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ABSTRACT
The total number and luminosity function of the population of dwarf galaxies of the Milky Way
(MW) provide important constraints on the nature of the dark matter and on the astrophysics of
galaxy formation at low masses. However, only a partial census of this population exists because of
the flux limits and restricted sky coverage of existing Galactic surveys. We combine the sample of
satellites recently discovered by the Dark Energy Survey (DES) survey with the satellites found in
Sloan Digital Sky Survey (SDSS) Data Release 9 (together these surveys cover nearly half the sky) to
estimate the total luminosity function of satellites down to MV = 0. We apply a new Bayesian infer-
ence method in which we assume that the radial distribution of satellites independently of absolute
magnitude follows that of subhaloes selected according to their peak maximum circular velocity. We
find that there should be at least 124+40

−27 (68% CL, statistical error) satellites brighter than MV = 0
within 300 kpc of the Sun. As a result of our use of new data and better simulations, and a more
robust statistical method, we infer a much smaller population of satellites than reported in previous
studies using earlier SDSS data only; we also address an underestimation of the uncertainties in
earlier work by accounting for stochastic effects. We find that the inferred number of faint satellites
depends only weakly on the assumed mass of the MW halo and we provide scaling relations to
extend our results to different assumed halo masses and outer radii. We predict that half of our
estimated total satellite population of the MW should be detected by the Large Synoptic Survey
Telescope (LSST). The code implementing our estimation method is available online.†
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1 INTRODUCTION

Proposed in the 1980s (e.g. Peebles 1982; Davis et al. 1985),
the Λ Cold Dark Matter (ΛCDM) model has proved remark-
ably successful at predicting numerous observable proper-
ties of the Universe and their evolution over time; as a re-
sult, it has become the “standard model” of cosmology (see
Frenk & White 2012; Weinberg et al. 2015, for recent re-
views). Hierarchical structure formation is fundamental to
this model, which predicts that dark matter (DM) haloes
form by mergers of smaller haloes and smooth mass accre-
tion. Merged (sub)haloes that are not completely disrupted
are detectable today as satellite galaxies and, potentially, as
non-luminous substructures.

The Milky Way (MW) halo and its associated satellite
galaxies offer an ideal environment in which to probe hi-
erarchical growth which, in turn, can be used to constrain
the faint end of galaxy formation and the properties of the
DM. However, the current census of MW satellite galax-
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ies is highly incomplete. The most recent surveys – such
as the Sloan Digital Sky Survey (SDSS; Alam et al. 2015)
and the Dark Energy Survey (DES; Bechtol et al. 2015;
Drlica-Wagner et al. 2015) – do not cover the entirety of the
sky and are also subject to detectability limits which depend
on the surface brightness of, and distance to the satellite
galaxies. The goal of this paper is to overcome some of these
limitations and, using theoretical priors based on cosmologi-
cal simulations of MW-like haloes, to estimate the expected
total number of MW satellite galaxies.

In the 1990s DM-only CDM simulations showed that
many more subhaloes survive within MW-like haloes than
there are visible satellites orbiting the MW (Klypin et al.
1999; Moore et al. 1999; Springel et al. 2008). This dispar-
ity is often referred to as the “missing satellites problem for
cold dark matter.” This rather unfortunate nomenclature is
very misleading if, as is common usage, the word “satellite”
is taken to mean a visible galaxy: DM-only simulations have,
of course, nothing to say about visible galaxies. Simple pro-
cesses, at the heart of galaxy formation theory, such as the
reionization of hydrogen in the early universe and super-
novae feedback, make it impossible for visible galaxies to
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form in the vast majority of CDM haloes. Such processes
were first discussed and calculated in this context using
semi-analytic techniques with different approximations in
the early 2000s (Bullock et al. 2000; Benson et al. 2002b,a;
Somerville 2002). For example, Benson et al. (2002a) showed
how the abundance and stellar content of dwarf galaxies is
driven by reionization and supernovae feedback. Their model
produced an excellent match to the luminosity function of
the (11 “classical” – the only known at the time) satellites of
the MW and predicted that the MW halo should host a large
population of fainter satellites. Just such a population was
discovered several years later in the SDSS (Koposov et al.
2008, and references therein).

The early semi-analytic results have been confirmed us-
ing full hydrodynamic simulations (e.g. Okamoto et al. 2005;
Macciò et al. 2007). For example, the most recent such sim-
ulations have confirmed that below a certain halo mass,
typically ∼1010 M� , dwarf galaxy formation is strongly
suppressed, and that the majority of haloes with masses
.109 M� , should not host a luminous component (stellar
mass greater than 104 M�) (Shen et al. 2014; Sawala et al.
2015, 2016a; Wheeler et al. 2015).

In recent years alternatives to CDM have elicited con-
siderable interest. Some of these, such as Warm Dark Mat-
ter (WDM, Avila-Reese et al. 2001; Bode et al. 2001), mod-
els with interactions besides gravity between DM parti-
cles and photons or neutrinos (Bœhm et al. 2014) and ax-
ionic dark matter (Marsh 2016), predict a cutoff in the pri-
mordial matter power spectrum on astrophysically relevant
scales, which would suppress the formation of small galaxies
(Bode et al. 2001; Polisensky & Ricotti 2011; Lovell et al.
2012; Schewtschenko et al. 2015). The abundance of the
faintest galaxies can thus, in principle, reveal or rule out
the presence of a power-spectrum cutoff. By requiring that
WDM models should produce at least enough substructures
to match the observed Galactic satellite count, constraints
on the mass and properties of the DM particle can be derived
(Macciò & Fontanot 2010; Lovell et al. 2014; Kennedy et al.
2014; Schneider 2016; Bose et al. 2017; Lovell et al. 2017).

Past and current surveys have now discovered a plethora
of satellites around the MW, with the count currently stand-
ing at 56: 11 classical satellites, 17 discovered in each of the
SDSS and DES surveys, and 11 found in other surveys. De-
spite this relatively large number of known satellites, current
estimates suggest that there could be at least a factor of 3−5
times more still waiting to be discovered (Koposov et al.
2008; Tollerud et al. 2008; Hargis et al. 2014). These esti-
mates were made prior to the DES survey and are based
only on SDSS data. These predictions start from an assumed
radial profile for the distribution of Galactic satellites: either
that it follows the DM density profile – as in Koposov et al.
(2008), which is not a good assumption – or that it follows
the subhalo number density profile (as in the other studies
cited above). Then, for each observed satellite, they calcu-
late the number of satellites in the entire fiducial volume that
must be present in order to have, on average, one object with
the corresponding properties within the survey volume.

This paper improves upon previous estimates of the
Galactic satellite count in three major ways. Firstly, while
previous studies were based on SDSS data alone, our re-
sult makes use of the combined SDSS and DES data, which
together cover an area equivalent to nearly half of the sky.

Secondly, to properly account for stochastic effects, we intro-
duce a new Bayesian approach for estimating the total satel-
lite count. Stochastic effects – which we find to be the lead-
ing cause of uncertainty – have been overlooked in previous
studies, resulting in a significant underestimation of their
errors. Finally, we make use of a set of five high-resolution
simulated host haloes – taken from the Aquarius project
(Springel et al. 2008) – to characterise uncertainties arising
from host-to-host variation. In December 2016, Jethwa et al.
(2018) presented a Bayesian estimate of the total number of
Galactic satellites. Their result is the outcome of applying
abundance matching to the SDSS observations and, while
it properly accounts for stochastic effects, it depends on
more and uncertain assumptions (mostly related to abun-
dance matching) than the result presented here.

We organize this paper as follows. Section 2 introduces
the observational dataset used in this analysis and Section 3
describes, tests and compares our Bayesian technique with
previous works. We present our main results in Section 4,
detailing their sensitivity to the assumed MW halo mass
and the radial dependence of the satellite count. Section 5
discusses the implications of our results and considers some
of the limitations of our method. We present concluding re-
marks in Section 6.

2 OBSERVATIONAL DATA

Very few of the current set of MW satellites were known
prior to the start of the 21st Century. Discoveries made
after this time, using a multitude of techniques, together
with data from SDSS data release 2 (DR2) and the Two
Micron All-Sky Survey (2MASS) – before a major advance
with SDSS DR5 (Adelman-McCarthy et al. 2007) – brought
the total to 23 dwarf galaxies. Since then, the SDSS sur-
vey area has nearly doubled and DES is now electronically
available. Combining the two surveys produces a sky cov-
erage area of 47%, with SDSS and DES contributing 14,555
and 5,000 square degrees respectively. An analysis of DES
data added a further 17 dwarf galaxies to the running total
(Bechtol et al. 2015; Drlica-Wagner et al. 2015; Kim et al.
2015; Koposov et al. 2015a), which, together with other dis-
coveries, brings the total number of dwarf galaxies, as of
February 2018, to 56. These are listed in Tables A1 and A2
of Appendix A.

These discoveries resulted from the use of advanced
search algorithms that comb through survey data and iden-
tify overdensities of stars which could signal the presence of
a faint dwarf galaxy. For example, the SDSS survey has been
analysed with two such search algorithms, by Koposov et al.
(2008) and Walsh et al. (2009), to find that both techniques
recover the same number of dwarf galaxies – although the
latter is sensitive to fainter objects. Each algorithm has a
response function which – among other factors such as the
survey surface brightness limits – is dependent on the abso-
lute magnitude of the objects being searched for. Assuming
isotropy, the number of observed satellites per unit magni-
tude, dNsat/dMV, is given by:

dNsat
dMV

=

∫ ∞

0

∫ ∞

0
Ωr2 d3 Nsat

dr dMV drsat
ε (r,MV,rsat) dr drsat , (1)
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Table 1. The parameters of equation (3) quantifying the depen-

dence on absolute V−band magnitude of the effective radius in

the SDSS and DES surveys. The Koposov et al. (2008) parame-
ters are taken from fits by Walsh et al. (2009).

Survey Algorithm a∗ b∗

SDSS
Koposov et al. (2008, K08) 0.205 1.72
Walsh et al. (2009, W09) 0.187 1.58

DES Jethwa et al. (2016, J16) 0.228 1.45

where the first integral is over the survey volume, with Ω
the survey solid angle and r the radial distance from the
Sun. The second integral is over the satellite size, rsat; N is
the distribution of satellites as a function of radial distance
from the Sun, absolute magnitude, MV, and size, rsat. The
last term, ε , denotes the efficiency of the search algorithm
for identifying a satellite of magnitude, MV, and size, rsat,
at distance, r, averaged over the survey’s sky-footprint. At
fixed absolute magnitude, most of the satellites detected in
the SDSS have similar sizes and the detection efficiency, ε ,
is approximately equal for all objects (Koposov et al. 2008;
Walsh et al. 2009). Thus, for the observed satellites, the de-
pendence on rsat in equation (1) can be approximated as a
dependence on MV alone.

The detection efficiency, ε , at fixed MV, is a function of
the radial distance and shows a rapid transition with radius
from a 100% to a 0% chance of detection. We may therefore
define an equivalent effective detection volume such that,
on average, this effective volume includes the same number
of satellites of magnitude MV as predicted by equation (1).
The effective radius, Reff (MV), corresponding to this effec-
tive detection volume, is computed by solving the equation,

dNsat
dMV

=

∫ Reff (MV)

0
Ωr2 dr

d2 Nsat
dr dMV

, (2)

where the left-hand term is given by equation (1) and Reff

appears as the upper limit of the integral. The value of Reff

depends on both the radial dependence of ε and on the ra-
dial distribution of satellites. As long as the radial distribu-
tion of satellites is nearly constant in the interval where the
detection efficiency drops from 100 to 0%, Reff can be ap-
proximated as the radius at which the detection efficiency is
50%, which is the value that we use in the rest of this paper.
This approximation is reasonable as ε decreases from 1 to
0 over a narrow radial range (e.g. see fig. 15 in Walsh et al.
2009). Making another choice for the effective radius, such
as ε = 0.9 (as used in Hargis et al. 2014), would underesti-
mate the effective volume and thus overestimate the inferred
satellite count. Both Koposov et al. (2008) and Walsh et al.
(2009) show that, to good approximation, the effective de-
tection radius, which corresponds to ε = 0.5, is given by:

Reff (MV) =10(−a∗MV−b
∗ ) Mpc , (3)

where a∗ and b∗ are fitting parameters associated with the
search algorithm response function. These values are pro-
vided in Table 1 for different algorithms.

The dependence of the effective radius on absolute

Figure 1. Upper panel: the effective detection radius, Reff , of
satellites as a function of absolute magnitude, MV, for the SDSS

and DES surveys. The horizontal dashed line indicates our fiducial

choice of outer radius, Rout=300 kpc, for the MW satellite popu-
lation. Bottom panel: the ratio of the effective volume surveyed

by SDSS and DES, as a function of MV, to the volume enclosed

within 300 kpc. The dashed line shows the combined SDSS plus
DES effective volumes. The two panels show the response func-

tions of the W09 and J16 search algorithms, which are given in
Table 1.

V−band magnitude for the SDSS and DES surveys is shown
in the upper panel of Fig. 1. For clarity, in the case of SDSS
we show only the Walsh et al. (2009) response function.
For DES we give the Jethwa et al. (2016) response function
which was shown to give a good match to the actual detec-
tions. This is equal to the Koposov et al. (2008) response
function as fitted by T08, but shifted to account for the ad-
ditional depth of the DES survey compared to SDSS; how-
ever, this response function has not been verified at the same
level of in-depth analysis as in e.g. Walsh et al. (2009). The
figure shows that for the same absolute magnitude, DES is
deeper and thus can detect satellites out to greater distances
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than SDSS. All bright dwarfs, i.e. MV < −5.5 for SDSS and
MV < −4.0 for DES, that are within the survey footprint
and within our fiducial choice of outer radius, Rout=300 kpc,
should have been detected within their respective surveys.
Thus, the surveys may be considered “complete” – for the
purposes of this analysis – at the absolute magnitudes at
which Reff is greater than 300 kpc. Fainter objects can be
detected only if they are closer than 300 kpc from the ob-
server, with the faintest, MV=0, dwarfs being detected only
if they are within ∼30 kpc of the Sun.

To obtain a more informative perspective on the survey
completeness, the bottom panel of Fig. 1 shows the ratio
between the effective volume of each survey and the total
volume enclosed within our fiducial radius of 300 kpc. Even
when combining the SDSS and DES footprints, the obser-
vations cover only ∼10% of the fiducial volume at MV= − 4
and less than 0.1% of the same volume at MV=0.

3 METHODOLOGY

We require two key ingredients to estimate the total popu-
lation of satellite galaxies from a given survey of the MW.
Firstly, we need a prior for the radial distribution of satel-
lites. For this we take the radial number density of subhaloes
in simulations of MW analogues from the Aquarius project,
which, when subhaloes are selected by vpeak – the highest
maximum circular velocity achieved in the subhalo’s history
– is the same as the radial distribution of luminous satel-
lites in hydrodynamic simulations and that of observed MW
satellites (see Section 3.1). Secondly, we introduce and test
our Bayesian framework used to infer the total number of
satellites (Section 3.2). The need for a new methodology is
motivated by several shortcomings of previous approaches,
which we discuss in detail in Section 3.3.

We assume that the classical satellites, i.e. those with
MV ≤ −8.8, are bright enough to have been observed by
pre-SDSS surveys and that the observations are complete at
these magnitudes (therefore ignoring the possible existence
of obscured satellites in the Zone of Avoidance). As such, the
inferred luminosity function at the bright end will always
match the observations, in line with previous studies (e.g.
Tollerud et al. 2008). The inference method is only applied
to fainter satellites, that is, those with MV > −8.8.

3.1 Tracer population

Any estimation of the total satellite count from incomplete
observations needs a prior for the radial number density of
these objects, which we estimate from N-body simulations.
An ideal simulation from which to extract a tracer popu-
lation should have high enough resolution for the density
profile to be well sampled, and should also offer access to
multiple realizations of MW-like haloes to account for host-
to-host variations.

The Aquarius suite of simulations (Springel et al.
2008) achieves this. It consists of a set of six ΛCDM DM-only
N-body simulations of isolated MW-like haloes which were
run using the P-Gadget3 code and were labelled Aq-A to
Aq-F. In this work we use the ‘level 2’ simulations (L2,
with a particle mass of ∼104M�), which corresponds to the
highest resolution level available across all of the Aquarius

Table 2. The DM particle mass, mp, softening length, ε, and host

halo mass, M200, of the Aquarius simulations used in this work.

Here, M200 denotes the mass inside the radius, R200, within which
the mean density equals 200 times the critical density.

Simulation mp ( M� ) ε (pc) M200
(
1012 M�

)
Aq-A1 1.712 × 103 20.5 1.839
Aq-A2 1.370 × 104 65.8 1.842
Aq-B2 6.447 × 103 65.8 0.819
Aq-C2 1.399 × 104 65.8 1.774
Aq-D2 1.397 × 104 65.8 1.774
Aq-E2 9.593 × 103 65.8 1.185

haloes. Details of these simulations are provided in Table 2.
The Aq-F halo experienced a late-time merger, making it
unsuitable as representative of the MW halo; consequently
it is not used in this analysis. The cosmological param-
eters assumed for these simulations are derived from the
WMAP first year data release (Spergel et al. 2003): H0 =

73 km s−1 Mpc−1, ΩM = 0.25, ΩΛ = 0.75, ns = 1.0, σ8 = 0.9.

Identifying subhaloes near the centre of simulated
haloes using configuration space halo finders like SUBFIND
can be difficult (Springel et al. 2008; Onions et al. 2012).
Subhalo finders are affected by the resolution of the simula-
tion to which they are applied; these effects can be assessed
by comparing haloes which have been simulated at different
resolution levels. One of the haloes in the Aquarius suite
(Aq-A) was simulated at extremely high resolution (‘Level 1’
or L1, with particle mass of ∼103 M�). Even though the
resolution of L2 is still very high, the abundance of sub-
haloes that are relevant to our analysis is suppressed rela-
tive to that at L1, particularly in the inner regions of the
halo. The difference between the two levels is comparable
to that seen across all other L2 profiles. We can, however,
correct for these resolution effects in a relatively straight-
forward manner, by using the Durham semi-analytic model
Galform (Lacey et al. 2016; Simha & Cole 2017) to popu-
late the haloes and subhaloes in the Aquarius simulations
with galaxies and track their orbital evolution even after its
halo is no longer resolved (the so-called ‘orphan’ galaxies).
The detailed scheme we used and a comparison of the sub-
halo samples, both before and after application of Galform,
are given in Appendix B.

A further factor that needs to be taken into account is
the possible destruction of satellite galaxies by tidal inter-
actions with the central galaxy in the halo. This effect has
been calculated by Sawala et al. (2017, Fig. 4, upper panel)
using the Apostle hydrodynamic simulations which show
that up to 40% of satellites in the inner ∼30 kpc can be
destroyed, although overall the fraction destroyed is much
smaller (see also D’Onghia et al. 2010; Errani et al. 2017;
Garrison-Kimmel et al. 2017). For our purposes this differ-
ence, which changes the radial subhalo distribution, is fairly
important but it has the opposite effect to the omission of
orphan galaxies and, as we discuss below, the two effects
partially cancel out. To correct for these baryonic effects
we downsample the z=0 Aquarius subhaloes according to
the value of the radius-dependent depletion rate derived by
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Figure 2. The radial number density of fiducial subhaloes nor-

malised to the mean density within R200. The thin solid lines
show the distributions for subhaloes with different vpeak cuts av-

eraged over the 5 Aquarius haloes. The thick dashed line and

associated shaded region show the radial distribution of luminous
satellites and its associated 68% scatter obtained using 8 haloes

from the Apostle high resolution hydrodynamic simulations. The

thick dotted line shows the best-fitting Einasto profile. For ease
of comparison the profile with our chosen selection criterion of

vpeak≥10 km s−1 is provided as a thick solid line.

Sawala et al. (2017).1 The radial dependence of the deple-
tion factor and further details about this procedure are given
in Appendix C. We refer to this final population, which
incorporates ‘orphan galaxies’ and baryonic effects, as our
fiducial tracer population. Unless otherwise stated we use
this subhalo population throughout the rest of this paper.

We apply a selection cut to the fiducial Aquarius sub-
halo populations on the basis of their vpeak values, under
the expectation that this will provide a stronger correla-
tion with the likelihood of a galaxy forming within the sub-
halo (Sawala et al. 2016a) than, for example, selecting by
present-day maximum circular velocity or present-day mass
(Libeskind et al. 2005; Wang et al. 2013). This correlation
has been shown to hold in the ΛCDM model, which is one
of the priors in our analysis. In Fig. 2 we show the radial
number density of subhaloes normalised by the mean sub-
halo density within R200. This is used to assess the appro-
priateness of applying a vpeak selection, and to determine
the vpeak value down to which the profiles are consistent.
We compare this against the radial distribution of luminous
satellites selected from a set of high resolution hydrody-
namic simulations from the Apostle project (Fattahi et al.
2016; Sawala et al. 2016b). This is a suite of 12 cosmologi-
cal zoom resimulations of Local Group-like regions run with
the P-Gadget3 code and Eagle subgrid physics models

1 There is an error in the values of the fitting parameters quoted
by Sawala et al. (2017); see Appendix C for further details and
the correct values of the parameters.

(Schaye et al. 2015; Crain et al. 2015). Of these, 4 regions
– which contain 8 MW and M31 analogues – were re-run
at much higher resolution and are used here. The Apostle
data are not used beyond the provision of this reference pro-
file as the simulation is unable to resolve ultra-faint luminous
satellites at the magnitudes we are considering here.

Fig. 2 shows that the radial profile of subhaloes is largely
independent of the value of vpeak, except for values below

10 km s−1, where resolution effects come into play. Most
importantly, we find that the profiles of samples selected
with thresholds above this value are in good agreement with
the profile of the luminous Apostle satellites, and that of
observed MW satellites (see Section 3.1.2), making this a
good choice to model the radial distribution of satellites.
We therefore only consider subhaloes with vpeak≥10 km s−1

in the rest of our analysis.

3.1.1 Rescaling the Aquarius haloes to a fiducial MW halo
mass

We would like to assess if the calculation of the total
satellite count is sensitive to the mass of the MW halo.
This is important in view of the large uncertainties in
current estimates of the MW halo mass, with values typ-
ically in the range (0.5 − 2.0) × 1012 M� (e.g. Piffl et al.
2014; Cautun et al. 2014b; Wang et al. 2015). To do this,
we rescale the Aquarius haloes to a fiducial MW halo mass,
MMW,target, and apply our Bayesian method to these rescaled
haloes. When expressed as a function of rescaled radial
distances, r /R200, the radial number density of subhaloes
is largely independent of host mass (Springel et al. 2008;
Han et al. 2016; Hellwing et al. 2016). Thus, we can rescale
the original Aquarius haloes to different target masses by
multiplying the radial distance of each subhalo by the ratio
R200,target / R200,original. Unless specified otherwise, the results
presented in this paper are calculated for a fiducial MW halo
mass, MMW=1.0 × 1012 M� . The variation of these results
with MW halo mass is analysed in Section 4.4.

3.1.2 Comparison to the MW satellite distribution

A further test of the appropriateness of a particular choice
of tracer population can be obtained by comparing its ra-
dial distribution with that of the observed MW satellites.
When calculating the latter, we need to correct for the ra-
dial incompleteness in the surveys: faint satellites can be de-
tected only at small radial distances which, if unaccounted
for, leads to a biased, more centrally concentrated satellite
distribution. This radial profile, corrected for radial incom-
pleteness, is given by

dN (r)
dr

=

∑
i PMW, i δ (ri − r)∑
i PMW, i ε

(
r,MV, i

) , (4)

where the sum is over all the observed classical, SDSS and
DES satellites, ri and MV, i are the position and absolute
magnitude of the i-th satellite, and δ (ri − r) is the Dirac
delta function. The quantity, PMW, i, denotes the probabil-
ity that a satellite is associated with the MW, which we
take to be 1 for all objects except the DES satellites. Many
of these are likely to have fallen in as satellites of the Large
Magellanic Cloud (LMC) and, being at first infall, are still
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Figure 3. Comparison of the radial distribution of observed MW
satellites (dashed line) with that of vpeak-selected subhaloes from

the five Aquarius haloes (solid line) rescaled to a host halo mass

of 1.0 × 1012 M� . The sample of observed satellites was corrected
for survey radial incompleteness (see text) and consists of the

classical, SDSS, and DES satellites. We further accounted for the

possibility that many of the DES satellites may have fallen in
with the LMC by using the probabilities of association with the

MW given by Jethwa et al. (2016). The dark and light shaded re-
gions represent the 68% CL and 95% CL (statistical error) boot-

strapped error regions for the vpeak-selected subhalo distribution,

respectively.

concentrated near the position of the LMC which is adja-
cent to the relatively small region surveyed by the DES. For
these objects we use the probabilities of association given
by Jethwa et al. (2016); we discuss this point in greater de-
tail in Section 4.1 below. The quantity, ε , is the detection
efficiency (see Section 2) at distance, r, for satellites of mag-
nitude, MV, and accounts for radial incompleteness. The de-
nominator of equation (4) is maximal for small r values,
where all observed satellites have 100% detection efficiency,
and decreases at large r.

Fig. 3 shows that vpeak-selected subhaloes have the
same radial distribution as the observed MW satellites, as
predicted by theoretical arguments (Libeskind et al. 2005).
This comparison demonstrates the validity of our fiducial
choice for the radial distribution of satellites. The subhalo
distribution given in Fig. 3 corresponds to a MW halo mass
of 1.0 × 1012 M� and using a slightly lower value for the
MW halo mass leads to an even better agreement between
the two radial distributions.

We also used equation (4) to compute the model-
independent radial number density for three different obser-
vational subsamples: the classical, SDSS and DES satellites.
We find good agreement between the three subsamples (not
shown), indicating that the data are consistent with the ra-
dial distribution being independent of satellite brightness.
This is consistent with Fig. 2, where we find that the radial
profile of vpeak-selected objects is largely independent of the
value of vpeak.

3.1.3 A fit to the radial profile of subhaloes

In a later part of our analysis (Section 4.5), we will make use
of a functional form for the radial profile of satellites in order
to scale our results to different MW halo masses or fiducial
volumes. For this, we fit an Einasto profile (Einasto 1965;
Navarro et al. 2004)2 to the vpeak≥10 km s−1 curve shown
in Fig. 2. The Einasto profile – or the very similar NFW
profile (Navarro et al. 1995, 1996, 1997) – provides a good
description of the radial number density of substructures
(Sales et al. 2007; Kuhlen et al. 2008; Springel et al. 2008;
Han et al. 2016). We can parameterise the Einasto profile
in terms of a shape parameter, α, and the concentration,
c200=R200 / r−2, with r−2 the scale radius at which the log-
arithmic slope of the profile is −2. Using the scaled radial
distance, χ=r /R200, the Einasto profile is given by:

n ( χ)
〈n〉

=
αc200

3

3
(
α

2

) 3
α
γ

(
3
α ,

2
α c200α

) exp
[
−

2
α

(c200 χ)α
]
, (5)

where 〈n〉 is the mean number density within R200 and the
lower incomplete Gamma function, γ, is defined as

γ (s, x) =

∫ x

0
ts−1 exp (−t) dt . (6)

We find that an Einasto profile with c200=4.9 and α=0.24
provides a good match to the radial number density of sub-
haloes, as may be seen in Fig. 2.

3.2 The Bayesian inference method

We are interested in calculating the probability distribution
function (PDF) of the total number of satellites, Ntot(< MV),
if a survey with effective volume, Veff (MV), has detected
Nobs(< MV) satellites. Note that both the effective volume
and the number of satellites are functions of absolute mag-
nitude; however, for ease of readability, we drop the explicit
dependence on MV. Within the Bayesian formalism, the pos-
terior probability of having a total of Ntot satellites given that
we observe Nobs objects within a volume, Veff , is given by,

P (Ntot |Nobs,Veff ) =
P (Nobs |Ntot,Veff ) P (Ntot)

P (Nobs,Veff )
, (7)

where P (Nobs |Ntot,Veff ) is the likelihood of having Nobs ob-
jects within volume Veff if there is a total of Ntot satellites.
For the prior, P (Ntot), we take a flat distribution; the de-
nominator is a normalisation factor. Thus, we have

P (Ntot |Nobs,Veff ) ∝ P (Nobs |Ntot,Veff ) . (8)

The method needs two more ingredients: 1) a prior for the
radial distribution of satellites, which we take as that of
Aquarius vpeak-selected subhaloes, and 2) a sample of ob-
served satellites, which we take as that of the SDSS and DES
surveys. Thus, Ntot represents the inferred total number of
MW satellites given these priors.

In practice, it is computationally prohibitive to evalu-
ate the likelihood function over the full parameter space so
we use Approximate Bayesian Computation (ABC). ABC

2 A fit to the DM density profile of this form was first introduced
in Navarro et al. (2004) but only referred to as the “Einasto pro-

file” in Merritt et al. (2006).
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methods approximate the likelihood by selecting model re-
alizations that are consistent with the data. For our study,
ABC is an accurate way to estimate the likelihood function
because (i) we compare the realizations with the actual data
rather than with summary statistics, and (ii) our dataset
consists of a discrete number of satellites and our method
selects realizations that exactly reproduce the observations.

The likelihood can be computed using a Monte Carlo
method applied to each Aquarius halo. We start by select-
ing the satellite tracer population – i.e. the DM subhaloes
– within our fiducial MW halo radius and organising them
into a randomly-ordered list. Then, for each observed satel-
lite, we estimate the required number of satellites of equal
brightness such that there is only one such object inside
the effective survey volume corresponding to that observed
dwarf galaxy. Starting with the brightest observed satellite,
we pick random numbers, Nrand, until we find that only one of
the top Nrand subhaloes is inside the corresponding effective
survey volume. The resulting Nrand value corresponds to one
possible realization of the total count of objects, Ntot(MV),
of brightness equal to that of the observed satellite. We then
remove the top Nrand subhaloes and repeat the same proce-
dure for the next brightest observed satellite.

We considered ordering the subhalo list according to
their vpeak values, which is equivalent to ordering them from
brightest to faintest, assuming vpeak is a luminosity indicator.
This ordering would have the advantage of capturing corre-
lations between the luminosity of spatially close satellites as
would happen in the case of group accretion. For example, a
massive satellite at first infall is likely to bring with it other
luminous galaxies (Wang et al. 2013; Shao et al. 2016). In
practice, we find that the effects of any such correlations
are insignificant compared to the uncertainties introduced
by host-to-host variability.

This Monte Carlo procedure generates one possible re-
alization of the dependence of the total number of satellites
on absolute magnitude, Ntot(< MV). To sample the full al-
lowed space, the procedure must be repeated many times,
for different locations of the survey volume, for different host
haloes, and for new randomisations of the subhalo list. The
details of how we achieve this are given in Section 3.2.1, to-
gether with a more computationally efficient implementation
of the Monte Carlo algorithm just described.

Our Monte Carlo approach represents a discrete sam-
pling of the effective volume, Veff , which is a smooth function
of MV. While in principle this may lead to biases, in prac-
tice there are enough observed satellites to sample densely
the range of absolute magnitudes of interest; thus any such
effects are small, as may be seen in Section 3.2.2.

3.2.1 Practical Implementation

For each Aquarius halo, we position an observer 8 kpc from
the halo centre at one of six vertices of an octahedron, and
select a spherical region of 300 kpc in radius centred on this
point, similar to Tollerud et al. (2008). All subhaloes within
this region are sorted randomly and assigned an index. We
then select a conical region with its apex at the observer
position and its opening angle corresponding to the sky cov-
erage of the survey from which the observational data are
drawn. The maximum radial extent of the conical region,

Reff , for an observed object of given magnitude is calculated
using equation (3).

Starting with the brightest object in the survey, of mag-
nitude MV,1, we sequentially select subhaloes from our sorted
list until we identify one object within our mock survey vol-
ume. This sets the lower bound for Ntot(< MV,1). To set
the upper bound, we continue down the sorted list of sub-
haloes until we find the largest subhalo index which still cor-
responds to only one subhalo inside the mock survey volume.
Every choice between the lower and upper bounds is equally
consistent with the observation of one object of MV,1 within
the survey volume; we therefore randomly select one num-
ber in this interval and remove this many subhaloes from
the beginning of our ordered list. We then consider the next
brightest object – of magnitude MV,2 – and repeat the above
procedure, using the updated list of subhaloes and the new
effective survey volume, Veff (MV,2). We continue this process
down to the faintest observed satellites in the survey.

The procedure is repeated for 1,000 pointings evenly
distributed across the simulated sky, and for 6 observer lo-
cations, creating 6,000 realizations for each simulated halo.
There are 5 Aquarius haloes so, in total, we obtain 3 × 104

realizations which are used to estimate the median and 68%,
95% and 98% uncertainties of the complete satellite luminos-
ity function.

3.2.2 Validation

In order to validate the Bayesian inference method, one of
the authors (ON) tested it on a set of 100 mock SDSS obser-
vations provided by another (MC). The results of these tests,
and a sample of 10 of the mocks, are shown in Fig. 4. The
mock observations were generated from a ‘blinded’ luminos-
ity function – indicated in the figure by the thick dotted line
– and were obtained from the Aq-A1 halo distribution of sub-
haloes with vpeak ≥ 10 km s−1 within 300 kpc. The selected
subhaloes were then randomly assigned absolute magnitudes
according to the input luminosity function. Mock observa-
tions were produced for 100 random pointings of a conical
region analogous to the SDSS volume within the halo, tak-
ing into account the effective radius out to which satellites
of different magnitudes could be identified. To model bet-
ter the observations, mocks were generated using a radially
dependent detection efficiency: for a given magnitude, using
equation (3), we calculated Reff , which is the radius corre-
sponding to a 50% detection efficiency, and then assumed
that the detection efficiency decreases from 1 to 0 linearly
in the radial range [0.5,1.5] Reff . Satellites found in regions
where the detection efficiency is below unity were included
in the mocks using a probabilistic approach by comparing
a random number between 0 and 1 with the value of the
detection efficiency. The luminosity functions for a sample
of 10 of the 100 resulting mocks are shown as thin solid lines
in Fig. 4. Even though all the mocks survey the same halo,
we find a large spread in the number of observed satellites.

Taking each mock survey dataset in turn, we apply the
Bayesian inference method, producing 100 estimates of the
total satellite luminosity function, 10 of which are shown in
Fig. 4 as thick solid lines. To assess the method fully, we
also illustrate the 68% uncertainty region, taken from one
of the mocks and shifted so that the centre of the region
is aligned with the ‘true’ luminosity function. Most of the
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Figure 4. Tests of the Bayesian inference method using mock
observations. The thick dotted line shows the input luminosity

function used to create 100 SDSS mock observations. The lumi-

nosity functions of a sample of 10 of these are shown as thin solid
lines. Each of the 10 mock observations was used, in turn, to pre-

dict a cumulative satellite luminosity function. The results are

shown as thick solid lines. The shaded region represents the 68%
uncertainty from one of the mock predictions, shifted to lie on top

of the input luminosity function. The dashed lines bound the 68%
confidence region over the medians of all 100 mock predictions.

inferred satellite luminosity functions lie inside the 68% un-
certainty region, in line with statistical expectations, thus
demonstrating the success of the method at reproducing
the underlying true luminosity function. This uncertainty
region, taken from one mock, is comparable to the 68% con-
fidence region obtained from the medians of all 100 mocks,
which further demonstrates that the method successfully es-
timates uncertainties. Note also that our inference method
assumes that the detection efficiency is a step function at
Reff , but the mocks were generated using a radially varying
detection efficiency. Thus, this test also shows that assum-
ing an effective detection radius is a good approximation
and does not bias the inferred total luminosity function.

3.3 Comparison to previous inference methods

As we discussed briefly in Section 1, the previous method
used for inferring the total satellite count has some draw-
backs. The Tollerud et al. (2008, T08) method, which was
also employed by Hargis et al. (2014), used a similar vpeak-
selected radial distribution of subhaloes as us (although not
accounting for unresolved subhaloes or baryonic effects).
However, the differences arise from the way in which these
distributions are used. The T08 method employs a com-
pleteness volume, Vcomp, that is typically selected as the
volume where the detection efficiency, ε (MV), has a given
non-zero threshold value, e.g. ε (MV) = 0.9. Note that the
T08 completeness volume can be different from the effec-
tive volume used in our Bayesian method. To obtain an un-
biased estimate, only observed satellites within that com-

Figure 5. Comparison of two different inference methods for the
total dwarf galaxy luminosity function: the Tollerud et al. (2008,

T08) method and the Bayesian approach introduced here. Both

methods were applied to the same dataset, the SDSS. The median
estimate (solid line) and associated 68% uncertainties (shaded re-

gions) for each method are shown. The T08 method does not

account for stochastic effects, so it underpredicts the uncertain-
ties.

pleteness volume, i.e. satellites with detection efficiencies
above the threshold value, should be used for inferring the
total satellite count. The T08 approach is based on calculat-
ing, for each observed satellite, the fraction of vpeak-selected
subhaloes inside the completeness survey volume associated
with that satellite. This fraction, η=Nsub(< Vcomp)/Nmax sub,
is the ratio of the number of subhaloes, Nsub(< Vcomp), inside
Vcomp to the total number of subhaloes, Nmax sub, inside the
halo. Then, for the i-th observed satellite, the fiducial halo
volume contains

1
ηi ε i

(9)

satellites of absolute magnitude, MV, i, with ε i the detection
efficiency associated to the i-th observed satellite.

Fig. 5 shows a comparison of the T08 approach, dis-
cussed above, with our Bayesian inference approach. These
methods were applied to the same SDSS DR9 dataset us-
ing the Walsh et al. (2009, W09) completeness function (see
Table 1) and the subhalo distribution of a single simulated
halo, Aq-A1, corrected for ‘orphan galaxies’ and baryonic
effects. Here, when applying the T08 method, we choose a
completeness radius corresponding to ε (MV) = 0.5, which is
equal to the effective radius used by the Bayesian method,
and only use observed satellites with detection efficiencies,
ε ≥ 0.5. All the satellites detected by the W09 algorithm
have ε > 0.5 and thus pass this selection criterion. The me-
dian estimates produced by the T08 and Bayesian methods
are similar. However, as we show in extensive tests detailed
in Appendix D, where we apply the T08 approach to mock
observations similar to those in Fig. 4, the T08 method un-
derestimates the uncertainties.

There are two main factors that introduce uncertainties.
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Figure 6. Comparison of the dominant sources of uncertainty
in estimates of the total satellite luminosity function: the flat-

tening of the subhalo distribution or the stochastic effects. The

region labelled ‘fiducial subhalo distribution’ corresponds to ap-
plying our method to the fiducial subhalo population of the simu-

lated halo, Aq-A1. This estimate is affected by both the shape of

the tracer distribution and stochastic effects. The region labelled
‘isotropised fiducial distribution’ assumes the same radial distri-

bution of subhaloes but with isotropised angular coordinates; this
is affected only by stochastic effects. Both approaches have ap-

proximately the same median (solid line) and 68% scatter (shaded

region). Thus, stochastic effects are a major source of uncertainty.

Firstly, the distribution of satellites is not isotropic but flat-
tened. As a result, surveying different regions of the halo can
introduce variations in the number of observed objects. Sec-
ondly, the presence or absence of satellites in the observed
volume is a stochastic process. Given N satellites and the
probability, η, of a satellite being inside the survey volume,
then the number of observed satellites in the survey is a
binomial distribution with parameters N and η. To deter-
mine which of the two effects is dominant, we applied the
Bayesian inference method to the original subhalo distribu-
tion of the Aq-A1 halo and to many isotropised versions of it.
These were generated keeping the same radial distances and
isotropising the angular coordinates. The results of this test,
presented in Fig. 6, show that while anisotropy makes a no-
ticeable contribution to the uncertainty at faint magnitudes,
stochastic effects are the dominant source of uncertainty.

The T08 method accounts for anisotropy, but it does
not account for stochastic effects, which leads to an under-
estimation of the errors. This underestimate is clearly seen in
the mock observation tests detailed in Appendix D, where we
find that most of the T08 estimates lie further than the 68%
uncertainty interval from the input ‘true’ luminosity func-
tion. Given the probability, η, that a satellite is inside the
volume Veff , the T08 method predicts η−1 satellites within
the halo – see equation (9) without the ε term. While this
is true on average, for any realisation the number of satel-
lites in the halo is given by a negative-binomial distribution
with mean value η−1. The width of this distribution, which

characterizes the size of the stochastic effects, gives rise to
an additional uncertainty that is not included in the T08
methodology.

4 RESULTS

We now provide the results of our analysis using the
Aquarius haloes rescaled to a fiducial MW halo mass of
1.0 × 1012 M� and within a fiducial radius, Rout=300 kpc.
Initially, we perform our analysis for the SDSS and DES
survey data separately, each requiring extrapolations over
large unobserved volumes. Combining both surveys reduces
the uncertainty because of the larger volume coverage. We
also address other issues, for example, the dependence of the
inferred total luminosity function on the assumed MW halo
mass and on radial distance.

4.1 Separate estimates from SDSS and DES

The results of applying our Bayesian inference method to
the SDSS DR9 dataset are displayed in the left-hand panel
of Fig. 7. Also plotted here is the luminosity function of all
satellite galaxies observed in the SDSS DR9 survey for which
absolute magnitude measurements have been published to
date; these data are provided in Table A1. We adopt the
response functions of the two search algorithms detailed in
Section 2, by K08 and W09. The counts inferred using the
K08 function are systematically higher than those obtained
using the W09 function at absolute magnitudes fainter than
MV ≈ −5.5. This is expected, and is a consequence of both
algorithms detecting the same number of satellites, but the
W09 algorithm probing deeper at fainter magnitudes. The
larger scatter in the K08 estimate reflects the additional
uncertainty introduced by requiring an extrapolation over
larger volumes of the halo. In the remainder of this paper
we will use the results obtained using the W09 algorithm as
it is able to detect – at least in principle – fainter objects.

Down to magnitude MV= − 2.7 (corresponding to the
faintest satellite considered by Tollerud et al.), the SDSS
data imply that there are at least 64+55

−26 (98% CL, statis-
tical error – note that the 68% CL is shown in the figure)
dwarf galaxies within a radial distance of 300 kpc. This is
significantly lower than the estimate by Tollerud et al. who
inferred 322+144

−76 at 98% CL. The Tollerud et al. estimate is
higher for two reasons. Firstly, they adopted the K08 re-
sponse function which is shallower than the W09 function.
Secondly, their estimates were based on the SDSS DR5 data
release which observed 10 satellites over a footprint of ∼8,000
square degrees. Since then, while SDSS DR9 has added an
additional ∼6,500 square degrees of sky coverage, it has de-
tected only 4 new satellites brighter than MV= − 2.7.

The result of applying our method to the DES sur-
vey is shown in the right-hand panel of Fig. 7; in this case
we adopt the Jethwa et al. (2016) response function. No
satellites are detected in DES with magnitude in the range
−8.9 . MV . −4.5, so we interpolate between the values cal-
culated at each end of the range. Including all the DES satel-
lites in the inference method returns twice as many satellites
with MV. − 4 than inferred from the SDSS satellites alone.
This discrepancy is caused by the DES footprint being ad-
jacent to the two Magellanic Clouds which, models suggest,
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Figure 7. The total MW satellite galaxy luminosity functions inferred from the SDSS and DES surveys (left and right panels, respec-

tively). The solid lines and corresponding shaded regions show the median estimates and associated 68% uncertainties. The dashed lines

indicate the number of observed satellites within 300 kpc in each of the two surveys; these are input into the Bayesian inference method.
For the SDSS, we show estimates using the response functions of the two search algorithms devised by Koposov et al. (2008, K08) and

Walsh et al. (2009, W09). Both algorithms detect the same number of satellites, but the latter probes down to fainter magnitudes. For

DES, we use the Jethwa et al. (2016, J16) response function. This result is truncated at MV ≤ −4.5 as no satellites brighter than this
have been observed in DES within 300 kpc. The DES estimate (solid line) accounts for the possibility that some objects observed by DES

may be satellites of the LMC. For reference, we also plot a second estimate which assumes that all DES objects are associated with the
MW (dotted line), as well as the SDSS W09 result (dot-dash line).

are on their first infall (Kallivayalil et al. 2013; Jethwa et al.
2016). If that were the case, then it is likely that the two
Magellanic Clouds would have contributed their own com-
plement of satellite galaxies. These are not distributed uni-
formly over the sky, but are still clustered around the Magel-
lanic Clouds (Sales et al. 2011). As many as half of the satel-
lites detected by DES could have come from the Large Mag-
ellanic Cloud (LMC; Sales et al. 2007; Jethwa et al. 2016).
Failing to account for these localised associations would lead
to an overestimate of the total Galactic satellite population.
We adopt the probabilities of association of each of the DES
objects with the LMC inferred by Jethwa et al. (2016) and
include an additional step in our analysis: for each mock sur-
vey pointing we generate a Monte Carlo realization in which
the DES satellites are assigned either to the MW or to the
LMC according to these probabilities. Only the DES satel-
lites assigned to the MW are then included in the Bayesian
inference.

The right-hand panel of Fig. 7 shows the satellite lumi-
nosity function accounting for the association of some DES
satellites to the LMC. This estimate is in good agreement
with the estimate from the SDSS for MV. − 4. The dis-
crepancy at brighter magnitudes is due to the lack of de-
tection in the DES survey of any satellites brighter than
MV=−4.5 within a distance of 300 kpc. While DES is deeper
than SDSS, it covers a smaller area on the sky and thus, for
MV. − 5 and MV& − 0.5, DES samples a smaller effective
volume than SDSS (see Fig. 1). Nonetheless, the luminosity
function inferred from DES is generally consistent with that

inferred from SDSS given the large uncertainties in both es-
timates.

4.2 Combined estimate from SDSS+DES

The best estimate of the total satellite luminosity function
is obtained by combining the SDSS and DES surveys. We
modify the analysis described in Section 3.2.1 by including a
second conical region oriented relative to the first one such
that it reproduces the approximate orientation of the real
SDSS and DES surveys. The SDSS vector is used to define
the pointing “direction” of this configuration; it uniformly
samples the sky as before. The second vector – correspond-
ing to the DES survey – is fixed at an angle of 120◦ relative to
the SDSS vector but is allowed to rotate around it. For each
SDSS pointing a configuration is generated and a combined
SDSS+DES luminosity function is calculated. In practice,
this analysis corresponds to that of a survey of effective vol-
ume, Veff, SDSS + Veff, DES, consisting of two disjoint regions.
The analysis otherwise proceeds as before.

The predicted total satellite luminosity function from
the combined SDSS+DES data is shown in Fig. 8. This es-
timate is consistent with those from the separate analyses
of SDSS and DES data: except in a few bins, the medians
of the individual estimates lie within the 68% uncertainty
range of the SDSS+DES estimate. When comparing with
the combined result, we find that the SDSS-only estimate
overpredicts the satellite count for MV ≤ −4, which is to be
expected given that DES did not find any satellites brighter
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Figure 8. The total luminosity function of dwarf galaxies within
a radius of 300 kpc from the Sun obtained from combining the

SDSS and DES data. The solid line and shaded region show the

median estimate and its 68% uncertainty respectively. The two
dotted lines show the median satellite luminosity functions using

SDSS and DES data separately. The luminosity function of all

observed satellites within the SDSS and DES footprints inside
300 kpc is indicated by the dashed line. The total satellite lumi-

nosity function is well-fitted by the broken power law given in
equation (10).

than MV=− 4.5 within our fiducial radius of 300 kpc. In con-
trast, for MV > −4, the SDSS-only estimate occasionally lies
slightly below the total satellite count, reflecting the large
number of satellites with MV ≥ −4.5 observed by DES. The
data associated with Fig. 8 are provided in Table E1 of Ap-
pendix E.

We find that the total satellite luminosity function is
well-fitted by the broken power law:

log10 N (<MV) =


0.095MV + 1.85 f or MV< − 5.9
0.156MV + 2.21 f or MV≥ − 5.9

, (10)

that is, the faint end of the luminosity function is described
by a significantly steeper power law than the bright end.

4.3 Dependence on the tracer population

In Section 3.1 we argued that in order to make accurate
predictions it is necessary to incorporate two effects into
the analysis: the inclusion of unresolved subhaloes, i.e. “or-
phan galaxies”, and the depletion of subhaloes due to tidal
disruption by the central galaxy disc (i.e. baryonic effects).
These changes primarily involve the inner ∼50 kpc of the
halo, the region to which the faint end of the luminosity
function is most sensitive. Although these two effects have
opposite sign, they do not cancel out completely. In Fig. 9 we
show the effect of each of the two corrections, which are only
important for the faintest satellites (MV > −2). Prior to any
correction the MV=0 satellite count is 141+54

−35; the addition of

unresolved subhaloes reduces this to 113+34
−24. This is because

Figure 9. The sensitivity of the inferred satellite luminosity func-

tion to the two corrections applied to the subhalo population.
The dotted line shows the inferred satellite count using the origi-

nal subhalo distribution of Aquarius. The dashed line shows the

effect of adding subhaloes missing due to resolution effects, the
so-called ‘orphan galaxies’. The solid line shows the results from

our analysis, in which we also account for subhalo depletion due to
baryonic effects. The shaded region indicates the 68% uncertainty

region of our final result.

the unresolved subhalo population is very centrally concen-
trated; on average some ∼85% of them lie within 50 kpc. Ac-
counting for subhalo depletion due to baryonic effects pro-
duces a small upward shift in the median to 124+40

−27; a de-
crease of ∼12% relative to the uncorrected luminosity func-
tion inferred using the L2 subhalo distribution of Aquarius
haloes.

4.4 Dependence on the mass of the MW halo

As we discussed in Section 3.1.1, the MW halo mass is poorly
constrained, with recent estimates varying within a factor of
2 from our fiducial choice of MMW = 1.0 × 1012 M� (see the
compilation of Wang et al. 2015). To investigate the sensi-
tivity of the inferred total satellite luminosity function to
the MW halo mass, we repeated our analysis for two ex-
treme mass values, 0.5 × 1012 M� and 2.0 × 1012 M� , cor-
responding roughly to lower and upper bounds for the MW
halo mass (e.g. Wang et al. 2015). To obtain estimates for
these halo masses, we rescaled the fiducial radial distribution
of subhaloes using the procedure described in Section 3.1.1.
The inferred dwarf galaxy luminosity functions are displayed
in Fig. 10, which shows that despite the factor of 4 difference
between the lowest and highest halo masses considered, no
large discrepancies begin to emerge until MV≥−2.5. Even at
fainter magnitudes, the differences are well within the 68%
uncertainty range for a given MW halo mass.

The number of subhaloes in a DM halo scales strongly
with halo mass (e.g. Wang et al. 2012; Cautun et al. 2014a),
so näıvely we might assume that the inferred satellite count
follows the same relation. As Fig. 10 demonstrates, that
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Figure 10. The dependence of the inferred total dwarf galaxy lu-
minosity function within 300 kpc on the assumed mass of the MW

halo. The lines show estimates for our fiducial MW halo mass of

1.0 × 1012 M� (used in previous plots) and for lighter and heav-
ier MW haloes, as indicated in the legend. For the fiducial case,

we show the median estimate (solid line) and the 68% uncertainty

(shaded region). For the other two cases we show only the median
estimates (dotted lines).

is not the case; we see only a weak variation of Ntot with
Mhalo. The inferred satellite count depends only on the shape
of the normalised radial profile of subhaloes, and not on
the total number of subhaloes. When expressed in terms of
r/R200, i.e. radial distance in units of the virial radius of the
halo, the radial profile is largely independent of host mass
(Springel et al. 2008; Hellwing et al. 2016; Han et al. 2016).
Different host masses correspond to different values of R200,
and thus any features in the radial profile are mapped onto
different physical radial distances. If the radial distribution
of subhaloes were a power law, then the inferred satellite
count would be independent of halo mass: for fixed r, chang-
ing R200 would only lead to a shift in the normalisation of
the radial profile which is unimportant for our analysis.

4.5 Dependence on the outer radius cut-off

Fig. 11 illustrates the dependence of the total satellite count
within a given radius, r, as a function of r. These estimates
follow from the observation that the radial number density
of subhaloes selected above a vpeak threshold is independent
of the value of the threshold (see Fig. 2), which suggests that
the radial distribution of satellites should also be indepen-
dent of satellite luminosity.

The fiducial radial distribution of subhaloes is well de-
scribed by an Einasto profile: the number of satellites within
χ=r/R200 is given by:

N (< χ) = 4π
∫ χ

0
n
(
χ′

)
χ′2 dχ′ , (11)

with n
(
χ′

)
the Einasto profile given by equation (5). Per-

Figure 11. The radial dependence of the total number of satel-
lites enclosed within radius r . The Y-axis gives the ratio of this

number relative to the satellite count within 300 kpc, the fiducial

radius used in this analysis. The result is independent of absolute
magnitude, MV, since subhaloes with different vpeak cuts have the

same radial profile. There is little dependence on the mass of the

MW halo.

forming the integration and substituting for χ gives:

N (< r) = N
(
< 300 kpc

) γ

(
3
α
,

2
α

[
c200 χ

]α )
γ

(
3
α
,

2
α

[
c200

300 kpc
R200

]) , (12)

where the function γ is given by equation (6). The radial de-
pendence of N (< r) is affected by the assumed value for the
MW halo mass through the dependence of R200 on halo mass.
Fig. 11 shows the radial dependence of N (< r) for the three
MW halo masses assumed in Fig. 10; we find only a mild
variation with MW halo mass. Extending to distances far-
ther than 300 kpc leads only to modest increases in the satel-
lite count, with a ∼20% increase at 400 kpc, which is roughly
half way between the MW and M31. Of all the satellites
within 300 kpc, ∼80% of them lie within 200 kpc, the R200
value for a 1.0 × 1012 M� halo mass. At even smaller radial
distances, we find ∼45% of the satellites within 100 kpc.

4.6 Apparent magnitude luminosity function

In this subsection we examine the prospects for discovery of
faint satellites in future surveys of the Milky Way. For sim-
plicity we assume that the only factor that determines the
detectability of a satellite is its apparent luminosity, rather
than its size or surface brightness. We can then calculate
the number counts of satellites as a function of V−band
magnitude. To estimate apparent magnitudes, we assign an
absolute magnitude, MV, to subhaloes by sampling the in-
ferred luminosity function from Section 4.2, i.e. the com-
bined SDSS+DES estimate. We then use the subhalo dis-
tance from the halo centre to compute the distance modulus
and thus the apparent magnitude. This process is repeated
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Figure 12. The inferred Galactic satellite number counts within

300 kpc as a function of apparent V−band magnitude, mV. The
satellites are split into ultra- and hyperfaint dwarf galaxies, which

correspond to objects with absolute magnitude in the range

−8 < MV ≤ −3 and −3 < MV ≤ 0, respectively. The solid lines
display the median prediction, with the corresponding shaded

regions indicating the 68% uncertainties. For reference the sum
of the median predictions of both populations is also provided

(black line). The diamond and associated error bars represent the

Hargis et al. (2014, H14) prediction and 68% uncertainty region
for the total expected number of ultrafaint satellites. As before,

the dashed lines display number counts of observed ultra- and hy-

perfaint dwarf galaxies within the SDSS and DES surveys. The
vertical arrows indicate the faintest satellites that can be detected

in past and future surveys: SDSS (mV = 16.0), DES (mV = 17.5),

HSC (mV = 20.0) and LSST (mV = 21.5).

for the luminosity functions generated from each pointing
and observer location combination – 6,000 in all. The re-
sults presented in this section are for a MW halo mass of
1.0 × 1012 M� and for a 300 kpc outer radius.

Dwarf galaxy counts as a function of apparent magni-
tude are shown in Fig. 12, where we split the population
into two classes: ultrafaint and hyperfaint dwarf galaxies,
which we define as objects in the absolute magnitude ranges:
−8 < MV ≤ −3 and −3 < MV ≤ 0 respectively. Within
300 kpc from the MW, we expect to find 46+12

−8 (68% CL,

statistical error) ultrafaint and 61+37
−23 (68% CL, statistical)

hyperfaint dwarfs. The first number can be compared to
the slightly higher estimate of 66+9

−7 (68% CL) ultrafaints
provided by Hargis et al. (2014), based solely on data from
SDSS DR8. We showed in Fig. 8 that this population is
usually overestimated in predictions based only on SDSS
because of a higher abundance of ultrafaint satellites in the
SDSS field than would be expected from the total observed
population. As discussed in Section 3.3 their uncertainties
are also 28% too small as stochastic effects were not ac-
counted for in their estimate. Most ultrafaints have appar-
ent magnitudes brighter than 18, so surveys just 0.5 magni-
tudes deeper than DES – which can detect satellites down to
mV = 17.5 – should be deep enough to observe most ultra-

faint dwarfs in the Milky Way. The luminosity function of
hyperfaint dwarfs extends much fainter, with most satellites
having mV < 21.5. Discovering these would require a survey
4 magnitudes deeper than DES; LSST is one such future
survey. An all-sky DES-like survey would only lead to the
detection of ∼30 hyperfaint dwarfs, a factor of 4 more than
the currently known population.

5 DISCUSSION

We have made new predictions for the total Milky Way
satellite luminosity function by extrapolating the numbers
of satellites currently known using a new Bayesian inference
method. As input data we use a combination of the recently
discovered satellites in the DES survey and the population
previously known from SDSS DR9. As a prior for the radial
distribution of the MW satellites, which is needed for the
extrapolation, we use the radial distribution of subhaloes
in the Aquarius simulations of galactic haloes having peak
maximum circular velocity, vpeak, above a given threshold.
We correct the subhalo distribution for unresolved subhaloes
and account for subhalo depletion due to tidal disruption by
the central disc. We showed in Fig. 3 that the radial distri-
bution of vpeak-selected subhaloes provides a good match to
that of the observed MW satellites. We improve upon previ-
ous studies by introducing a new Bayesian inference method,
which overcomes the limitations of earlier approaches. We
also explore the effect of uncertainties in the MW halo mass
and derive a relation for rescaling our estimates to different
radii.

We find that, for a 1.0 × 1012 M� MW halo, there are
124+40
−27 (68% CL, statistical error) satellites brighter than

MV=0 within 300 kpc of the Sun, which is slightly incon-
sistent with the result from Hargis et al. (2014). Our esti-
mate is consistent with that of Jethwa et al. (2016) when
adjusted for differing outer radii; their estimate lies at the
upper end of our 68% uncertainty range. Our lower estimate
is due to the inclusion of orphan galaxies and baryonic ef-
fects, which decrease the inferred count of MW satellites
(see Fig. 9). Compared with the Tollerud et al. (2008) esti-
mate of 322+144

−76 (98% CL) satellites brighter than MV=− 2.7
within 300 kpc, our estimate of 66+39

−20 (98% CL, statistical)
is a factor of ∼5 lower. The origin of this discrepancy is
primarily the use by Tollerud et al. of the shallower K08 re-
sponse function as opposed to the W09 function that we use
here. Furthermore, since their work the SDSS survey foot-
print has increased in size by ∼80%, while the number of
discovered satellites inside this footprint has increased by
very little. We also note that previous studies have under-
estimated their uncertainty ranges because they have not
properly accounted for stochastic effects, which are broadly
independent of satellite brightness (see Section 3.3 for a more
in-depth discussion).

The future detection of dwarfs depends on their appar-
ent magnitude and we can estimate the luminosity thresh-
olds that future surveys will need to exceed in order to de-
tect the satellite population inferred in this study. In our
total inferred population there are 46+12

−8 (68% CL, statisti-
cal) ultrafaint dwarf galaxies (with magnitudes in the range
−8 < MV ≤ −3), of which ∼20 have been observed so far. We
find that the majority of these have apparent magnitudes

Downloaded from https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/sty1085/4990653
by University of Durham user
on 09 May 2018



14 O. Newton et al.

brighter than mV=18; these would be discoverable with sur-
veys just 0.5 magnitudes deeper than DES. There are ∼30
such dwarfs still to be discovered in the MW, of which ∼7
should lie inside the SDSS DR9 footprint but beyond its
detection limit. Our 61+37

−23 (68% CL, statistical) hyperfaint
dwarfs (with magnitudes MV ≥ −3) make up some 62% of
our total population and have apparent magnitudes brighter
than mV=21; discovering these would require a survey 4 mag-
nitudes deeper than DES. The planned LSST survey should
cover approximately half of the sky and will therefore be able
to find half of the inferred count of 61+37

−23 hyperfaint dwarfs.
The sizes of both populations are slightly inconsistent with
the lower end of estimates by Hargis et al. (2014).

Our inferred satellite galaxy luminosity function likely
represents a lower limit to the true population. Our method
takes the observed satellites, which are found in surveys with
various detectability limits, as a sample of the global popu-
lation. In particular, the observed surface brightness cutoff
suggests that there could be a population of faint, spatially
extended dwarfs that are inaccessible to current surveys (for
example, see Torrealba et al. 2016a). To account for this in
our method would require deeper observations than are cur-
rently available.

A further complication arises from the presence of
the LMC, which, given its large mass, is likely to have
brought its own complement of satellites. The LMC may
be on its first infall (Sales et al. 2011; Kallivayalil et al.
2013; Jethwa et al. 2016) and the spatial distribution of
the satellites it brought with it could be very anisotropic
(Jethwa et al. 2016). While we accounted for the probabil-
ity that a large fraction of DES detections may be associated
with the LMC, our analysis does not account for the pres-
ence of LMC satellites outside the DES footprint. To do so
would require a prior on the present-day spatial distribu-
tion of LMC satellites. Before infall, the LMC could have
had perhaps as much as a third of the MW satellite count
(Jethwa et al. 2016), though this estimate is very uncertain
due to poor constraints on the MW and especially the LMC
halo mass. At face value, this could add at most ∼50 satel-
lites to the total count.

Inherent to all analyses that estimate the satellite lumi-
nosity function are several systematics which, with a few
exceptions, mainly affect the faint end of the luminosity
function. The most important of these is the assumed ra-
dial distribution of subhaloes, which needs to be deter-
mined from cosmological simulations. We showed that the
distribution of vpeak-selected subhaloes matches both the
luminosity-independent radial distribution of observed MW
satellites and that of state-of-the-art hydrodynamic simula-
tions such as Apostle (see Fig. 2 and Fig. 3); consequently,
we think that any systematic effect on the inferred satellite
count arising from our choice of fiducial tracer population
is likely to be small. To obtain our fiducial subhalo sample,
we needed to correct for two effects that are not well under-
stood. Even the highest resolution simulations, such as those
of the Aquarius project, can suffer from resolution effects,
particularly near the centre of the host halo. This issue is
common to all cosmological simulations, and we addressed
it by including ‘orphan galaxies’ (i.e. galaxies whose haloes
have been disrupted) identified by applying the Durham
semi-analytic model of galaxy formation, Galform, to the
Aquarius simulations. This effect is only significant for the

faint end of the satellite luminosity function (MV & −3)
since ∼85% of the orphan population lies within 50 kpc of
the centre, the region to which the faint end is most sen-
sitive. We also accounted for baryonic effects on the sub-
halo mass function by lowering its amplitude in accordance
with the prescription in Appendix C, using depletion fac-
tors based on the Apostle project (Sawala et al. 2017).
Garrison-Kimmel et al. (2017) argued for a larger depletion
in the inner ∼30 kpc than Sawala et al., while Errani et al.
(2017) claim that, due to their limited resolution, most sim-
ulations overpredict the subhalo depletion factor. As dis-
cussed in Section 4.3, although this correction introduces
noticeable changes in the predicted satellite luminosity func-
tion, these lie within our error bounds, and are smaller in
magnitude than those introduced by the addition of orphan
galaxies. These changes primarily affect the faint end of the
satellite luminosity function above MV≥ − 2, which is also
the most theoretically and observationally uncertain part of
the luminosity function independently of these effects.

A second important systematic is the choice of observed
satellite population. In this work we used satellites discov-
ered in the SDSS and DES surveys. Although all satellites
in the former have been spectroscopically confirmed as DM-
dominated dwarf galaxies, over three quarters of the DES
satellites have not (yet). We choose to use all DES satellites
in our analysis. This is motivated by considering the size-
magnitude plane (e.g. Drlica-Wagner et al. 2015, fig. 4) that
shows that most DES satellites are more consistent with the
properties of Local Group galaxies than with the population
of known globular clusters. Reclassifying some of the DES
detections as globular clusters would lower the inferred to-
tal satellite count at the faint end of the luminosity function
(MV ≥ −4), but would not affect the bright end. Given the
good agreement between the SDSS-only and DES-only esti-
mates of the total satellite count, we predict that most DES
detections are dwarf galaxies.

The mass of the Milky Way halo is poorly constrained.
However, the inferred satellite luminosity function is largely
independent of the host halo mass, except at magnitudes
fainter than MV= − 3 where it shows a very weak mass de-
pendence (see Fig. 10). Instead of marginalizing over the
MW halo mass distribution, we provide a means of convert-
ing between halo masses at the extremes of the range of
constraints.

The MW is the smaller partner of a paired system,
which could introduce anisotropies into the MW’s substruc-
ture due to interactions with M31; these would be mani-
fest in the form of more correlated structure. Our choice of
300 kpc for our fiducial radius is less than the midpoint of the
MW-M31 distance, minimising any effects from interactions
with M31 and allowing us to model the MW approximately
as an isolated halo. In addition, this value is often used in
the literature (e.g. Hargis et al. 2014; Jethwa et al. 2016)
and is close to the expected virial radius of the MW halo.
Our choice of fiducial radius should not be interpreted as
precluding the eventual discovery of other satellites further
out than this.

The dependence of the total satellite count on MW halo
mass is not determined by the number of subhaloes at fixed
mass, but by the shape of the normalised subhalo radial
number density profile. A weak halo mass dependence arises
from the non-power law nature of the subhalo radial profile:
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features in this profile are remapped to different physical
distances for different halo masses, resulting in a variation in
the predicted luminosity function. As a direct consequence,
this implies that changes in the assumed MW halo mass,
which determines the number of DM substructures, alter
the abundance matching relation for Galactic dwarfs; in this
regime not all subhaloes of a given mass host a visible galaxy
(Sawala et al. 2015). We find that doubling the halo mass
roughly doubles the number of subhaloes (Wang et al. 2012;
Cautun et al. 2014a), so that there are more of them at fixed
vpeak. A more massive MW halo would then require the same
dwarfs to be placed in subhaloes with higher vpeak than they
would for a lower MW mass halo.

The spatial distribution of subhaloes – upon which
our predictions rely – is partly determined by cosmology
but is also affected by the internal dynamics of haloes. In
turn, these are influenced by the mass function of subhaloes
and their accretion rate, both of which are fairly univer-
sal in both ΛCDM and WDM models (Springel et al. 2008;
Ludlow et al. 2016). Recent work by Bose et al. (2017) has
shown that the radial distribution of subhaloes is broadly
independent of the nature of the dark matter. Our predic-
tions are therefore applicable to other dark matter models
and can, in fact, be used to constrain the masses of WDM
particles.

6 CONCLUSIONS

An estimate of the Milky Way’s complement of satellite
galaxies is required until deeper, more complete surveys that
could discover more faint galaxies are undertaken in the
next few years. These predictions can be used to address
numerous outstanding astrophysical questions, from under-
standing the effects of reionization on low mass haloes, to
constraining the properties of dark matter particles.

In this work we have, for the first time, combined data
from SDSS and DES – which together cover nearly half
of the sky – to infer the Milky Way’s full complement of
satellite galaxies. Our method requires a prior for the radial
distribution of satellites, which we obtain from the subhalo
populations of the Aquarius suite of high resolution dark
matter-only simulations in which we account for the com-
peting effects of resolution and subhalo depletion due to
interaction with the central baryonic disc (see Section 5).
We have shown that selecting subhaloes by their peak max-
imum circular velocity provides a good match to the radial
distribution of observed Milky Way satellites (see Fig. 3).

The Bayesian method we have introduced to make these
estimates overcomes some of the limitations of previous anal-
yses (see Fig. 5), and properly accounts for stochastic effects.
For each observed dwarf galaxy, the method estimates how
many objects are needed to find one such satellite in the sur-
vey volume. These results are averaged over multiple dark
matter haloes to characterise uncertainties arising from halo-
to-halo variation.

Within 300 kpc of the Sun – and assuming a Milky
Way halo mass of 1.0 × 1012 M� – we predict that the
Milky Way has 124+40

−27 (68% CL, statistical error) satel-
lites brighter than MV=0 (see Fig. 8). Of these, we expect
to find 46+12

−8 (68% CL, statistical) ultrafaint dwarf galax-
ies (−8 < MV ≤ −3), a result that is marginally inconsistent

with the lower end of the Hargis et al. (2014) estimate, but
nearly a factor of 5 smaller than the Tollerud et al. (2008)
estimate. All the Galactic ultrafaints could be detected by
a survey just 0.5 magnitudes deeper than DES. We also ex-
pect to find a population of 61+37

−23 (68% CL, statistical) hy-
perfaint dwarfs (−3 < MV ≤ 0), and to obtain a full census
of this population would need a survey 4 magnitudes deeper
than DES. The LSST survey should be able to see at least
half of this faint population of dwarf galaxies in the next
decade.

In all methods seeking to estimate the total luminos-
ity function certain assumptions must be made. In partic-
ular, an important assumption is the radial distribution of
the true satellite population, which is best inferred from a
cosmological simulation. Here, we have used a set of the
highest resolution DM-only simulations available and, most
importantly, a method for selecting the subhaloes that are
expected to host satellites that has been shown to give con-
sistent results for a number of observed properties of the
MW satellite population, such as the radial distribution of
and counts of bright observed MW satellites. This does not
guarantee that the extrapolation is free of systematic effects
but as Fig. 3 shows, in the regime where we can check with
available data, any such systematics are small.

The estimates above represent only lower limits to the
total number of Galactic satellites (see Section 5) because
they do not take into account very low surface brightness
objects that may have been missed in current observations.
In addition, the estimate does not account for some of the
satellites brought in by the LMC which today lie outside the
DES footprint (which at most would increase the total count
by 30%).

While our key results assume a Milky Way halo mass of
1.0 × 1012 M� , our analysis shows that the predicted dwarf
galaxy luminosity function is independent of host halo mass
for objects brighter than MV= − 3 (see Fig. 10). For fainter
satellites we find a weak dependence on halo mass, with a
more massive Milky Way halo playing host to more satel-
lites. Our tests assuming extreme Milky Way halo mass val-
ues ([0.5,2.0] × 1012 M�) reveal that the resulting luminos-
ity functions lie well within the 68% uncertainty range cal-
culated for our fiducial Milky Way halo mass. Of the dwarfs
within our fiducial distance of 300 kpc, ∼45% and ∼80% are
found within 100 and 200 kpc respectively.

The results of this study provide a useful reference point
for comparing theoretical predictions with the measured
abundance of satellite galaxies in the Milky Way. However,
it must be borne in mind that the Milky Way is only one
system and that the abundance of satellites around simi-
lar galaxies exhibits considerable scatter (Guo et al. 2012;
Wang & White 2012).

The code that implements our method to estimate the
total population of Milky Way satellite galaxies is available
online (Newton & Cautun 2018). In addition, we also make
available all data that are required to reproduce our results
(e.g. Fig. 8).
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APPENDIX A: TABLES OF KNOWN
SATELLITE GALAXIES

Table A1. Known MW satellite galaxies identified in surveys
used in this analysis, grouped according to the survey in which

they were detected. For each satellite we provide its absolute

V−band magnitude, MV, heliocentric distance, D� , and – for DES
satellites – its probability of association with the LMC.

Satellite MV D� ( kpc) paLMC Referencee

Classical

Carina -9.1 105
Draco I -8.8 76

Fornax -13.4 147

Leo I -12.0 254
Leo II -9.8 233

LMC -18.1 51

Ursa Minor -8.8 76
SMC -16.8 64

Sculptor -11.1 86

Sextans -9.3 86
Sagittarius I -13.5 26

SDSS DR9

Boötes I -6.3 66

Boötes II -2.7 42
Canes Venatici I -8.6 218

Canes Venatici II -4.9 160

Coma -4.1 44
Hercules -6.6 132

Leo IV -5.8 154

Leo V -5.2 178
Leo T -8.0 417

Pegasus III -3.4 215 (1)

Pisces Ib ... 80 (2)

Pisces II -5.0 182

Segue I -1.5 23
Segue II -2.5 35

Ursa Major I -5.5 97

Ursa Major II -4.2 32
Willman I -2.7 38

DES

Cetus IIc 0.0 30 0.00d (3)

Columba I -4.2 183 0.11 (4)

Eridanus II -7.1 366 0.00d (5)

Eridanus IIIc -2.4 95 0.00d (3)

Grus Ic -3.4 120 0.64 (3)
Grus IIc -3.9 53 0.57 (3)

Horologium I -3.5 87 0.79 (3,6)
Horologium IIc -2.6 78 0.80 (3)

Indus IIc -4.3 214 0.19 (3)
Phoenix IIc -3.7 95 0.75 (3)
Pictorisc -3.7 126 0.62 (3)

Reticulum II -3.6 32 0.75 (3,6)

Reticulum IIIc -3.3 92 0.58 (3)
Tucana II -3.9 58 0.75 (3,7)

Tucana IIIc -2.4 25 0.52 (3)
Tucana IVc -3.5 48 0.79 (3)
Tucana Vc -1.6 55 0.81 (3)

a Obtained from Jethwa et al. (2016, Fig. 9).
b The method of detection was different to that applied to other
satellites in the SDSS survey.
c Not spectroscopically confirmed.
d No probability of association with LMC provided.
e Data reproduced from McConnachie (2012, tables 2 and 3)

unless indicated otherwise: (1) Kim et al. (2015, 2016),

(2) Watkins et al. (2009), (3) Drlica-Wagner et al. (2015,
Table 4), (4) Carlin et al. (2017), (5) Li et al. (2017),

(6) Koposov et al. (2015b), (7) Walker et al. (2016).
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Table A2. Known MW satellite galaxies identified in surveys not
used in this analysis, grouped according to the survey in which

they were detected. We provide the same data for each satellite

as described in Table A1.

Satellite MV D� ( kpc) Referenceb

VLT ATLAS

Aquarius II -4.2 108 (1)

Crater II -8.2 118 (2)

Pan-STARRS

Draco II -2.9 20 (3)
Sagittarius IIa -5.2 67 (3)

Triangulum II -1.2 28 (4)

SMASH

Hydra II -4.8 134 (5)

HSC

Virgo Ia -0.3 91 (6)
Cetus IIIa -2.4 251 (7)

MagLiteS
Carina II -4.5 37 (8)

Carina IIIa -2.4 28 (8)

Pictoris IIa -3.2 45 (9)

a Not spectroscopically confirmed.
b Data reproduced from: (1) Torrealba et al. (2016b),

(2) Torrealba et al. (2016a), (3) Laevens et al. (2015),

(4) Carlin et al. (2017), (5) Martin et al. (2015),
(6) Homma et al. (2016), (7) Homma et al. (2018),

(8) Torrealba et al. (2018), (9) Drlica-Wagner et al. (2016).

APPENDIX B: EFFECTS OF RESOLUTION

In this Appendix we provide details of the scheme that we
implement to supplement the z = 0 subhalo population of
each Aquarius halo with subhaloes that are otherwise un-
resolved at this time. We also compare the difference these
additions make to the subhalo number density profile.

The semi-analytic model Galform described by
Lacey et al. (2016), which is based on the same cosmology
as the Aquarius simulation suite, is applied to each of the
DM Aquarius haloes in turn. We use the Simha & Cole
(2017) merging scheme to track the dynamical evolution of
subhaloes over the course of simulated cosmic time. Well
resolved subhaloes are tracked directly by the N-body sim-
ulation however those which fall below the resolution limit
are lost. Simha & Cole recover this population by tracking
the most bound particle in these subhaloes from the last
epoch at which they were associated with a resolved sub-
halo. They then remove subhaloes from this population if
one of the following criteria is satisfied:

(i) A time has elapsed after the last epoch at which the
subhalo was resolved, which is equal to the dynamical fric-
tion timescale.

(ii) The subhalo passes within the halo tidal disruption
radius at any time.

In both of the above cases the effects of tidal stripping on
the subhalo are ignored, as are interactions between orbiting
subhaloes.

In Fig. B1 we compare the normalised cumulative ra-
dial subhalo counts of the Aquarius A1 and A2 haloes with
the vpeak ≥ 10 km s−1 selection threshold applied. Prior to

Figure B1. Normalised cumulative subhalo number counts for

the Aq-A1 and Aq-A2 haloes. The dashed lines show the original,

uncorrected number counts prior to the application of Galform.
The solid lines show the number counts for each halo after adding

‘orphan galaxies’ to the original population. The subhalo popu-

lations before the correction are poorly sampled in the innermost
regions, and are not well-converged between the two haloes.

the application of Galform the original normalised sub-
halo counts are highly discrepant in the inner regions of the
haloes. The spread in the Aq-A1 and Aq-A2 MV = 0 lumi-
nosity functions is also wider than the spread in predictions
from the other L2 haloes (B2-E2). When correcting for the
‘orphan’ population, which is very centrally concentrated,
the discrepancy in the Aq-A1 and Aq-A2 normalised sub-
halo counts is almost completely eliminated. As a result the
spread in the MV = 0 predictions is also reduced such that
it is much smaller than the spread in predictions from the
other ‘L2 + orphans’ haloes. The spread in these latter pre-
dictions is also significantly reduced by the correction, which
shows that failing to account for this artificially inflates the
halo-to-halo scatter.

APPENDIX C: BARYONIC EFFECTS

D’Onghia et al. (2010); Sawala et al. (2017);
Garrison-Kimmel et al. (2017) identify systematic dif-
ferences in the subhalo radial number density profiles of
haloes in DM-only and hydrodynamic simulations. The
enhanced tidal stripping by the central baryonic disc leads
to a reduction in the number of subhaloes in hydrodynamic
simulations compared to their DM-only counterparts. The
subhalo depletion is a radially varying function that peaks
in the innermost regions of the host halo.

The subhalo number density profiles can be fit us-
ing a double power law functional form, which is given in
Sawala et al. (2017, equation 2). With help from Till Sawala
(private communication) we determined that some of the
values stated for the fitting parameters of equation (2) in
the published version of the paper are incorrect. Taking the
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Figure C1. Fits to subhalo number density profiles in DM-only

and hydrodynamic simulations. The points show averaged ra-
dial profiles for 4 Apostle haloes. To obtain better statistics,

these points were also averaged over 5 Gyr of cosmic time; see

Sawala et al. (2017) for details. The solid lines show the best-
fitting double power laws (see main text for the best-fitting pa-

rameters).

raw data from Till Sawala we made our own fits, binning
the data in units of χ = r /R200. Fig. C1 gives the averaged
subhalo number density profiles of 4 MW-like haloes from
the Apostle suite. To improve our statistics we also average
over 5 Gyr of cosmic time, similar to Sawala et al.. To these
profiles we fit a double power law of the form

ρ (r) = 2(β−γ)/α ρs (c200 χ)−γ
(
1 +

[
c200 χ

]α ) (γ−β)/α , (C1)

which gives fitting parameters of

(c200, ρs ,α, β,γ) = (2.50,875,4.41,1.80,0.613)

and

(c200, ρs ,α, β,γ) = (2.35,613,8.35,1.66,0.537)

for the DM-only and hydrodynamic simulations, respec-
tively.

These fits are only constrained in the radial range
[0.01,1.0] χ but in practice we extrapolate the profiles over
a slightly wider range of

[
10−3,2.0

]
χ to subsample our

haloes. We find that only minimal extrapolation is required
to achieve this, and that the ratio in this extended range is
also slowly varying.

The subhalo depletion is given by the ratio between the
hydrodynamic and DM-only subhalo number density pro-
files. We compute this using the best-fitting double power
law fits given above. The ratio varies from ∼0.5 for the inner
halo to about ∼0.8 at R200. We correct the Aquarius sub-
halo distributions using this depletion value. For each sub-
halo, we compute the subhalo depletion value at its radial
position and use a Monte Carlo approach to decide if this
subhalo is retained or discarded. Only retained subhaloes
are used as input to the Bayesian inference method.

APPENDIX D: TESTING PREVIOUS
METHODS

Here, we test the T08 method by applying it to a set of
mock satellite observations. This is similar to the exercise
in Section 3.2.2, where, using the same blind mock obser-
vations, we demonstrated that the Bayesian approach in-
troduced in this paper successfully infers the input ‘true’
luminosity function used to generate the mock observations.

A set of 100 mock SDSS observations was generated
from a ‘true’ population by one of the authors (MC; see
Section 3.2.2 for a description of the mocks) and supplied
to another (ON), who applied the T08 method. In order to
return an unbiased estimate, we applied the T08 approach
using a completeness radius that corresponds to a detection
efficiency, ε = 0.5, and used as input only those observed
satellites with detection efficiencies, ε ≥ 0.5. Using a random
sample of 10 mock observations, we compare in Fig. D1 the
scatter among the various mocks with the typical error of
the T08 method. We find that the typical 68% (statistical)
uncertainty range estimated by the T08 method is too low:
for most magnitude values, most of the 10 mocks are out-
side the 68% (statistical) confidence interval. This was also
demonstrated in Fig. 5 and arises because the T08 method
does not incorporate the effects of stochasticity into its es-
timation of the uncertainties.

Figure D1. Test of the T08 method using mock observations.

The thick dotted line shows the input luminosity function used
to create the 10 SDSS mock observations, whose luminosity func-

tions are shown as thin solid lines. Each of the mock observa-

tions was used, in turn, to predict a cumulative satellite luminos-
ity function, with the corresponding results shown as thick solid

lines. The shaded region represents the 68% (statistical) uncer-

tainty from one of the mocks, shifted to lie on top of the input
luminosity function. The dashed lines bound the 68% (statistical)

confidence region over the medians of all 100 mock predictions.
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APPENDIX E: DATA TABLE

Table E1. Cumulative number of satellites as a function of ab-
solute magnitude within a heliocentric distance of 300 kpc for a

1.0 × 1012 M� MW halo, inferred from a Bayesian analysis of the

SDSS DR9 + DES observed satellites. The cumulative number
of these observed satellites is provided for reference. The quoted

confidence limits are for statistical errors only.

MV
N (< MV) Confidence Limits: lower – upper

Observed Predicted 68% 95% 98%

−8.8 11 11 . . . . . . . . .

−8.5 12 13 12 − 15 12 − 19 12 − 21
−8.0 12 14 13 − 16 12 − 20 12 − 21
−7.5 12 15 13 − 17 13 − 21 13 − 22
−7.0 12 15 14 − 17 13 − 21 13 − 23
−6.5 13 16 14 − 19 13 − 23 13 − 25
−6.0 14 19 16 − 22 15 − 27 15 − 30
−5.5 16 22 19 − 26 17 − 32 16 − 34
−5.0 18 27 23 − 32 20 − 39 20 − 43
−4.5 20 31 27 − 38 23 − 47 22 − 50
−4.0 23 41 35 − 49 30 − 60 29 − 64
−3.5 30 52 44 − 62 39 − 76 37 − 82
−3.0 33 61 51 − 73 44 − 89 43 − 95
−2.5 37 77 64 − 93 55 − 114 52 − 123
−2.0 39 89 74 − 108 63 − 133 60 − 142
−1.5 41 96 79 − 118 67 − 147 63 − 158
−1.0 41 105 86 − 131 72 − 163 68 − 175
−0.5 41 115 92 − 146 75 − 186 71 − 203

0.0 42 124 97 − 164 78 − 225 73 − 249
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