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ABSTRACT

This paper introduces a novel method for asset and option trading in a binomial scenario.

This method uses nonparametric predictive inference (NPI), a statistical methodology within im-

precise probability theory. Instead of inducing a single probability distribution from the existing

observations, the imprecise method used here induces a set of probability distributions. Based

on the induced imprecise probability, one could form a set of conservative trading strategies for

assets and options. By integrating NPI imprecise probability and expectation with the classical

financial binomial tree model, two rational decision routes for asset trading and for European

option trading are suggested. The performances of these trading routes are investigated by com-

puter simulations. The simulation results indicate that the NPI based trading routes presented

in this paper have good predictive properties.

Keywords: imprecise probability, nonparametric predictive inference, asset trading, European

option trading, asset risk pricing, option risk pricing.



1 Introduction

In recent years, imprecise probability has gained increasing popularity in the study of uncertainty

of various phenomena [10, 15]. In the imprecise probability framework, there is a statistical

methodology named nonparametric predictive inference (NPI) [6, 7, 8] which is of low structure

and make no assumption of underlying distribution. NPI currently has applications in the fields

of engineering and medical treatments [1, 9]. Researches from those fields have shown that NPI

has good statistical properties and gives reliable predictive results. However, only little effort

has been dedicated to applications of NPI in finance [4].

In this paper, NPI for Bernoulli data is applied to a basic financial binomial model in finance

with formulation of different trading strategies. Demonstration focuses on symmetric binomial

model for ease of calculation, the method can easily be adapted to asymmetric binomial model.

Relevant trading strategies for assets and for European options are suggested. One should note

that the content of European option trading presented in this paper is different from He et

al.’s work [12], as they consider NPI imprecise expectation as a alternative pricing model to

the classical Cox-Ross-Rubinstein (CRR) pricing model for financial options and investigate the

trading outcome of these two pricing models under different market conditions. In this paper, we

use the CRR price as a market benchmark price and NPI imprecise probability quantities as a

guideline for different trading decisions for related financial products. Computer simulations are

conducted to assess the performance and win-loss profile of each individual route. The viability

of trading routes based on this method is confirmed by simulation results.

In section 2, the definitions of classical probability and imprecise probability are recalled

and briefly compared which gives the motivation for the use of imprecise probability to quantify

uncertainty. Based on A(n) assumption, mass function of NPI for bernoulli data is formally

constructed. And NPI formulae for events of interest in this paper are given.

Section 3 briefly restates the concept of the binomial tree model in finance, followed by the

details of application of NPI methods for asset, European call option and European put option

trading based on the binomial tree model.

In Section 4, simulations of different trading routes are conducted in order to investigate their

performance. Performance indexes for different trading routes are evaluated and discussed. It is

confirmed by the simulation results that the NPI trading routes for assets, European call options

and European put options have positive average payoff.

In section 5, some novel aspects of this new method are briefly discussed and related potential

future research directions are suggested.
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2 Nonparametric predictive inference

In this section, basic concepts of imprecise probability and NPI are reviewed. As the concept

of imprecise probability is likely to be novel for most readers, the definitions for both classical

probability and imprecise probability [18, 19, 20] are firstly stated and compared. Sequentially,

the foundamental A(n) assumption for NPI is introduced. Based on A(n) assumption, NPI mass

function for Bernoulli data in single and multiple future stages are constructed respectively.

Classical Probability space

Given a sample-space Ω, a σ algebra A of a collection of events in Ω and a single probability

function p : A −→ [0, 1]

The triple [Ω; A ; p] is called a probability space if p satisfies the Kolmogorov axioms (I-III):

I: p(θ) > 0 ∀θ ∈ A

II: p(Ω) = 1

III: If θi ∈ A for i ∈ N and θi ∩ θj = ∅ for i 6= j,

then p(∪i∈Nθi) =
∑
i∈N p(θi)

a p satisfied above is called a probability for the measurable space (Ω; A ) given a measurable

space (Ω; A ), we denote the set of all the probabilities p on this space as P .

P = {p|p satisfies Kolmogorov axiom (I-III)}

Imprecise probability space

Given a sample-space Ω, a σ algebra A of a collection of events in Ω and a mass functions

m mapping from elements in A to [0, 1], m : A −→ [0, 1].

The triple [Ω, A , m] is an imprecise probability space I if it satisfies the following conditions:

I: m(∅) = 0

II:
∑
ε∈A

m(ε) = 1

Given one imprecise probability space I = [Ω,A ,m] as defined above, the corresponding

upper probability p and lower probability p based on the mass function m for an event µ ∈ A

are defined as:

p(µ) =
∑
ε∈A
ε∩µ6=∅

m(ε) and p(µ) =
∑
ε∈A
ε⊂µ

m(ε)

From the definition, one could know the lower and upper probability satisfy:

inequality 0 ≤ p(µ) ≤ p(µ) ≤ 1 and

conjugacy relation p(µc) + p(µ) = 1 ∀µ ∈ A

A subset of all probabilities Pm induced by a m

Given a measurable space (Ω; A ), a set of all probabilities P on this space and a mass function
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m(·) on this space, one can induce a subset Pm of all probabilities by the mass function m

Pm = {p | p ∈ P, p
m

(µ) ≤ p(µ) ≤ pm(µ) ∀µ ∈ A }

= {p | p ∈ P,
∑
ε∈A
ε⊂µ

m(ε) ≤ p(µ) ≤
∑
ε∈A
ε∩µ6=∅

m(ε) ∀µ ∈ A }

Given an imprecise probability space [Ω, A , m], and a measurable function f : Ω −→ R, we

denote the upper expectation probability of f by puf and lower expectation probability of f by

plf , these are:

puf = argsup
p∈Pm

∑
ω∈Ω

f(ω)p(ω)

plf = arginf
p∈Pm

∑
ω∈Ω

f(ω)p(ω)

Given an imprecise probability space [Ω, A , m], and a measurable function f : Ω −→ R, we

denote the upper expectation of f by E(f) and the lower expectation probability of f by E(f),

these are:

E(f) =
∑
ω∈Ω

f(ω)puf (ω)

E(f) =
∑
ω∈Ω

f(ω)plf (ω)

From the above definitions, one can see that if one chooses to model uncertainties with im-

precise probabilities, one will induce a set of probabilities to quantify the uncertainties of interest

instead of a single probability. By doing this, the model can be more robust than its precise prob-

ability counterpart as a set of probabilities is more likely to cover the true underlying probability

of the uncertainties. Also, imprecise model also would be a more appropriate model to reflect

the lack of perfect information when gathering perfect information is unachievable in practices.

A(n) Assumption

NPI [2, 7, 8] is based on Hill’s assumption A(n) [13]. This assumption is suitable for situations

where no probability distribution regarding a future random quantity is assumed. The assump-

tion A(n) is stated as follows:

Given n exchangeable real-valued observations y1, y2, ..., yn with order statistics of data y(1) <

y(2) < .... < y(n). We define y(0) = −∞, y(n+1) = ∞ and assume p(yi = yj) = 0 for i 6= j. The

y1, y2, ..., yn divide the real-line into n + 1 intervals Ig = (y(g−1), y(g)) for g = 1, 2, ..., n+ 1. The

assumption A(n) states that future random quantity yn+i, for i ≥ 1 will fall equally likely into

each interval.
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p(Yn+i ∈ Ig) =
1

n+ 1
for g = 1, 2...n+ 1; i ∈ N

NPI mass function for Bernoulli data in any single future stage.

Coolen (1998) developed NPI for Bernoulli data by combining A(n) with an assumed underling

latent variable representation [6]. Suppose one has n Bernoulli observations x1, x2, ..., xn ∈ {0, 1}.
Assume a latent thresold variable l and a sequence of latent real variables yi correspending to

each observation xi with order statistics y(1) < y(2) < .... < y(n) such that for all the data

xi = 1 if and only if yi < l, xi = 0 if and only if yi > l. The number of success in the data is

j = |{i : xi = 1}| = |{i : yi < l}|. Given a future random quantity Xn+i in any future single

stage i. ∀i ∈ N. The NPI for Bernoulli data mass function is defined by:

m(Xn+i = 1) = m(Yn+i < l) = j
n+1

m(Xn+i = 0) = m(Yn+i > l) = n−j
n+1

m(Xn+i = {0, 1}) = m(Yn+i < l or Yn+i > l) = 1
n+1

NPI mass function for Bernoulli data in any multiple future stages.

NPI for Bernoulli data has been developed for inference on multiple future stages [5, 6].

Let Nba denote the set of integers from a to b inclusively, so Nba = {x|x ∈ N and a ≤ x ≤ b}.
Let D(n) be the historical data of previous n time units with j upward movement or “successes”.

D(n) = {xi}0i=−n+1 with xi ∈ {0, 1}, |{i : xi = 1 ∧ xi ∈ D(n)}| = j.

Let ST =
T∑
i=1

Xn+i denote the number of upward movement or “successes” in the future T stages.

Assume An up to An+T−1, for future T stage, there is in total
(
n+T
n

)
possible orderings of which

number of elements of {Yn+i}i=Ti=1 in between each interval Ig is different and all the possible

ordering of on the real line are equally likely.

Let P(·) denote the power set operator and C (·) denote the consecutive integer set generation

operation on consecutive integer set of the form NT0 , C (NT0 ) = {Nj2j1 |j1, j2 ∈ NT0 , 0 ≤ j1 ≤ j2 ≤ T}
NPI mass function for future T stages m

D(n)

T : P(NT0 ) −→ [0, 1] is then constructed as

m
D(n)
T (ST ∈ ε) =
(
j−1+j1
j1

)(
n−j−1+T−j2

T−j2

)
×
(
n+T
n

)−1
ε ∈ C (NT0 ) and ε = Nj2j1

0 ε ∈ P(NT0 ) \ C (NT0 )

The idea behind this construction is the following. The event that has the number of successes

between j1 to j2 in future T stages is equivalent to the event that has at least j1 successes and

at least T − j2 failures. Thus one counts all the possible orderings that satisfied the equivalent

event.
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Figure 1: Illustration of mass function construction in multiple future stages

The sum of the mass function values over all ε ∈ C (NT0 ) is one.

∑
ε∈C (NT

0 )

m
D(n)

T (ST ∈ ε) = 1

Intuitively, one can interpret the mass function value for a atomic event ST ∈ Nj1j1 or simply

ST ∈ {j1} as the probability mass that has to be assigned to the event ST ∈ {r}. but for event

which is the union atomic events, for example ST ∈ Nj2j1 , the mass function value is the shared

probability mass of Nj2j1 and this mass value could assign to any event ST ∈ Ni2i1 which is subset

of Nj2j1 when one is taking the upper probability of ST ∈ Ni2i1 .

By the above construction of NPI mass function for Bernoulli data, one can find the imprecise

probability of any T future stage event ε ∈ P(NT0 )

Let ST ∈ ∪
i∈A

Nj
i
2

ji1
where A is some index set, then:

p
D(n)

T (ST ∈ ∪
i∈A

Nj
i
2

ji1
) =

[
p
D(n)

T (ST ∈ ∪
i∈A

Nj
i
2

ji1
), p

D(n)

T (ST ∈ ∪
i∈A

Nj
i
2

ji1
)

]
=


∑

Ni2
i1
∈C (NT

0 )

Ni2
i1
⊂( ∪

i∈A
Nji2

ji1

)

m
D(n)

T (Ni2i1),
∑

Ni2
i1
∈C (NT

0 )

Ni2
i1
∩( ∪

i∈A
Nji2

ji1

) 6=∅

m
D(n)

T (Ni2i1)


For example, using the above mass function, we have:

p
D(n)

T (ST ∈ NTm) =
∑

ε∈C (NT
0 )

ε∩NT
m 6=∅

m
D(n)
T (ST ∈ ε) =

(
n+ T

n

)−1

×
T∑
i=m

[(
j + i

j

)(
n− j − 1 + T − i

T − i

)]

p
D(n)

T (ST ∈ NTm) =
∑

ε∈C (NT
0 )

ε⊂NT
m

m
D(n)
T (ST ∈ ε) =

(
n+ T

n

)−1

×
T∑
i=m

[(
j − 1 + i

i

)(
n− j + T − i

T − i

)]

p
D(n)

T (ST ∈ Nm0 ) =
∑

ε∈C (NT
0 )

ε∩Nm
0 6=∅

m
D(n)
T (ST ∈ ε) =

(
n+ T

n

)−1

×
m∑
i=0

[(
j − 1 + i

i

)(
n− j + T − i

T − i

)]

p
D(n)

T (ST ∈ Nm0 ) =
∑

ε∈C (NT
0 )

ε⊂Nm
0

m
D(n)
T (ST ∈ ε) =

(
n+ T

n

)−1

×
m∑
i=0

[(
j + i

i

)(
n− j − 1 + T − i

T − i

)]

Moreover, given a function f(ST ) of a the random variable ST ∈ NT0 . One can use the
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mass function m
D(n)

T (·) as tool to find the upper expectation probability puf(ST ) for f(ST ), the

probability which maximizes the expectation of f(ST ) and the lower expectation probability

plf(ST ) for f(ST ) , the probability which minimizes the expectation of f(ST ). So in essence, a

upper expectation probability or a lower expectation probability is a element in the subset Pm

of all probabilities induced by the mass function (introduced in the early definition), such that

this probability maximize or minimize the expectation of the function of the random variable.

The objects of interest in this paper are asset and European option in binomial tree model.

Since asset and call option are monotonic increasing functions of ST and put option is monotonic

decreasing function ST , only explicit formulas of the upper expectation probability for monotonic

function of ST are presented. Using the above formula, one can deduce the lower and the upper

expectation probability for monotonic increasing function f↑(ST ) of ST , ∀m ∈ NT0 :

plf↑(ST )(f↑(ST = m)) =p
D(n)

T (ST ∈ NTm)− pD(n)

T (ST ∈ NTm+1)

=

(
j − 1 +m

m

)(
n− j + T −m

T −m

)(
n+ T

n

)−1

puf↑(ST )(f↑(ST = m)) =p
D(n)

T (ST ∈ Nm0 )− pD(n)

T (ST ∈ Nm−1
0 )

=

(
j +m

m

)(
n− j − 1 + T −m

T −m

)(
n+ T

n

)−1

The notion behind these formulas is the following. The lower probability of a event is the sum

of all the probability masses that has to be assigned to the event. As the function is monotonic,

to find the lower expectation probability, one assigns the largest possible probability mass to the

smaller values and least possible probability mass to the larger values.

Thus for T future stages, one starts with the probability assignment at value 0, plf↑(ST )(f↑(ST =

0)) = p
D(n)

T (ST ∈ NT0 )− pD(n)

T (ST ∈ NT1 ), and p
D(n)

T (ST ∈ NT0 ) = 1 as ST ∈ NT0 is the whole set,

it has all the probability mass, p
D(n)

T (ST ∈ NT1 ) is then the probability mass that has to assign

to NT1 , the difference between these quantity is the maximum probability mass that could be

assigned to value 0, which in essence include probability mass that has to assign to 0 and prob-

ability mass that could be but not necessary need to assigned to 0. One then move to the next

maximum probability mass assignment for the next smallest value (in this case, it is 1) with resid-

ual probability mass p
D(n)

T (ST ∈ NT1 ). plf↑(ST )(f↑(ST = 1)) = p
D(n)

T (ST ∈ NT1 )− pD(n)

T (ST ∈ NT2 ).

p
D(n)

T (ST ∈ NT2 ) is the probability mass that has to assign to NT2 and residual probability mass we

left is p
D(n)

T (ST ∈ NT1 ), so the difference is the maximum probability mass that could be assigned

to 1, which in essence include probability mass that has to assign to 1 and probability mass that

could be but not necessary need to assigned to 1 but not 0. One repeats this process until all

the value has desire probability mass assignment and thus find the lower expectation probability

for f↑(ST ). To find the upper expectation probability puf(ST ) for f(ST ), one only need to reverse

the logic above.
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By similar reasoning, for monotonic decreasing function f↓(ST ) of ST follows:

plf↓(ST )(f↓(ST = m)) = puf↑(ST )(f↑(ST = m)) puf↓(ST )(f↓(ST = m)) = plf↑(ST )(f↑(ST = m))

The lower and the upper expectation probabilities subsequently allow one to find the lower

expectation E and upper expectation E of f↑(ST ) and f↓(ST )

Ef↑(ST ) =
∑
m

f↑(ST = m)plf↑(ST )(f↑(ST = m))

Ef↑(ST ) =
∑
m

f↑(ST = m)puf↑(ST )(f↑(ST = m))

Ef↓(ST ) =
∑
m

f↓(ST = m)plf↓(ST )(f↓(ST = m))

Ef↓(ST ) =
∑
m

f↓(ST = m)puf↓(ST )(f↓(ST = m))

3 Methodology for NPI in the binomial model

In this section, binomial tree model is stated and relevant notation is introduced. NPI based

trading strategies for both asset and European option are formulated, followed by their motiva-

tions.

3.1 Financial symmetric binomial tree model.

For the model we consider in this paper we make the following assumptions. In short period of

time interval, the participants in a market of an asset tends to have homogeneous behaviour, the

upward or downward movement of the asset price driven by the participants in each time unit

(in this short period of time) could be considered approximately as an i.i.d. Bernoulli random

variable, so the number of upwards moment in T time units is suitably modelled by a random

variable with a set of binomial-like probability distributions induced by NPI; The quantity upward

or downward movement in a short time interval is close to each other and it is thus modelled by

a factor u and factor d respectively; There exists a identical risk-free interest rate r in each time

step for investment and short selling in the market.

Binomial tree can be categorised into three types, the upward binomial tree (ud > 1), the

symmetric binomial tree (ud = 1) and the downward binomial tree (ud = 1). In this paper, only

symmetric binomial tree is presented for the ease of calculation, asymmetric tree model can be

easily adapted by changing parameters u and d.

To guarantee the market is arbitrage free, one also assume that d < er < u.

Let a0 denote the asset price at time 0, the objects of interest are asset value AT (ST ) =

a0u
ST dT−ST = a0u

2ST−T at time T . Call option value Λc(AT (ST ),K) = (AT (ST ) − K)+ at

time T and put option Λp(AT (ST ),K) = (K − AT (ST ))+ value at time T . Then, AT (ST ) and
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Λc(AT (ST ),K) are monotonic increasing functions of ST while Λp(AT (ST ),K) is a monotonic

decreasing function of ST .

In the NPI probability framework, one can learn from past n time steps historical data and

induce a imprecise probability space on the asset price AT of future time T . From the imprecise

probability space, one can further deduce the lower and the upper probability of some event of

interest. Also one could find the upper expectation E and the lower expectation E of any finance

derivative (the asset itself, option, future, etc.) upon a specific asset at future time T .

3.2 NPI Asset trading strategies in binomial model

Using the induced imprecise probability space, two decision routes for asset trading are suggested

and performances are investigated by simulation. Let B(t) = ert denote the discount rate for

time of length t

Route 1.1

Set threshold value 0.5 < w < 1. From NPI setting, one could know 0 < p(AT (ST ) > a0B(T )) <

p(AT (ST ) > a0B(T )) < 1 if ST ( NT0 and ST 6= ∅.

Buy the asset at current time, sell it at time T if p(AT (ST ) > a0B(T )) > w

Short the asset at for a0 at current time, invest the money at risk free rate and

close the short position at time T if p(AT (ST ) < a0) > w

Invest at risk free rate and receive a0B(T ) at time T if none of above satisfied

Route 1.2

Trading route based on the lower expectation of asset price E(AT ) and the upper expectation

of asset price E(AT ) at time T

Buy the asset at current time, sell it at time T if E(AT ) > a0B(T )

Short the asset for a0 at current time, invest the money at risk free rate

and close the short position at time T if E(AT ) < a0

Invest at risk free rate and receive a0B(T ) at time T if none of above satisfied

Motivation behind Route 1.1

One will be in favour of buying the asset if the asset price at T future time steps AT (ST ) is

greater than the risk free investment payoff a0B(T ) at future time T . So a prudent individual
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using imprecise probability will choose to invest if the lower probability of this favourable event

AT (ST ) > a0B(T ) is greater than a chosen threshold value w > 0.5. One should note w > 0.5 is

a suggested threshold value interval, threshold value w < 0.5 can also be used if one tends to be

more risk prone.

If the lower probability of event AT (ST ) < a0 is greater than w (w > 0.5), then one would

expect the price of asset is more likely less than current price a0 and thus one would short sell

the asset. If none of the above conditions satisfied, one would choose the risk free investment to

have guaranteed value a0B(T ) at time T .

One can show that only one of actions can be taken in Route 1.1: Using inequality and

conjugate property of imprecise probability, one can have the following:

if p(AT (ST ) > a0B(T )) > w

then, by congugacy property, one has 1− p(AT (ST ) < a0B(T )) > w

then, by imprecise enquality, one has

p(AT (ST ) < a0) < p(AT (ST ) < a0) < p(AT (ST ) < a0B(T )) < 1− w < w

Therefore, only one action could be taken in Route 1.1

Motivation behind Route 1.2

If the lower expectation of asset price AT at future time T is greater than the value a0B(T )

received when investing at risk free rate, then one would prefer to buy the asset. If the upper

expectation of asset price AT at future time T is less than the current price a0, then one would

prefer to short sell and invest the money at risk free rate expecting receive at least a0B(T )−E(AT )

at future time T.

It is easy to show that only one of actions could be taken in Route 1.2: In the imprecise

probability framework, one has E(A) ≤ E(A) and in the context, one has a0 < a0B(T ). So

E(AT ) > a0B(T ) and E(AT ) < a0 could not be satisfied at the same time. Similar reasoning

could be used to show all the actions in NPI trading routes for European options are mutually

exclusive in the below sections.

3.3 NPI European option trading strategies in binomial model

Cox, Ross, & Rubinstein (CRR) developed the binomial options pricing model in 1979 [11]. In

the CRR model, it is assumed that the asset price binomial tree is symmetric (ud = 1) and there

is no transaction cost when trading. By replicating the performance of the European option

with a self-financing portfolio in each time step, one could find a risk neutral measure q = er−d
u−d .

Hence there exists a unique arbitrage-free price ΛQ(At,K) = B(T − t)−1
EQ(Λ(AT ,K)|Ft) for

European option with strike price K mature date T at time t with underlying asset price At.

In the CRR model, there is no real probability or “risk involved” in the derivation of arbitrage-

free price. In other words, anyone in the market who is willing to bid a price yt > ΛQ(At,K)

or ask a price yt < ΛQ(At,K) for European option ΛQ(AT ,K) will become a free money
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source for an arbitrager. This behaviour is still rational if at time t the expected present

value of option product under one’s risk measure is greater than the arbitrage-free price of

the option, ΛP = B−1
T−tEP(Λ(AT ,K)|Ft) > ΛQ(At,K), when one considers to buy, or one’s ex-

pected present value under one’s risk measure is less than the arbitrage-free price of the option,

ΛP = B−1
T−tEP(Λ(AT ,K)|Ft) < Λ(At,K), when one considers to sell.

One should note that the main focus of study in this paper is to study performance of different

trading routes using NPI imprecise risk measure. And we admits the arbitrage-free price derived

by the CRR model and also using it as the current market price when the simulations are

conducted. The formulation of all trading routes integrate concepts of arbitrage-free price and

NPI risk imprecise measure and expectation (minimum selling price or maximum buying price).

This is a crucial difference from He et al.’s work [12] where they use NPI expectation as a

alternative option pricing model and investigate the trading result between CCR believer and

NPI believer under different market scenarios.

With the NPI imprecise probability and expectation, one could rationally have following de-

cision routes when trading with European call option and put option.

Route 2.1

For European call option, set threshold value 0.5 < w < 1. From NPI setting, 0 < p((AT (ST )−
K)+ > B(T )ΛQ

c (a0,K)) < p((AT (ST ) −K)+ > B(T )ΛQ
c (a0,K)) < 1 if ST ( NT0 and ST 6= ∅.

One then could rationally have the following trading route based on the lower and the upper

probability of desirable events for call option.

Buy the call option at current time, exercise the call option and sell the corresponding underlying

asset at market price AT (ST ) at time T if p[(AT (ST )−K)+ > B(T )ΛQ
c (a0,K)] > w

Short the call option at current time for ΛQ
c (a0,K), invest the money for risk free rate and close

the short position at time T if p[(AT (ST )−K)+ < Λc(a0,K)] > w

Invest ΛQ
c (a0,K) at risk free rate and receive ΛQ

c (a0,K)B(T ) at time T if none of above satisfied

Route 2.2

Trading route based on the upper expectation of call option payoff E((AT −K)+) and the lower
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expectation of call option payoff E((AT −K)+) at time T

Buy the call option at current time, exercise the call option and sell the corresponding underlying

asset at market price AT (ST ) at time T if E[(AT −K)+] > B(T )ΛQ
c (a0,K)

Short the call option at current time, invest the money received at risk free rate and close the short

position at time T if E[(AT −K)+] < ΛQ
c (a0,K)

Invest ΛQ
c (a0,K) at risk free rate and receive ΛQ

c (a0,K)B(T ) at time T if none of above satisfied

Motivation behind Route 2.1

Consider the event (AT (ST )−K)+ > B(T )ΛQ
c (a0,K) that the payoff of the call option at time

T is greater than the payoff B(T )ΛQ
c (a0,K) received at time T by investing non-arbitrage price

ΛQ
c (a0,K) derived using CRR model at risk free rate, if the lower probability of this event is

greater than threshold value w (w > 0.5), then one would prefer to buy this call option and

expect to earn more than B(T )ΛQ
c (a0,K) in future time T .

On the contrary, consider the lower probability of event (AT (ST ) −K)+ < ΛQ
c (a0,K) that

the payoff the call option at future time T is less than the non-arbitrage price, if the lower

probability of this event is greater than threshold value w (w > 0.5), then one would expect the

payoff of call option more likely to be less than the non-arbitrage price ΛQ
c (a0,K) and thus one

would short sell the call option. If none of above conditions are satisfied, one would choose the

risk free investment to have guaranteed value B(T )ΛQ
c (a0,K) at time T .

Motivation behind Route 2.2

When the lower expectation of call option payoff E[(AT −K)+] at future time T is greater than

the payoff B(T )ΛQ
c (a0,K) received at time T by investing the same amount of monetary resource

of non-arbitrage call option price ΛQ
c (a0,K) at time 0 into a risk free rate, one would prefer to

buy the call option and expect to receive at least E[(AT −K)+] at time T .

If the upper expectation of call option payoff E[(AT −K)+] at future time T is less than the

current call option non-arbitrage price ΛQ
c (a0,K), one would rationally choose to short the call

option and invest the money received into risk free rate, expecting monetary value in hand at

time T is at least B(T )ΛQ
c (a0,K)− E[(AT −K)+].

Route 2.3

For European put option, set threshold value 0.5 < w < 1. From NPI setting, 0 < p((K −
AT (ST ))+ > B(T )ΛQ

p (a0,K)) < p((K − AT (ST ))+ > B(T )ΛQ
p (a0,K)) < 1 if V ( NT0 and

V 6= ∅. One then could rationally have the following trading route based on the lower and the
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upper probability of desirable events for put option.

Buy the put option at current time, buy the underlying asset with market price AT (ST )

and exericise the put option at time T if p[(K −AT (ST ))+ > B(T )ΛQ
p (a0,K)] > w

Short the put option at current time,invest the money received at risk free rate and close

the short position at time T if p[(K −AT (ST ))+ < ΛQ
p (a0,K)] > w

Invest at risk free rate and receive B(T )ΛQ
p (a0,K) at time T if none of above satisfied

Route 2.4

Trading route based on the lower expectation of European put option payoff E((K −AT )+) and

the upper expectation of put option payoff E((K −AT )+) at future time T

Buy the put option at current time, buy the underlying asset with market price AT (ST )

and exericise the put option at time T if E[(K −AT )+] > B(T )ΛQ
p (a0,K)

Short the put option at current time,invest the money received at risk free rate and close

the short position at time T if E[(K −AT )+] < ΛQ
p (a0,K)

Invest at risk free rate and receive B(T )ΛQ
p (a0,K) at time T if none of above satisfied

Motivation behind Route 2.3

Consider the event (K − AT (ST ))+ > B(T )ΛQ
p (a0,K) that the payoff of the put option at time

T is greater than the payoff B(T )ΛQ
p (a0,K) received at time T by investing non-arbitrage price

ΛQ
p (a0,K) derived using CRR model at risk free rate, if the lower probability of this event is

greater than threshold value w (w > 0.5), then one would prefer to buy this put option and

expect to earn more than B(T )ΛQ
p (a0,K) in future time T .

Also consider the lower probability of event (K −AT )+ < ΛQ
p (a0,K) that the payoff the put

option at future time T is less than the non-arbitrage price, if the lower probability of this event

is greater than threshold value w (w > 0.5), then one would expect the payoff of put option more

likely to be less than the non-arbitrage price ΛQ
p (a0,K) and thus one would short sell the put

option. If none of above conditions are satisfied, one would choose the risk free investment to

have guaranteed value B(T )ΛQ
p (a0,K) at time T .

Motivation behind Route 2.4

When the lower expectation of put option payoff E[(K −AT )+] at future time T is greater than

the payoff B(T )ΛQ
p (a0,K) received at time T by investing the same amount of monetary resource
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of non-arbitrage put option price ΛQ
p (a0,K) at time 0 into a risk free rate, one would prefer to

buy the put option and expect to receive at least E[(K −AT )+] at time T .

If the upper expectation of put option payoff E[(K −AT )+] at future time T is less than the

current put option non-arbitrage price ΛQ
p (a0,K), one would rationally choose to short the put

option and invest the money received into risk free rate, expecting monetary value in hand at

time T is at least B(T )ΛQ
p (a0,K)− E[(K −AT )+].

4 Simulations

In this section we present the results of simulation studies with several goals. First, to verify the

predictive property of NPI trading routes in asset and European option. Second, to evaluate and

compare the performance of different NPI trading routes in asset and European option. Third,

to identify the effectiveness and efficiency of data learning in NPI imprecise probability.

Data are generated from whole family of Bernoulli distribution. Firstly, one draw a random

number p from Uniform(0,1) and then generate n+ T data points from Bernoulli(p).

As stated in the assumptions, each time steps is considered to be small. So in this paper,

each time step is assumed to be one trading day and the discounting rate r is set at 0.0007 in

the simulation. Other parameters includes upward movement u = 1.03, downward movement

d = 1/u, initial asset price a0 = 100. Strike price for call option Kc = 103 for put option

Kp = 98.

All the decisions routes are simulated 100,000 times using the statistical software R.

4.1 Performance of Route 1.1 and 1.2

Let N ∈ (1, 100000) be the index of simulation trial. The performances of asset trading decision

routes are measured by four statistics of the present value pay-off function fAi (n, T, w, routei;N)

in 100000 simulations. fAi (n, T, w, routei;N) is defined as follow:

fAi (n, T, w, routei;N)

=


AT (sNT )B(T )−1 − a0 if choose to buy

a0 −AT (sNT )B(T )−1 if choose to short sell and invest in risk free rate

0 if invest in risk free rate

where the input n is the length of data from the asset price history one could learn; T is the

future time that the this function is evaluate; w is the thresold value of trading route if existed;

routei is the trading route this function take; N is the index of simulation trial.

Four statistics of this function measure from 100000 simulations are:
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Average present value payoff fAi =

∑
N

fA
i

100000 win-loss ratio RiwlA =
|{N :fA

i >0}|
|{N :fA

i <0}|

win rate RiwrA =
|{N :fA

i >0}|
100,000 loss rate RilrA =

|{N :fA
i )<0}|

100,000

One should know the sum of win rate and loss rate is not equal to 1, as the NPI trading decision

route allows “inaction” when the quantification of desirable events’ uncertainty is quite imprecise.

(a) (b)

Figure 2: Route 1.1 (w = 0.6) and Route 1.2 average present payoff with n and T from 1 to 200

(a) Payoff performance (b) Win-loss ratio performance
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(c) Win rate performance (d) Loss rate performance

Figure 3: Comparison of Route 1.1 and Route 1.2 with respect to different performance index
with T = 10 and n from 1 to 200

Figure 2 shows that both Route 1.1 and 1.2 yield positive average payoff for all different

pairs of n and T . Simulations for other parameter threshold values w > 0.5 for Route 1.1 also

conducted, the shape of the average present value payoff is similar to the pattern for w = 0.6.

It should be noticed that, with small amounts of historical data n available, Route 1.2 performs

better in term of average present value payoff. This is due to the fact that Route 1.2 takes all

probability mass assigned to all node in binomial tree in T time step into account while Route

1.1 only takes probability mass assigned to part of the nodes into account. As small amount of

data most of time could not well present the underlying distribution, taking partially the nodes

in T time step could lead to ineffective learning in Route 1.1 (This is indicated by the fan shape

happen when n is small in Figure 2(a)).

Figure 3 demonstrates the performance of decision Routes 1.1 and 1.2 in terms of performance

index fAi ,RiwlA,RiwrA and RilrA respectively as number of data n increases in T = 10 future time

steps for asset trading.

Figure 3(a) shows that both NPI based asset trading routes have very quick learning speed.

The average payoff from both routes increases when a small number of data become available.

Both of them stabilise after 12 data point are available. (max
i,w,n

fAi = 11.8774; fA1.1 = 10.0295 at

n = 12 w = 0.60; fA1.2 = 10.4582 at n = 12). Overall, in terms of long run payoff, decision

Route 1.2 outperforms Route 1.1. However, one should notice that although decision Route

1.1 seems to be a worse choice than Route 1.2 in the long run, it still yields positive expected

payoff. From Figure 3(b)-(d), although Route 1.2 is still dominating in terms of win rate, one

should note that with adjustment of threshold parameter w, Route 1.1 actually provides more

flexibility for investors to reduce the loss rate. From Figure 3(a), one can confirm that if a
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small amount of data is available, in terms of average present value payoff,imprecise expectation

routes outperform imprecise probability routes. When only a small amount of data is available,

sometimes the data do not reflect the true distribution or reflect the “opposite” distribution. In

those cases, the imprecise probability routes will assign mass only to part of nodes in the wrong

way. Although the imprecise expectation route also assigns the mass value wrongly, it takes all

the nodes values into account which improves its performance.

4.2 Performance of Route 2.1 and 2.2

Let N ∈ (1, 100000) be the index of simulation trial. The performances of the European op-

tion trading decision routes are measured by four statistics of present value payoff function

fCi (n, T, w, routei;N) in 100000 simulations, fCi (n, T, w, routei;N) is defined as follow:

fCi (n, T, w, routei;N)

=


B(T )−1(AT (sNT )−Kc)

+ − ΛQ
c (a0,Kc) if choose to buy

ΛQ
c (a0,Kc)−B(T )−1(AT (sNT )−Kc)

+ if choose to short sell and invest in risk free rate

0 if invest in risk free rate

where the input n is the length of data from the asset price history one could learn; T is the

future time that the this function is evaluate; w is the thresold value of trading route if existed;

routei is the trading route this function take; N is the index of simulation trial.

Four statistics of this function measure from 100000 simulations are:

Average present value payoff fCi =

∑
N

fC
i

100000 win-loss ratio RiwlC =
|{N :fC

i >0}|
|{N :fC

i <0}|

win rate RiwrC =
|{N :fC

i >0}|
100,000 loss rate RilrC =

|{N :fC
i )<0}|

100,000

17



(a) (b)

Figure 4: Route 2.1 (w = 0.6) and route 2.2 average present payoff with n from 1 to 200 and T
from 1 to 40

(a) Payoff performance (b) Win-loss ratio performance
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(c) Win rate performance (d) Loss rate performance

Figure 5: Comparison of Route 2.1 and Route 2.2 with respect to different performance index
with T = 10 and n from 1 to 200

Figure 4 shows that both Routes 2.3 and 2.4 generate positive average present payoff for all

pairs n (from 1 to 200) and T (from 1 to 40). Other threshold values w > 0.5 for Route 2.3 were

also used in simulation, they all follow the same pattern as in Figure 4(a)

Figure 5 demonstrates the performance of decision Routes 2.1 and 2.2 in terms of performance

index fCi ,RiwlC ,RiwrC and RilrC , respectively, as number of data n increases for trading European

call option in future T = 10 time step.

Figure 5(a) shows that Route 2.1 and 2.2 have similar behaviour as Routes 1.1 and 1.2 in

asset trading with Route 2.2 surpassing Route 2.1 in average payoff. Both Routes 2.1 and 2.2 also

pick up information from data quickly. The payoff from both these routes tends to stabilise after

7 data points are available. (max
i,w,n

fCi = 6.1936; fC2.1 = 4.1749 at n = 7 w = 0.60; fC2.2 = 6.1410 at

n = 7). Overall, in terms of long run payoff, decision Route 2.2 outperforms Route 2.1.

From Figure 5(b)-(d), one can see a completely different picture from parallel routes in

asset trading. Route 2.2 although has better average pay off performance in the long run, its

RiwlC ,RiwrC and RilrC are worse than Route 2.1 significantly. Reason for this is that for European

call option, imprecise expectation trading route prioritize long run average payoff over loss rate.

When using imprecise expectation trading route in European call option, one make more loss

in terms of number of times than imprecise probability route but one make more profit in each

time that success happens and make less loss in each time that failure happens. Therefore, for

a risk-averse investor, Route 2.1 seems to be a more reasonable choice for European call option

trading.
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4.3 Performance of Route 2.3 and 2.4

Let N ∈ (1, 100000) be the index of simulation trial. The performances of European option

trading decision routes are measured by four statistics of the present value payoff function

fPi (n, T, w, routei;N) in 100000 simulations. fPi (n, T, w, routei;N) is defined as follow:

fPi (n, T, w, routei, N)

=


B(T )−1(Kp −AT (sNT ))+ − ΛQ

p (a0,Kp) if choose to buy

ΛQ
p (a0,Kp)−B(T )−1(Kp −AT (sNT ))+ if choose to short sell and invest in risk free rate

0 if invest in risk free rate

where the input n is the length of data from the asset price history one could learn; T is the

future time that the this function is evaluate; w is the thresold value of trading route if existed;

routei is the trading route this function take; N is the index of simulation trial.

Four statistics of this function measure from 100000 simulations are:

Average present value payoff fPi =

∑
N

fP
i

100000 win-loss ratio RiwlP =
|{N :fP

i >0}|
|{N :fP

i <0}|

win rate RiwrP =
|{N :fP

i >0}|
100,000 loss rate RilrP =

|{N :fP
i )<0}|

100,000

(a) (b)

Figure 6: Route 2.3 (w = 0.6) and Route 2.4 average present payoff with n from 1 to 200 and T
from 1 to 40
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(a) Payoff performance (b) Win-loss ratio performance

(c) Win rate performance (d) Loss rate performance

Figure 7: Comparison of Route 2.3 and Route 2.4 with respect to different performance index
with T = 10 and n from 1 to 200

Figure 6 shows that both trading Routes 2.3 and 2.4 have positive average present value

payoff for all combinations of n from 1 to 200 and T from 1 to 40. Again, simulations for other

threshold value w > 0.5 in Route 2.3 were also conducted, they follow the same pattern as Figure

6. Figure 7 demonstrates performance of decision Route 2.3 and 2.4 in terms of performance

index fPi ,RiwlP ,RiwrP and RilrP , respectively, as number of data n increases in future T = 10

time step for European put option trading.
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From all figures above, it is seen that changing threshold value in Route 2.3 within the interval

[0.55, 0.6] affects all the performances insignificantly. Both Routes 2.3 and 2.4 lead to the similar

pattern as Route 2.1 and 2.2 in payoff performance. Quick learning speed is confirmed. The

payoff from both Routes tends to stabilise after 12 data point are available. (max
i,w,n

fPi = 4.8868.

fP2.3 = 3.3539 at n = 12 w = 0.60. fP2.4 = 4.8268 at n = 12). As expected, decision Route 2.3

outperforms Route 2.4 in terms of average pay off.

Figure 7(b)-(d), it is indicate that Route 2.4 is a risky trading route for put option with win

rate stabilise at 0.4442 and lose rate stabilise at 0.55518. Although Route 2.3 has less average

payoff in the long run, it has better win-loss profile. (RiwlP > 6.5,RiwrP > 0.65 and RilrP < 0.12

for all threshold values simulated.) Therefore, for a risk-averse or well considered investor, Route

2.4 appears to be a more attractive choice for European put option trading.

4.4 Overall conclusions from simulations

The conducted simulations indicated that all suggested NPI routes have positive long run aver-

age payoff. They also show quick learning speed, which is an important property for trading,

especially if a small amount of data is available. One should noticed the imprecise probability

routes and imprecise expectation routes have different advantages in trading. While imprecise

probability routes prioritize better win-loss rate profiles, imprecise expectation routes prioritize

maximum long run average payoff. Depending on an investor’s personal interest, the investor

can choose between them. When choosing imprecise probability routes, with adjustment of the

threshold value w in decision making, investors can trade off between long run average payoff

and win-loss rate in trading.

5 Concluding remarks

Imprecise probability is a relatively new stream in the study of uncertainties of random phenom-

ena. It has increasing exposure to the literature in finance [3, 4, 16, 17].

This paper applies NPI methods in asset, European call option and European put option

trading in binomial tree model. Using statistical software R, simulations are conducted to in-

vestigate the performance of all suggested trading routes. The property of quick learning from

available data is validated. It is confirmed all the trading routes based on NPI have good predic-

tive performance and yield positive results after a few data become available. With adjustment

of the threshold value w in decision making, depending on individual risk preference, an investor

can trade off between long run average payoff and win-loss rate in decision route selection.

The positive results suggest several topics for future research: Investigating trading routes

which combine imprecise probability and imprecise expectation; testing trading routes suggested

in this paper upon a financial portfolio; founding optimal length of historical data which is

required to have good predictive result for given length of future prediction.
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