 2016). Failing to account
for these localized associations would lead to an overestimate of
the total Galactic satellite population. We adopt the probabilities

of association of each of the DES objects with the LMC inferred
by Jethwa et al. (2016) and include an additional step in our anal-
ysis: for each mock survey pointing, we generate a Monte Carlo
realization in which the DES satellites are assigned either to the
MW or to the LMC according to these probabilities. Only the DES
satellites assigned to the MW are then included in the Bayesian
inference.

The right-hand panel of Fig. 7 shows the satellite luminosity
function accounting for the association of some DES satellites to
the LMC. This estimate is in good agreement with the estimate from
the SDSS for MV �−4. The discrepancy at brighter magnitudes is
due to the lack of detection in the DES of any satellites brighter than
MV = −4.5 within a distance of 300 kpc. While DES is deeper than
SDSS, it covers a smaller area on the sky and thus, for MV �−5 and
MV �−0.5, DES samples a smaller effective volume than SDSS
(see Fig. 1). Nonetheless, the luminosity function inferred from
DES is generally consistent with that inferred from SDSS, given
the large uncertainties in both estimates.

4.2 Combined estimate from SDSS+DES

The best estimate of the total satellite luminosity function is obtained
by combining the SDSS and DES. We modify the analysis described
in Section 3.2.1 by including a second conical region oriented
relative to the first one such that it reproduces the approximate
orientation of the real SDSS and DES. The SDSS vector is used
to define the pointing ‘direction’ of this configuration; it uniformly
samples the sky as before. The second vector – corresponding to the
DES – is fixed at an angle of 120◦ relative to the SDSS vector but is
allowed to rotate around it. For each SDSS pointing a configuration
is generated and a combined SDSS+DES luminosity function is
calculated. In practice, this analysis corresponds to that of a survey
of effective volume, Veff, SDSS + Veff, DES, consisting of two disjoint
regions. The analysis otherwise proceeds as before.

The predicted total satellite luminosity function from the com-
bined SDSS+DES data is shown in Fig. 8. This estimate is con-
sistent with those from the separate analyses of SDSS and DES
data: except in a few bins, the medians of the individual estimates
lie within the 68 per cent uncertainty range of the SDSS+DES esti-
mate. When comparing with the combined result, we find that the
SDSS-only estimate overpredicts the satellite count for MV ≤−4,
which is to be expected given that DES did not find any satellites
brighter than MV =−4.5 within our fiducial radius of 300 kpc. In
contrast, for MV >−4, the SDSS-only estimate occasionally lies
slightly below the total satellite count, reflecting the large number
of satellites with MV ≥−4.5 observed by DES. The data associated
with Fig. 8 are provided in Table E1 of Appendix E.

We find that the total satellite luminosity function is well-fitted
by the broken power law:

log10 N (<MV) =
{

0.095MV + 1.85 for MV< − 5.9
0.156MV + 2.21 for MV≥ − 5.9

, (10)

that is, the faint end of the luminosity function is described by a
significantly steeper power law than the bright end.

4.3 Dependence on the tracer population

In Section 3.1 we argued that in order to make accurate predic-
tions, it is necessary to incorporate two effects into the analysis:
the inclusion of unresolved subhaloes, i.e. ‘orphan galaxies’, and
the depletion of subhaloes due to tidal disruption by the central
galaxy disc (i.e. baryonic effects). These changes primarily involve
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Figure 7. The total MW satellite galaxy luminosity functions inferred from the SDSS and DES (left- and right-hand panels, respectively). The solid lines and
corresponding shaded regions show the median estimates and associated 68 per cent uncertainties. The dashed lines indicate the number of observed satellites
within 300 kpc in each of the two surveys; these are input into the Bayesian inference method. For the SDSS, we show estimates using the response functions
of the two search algorithms devised by Koposov et al. (2008, K08) and Walsh et al. (2009, W09). Both algorithms detect the same number of satellites, but
the latter probes down to fainter magnitudes. For DES, we use the Jethwa et al. (2016, J16) response function. This result is truncated at MV ≤ −4.5 as no
satellites brighter than this have been observed in DES within 300 kpc. The DES estimate (solid line) accounts for the possibility that some objects observed
by DES may be satellites of the LMC. For reference, we also plot a second estimate which assumes that all DES objects are associated with the MW (dotted
line), as well as the SDSS W09 result (dot–dashed line).

Figure 8. The total luminosity function of dwarf galaxies within a radius
of 300 kpc from the Sun obtained from combining the SDSS and DES data.
The solid line and the shaded region show the median estimate and its
68 per cent uncertainty, respectively. The two dotted lines show the median
satellite luminosity functions using SDSS and DES data separately. The
luminosity function of all observed satellites within the SDSS and DES
footprints inside 300 kpc is indicated by the dashed line. The total satellite
luminosity function is well-fitted by the broken power law given in equation
(10).

Figure 9. The sensitivity of the inferred satellite luminosity function to the
two corrections applied to the subhalo population. The dotted line shows the
inferred satellite count using the original subhalo distribution of AQUARIUS.
The dashed line shows the effect of adding subhaloes missing due to resolu-
tion effects, the so-called ‘orphan galaxies’. The solid line shows the results
from our analysis, in which we also account for subhalo depletion due to
baryonic effects. The shaded region indicates the 68 per cent uncertainty
region of our final result.

MNRAS 479, 2853–2870 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/479/3/2853/4990653
by University of Durham user
on 12 July 2018



The MW satellite galaxy population 2863

Figure 10. The dependence of the inferred total dwarf galaxy luminosity
function within 300 kpc on the assumed mass of the MW halo. The lines
show estimates for our fiducial MW halo mass of 1.0 × 1012 M� (used in
previous plots) and for lighter and heavier MW haloes, as indicated in the
legend. For the fiducial case, we show the median estimate (solid line) and
the 68 per cent uncertainty (shaded region). For the other two cases we show
only the median estimates (dotted lines).

the inner ∼50 kpc of the halo, the region to which the faint end
of the luminosity function is most sensitive. Although these two
effects have opposite sign, they do not cancel out completely. In
Fig. 9 we show the effect of each of the two corrections, which
are only important for the faintest satellites (MV >−2). Prior to
any correction, the MV = 0 satellite count is 141+54

−35; the addition
of unresolved subhaloes reduces this to 113+34

−24. This is because
the unresolved subhalo population is very centrally concentrated;
on average some ∼85 per cent of them lie within 50 kpc. Account-
ing for subhalo depletion due to baryonic effects produces a small
upward shift in the median to 124+40

−27; a decrease of ∼12 per cent
relative to the uncorrected luminosity function inferred using the
L2 subhalo distribution of AQUARIUS haloes.

4.4 Dependence on the mass of the MW halo

As we discussed in Section 3.1.1, the MW halo mass is poorly
constrained, with recent estimates varying within a factor of 2
from our fiducial choice of MMW = 1.0 × 1012 M� (see the com-
pilation of Wang et al. 2015). To investigate the sensitivity of
the inferred total satellite luminosity function to the MW halo
mass, we repeated our analysis for two extreme mass values,
0.5 × 1012 M� and 2.0 × 1012 M�, corresponding roughly to lower
and upper bounds for the MW halo mass (e.g. Wang et al.
2015). To obtain estimates for these halo masses, we rescaled
the fiducial radial distribution of subhaloes using the procedure
described in Section 3.1.1. The inferred dwarf galaxy luminos-
ity functions are displayed in Fig. 10, which shows that despite
the factor of 4 difference between the lowest and highest halo
masses considered, no large discrepancies begin to emerge until
MV ≥−2.5. Even at fainter magnitudes, the differences are well
within the 68 per cent uncertainty range for a given MW halo
mass.

Figure 11. The radial dependence of the total number of satellites enclosed
within radius r. The Y-axis gives the ratio of this number relative to the
satellite count within 300 kpc, the fiducial radius used in this analysis. The
result is independent of absolute magnitude, MV, since subhaloes with dif-
ferent vpeak cuts have the same radial profile. There is little dependence on
the mass of the MW halo.

The number of subhaloes in a DM halo scales strongly with halo
mass (e.g. Wang et al. 2012; Cautun et al. 2014a), so naively we
might assume that the inferred satellite count follows the same re-
lation. As Fig. 10 demonstrates, that is not the case; we see only
a weak variation of Ntot with Mhalo. The inferred satellite count
depends only on the shape of the normalized radial profile of sub-
haloes, and not on the total number of subhaloes. When expressed
in terms of r/R200, i.e. radial distance in units of the virial radius
of the halo, the radial profile is largely independent of host mass
(Springel et al. 2008; Han et al. 2016; Hellwing et al. 2016). Dif-
ferent host masses correspond to different values of R200, and thus
any features in the radial profile are mapped on to different physical
radial distances. If the radial distribution of subhaloes were a power
law, then the inferred satellite count would be independent of halo
mass: for fixed r, changing R200 would only lead to a shift in the
normalization of the radial profile, which is unimportant for our
analysis.

4.5 Dependence on the outer radius cut-off

Fig. 11 illustrates the dependence of the total satellite count within
a given radius, r, as a function of r. These estimates follow from
the observation that the radial number density of subhaloes selected
above a vpeak threshold is independent of the value of the threshold
(see Fig. 2), which suggests that the radial distribution of satellites
should also be independent of satellite luminosity.

The fiducial radial distribution of subhaloes is well described by
an Einasto profile: the number of satellites within χ = r/R200 is
given by

N (< χ ) = 4π

∫ χ

0
n
(
χ ′)χ ′2 dχ ′, (11)
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with n(χ
′
) the Einasto profile given by equation (5). Performing the

integration and substituting for χ gives

N (< r) = N (< 300 kpc)
γ

(
3

α
,

2

α
[c200χ ]α

)

γ

(
3

α
,

2

α

[
c200

300 kpc

R200

]α) , (12)

where the function γ is given by equation (6). The radial depen-
dence of N(< r) is affected by the assumed value for the MW halo
mass through the dependence of R200 on halo mass. Fig. 11 shows
the radial dependence of N(< r) for the three MW halo masses
assumed in Fig. 10; we find only a mild variation with MW halo
mass. Extending to distances farther than 300 kpc leads only to
modest increases in the satellite count, with an ∼20 per cent in-
crease at 400 kpc, which is roughly half way between the MW and
M31. Of all the satellites within 300 kpc, ∼80 per cent of them lie
within 200 kpc, the R200 value for a 1.0 × 1012 M� halo mass. At
even smaller radial distances, we find ∼45 per cent of the satellites
within 100 kpc.

4.6 Apparent magnitude luminosity function

In this subsection we examine the prospects for discovery of faint
satellites in future surveys of the MW. For simplicity we assume
that the only factor that determines the detectability of a satellite
is its apparent luminosity, rather than its size or surface brightness.
We can then calculate the number counts of satellites as a func-
tion of V-band magnitude. To estimate apparent magnitudes, we
assign an absolute magnitude, MV, to subhaloes by sampling the
inferred luminosity function from Section 4.2, i.e. the combined
SDSS+DES estimate. We then use the subhalo distance from the
halo centre to compute the distance modulus and thus the appar-
ent magnitude. This process is repeated for the luminosity func-
tions generated from each pointing and observer location com-
bination – 6000 in all. The results presented in this section are
for a MW halo mass of 1.0 × 1012 M� and for a 300 kpc outer
radius.

Dwarf galaxy counts as a function of apparent magnitude are
shown in Fig. 12, where we split the population into two classes: ul-
trafaint and hyperfaint dwarf galaxies, which we define as objects in
the absolute magnitude ranges: −8 < MV ≤ −3 and −3 < MV ≤ 0,
respectively. Within 300 kpc from the MW, we expect to find 46+12

−8

(68 per cent CL, statistical error) ultrafaint and 61+37
−23 (68 per cent

CL, statistical) hyperfaint dwarfs. The first number can be com-
pared to the slightly higher estimate of 66+9

−7 (68 per cent CL) ul-
trafaints provided by Hargis et al. (2014), based solely on data
from SDSS DR8. We showed in Fig. 8 that this population is usu-
ally overestimated in predictions based only on SDSS because of
a higher abundance of ultrafaint satellites in the SDSS field than
would be expected from the total observed population. As discussed
in Section 3.3, their uncertainties are also 28 per cent too small as
stochastic effects were not accounted for in their estimate. Most
ultrafaints have apparent magnitudes brighter than 18, so surveys
just 0.5 magnitudes deeper than DES – which can detect satellites
down to mV = 17.5 – should be deep enough to observe most ul-
trafaint dwarfs in the MW. The luminosity function of hyperfaint
dwarfs extends much fainter, with most satellites having mV < 21.5.
Discovering these would require a survey 4 mag deeper than DES;
Large Synoptic Survey Telescope (LSST) is one such future survey.
An all-sky DES-like survey would only lead to the detection of
∼30 hyperfaint dwarfs, a factor of 4 more than the currently known
population.

Figure 12. The inferred Galactic satellite number counts within 300 kpc as a
function of apparent V-band magnitude, mV. The satellites are split into ultra-
and hyperfaint dwarf galaxies, which correspond to objects with absolute
magnitude in the range −8 < MV ≤ −3 and −3 < MV ≤ 0, respectively. The
solid lines display the median prediction, with the corresponding shaded
regions indicating the 68 per cent uncertainties. For reference the sum of the
median predictions of both populations is also provided (black line). The
diamond and associated error bars represent the Hargis et al. (2014, H14)
prediction and 68 per cent uncertainty region for the total expected number
of ultrafaint satellites. As before, the dashed lines display number counts of
observed ultra- and hyperfaint dwarf galaxies within the SDSS and DES.
The vertical arrows indicate the faintest satellites that can be detected in past
and future surveys: SDSS (mV = 16.0), DES (mV = 17.5), HSC (mV = 20.0),
and LSST (mV = 21.5).

5 D ISCUSSION

We have made new predictions for the total MW satellite luminosity
function by extrapolating the numbers of satellites currently known
using a new Bayesian inference method. As input data we use a
combination of the recently discovered satellites in the DES and
the population previously known from SDSS DR9. As a prior for
the radial distribution of the MW satellites, which is needed for
the extrapolation, we use the radial distribution of subhaloes in the
AQUARIUS simulations of galactic haloes having peak maximum cir-
cular velocity, vpeak, above a given threshold. We correct the subhalo
distribution for unresolved subhaloes and account for subhalo de-
pletion due to tidal disruption by the central disc. We showed in Fig.
3 that the radial distribution of vpeak-selected subhaloes provides a
good match to that of the observed MW satellites. We improve upon
previous studies by introducing a new Bayesian inference method,
which overcomes the limitations of earlier approaches. We also ex-
plore the effect of uncertainties in the MW halo mass and derive a
relation for rescaling our estimates to different radii.

We find that, for a 1.0 × 1012 M� MW halo, there are 124+40
−27

(68 per cent CL, statistical error) satellites brighter than MV = 0
within 300 kpc of the Sun, which is slightly inconsistent with the
result from Hargis et al. (2014). Our estimate is consistent with that
of Jethwa et al. (2016) when adjusted for differing outer radii; their
estimate lies at the upper end of our 68 per cent uncertainty range.
Our lower estimate is due to the inclusion of orphan galaxies and
baryonic effects, which decrease the inferred count of MW satellites
(see Fig. 9). Compared with the Tollerud et al. (2008) estimate of
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322+144
−76 (98 per cent CL) satellites brighter than MV =−2.7 within

300 kpc, our estimate of 66+39
−20 (98 per cent CL, statistical) is a factor

of ∼5 lower. The origin of this discrepancy is primarily the use by
Tollerud et al. of the shallower K08 response function as opposed to
the W09 function that we use here. Furthermore, since their work,
the SDSS footprint has increased in size by ∼80 per cent, while the
number of discovered satellites inside this footprint has increased by
very little. We also note that previous studies have underestimated
their uncertainty ranges because they have not properly accounted
for stochastic effects, which are broadly independent of satellite
brightness (see Section 3.3 for a more in-depth discussion).

The future detection of dwarfs depends on their apparent mag-
nitude and we can estimate the luminosity thresholds that future
surveys will need to exceed in order to detect the satellite popu-
lation inferred in this study. In our total inferred population there
are 46+12

−8 (68 per cent CL, statistical) ultrafaint dwarf galaxies (with
magnitudes in the range −8 < MV ≤ −3), of which ∼20 have been
observed so far. We find that the majority of these have apparent
magnitudes brighter than mV = 18; these would be discoverable
with surveys just 0.5 magnitudes deeper than DES. There are ∼30
such dwarfs still to be discovered in the MW, of which ∼7 should
lie inside the SDSS DR9 footprint but beyond its detection limit.
Our 61+37

−23 (68 per cent CL, statistical) hyperfaint dwarfs (with mag-
nitudes MV ≥ −3) make up some 62 per cent of our total population
and have apparent magnitudes brighter than mV = 21; discovering
these would require a survey 4 mag deeper than DES. The planned
LSST survey should cover approximately half of the sky and will
therefore be able to find half of the inferred count of 61+37

−23 hyper-
faint dwarfs. The sizes of both populations are slightly inconsistent
with the lower end of estimates by Hargis et al. (2014).

Our inferred satellite galaxy luminosity function likely represents
a lower limit to the true population. Our method takes the observed
satellites, which are found in surveys with various detectability
limits, as a sample of the global population. In particular, the
observed surface brightness cut-off suggests that there could be a
population of faint, spatially extended dwarfs that are inaccessible
to current surveys (e.g. see Torrealba et al. 2016a). To account
for this in our method would require deeper observations than are
currently available.

A further complication arises from the presence of the LMC,
which, given its large mass, is likely to have brought its own com-
plement of satellites. The LMC may be on its first infall (Sales et al.
2011; Kallivayalil et al. 2013; Jethwa et al. 2016) and the spatial dis-
tribution of the satellites it brought with it could be very anisotropic
(Jethwa et al. 2016). While we accounted for the probability that a
large fraction of DES detections may be associated with the LMC,
our analysis does not account for the presence of LMC satellites
outside the DES footprint. To do so would require a prior on the
present-day spatial distribution of LMC satellites. Before infall, the
LMC could have had perhaps as much as a third of the MW satellite
count (Jethwa et al. 2016), though this estimate is very uncertain due
to poor constraints on the MW and especially the LMC halo mass.
At face value, this could add at most ∼50 satellites to the total count.

Inherent to all analyses that estimate the satellite luminosity func-
tion are several systematics which, with a few exceptions, mainly
affect the faint end of the luminosity function. The most impor-
tant of these is the assumed radial distribution of subhaloes, which
needs to be determined from cosmological simulations. We showed
that the distribution of vpeak-selected subhaloes matches both the
luminosity-independent radial distribution of observed MW satel-
lites and that of state-of-the-art hydrodynamic simulations such as
APOSTLE (see Figs 2 and 3); consequently, we think that any system-

atic effect on the inferred satellite count arising from our choice of
fiducial tracer population is likely to be small. To obtain our fiducial
subhalo sample, we needed to correct for two effects that are not
well understood. Even the highest resolution simulations, such as
those of the AQUARIUS project, can suffer from resolution effects, par-
ticularly near the centre of the host halo. This issue is common to all
cosmological simulations, and we addressed it by including ‘orphan
galaxies’ (i.e. galaxies whose haloes have been disrupted) identified
by applying the Durham semi-analytic model of galaxy formation,
GALFORM, to the AQUARIUS simulations. This effect is only signifi-
cant for the faint end of the satellite luminosity function (MV �−3)
since ∼85 per cent of the orphan population lies within 50 kpc of
the centre, the region to which the faint end is most sensitive. We
also accounted for baryonic effects on the subhalo mass function
by lowering its amplitude in accordance with the prescription in
Appendix C, using depletion factors based on the APOSTLE project
(Sawala et al. 2017). Garrison-Kimmel et al. (2017) argued for a
larger depletion in the inner ∼30 kpc than Sawala et al., while Errani
et al. (2017) claim that, due to their limited resolution, most sim-
ulations overpredict the subhalo depletion factor. As discussed in
Section 4.3, although this correction introduces noticeable changes
in the predicted satellite luminosity function, these lie within our
error bounds, and are smaller in magnitude than those introduced
by the addition of orphan galaxies. These changes primarily affect
the faint end of the satellite luminosity function above MV ≥−2,
which is also the most theoretically and observationally uncertain
part of the luminosity function independently of these effects.

A second important systematic is the choice of observed satellite
population. In this work we used satellites discovered in the SDSS
and DES. Although all satellites in the former have been spectro-
scopically confirmed as DM-dominated dwarf galaxies, over three-
quarters of the DES satellites have not (yet). We choose to use all
DES satellites in our analysis. This is motivated by considering the
size-magnitude plane (e.g. Drlica-Wagner et al. 2015, fig. 4) that
shows that most DES satellites are more consistent with the prop-
erties of Local Group galaxies than with the population of known
globular clusters. Reclassifying some of the DES detections as glob-
ular clusters would lower the inferred total satellite count at the faint
end of the luminosity function (MV ≥−4), but would not affect the
bright end. Given the good agreement between the SDSS-only and
DES-only estimates of the total satellite count, we predict that most
DES detections are dwarf galaxies.

The mass of the MW halo is poorly constrained. However, the
inferred satellite luminosity function is largely independent of the
host halo mass, except at magnitudes fainter than MV =−3 where
it shows a very weak mass dependence (see Fig. 10). Instead of
marginalizing over the MW halo mass distribution, we provide a
means of converting between halo masses at the extremes of the
range of constraints.

The MW is the smaller partner of a paired system, which could in-
troduce anisotropies into the MW’s substructure due to interactions
with M31; these would be manifest in the form of more correlated
structure. Our choice of 300 kpc for our fiducial radius is less than
the midpoint of the MW-M31 distance, minimizing any effects from
interactions with M31 and allowing us to model the MW approx-
imately as an isolated halo. In addition, this value is often used in
the literature (e.g. Hargis et al. 2014; Jethwa et al. 2016) and is
close to the expected virial radius of the MW halo. Our choice of
fiducial radius should not be interpreted as precluding the eventual
discovery of other satellites further out than this.

The dependence of the total satellite count on MW halo mass is
not determined by the number of subhaloes at fixed mass, but by the
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shape of the normalized subhalo radial number density profile. A
weak halo mass dependence arises from the non-power-law nature
of the subhalo radial profile: features in this profile are remapped
to different physical distances for different halo masses, resulting
in a variation in the predicted luminosity function. As a direct
consequence, this implies that changes in the assumed MW halo
mass, which determines the number of DM substructures, alter the
abundance matching relation for Galactic dwarfs; in this regime not
all subhaloes of a given mass host a visible galaxy (Sawala et al.
2015). We find that doubling the halo mass roughly doubles the
number of subhaloes (Wang et al. 2012; Cautun et al. 2014a), so
that there are more of them at fixed vpeak. A more massive MW halo
would then require the same dwarfs to be placed in subhaloes with
higher vpeak than they would for a lower MW mass halo.

The spatial distribution of subhaloes – upon which our predic-
tions rely – is partly determined by cosmology but is also affected
by the internal dynamics of haloes. In turn, these are influenced
by the mass function of subhaloes and their accretion rate, both
of which are fairly universal in both �CDM and WDM models
(Springel et al. 2008; Ludlow et al. 2016). Recent work by Bose
et al. (2017) has shown that the radial distribution of subhaloes is
broadly independent of the nature of the DM. Our predictions are
therefore applicable to other DM models and can, in fact, be used
to constrain the masses of WDM particles.

6 C O N C L U S I O N S

An estimate of the MW’s complement of satellite galaxies is re-
quired until deeper, more complete surveys that could discover
more faint galaxies are undertaken in the next few years. These pre-
dictions can be used to address numerous outstanding astrophysical
questions, from understanding the effects of reionization on low
mass haloes, to constraining the properties of DM particles.

In this work we have, for the first time, combined data from SDSS
and DES – which together cover nearly half of the sky – to infer the
MW’s full complement of satellite galaxies. Our method requires a
prior for the radial distribution of satellites, which we obtain from
the subhalo populations of the AQUARIUS suite of high-resolution
DM-only simulations in which we account for the competing ef-
fects of resolution and subhalo depletion due to interaction with the
central baryonic disc (see Section 5). We have shown that select-
ing subhaloes by their peak maximum circular velocity provides a
good match to the radial distribution of observed MW satellites (see
Fig. 3).

The Bayesian method we have introduced to make these estimates
overcomes some of the limitations of previous analyses (see Fig.
5), and properly accounts for stochastic effects. For each observed
dwarf galaxy, the method estimates how many objects are needed
to find one such satellite in the survey volume. These results are
averaged over multiple DM haloes to characterize uncertainties
arising from halo-to-halo variation.

Within 300 kpc of the Sun – and assuming a MW halo mass of
1.0 × 1012 M� – we predict that the MW has 124+40

−27 (68 per cent
CL, statistical error) satellites brighter than MV = 0 (see Fig. 8).
Of these, we expect to find 46+12

−8 (68 per cent CL, statistical) ul-
trafaint dwarf galaxies (−8 < MV ≤−3), a result that is marginally
inconsistent with the lower end of the Hargis et al. (2014) esti-
mate, but nearly a factor of 5 smaller than the Tollerud et al. (2008)
estimate. All the Galactic ultrafaints could be detected by a sur-
vey just 0.5 magnitudes deeper than DES. We also expect to find a
population of 61+37

−23 (68 per cent CL, statistical) hyperfaint dwarfs
(−3 < MV ≤ 0), and to obtain a full census of this population would
need a survey 4 mag deeper than DES. The LSST survey should be

able to see at least half of this faint population of dwarf galaxies in
the next decade.

In all methods seeking to estimate the total luminosity function,
certain assumptions must be made. In particular, an important as-
sumption is the radial distribution of the true satellite population,
which is best inferred from a cosmological simulation. Here, we
have used a set of the highest resolution DM-only simulations avail-
able and, most importantly, a method for selecting the subhaloes that
are expected to host satellites that has been shown to give consis-
tent results for a number of observed properties of the MW satellite
population, such as the radial distribution of and counts of bright
observed MW satellites. This does not guarantee that the extrapola-
tion is free of systematic effects but as Fig. 3 shows, in the regime
where we can check with available data, any such systematics are
small.

The estimates above represent only lower limits to the total num-
ber of Galactic satellites (see Section 5) because they do not take
into account very low surface brightness objects that may have been
missed in current observations. In addition, the estimate does not
account for some of the satellites brought in by the LMC which
today lie outside the DES footprint (which at most would increase
the total count by 30 per cent).

While our key results assume a MW halo mass of 1.0 × 1012 M�,
our analysis shows that the predicted dwarf galaxy luminosity func-
tion is independent of host halo mass for objects brighter than
MV =−3 (see Fig. 10). For fainter satellites we find a weak depen-
dence on halo mass, with a more massive MW halo playing host to
more satellites. Our tests assuming extreme MW halo mass values
([0.5, 2.0] × 1012 M�) reveal that the resulting luminosity func-
tions lie well within the 68 per cent uncertainty range calculated for
our fiducial MW halo mass. Of the dwarfs within our fiducial dis-
tance of 300 kpc, ∼45 per cent and ∼80 per cent are found within
100 and 200 kpc, respectively.

The results of this study provide a useful reference point for
comparing theoretical predictions with the measured abundance of
satellite galaxies in the MW. However, it must be borne in mind
that the MW is only one system and that the abundance of satellites
around similar galaxies exhibits considerable scatter (Guo et al.
2012; Wang & White 2012).

The code that implements our method to estimate the total pop-
ulation of MW satellite galaxies is available online (Newton &
Cautun 2018). In addition, we also make available all data that are
required to reproduce our results (e.g. Fig. 8).
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Table A1. Known MW satellite galaxies identified in surveys used in this
analysis, grouped according to the survey in which they were detected. For
each satellite we provide its absolute V-band magnitude, MV, heliocentric
distance, D�, and – for DES satellites – its probability of association with
the LMC.

Satellite MV D� ( kpc) pa
LMC Referencee

Classical
Carina − 9.1 105
Draco I − 8.8 76
Fornax − 13.4 147
Leo I − 12.0 254
Leo II − 9.8 233
LMC − 18.1 51
Ursa Minor − 8.8 76
SMC − 16.8 64
Sculptor − 11.1 86
Sextans − 9.3 86
Sagittarius I − 13.5 26

SDSS DR9
Boötes I − 6.3 66
Boötes II − 2.7 42
Canes Venatici I − 8.6 218
Canes Venatici II − 4.9 160
Coma − 4.1 44
Hercules − 6.6 132
Leo IV − 5.8 154
Leo V − 5.2 178
Leo T − 8.0 417
Pegasus III − 3.4 215 (1)
Pisces Ib ... 80 (2)
Pisces II − 5.0 182
Segue I − 1.5 23
Segue II − 2.5 35
Ursa Major I − 5.5 97
Ursa Major II − 4.2 32
Willman I − 2.7 38

DES
Cetus IIc 0.0 30 0.00d (3)
Columba I − 4.2 183 0.11 (4)
Eridanus II − 7.1 366 0.00d (5)
Eridanus IIIc − 2.4 95 0.00d (3)
Grus Ic − 3.4 120 0.64 (3)
Grus IIc − 3.9 53 0.57 (3)
Horologium I − 3.5 87 0.79 (3,6)
Horologium IIc − 2.6 78 0.80 (3)
Indus IIc − 4.3 214 0.19 (3)
Phoenix IIc − 3.7 95 0.75 (3)
Pictorisc − 3.7 126 0.62 (3)
Reticulum II − 3.6 32 0.75 (3,6)
Reticulum IIIc − 3.3 92 0.58 (3)
Tucana II − 3.9 58 0.75 (3,7)
Tucana IIIc − 2.4 25 0.52 (3)
Tucana IVc − 3.5 48 0.79 (3)
Tucana Vc − 1.6 55 0.81 (3)

Notes. aObtained from Jethwa et al. (2016, fig. 9).
bThe method of detection was different from that applied to other satellites
in the SDSS.
cNot spectroscopically confirmed.
dNo probability of association with LMC provided.
eData reproduced from McConnachie (2012, tables 2 and 3) unless indicated
otherwise: (1) Kim et al. (2015, 2016), (2) Watkins et al. (2009), (3) Drlica-
Wagner et al. (2015, Table 4), (4) Carlin et al. (2017), (5) Li et al. (2017),
(6) Koposov et al. (2015b), and (7) Walker et al. (2016).

Table A2. Known MW satellite galaxies identified in surveys not used in
this analysis, grouped according to the survey in which they were detected.
We provide the same data for each satellite as described in Table A1.

Satellite MV D� ( kpc) Referenceb

VLT ATLAS
Aquarius II −4.2 108 (1)
Crater II −8.2 118 (2)

Pan-STARRS
Draco II −2.9 20 (3)
Sagittarius IIa −5.2 67 (3)
Triangulum II −1.2 28 (4)

SMASH
Hydra II −4.8 134 (5)

HSC
Virgo Ia −0.3 91 (6)
Cetus IIIa −2.4 251 (7)

MagLiteS
Carina II −4.5 37 (8)
Carina IIIa −2.4 28 (8)
Pictoris IIa −3.2 45 (9)

Notes. aNot spectroscopically confirmed.
bData reproduced from (1) Torrealba et al. (2016b), (2) Torrealba et al.
(2016a), (3) Laevens et al. (2015), (4) Carlin et al. (2017), (5) Martin et al.
(2015), (6) Homma et al. (2016), (7) Homma et al. (2018), (8) Torrealba
et al. (2018), and (9) Drlica-Wagner et al. (2016).

APPENDI X B: EFFECTS O F R ESOLUTI ON

In this Appendix we provide details of the scheme that we imple-
ment to supplement the z = 0 subhalo population of each AQUARIUS

halo with subhaloes that are otherwise unresolved at this time. We
also compare the difference these additions make to the subhalo
number density profile.

The semi-analytic model GALFORM described by Lacey et al.
(2016), which is based on the same cosmology as the AQUARIUS

simulation suite, is applied to each of the AQUARIUS DM haloes in
turn. We use the Simha & Cole (2017) merging scheme to track the
dynamical evolution of subhaloes over the course of cosmic time.
Well-resolved subhaloes are tracked directly by the N-body simu-
lation; however, those that fall below the resolution limit are lost.
Simha & Cole recover this population by tracking the most bound
particle in these subhaloes from the last epoch at which they were
associated with a resolved subhalo. They then remove subhaloes
from this population if one of the following criteria is satisfied:

(i) A time has elapsed after the last epoch at which the subhalo
was resolved, which is equal to or greater than the dynamical friction
timescale.

(ii) The subhalo passes within the halo tidal disruption radius at
any time.

In both of the above cases the effects of tidal stripping on the
subhalo are ignored, as are interactions between orbiting subhaloes.

In Fig. B1 we compare the normalized cumulative radial subhalo
counts of the AQUARIUS A1 and A2 haloes with the vpeak ≥ 10 km s−1

selection threshold applied. Prior to the application of GALFORM the
original normalized subhalo counts are highly discrepant in the
inner regions of the haloes. The spread in the predicted counts at
MV = 0 in Aq-A1 and Aq-A2 is also wider than the spread in the
predictions from the other L2 haloes (B2-E2). When correcting for
the ‘orphan’ population, which is very centrally concentrated, the
discrepancy in the Aq-A1 and Aq-A2 normalized subhalo counts is
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Figure B1. Normalized cumulative subhalo number counts for the Aq-A1
and Aq-A2 haloes. The dashed lines show the original, uncorrected number
counts prior to the application of GALFORM. The solid lines show the number
counts for each halo after adding ‘orphan galaxies’ to the original population.
The subhalo populations before the correction are poorly sampled in the
innermost regions, and are not well-converged between the two haloes.

almost completely eliminated. As a result the spread in the MV = 0
predictions is also reduced such that it is much smaller than the
spread in the predictions from the other ‘L2 + orphans’ haloes. The
spread in these latter predictions is also significantly reduced by the
correction, which shows that failing to account for this artificially
inflates the halo-to-halo scatter.

APPENDIX C : BARYO NIC EFFECTS

D’Onghia et al. (2010), Sawala et al. (2017), and Garrison-Kimmel
et al. (2017) identify systematic differences in the subhalo radial
number density profiles of haloes in DM-only and hydrodynamic
simulations. The enhanced tidal stripping by the central baryonic
disc leads to a reduction in the number of subhaloes in hydrody-
namic simulations compared to their DM-only counterparts. The
subhalo depletion is a radially varying function that peaks in the
innermost regions of the host halo.

The subhalo number density profiles can be fit using a double
power-law functional form, which is given in Sawala et al. (2017,
equation 2). With help from Till Sawala (private communication),
we determined that some of the values stated for the fitting pa-
rameters of equation (2) in the published version of the paper are
incorrect. Taking the raw data from Till Sawala, we made our own
fits, binning the data in units of χ = r / R200. Fig. C1 gives the av-
eraged subhalo number density profiles of 4 MW-like haloes from
the APOSTLE suite. To improve our statistics, we also average over
5 Gyr of cosmic time, similar to Sawala et al. To these profiles, we
fit a double power law of the form

ρ (r) = 2(β−γ )/αρs (c200χ )−γ (1 + [c200χ ]α)(γ−β)/α
, (C1)

which gives fitting parameters of

(c200, ρs, α, β, γ ) = (2.50, 875, 4.41, 1.80, 0.613)

Figure C1. Fits to subhalo number density profiles in DM-only and hy-
drodynamic simulations. The points show averaged radial profiles for four
APOSTLE haloes. To obtain better statistics, these points were also averaged
over 5 Gyr of cosmic time; see Sawala et al. (2017) for details. The solid
lines show the best-fitting double power laws (see the main text for the
best-fitting parameters).

and

(c200, ρs, α, β, γ ) = (2.35, 613, 8.35, 1.66, 0.537)

for the DM-only and hydrodynamic simulations, respectively.
These fits are only constrained in the radial range [0.01, 1.0] χ

but in practice we extrapolate the profiles over a slightly wider range
of [10−3, 2.0] χ to subsample our haloes. We find that only minimal
extrapolation is required to achieve this, and that the ratio in this
extended range is also slowly varying.

The subhalo depletion is given by the ratio between the hydrody-
namic and DM-only subhalo number density profiles. We compute
this using the best-fitting double power-law fits given above. The
ratio varies from ∼0.5 for the inner halo to about ∼0.8 at R200.
We correct the AQUARIUS subhalo distributions using this depletion
value. For each subhalo, we compute the subhalo depletion value at
its radial position and use a Monte Carlo approach to decide if this
subhalo is retained or discarded. Only retained subhaloes are used
as input to the Bayesian inference method.

APPENDI X D : TESTI NG PREVI OUS METH O DS

Here, we test the T08 method by applying it to a set of mock
satellite observations. This is similar to the exercise in Section 3.2.2,
where, using the same blind mock observations, we demonstrated
that the Bayesian approach introduced in this paper successfully
infers the input ‘true’ luminosity function used to generate the mock
observations.

A set of 100 mock SDSS observations was generated from a
‘true’ population by one of the authors (MC; see Section 3.2.2 for
a description of the mocks) and supplied to another (ON), who
applied the T08 method. In order to return an unbiased estimate,
we applied the T08 approach using a completeness radius that cor-
responds to a detection efficiency, ε = 0.5, and used as input only
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Figure D1. Test of the T08 method using mock observations. The thick
dotted line shows the input luminosity function used to create the 10 SDSS
mock observations, whose luminosity functions are shown as thin solid
lines. Each of the mock observations was used, in turn, to predict a cumu-
lative satellite luminosity function, with the corresponding results shown as
thick solid lines. The shaded region represents the 68 per cent (statistical)
uncertainty from one of the mocks, shifted to lie on top of the input luminos-
ity function. The dashed lines bound the 68 per cent (statistical) confidence
region over the medians of all 100 mock predictions.

those observed satellites with detection efficiencies, ε ≥ 0.5. Using
a random sample of 10 mock observations, we compare in Fig. D1
the scatter among the various mocks with the typical error of the T08
method. We find that the typical 68 per cent (statistical) uncertainty
range estimated by the T08 method is too low: for most magnitude
values, most of the 10 mocks are outside the 68 per cent (statisti-

cal) confidence interval. This was also demonstrated in Fig. 5 and
arises because the T08 method does not incorporate the effects of
stochasticity into its estimation of the uncertainties.

A PPEN D IX E: DATA TA BLE

Table E1. Cumulative number of satellites as a function of absolute mag-
nitude within a heliocentric distance of 300 kpc for a 1.0 × 1012 M� MW
halo, inferred from a Bayesian analysis of the SDSS DR9 + DES observed
satellites. The cumulative number of these observed satellites is provided
for reference. The quoted confidence limits are for statistical errors only.

MV N(<MV) Confidence limits: lower–upper
Observed Predicted 68% 95% 98%

− 8.8 11 11 – – –
− 8.5 12 13 12–15 12–19 12–21
− 8.0 12 14 13–16 12–20 12–21
− 7.5 12 15 13–17 13–21 13–22
− 7.0 12 15 14–17 13–21 13–23
− 6.5 13 16 14–19 13–23 13–25
− 6.0 14 19 16–22 15–27 15–30
− 5.5 16 22 19–26 17–32 16–34
− 5.0 18 27 23–32 20–39 20–43
− 4.5 20 31 27–38 23–47 22–50
− 4.0 23 41 35–49 30–60 29–64
− 3.5 30 52 44–62 39–76 37–82
− 3.0 33 61 51–73 44–89 43–95
− 2.5 37 77 64–93 55–114 52–123
− 2.0 39 89 74–108 63–133 60–142
− 1.5 41 96 79–118 67–147 63–158
− 1.0 41 105 86–131 72–163 68–175
− 0.5 41 115 92–146 75–186 71–203

0.0 42 124 97–164 78–225 73–249
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