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Recent work has established a method of constructing nonsupersymmetric string models that are stable,
with near-vanishing one-loop dilaton tadpoles and cosmological constants. This opens up the tantalizing
possibility of realizing stable string models whose low-energy limits directly resemble the Standard Model
rather than one of its supersymmetric extensions. In this paper we consider the general structure of such
strings and find that they share two important phenomenological properties. The first is a so-called
“GUT-precursor” structure in which new GUT-like states appear with masses that can be many orders of
magnitude lighter than the scale of gauge coupling unification. These states allow a parametrically large
compactification volume, even in weakly coupled heterotic strings, and in certain regions of parameter
space can give rise to dramatic collider signatures which serve as “smoking guns” for this overall string
framework. The second is a residual “entwined-SUSY” (or e-SUSY) structure for the matter multiplets in
which different multiplet components carry different horizontal Uð1Þ charges. As a concrete example and
existence proof of these features, we present a heterotic string model that contains the fundamental building
blocks of the Standard Model such as the Standard-Model gauge group, complete chiral generations, and
Higgs fields—all without supersymmetry. Even though massless gravitinos and gauginos are absent from
the spectrum, we confirm that this model has an exponentially suppressed one-loop dilaton tadpole and
displays both the GUT-precursor and e-SUSY structures. We also discuss some general phenomenological
properties of e-SUSY, such as cancellations in radiative corrections to scalar masses, the possible existence
of a corresponding approximate moduli space, and the prevention of rapid proton decay.
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I. INTRODUCTION

Most approaches to string phenomenology have histor-
ically proceeded under the assumption that the Standard
Model (SM) ultimately becomes supersymmetric at a
higher energy scale parametrically near the electroweak
symmetry-breaking scale. One then attempts to realize the
resulting supersymmetric theory as the low-energy limit of
a supersymmetric string. This approach was motivated by
many factors. While bottom-up factors included a strong
belief in the existence of weak-scale supersymmetry, a
critical top-down factor was the fact that nonsupersym-
metric strings are generally unstable, with large one-loop
dilaton tadpoles. The existence of such tadpoles

destabilizes these strings, and thus renders them incon-
sistent in a way that does not arise for supersymmetric
strings.
In recent work [1], we advocated a new approach to this

problem. Specifically, even though nonsupersymmetric
strings are generally unstable, they may nevertheless be
metastable—i.e., endowed with lifetimes that are large
compared with the age of the universe. Indeed this
metastability can be arranged not as the consequence of
a potential barrier through which an eventual nonperturba-
tive tunneling might occur, but simply by having one-loop
dilaton tadpoles whose values—although nonzero—are
exponentially suppressed. Thus, while such strings do
not necessarily sit at true minima of the dilaton potential,
the potential slopes that they experience are exponentially
suppressed. Such strings therefore remain effectively stable
at their original locations for all relevant cosmological
timescales.
In Ref. [1], we demonstrated how such metastable strings

may be constructed within the perturbative heterotic
framework. Moreover, as we demonstrated, the low-energy
limits of these strings may even resemble the Standard
Model or one of its grand-unified extensions [1]. This then
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opens up the possibility of developing a fully nonsuper-
symmetric string phenomenology—one in which the
Standard Model itself is realized directly as the low-energy
limit of a nonsupersymmetric string. Indeed, such models
take the general form of a low-energy theory in which
supersymmetry (SUSY) is broken at arbitrarily high scales,
yet with a one-loop cosmological constant and dilaton
tadpole that are exponentially suppressed—all capped off
with a self-consistent ultraviolet (UV) completion which is
entirely nonsupersymmetric. Indeed, as discussed in
Ref. [2], although these theories admit low-energy descrip-
tions in terms of four-dimensional effective field theories
with broken supersymmetry, they are never even approx-
imately supersymmetric in four dimensions.
In this paper, we take the next steps in exploring the

phenomenological implications of this approach. In par-
ticular, because our construction necessarily involves large-
volume compactifications, one pressing issue concerns the
behavior of the gauge couplings—especially if we require
perturbativity both at the electroweak scale as well as in the
UV limit. As we shall discuss, this requires that our strings
exhibit a variant of the so-called “GUT precursor” structure
originally proposed in Refs. [3,4]. Tightly coupled with
this, we shall also argue that the (chiral) matter fields of
such strings exhibit a so-called “entwined SUSY” or
e-SUSY in which these states and their would-be super-
partners have different charges under a horizontal Uð1Þ
symmetry. This horizontal Uð1Þ symmetry is thus non-
trivially “entwined” with the same physics that renders the
theory nonsupersymmetric and also breaks the GUT
symmetry. In this connection, we note that entwined
SUSY is reminiscent of the so-called “folded SUSY”
framework [5,6] in which would-be superpartners have
different SUð3Þ charges. Indeed, it might even be possible
to incorporate folded SUSY or its variants into our con-
struction. However, as we shall see, it is actually entwined
SUSY which unavoidably emerges from our overall stable-
string construction and which even serves as one of its
predictions.
The construction of nonsupersymmetric strings has been

explored by a number of authors in recent years (see, for
example, Refs. [7–25]). This growing literature indicates an
increasing interest in this subject, presumably motivated
not only by the apparent experimental absence of super-
symmetry at the Large Hadron Collider but also by the
intrinsically different theoretical behavior of strings within
this hitherto largely unexplored region of the string land-
scape. However, within this literature, what distinguishes
our work is its focus on the fundamental stability properties
of such strings, at least as far as their dilaton tadpoles are
concerned. Indeed, the presence of a nonzero dilaton
tadpole indicates that the fundamental string vacuum is
unstable. It is thus only by concentrating on string models
with vanishing or near-vanishing dilaton tadpoles that one
can be assured of working within string vacua whose

stability properties resemble those of their supersymmetric
cousins. Of course, just as for supersymmetric strings, there
will always remain further moduli which also require
stabilization through either string-theoretic or field-theo-
retic means. However, we view the dilaton tadpole as
uniquely problematic in the construction of nonsupersym-
metric strings, as the existence of such a tadpole is the
direct hallmark of the breaking of supersymmetry. This
problem must therefore be tackled at the outset. Indeed, it is
only after the effective cancellation of this tadpole that we
can proceed to consider the development of a nonsuper-
symmetric string phenomenology on a par with that of
strings with spacetime supersymmetry.
The purpose of this paper, then, is to follow through on

the opportunity presented by the results of Ref. [1] and
undertake such a phenomenological study. Accordingly,
the topics discussed in this paper inevitably cover a lot
of territory, stretching from the stability of nonsuper-
symmetric strings and new methods of making sense of
large-volume compactifications all the way to the phenom-
enological implications of nontrivial techniques for break-
ing GUT’s and supersymmetry simultaneously. Moreover,
while many of these ideas (such as those involving
entwined SUSY) are new, others (such as those involving
GUT precursors) have appeared previously within a field-
theoretic context and are only now being realized from
string theory. Likewise, while some of our discussion
focuses on certain specialized techniques for string model
construction (such as coordinate-dependent compactifica-
tions), other parts of our discussion concern purely phe-
nomenological issues such as radiative corrections to scalar
masses and proton decay. Thus, our results are likely to be
of interest not only to string theorists but also to particle
phenomenologists who wish to focus on the various low-
energy consequences of this framework.
For these reasons, we have organized this paper very

carefully as follows. First, in Sec. II, we review our general
framework [1] for the construction of nonsupersymmetric
heterotic strings with exponentially suppressed one-loop
dilaton tadpoles. This is the framework in which all of our
subsequent discussion takes place, and we include this
short review in order to render this paper self-contained.
Moreover, since we also wish to address a phenomeno-
logical audience, our discussion here (unlike that in
Ref. [1]) is fairly nontechnical, summarizing only the main
points and providing a more “geometric” understanding of
the main results. In particular, several key points are
presented in a new field-theoretic manner. For example,
our discussion and interpretation of the expression for the
cosmological constant in Eq. (2.3) is new, as is our
identification of the corresponding scale MΛ in Eq. (2.4)
as well as the scale of the supertraces in Eq. (2.5).
In Sec. III, we then proceed to introduce the notion of

entwined SUSY and discuss its physics as well as that of
GUT precursors. The concept of entwined SUSY is entirely
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new to this paper. Likewise, while GUT precursors were
originally discussed in Refs. [3,4], our motivation here is
entirely string-based and focused on how theGUT-precursor
scenario can provide a successful solution to the difficulties
that would otherwise emerge in attempting to reconcile the
low-energy gauge couplings with large-volume compacti-
fications while maintaining logarithmic gauge-coupling
unification at the string scale. Indeed, more broadly, the
goal of this section is to explain how and why entwined
SUSY and GUT precursors are inevitable in a very wide
class of nonsupersymmetric string models if they are to be
phenomenologically viable. As such, these observations
form the central core of this paper. Moreover, in order to
emphasize the generality of these observations, we do not at
this stage focus on any particular string construction. Thus,
readers who do not wish to delve into the technicalities of a
specific construction will be able to extract the main
conclusions of the paper from this section alone.
In Sec. IV we then proceed to construct a self-consistent

nonsupersymmetric heterotic string model which indeed
exhibits all of these properties. Our aim in this section is to
present not only a concrete example and existence proof of
models with these features within the context of a fully self-
consistent string construction, but also to demonstrate that
these features can coexist with other fundamental phenom-
enological building blocks of realistic string models such as
the Standard-Model gauge group, complete chiral gener-
ations, and Higgs fields—all in a stable, nonsupersym-
metric setting. Thus, while this model is not intended to
serve as a fully realistic description of nature, it serves as an
illustrative example of what can be accomplished within
this framework. Moreover, on a technical level, the con-
struction of this model also illustrates the important role
played by coordinate-dependent compactifications.
In Sec. V, we then briefly discuss several other phe-

nomenological aspects of metastable string models that
result from their GUT-precursor and e-SUSY structures.
These include cancellations in radiative corrections to
scalar masses, the possible existence of a corresponding
approximate moduli space, and the prevention of rapid
proton decay. As expected, these topics are of more
phenomenological interest, yet they vividly suggest the
fundamental importance of the GUT precursors and
entwined SUSY in affecting the physics of these strings.
Finally, in Sec. VI, we discuss a variety of open topics

and future directions related to our work. This includes, in
particular, a discussion concerning the possible extension
of our work to two loops and beyond. Details pertaining to
a calculation in Sec. IV are collected in the Appendix.

II. STABLE NONSUPERSYMMETRIC STRINGS:
BASIC FRAMEWORK

Webegin bybriefly summarizing the framework described
inRef. [1] for constructing closed, nonsupersymmetric string
theories with exponentially suppressed one-loop dilaton

tadpoles. All of the strings we consider in this paper will
be members of this class.
There are two critical features which define this class of

models. First, these models are all what may be called
“interpolating” models. Specifically, each is a compactifi-
cation of a higher-dimensional string model M1, and as
such is endowed with an adjustable compactification
volume V. As V → ∞, we reproduce the original uncom-
pactified string model M1. However, as V → 0, we are
assured by T-duality that we produce a string model which
may be considered to be the T-dual of another higher-
dimensional model M2. If the compactification is
untwisted, then M2 will be nothing other than M1.
However, if the compactification is twisted, then M2 will
generally differ from M1. In such cases, we can view our
compactified model as smoothly “interpolating” between
the uncompactified models M1 (as V → ∞) and M2 (as
V → 0). Note that the requirement that bothM1 andM2 be
bona-fide self-consistent string models provides a set of
tight constraints on the twists which may be applied when
compactifying M1 [1,26–28].
The second feature that defines this class of models has

to do with the choices of M1 andM2. Certain requirements
for these choices are relatively straightforward: for exam-
ple, we will require M1 and M2 to be supersymmetric and
nonsupersymmetric, respectively. This guarantees that the
V → ∞ endpoint of the interpolation has a vanishing one-
loop tadpole but that our interpolating model is otherwise
nonsupersymmetric for all finite V. This also provides us
with an “order parameter” V for dialing the degree of
supersymmetry breaking. However, other requirements for
our choices of M1 and M2 are less straightforward. In
particular, for any given choice of M1, only certain choices
for M2 (or equivalently only certain choices of the SUSY-
breaking twist that will be introduced into the compacti-
fication) are suitable for generating the desired exponen-
tially suppressed dilaton tadpole for large V, even if V is
only moderately large. Specifically, we must choose M2 so
that this twist leaves an equal number of massless bosonic
and fermionic degrees of freedom in the spectrum of the
resulting interpolating string model. In other words, even
though this twist breaks spacetime supersymmetry (so that
the resulting string spectrum contains no massless grav-
itinos, for example), it must be carefully chosen so that the
resulting spectrum nevertheless exhibits an equal number
of massless bosonic and fermionic degrees of freedom.
Note, in particular, that there need be no other relation
between the bosonic and fermionic degrees of freedom. For
example, these degrees of freedom can carry entirely
different gauge charges, with a gluon degree of freedom
balanced against a neutrino degree of freedom. Likewise,
some of these degrees of freedom can reside in a visible
sector while others reside in a hidden sector. Thus we need
not even have equal numbers of massless bosonic and
fermionic degrees of freedom in each sector separately. All
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that matters are the total numbers of massless degrees of
freedom, summed over all sectors of the theory.
For any given string model M1, it is not guaranteed that

there exists a suitable model M2 that will produce an
interpolating model within this class. In other words, for
any given model M1, there may not necessarily exist a
suitable twist that can be introduced upon compactification
which yields a nonsupersymmetric interpolating model
with boson/fermion degeneracy at the massless level. For
this reason, the art of choosing suitable modelsM1 andM2

can be quite intricate, and methods for this purpose are
described in Ref. [1]. But what is remarkable is that these
are the only requirements for building metastable string
models. Once M1 and M2 are chosen satisfying these
properties, a unique interpolating model is determined
which will be a member of the desired class.
Because the breaking of supersymmetry in this frame-

work is tied to the compactification, what results is an
interpolating model whose spectrum has certain character-
istic features for large compactification volume (i.e., for
R ∼ V1=δ ≫ M−1

s , where δ denotes the dimensionality of V
and where the symbol “≫” denotes a factor of 10 or more).
The generic spectrum of such string models is sketched in
Fig. 1. Situated at the massless level are states that together
have equal numbers of bosonic and fermionic degrees of
freedom. However the would-be superpartners of these
states are no longer massless, but instead have masses

M ∼Oð1=2RÞ. This reflects the breaking of spacetime
supersymmetry, leading us to a rough identification of
1=2R as the scale of supersymmetry breaking. However,
in this context it is important to stress that themassless states
by themselves must have equal numbers of bosonic and
fermionic degrees of freedom; note in particular that this is
not a residual supersymmetric pairing ofmassless stateswith
their would-be superpartners. However, because the states
with masses M ∼Oð1=2RÞ are the would-be superpartners
of the massless states, they toowill exhibit equal numbers of
bosonic and fermionic degrees of freedom amongst them-
selves. Note, also, that the states at each mass level may be
arbitrarily split between observable and hidden sectors, as
mentioned above and indicated in Fig. 1. Consequently the
equalities between the numbers of bosonic and fermionic
degrees of freedom amongst the light states in these string
models need not be observable in any way.
Proceeding further upwards in mass then leads to a

whole spectrum of repeating Kaluza-Klein (KK) excita-
tions which echo this basic structure, so that the first KK
excitations of the massless states have massesM ∼Oð1=RÞ
while the first KK excitations of the would-be superpartners
have masses M ∼Oð3=2RÞ. This structure is then repli-
cated at regular mass intervals ΔM ∼Oð1=RÞ. Each of
these levels therefore continues to exhibit equal numbers of
bosonic and fermionic degrees of freedom, even though no
supersymmetry is present. Ultimately, however, we reach

FIG. 1. The spectrum of a generic metastable interpolating model for R ≫ M−1
s . States with masses below Ms (i.e., below n ¼ 1)

consist of massless observable states, massless hidden-sector states, their would-be superpartners, and their lightest KK excitations. For
these lightest states, the net (bosonic minus fermionic) numbers of degrees of freedom from the hidden sector are exactly equal and
opposite, level by level, to those from the observable sector. This is true for all large compactification radii. Note that this cancellation of
net physical-state degeneracies between the observable and hidden sectors bears no connection with any supersymmetry, either exact or
approximate, in the string spectrum. For the heavier states, by contrast, the observable and hidden sectors need no longer supply equal
and opposite numbers of degrees of freedom. The properties of these sectors are nevertheless governed by misaligned-supersymmetry
constraints, as a result of which the entire string spectrum continues to satisfy the supertrace relations in Eq. (2.1). These relations
maintain the finiteness of the overall string theory, even without spacetime supersymmetry. Figure taken from Ref. [1].
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the mass scale M ∼Ms at which the first string excitations
appear. In general, states with nonzero string excitation
numbers n > 0 have masses M ∼

ffiffiffi
n

p
Ms. Unlike the mass-

less states, however, the states with n > 0 need no longer
come with equal numbers of bosonic and fermionic degrees
of freedomat eachmass level. Thus, formassesM ≥ Ms, the
equality between bosonic and fermionic degrees of freedom
is lost. These states nevertheless exhibit a residual property
called “misaligned supersymmetry” [29,30] which tightly
controls the balancing between bosonic and fermionic
degrees of freedom at allmass levels throughout the infinite
towers ofmassless andmassive states, andwhich ensures the
ultimate finiteness for which string theory is famous—even
without supersymmetry. Indeed, misaligned SUSY is a
general property of the spectra of all closed, tachyon-free,
nonsupersymmetric stringmodels, and for stringswithin our
class guarantees that the bosonic and fermionic states are
arranged in such a way that the ordinary supertrace relations

StrM0 ¼ 0; StrM2 ≈ 0 ð2:1Þ
nevertheless continue to hold at tree level when the sum-
mation is over all of the physical (i.e., level-matched) states
in the spectrum [30]. We shall discuss the precise value of
StrM2 for these strings below.
We are interested in this class of models because of their

remarkable stability properties. In general, for a given
string model in D uncompactified dimensions, the dilaton
tadpole is proportional to the one-loop vacuum amplitude
(or energy density)

Λ≡ −
Z
F

d2τ
ðImτÞ2 Zðτ; τ̄Þ; ð2:2Þ

where Zðτ; τ̄Þ is the string partition function and where F is
the fundamental domain of the modular group. Note that
we have expressed Λ in units of 1

2
MD, where M≡

Ms=ð2πÞ is the reduced string scale; thus Λ as defined is
a dimensionless quantity, while the full energy density
(cosmological constant) for the D-dimensional theory is
OðMD

s ΛÞ, corresponding to a mass scale MΛ ≡MsΛ1=D.
However, for interpolating models within the class
described above, we find that Λ is severely suppressed
as V → ∞ and indeed even for only moderately large
compactification volumes. For example, if we are dealing
with a one-dimensional compactification (i.e., a compacti-
fication on a twisted circle) of radius R≡ 1=MKK, as
MKK → 0 we find [1]

Λ ¼ 4Γ½ðDþ 1Þ=2�
πðDþ1Þ=2 ½Nð0Þ

f − Nð0Þ
b �

�
MKK

Ms

�
D

þ 4

�
MKK

Ms

�
D=2 X∞

n¼1

ð2 ffiffiffi
n

p ÞD=2½NðnÞ
b − NðnÞ

f �

× exp ð−4π ffiffiffi
n

p
Ms=MKKÞ þ � � � ð2:3Þ

In this expression, D is the spacetime dimension of our
interpolating model (so that Dþ 1 is the spacetime

dimension prior to compactification). Likewise, NðnÞ
b;f are

the numbers of bosonic and fermionic degrees of freedom
in the interpolating model at the nth string level. The first
term in Eq. (2.3) is the leading contribution from the KK
excitations of the massless states, while the remaining
terms are the leading contributions from states with n

nonzero string excitations. If Nð0Þ
b ≠ Nð0Þ

f , the first term
gives the leading contribution Λ ∼MD

KK, as expected.

However, as long as Nð0Þ
b ¼ Nð0Þ

f , the first term vanishes
and the resulting dilaton tadpole is exponentially sup-
pressed, with a severe suppression factor of the form
∼ expð−4π ffiffiffi

n
p

Ms=MKKÞ. In fact, the true suppression for
Λ is even stronger than we have indicated here since the

difference NðnÞ
b − NðnÞ

f tends to oscillate in sign as a
function of n. This is ultimately a result of the misaligned
supersymmetry mentioned above. Thus the exponentially
suppressed contributions from the terms withm > 0 tend to
interfere against each other, rendering the sum Λ even more
suppressed than any single term.
The result in Eq. (2.3) is remarkable on a number of

levels. In particular, there are two aspects which are
particularly surprising. The first is the nature of the terms
which can be called “field-theoretic.” To understand this
issue, we note that a general string theory with a compac-
tification scale MKK < Ms can be described through a
sequence of different effective theories at different energies.
For energies E≲MKK, the effective theory is a four-
dimensional quantum field theory (QFT). Likewise, for
MKK ≲ E≲Ms, the effective theory is that of a higher-
dimensional QFT. Indeed, it is only for E≳Ms that our
theory becomes truly stringy. The same properties would
likewise normally be reflected in the amplitudes of such a
theory. However, the construction we have described here
has the remarkable property that even though MKK is

considerably below Ms, the single condition Nð0Þ
b ¼ Nð0Þ

f

suffices to eliminate all field-theoretic contributions to Λ so
that Λ depends on quantities such as MKK in a completely
string-theoretic (rather than field-theoretic) manner. This
includes not only the four-dimensional QFT-like contribu-
tions to Λ, but even the higher-dimensional QFT-like
contributions. Ultimately, this situation arises because
our framework has the property that the single condition

Nð0Þ
b ¼ Nð0Þ

f actually ensures the cancellation of the net
(boson minus fermion) degeneracies at each KK level all
the way up to the first nonzero string excitation. Thus,
within our framework, we see that the appropriately
normalized D-dimensional energy density MD

s Λ receives
only two groups of leading contributions in Eq. (2.3): those
which scale directly as MD

KK and which are therefore
essentially those of a (compactified) D-dimensional
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QFT, depending only on Nð0Þ
b − Nð0Þ

f , and those which scale
exponentially with Ms=MKK and which are therefore
intrinsically stringy, depending on the excited string-

oscillator occupation numbers NðnÞ
b − NðnÞ

f with n ≥ 1 in
Eq. (2.3). Indeed, the absence of other contributions
which might have scaled as a higher power of MKK and
whichwould have dependedon the configuration of nonzero
KK excitations belowMs is the hallmark of this framework.

Thus, enforcing the single conditionNð0Þ
b ¼ Nð0Þ

f leaves only
the terms with string-theoretic suppressions and eliminates
the leading field-theoretic contributions entirely.
The second remarkable aspect of the result in Eq. (2.3)

concerns the severity of the exponential suppression that
arises after the Nð0Þ

b ¼ Nð0Þ
f condition is imposed. Clearly, if

the supersymmetry had not been broken (i.e., if we had
taken MKK ¼ 0), we would have found Λ ¼ 0. Thus the
nonzero value of Λ indicated in Eq. (2.3) is ultimately the
result of taking MKK small but nonzero, so that the masses
of the superpartner states are shifted by an amount
ΔM ¼ MKK=2. Since the contribution to the string partition
function Z from a given state with massM generally scales
as e−M

2=M2
s , the total contribution to Λ from any state of

mass M and its would-be superpartner of mass M þ ΔM
can be viewed as a summation over pairwise combined
contributions of the form e−M

2=M2
s − e−ðMþΔMÞ2=M2

s for
various positive values of M. For ΔM ≪ M, each such
difference is approximately ðMMKK=M2

sÞe−M=Ms. Thus,
one might expect that the mass shifts between the states
in our theory and their would-be superpartners would
generate a total contribution to Λ which is suppressed as
a power of MKK=Ms. However, the set of masses M over
which such a summation is performed is itself dependent on
MKK and becomes dense as MKK=Ms → 0. Thus, as
MKK → 0, the cancellation between states and their
would-be superpartners becomes more complete while
the density of such states increases. It is ultimately the
interplay between these two effects—along with our con-

dition Nð0Þ
b ¼ Nð0Þ

f —which produces the severe “inverted”
suppression factor e−Ms=MKK quoted in Eq. (2.3).
What we obtain, then, is a four-dimensional nonsuper-

symmetric string theory governed by three fundamentally
different mass scales. The first is MKK, which governs the
splitting between states and their would-be superpartners
and which may thus be viewed as the scale of supersym-
metry breaking. The second is Ms, which governs the
energies associated with the string oscillator excitations and
which therefore serves as the scale of the UV completion of

the theory. Remarkably, however, when Nð0Þ
b ¼ Nð0Þ

f , these
two scales conspire to produce a new scale

MΛ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MKKMs

p
e−πMs=MKK ð2:4Þ

which is significantly smaller than either of the two
previous scales and which sets the magnitude of the

corresponding one-loop cosmological constant (vacuum
energy). It is this scale which governs the ultimate tree-level
dilaton stability of the theory.
The suppression of this last scale can also be understood

geometrically. Because supersymmetry is broken through
compactification in our construction, massive string modes
need to propagate over the full compactification volume,
i.e., over a distance 2πR, in order to realize a nonzero Λ.
This leads to a Yukawa suppression of the form
expð−2πRMsÞ. This geometric understanding ties in with
our alternative explanation above since the inverted sup-
pression factor and the “large-volume” Yukawa picture
both arise after Poisson resummation.
Viewed from the perspective of string model-building,

however, the result in Eq. (2.3) is extremely beneficial. As
we have already noted, the scale of supersymmetry break-
ing in this construction can roughly be taken to be
OðMKK=2Þ, or Oð1=2RÞ in the one-dimensional case.

However, as long as we ensure that Nð0Þ
b ¼ Nð0Þ

f , the
dilaton-stability of such a string (i.e., the suppression of
the corresponding value ofΛ) is not polynomial inMKK but
exponential. We can therefore dial MKK (or more generally
our compactification volume V) to any value desired—even
to the TeV scale—while nevertheless maintaining the
required suppression of the dilaton tadpole and assuring
the metastability of the nonsupersymmetric string. It is for
this fundamental reason that our framework leads to a
promising starting point for a nonsupersymmetric string
phenomenology. Furthermore, the value of the supertrace
StrM2 for any tachyon-free closed string theory compacti-
fied to four dimensions can be shown [30] to scale asM2

sΛ,
where Λ is defined as in Eq. (2.2). Thus, the severe
suppression of Λ for all string models in this class addi-
tionally becomes a suppression for StrM2:

StrM2 ∼OðM4
Λ=M

2
sÞ ∼OðM2

KKe
−4πMs=MKKÞ: ð2:5Þ

Again, we stress that this occurs even though the scale of
SUSY breaking in this framework is OðMKK=2Þ.
When in the following we construct explicit string

models, we shall focus on a specific configuration within
this general framework which forms a particularly useful
testing ground for the more general discussion. As we shall
discuss, this configuration is based on perturbative ten-
dimensional heterotic strings exhibiting large (GUT-like)
gauge symmetries and proceeds through two stages of
compactification. The first is a compactification down to
4þ δ dimensions on a manifold or orbifold K with volume
R ∼M−1

s such that the resulting (4þ δ)-dimensional string
model is supersymmetric. By contrast, the second stage of
compactification from 4þ δ to four dimensions occurs
through a δ-dimensional compactification/interpolation of
the type we have been discussing. The space on which this
compactification occurs is a δ-dimensional freely acting
orbifold Oδ. We thus have
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In Ref. [1] and in our models to be presented below, we
take δ ¼ 2 (so that our intermediate model is six-dimen-
sional) and Oδ ≡ T 2=Z2 (with the understanding that the
Z2 acts on both T2 and K). If this orbifold were untwisted,
we would obtain an N ¼ 1 supersymmetric theory in four
dimensions. However, we introduce a Scherk-Schwarz
twist which acts not only on the spacetime degrees of
freedom but also on the internal gauge degrees of freedom.
This coupling between the spacetime twist and the internal
gauge twist is ultimately required by modular invariance.
We also choose these twists so as to additionally satisfy the
conditions laid out above, including the requirement of
bose/Fermi degeneracy at the massless level. This then
produces a nonsupersymmetric four-dimensional string
model with the desired metastability properties.
In this configuration, both the original GUT-like gauge

symmetry and the original spacetime supersymmetry are
broken together in the final stage of compactification. It is
this feature which ultimately leads to the GUT-precursor
and entwined-supersymmetry structures which are the
focus of this paper. In fact, we shall even eventually argue
in Sec. VI that these structures transcend our particular
string construction, and are inevitable within broad classes
of nonsupersymmetric UV-complete theories. It is therefore
to these topics that we now turn.

III. GUT PRECURSORS AND ENTWINED SUSY

As indicated above, the starting point of our construction
is a higher-dimensional string model exhibiting not only
spacetime SUSY but also a GUT gauge symmetry. Both of
these symmetries are then broken together upon the final
stage of compactification. In principle, the exponential
suppression of the dilaton tadpole does not require that
we begin with a GUT symmetry prior to compactification.
Nor does it require that this symmetry be broken by
compactification. Ultimately, these additional features are
needed for phenomenological purposes. In this section, we
shall begin by explaining why these additional features are
needed. We shall then demonstrate that these features
inevitably lead to a GUT-precursor structure and the
emergence of an entwined supersymmetry. As we shall
see, these phenomenological aspects are both quite general
and can be understood from a geometric point of view.
Indeed, as we shall demonstrate, both entwined SUSY as
well as the GUT-precursor structure are rather generic
phenomenological properties of a wide class of nonsuper-
symmetric strings—even independently of the need for
boson/fermion degeneracy of the massless states. This
section thus constitutes the main theoretical portion of this

paper, with subsequent sections providing explicit construc-
tions that illustrate these assertions.

A. The problem of gauge couplings
in large-volume compactifications

Because our dilaton-stabilization mechanism requires the
existence of a large compactification volume, an immediate
problem that emerges concerns the values of the gauge and
gravitational couplings (sometimes referred to as the
“decompactification problem”). It is easy to see how this
problem arises. For concreteness, let us consider the case of
the heterotic string compactified from ten to four dimen-
sions. In general, the coupling expansion for an n-point
genus-g diagram behaves as

V6g
n−χ
10 ; ð3:1Þ

where g10 is the ten-dimensional string coupling,whereV6 is
the compactification volume, and where χ ≡ 2ð1 − gÞ is the
(topologically invariant) Euler number of the string world-
sheet. Thus at tree level (i.e., for g ¼ n ¼ 0) the effective
four-dimensional Lagrangian for gravitational and gauge
interactions scales as 1=g210 and takes the form

S ¼
Z

d4x
V6

g210
ðα0−4Rþ α0−3F2Þ; ð3:2Þ

where R is the Ricci scalar and F is a gauge field strength.
From this we can read off the effective four-dimensional
tree-level gauge coupling g4 and effective four-dimensional
Planck scale MP:

1

g24
¼ v6

g210
; M2

P ¼ v6
g210α

0 ; ð3:3Þ

where v6 ¼ V6=ðα0Þ3 is the compactification volume nor-
malized with respect to the fundamental string scale. From
these results it follows that α0M2

P ¼ g−24 , or equiva-
lently Ms ¼ g4MP.
The relations in Eq. (3.3) are completely general.

Moreover, for compactificationvolumes near the string scale
[i.e., for v6 ∼Oð1Þ], we find that g4 ∼ g10. The perturbativity
condition g10 ≲ 1 then requires g4 ≲ 1, and one often
chooses g4 ∼ gGUT ≈ 1=

ffiffiffi
2

p
in order to make contact with

standard logarithmic gauge coupling unification. Indeed, in
such a scenario, the measured four-dimensional SM gauge
couplings at the weak scale run logarithmically up to the
GUT/string scalewhere they unify into gGUT. Note that these
gauge couplings run logarithmically over this range precisely
because v6 ∼Oð1Þ, so that the theory is effectively
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four-dimensional below Ms. Thus, for v6 ∼Oð1Þ, the usual
logarithmic gauge coupling unification can be preserved
and naturally embedded into string theory [31].
The situation is very different when the compactification

volume is large, as in our configuration. In this case v6 ≫ 1,
whereupon the perturbativity condition g10 ≲ 1 implies
g4 ≪ 1. Such small values for g4 are difficult to reconcile
with the measured values of the four-dimensional gauge
couplings at the electroweak scale. Of course, the
assumption of a large compactification volume v6 ≫ 1
implies that MKK ≪ Ms, so that our theory is actually
higher-dimensional between MKK ∼ V−1=6

6 and Ms. This
then opens up an interval over which the running of the
gauge couplings above MKK has a power-law (rather than
logarithmic) dependence. However, even this observation
cannot evade our difficulties. First, with power-law running
above MKK, the traditional logarithmic gauge coupling
unification is generally lost. Moreover, even though
power-law running can still produce a power-law unification
of the gauge couplings as one proceeds upwards in energy
[32–34], this unification typically occurs very rapidly after
the onset of KK modes, withMGUT=MKK never very large.
Identifying gGUT ∼ g4 and MGUT ∼Ms, we see that this
therefore does not leave much room for a large compacti-
fication volume v6. Or, phrased somewhat differently, we
might continue to insist that v6 ∼ ðMs=MKKÞ6 ≫ 1, but this
would no longer permit us to parametrically identifyMGUT
with Ms—a feature that we would generally like to retain.
The question then arises as to how we can reconcile the

measured Oð1Þ values of the four-dimensional gauge
couplings at low energies with an Oð1Þ value of the ten-
dimensional string coupling g10—all in the presence of a
large compactification volume v6 ≫ 1, and all while
preserving a logarithmic gauge coupling unification at
MGUT ∼Ms.

B. GUT precursors

It turns out that all of these features are not only
reconciled but also realized naturally within the so-called
“GUT precursor” scenario originally presented in
Refs. [3,4]. The discussion in Refs. [3,4] was essentially
field-theoretic, but we shall see that this scenario is also a
natural prediction of our string framework.
The basic thrust of the scenario presented in Refs. [3,4] is

to develop a self-consistent understanding of gauge
coupling unification in the presence of large extra space-
time dimensions. For simplicity, let us imagine a (4þ δ)-
dimensional theory exhibiting a grand-unified symmetry
GGUT. Let us furthermore imagine breaking this symmetry
down to the Standard-Model (SM) gauge group through an
orbifold compactification of the δ extra dimensions. For
simplicity, we shall imagine that each of these extra
dimensions is compactified on a circle with radius R,
along with an overall orbifold twist which is designed not
only to preserve the zero modes of those gauge fields which

survive the GUT symmetry breaking (such as the gauge
bosons of our SM gauge group), but also to project out the
zero modes of those remaining gauge fields (such as the X
and Y gauge bosons) which are exotic from the point of
view of the SM gauge group but which were otherwise
needed in order to fill out GGUT. Thus, at low energies, our
spectrum consists of only the SM zero modes, and the
original GUT symmetry appears broken. Indeed, the low-
est-lying exotic states are the X and Y gauge bosons which
do not appear in the resulting spectrum until the first
excited KK level, with masses ∼1=R. Of course, the full
grand unification does not occur until the low-energy gauge
couplings actually unify at some much higher scale MGUT.
Thus, we immediately observe a remarkable feature of
GUT breaking by orbifolds (as opposed to, say, the more
traditional GUT breaking via a Higgs mechanism):
although the actual grand unification (as evidenced through
the unification of gauge couplings) only occurs at MGUT,
the first experimental signatures (or “precursors”) of the
impending unification are the X and Y gauge boson states
which first appear at M ∼ 1=R—a scale which is para-
metrically distinct from MGUT. The question then arises as
to how large a separation of scales can be tolerated between
the precursor scale 1=R and the unification scale MGUT. In
other words, how large a compactification volume can be
tolerated in such a scenario? What is the maximum allowed
value of MGUTR?
This is the question addressed in Refs. [3,4].

Remarkably, what was found is that MGUTR can actually
grow arbitrarily large. The criteria leading to this pos-
sibility can be understood as follows. In the presence of δ
extra spacetime dimensions of radius R, the low-energy
gauge couplings αi (as measured, say, at MZ) evolve
upwards in energy (to an arbitrary high scale Λ) according
to the approximate one-loop RGE’s [32–35]

α−1i ðΛÞ≈α−1i ðMZÞ−
bi
2π

ln
Λ
MZ

þ b̃i
2π

lnΛR−
b̃iXδ

2πδ
½ðΛRÞδ−1�;

ð3:4Þ

where bi are the beta-function coefficients of the zero-mode
fields, where b̃i are the beta-function coefficients associated
with the field content at each excited KK level, and where
Xδ ≡ πδ=2=Γð1þ δ=2Þ is the volume of the unit ball in δ
dimensions. It is the presence of KK states running in the
loops that causes the evolution to follow a power-law
behavior. As we shall shortly see, this generic form is also
borne out by explicit string results within the particular six-
dimensional configuration discussed at the end of Sec. II.
In a scenario with arbitrary values of b̃i, each low-energy

gauge coupling experiences an independent power-law
evolution and the measured low-energy couplings are
grossly inconsistent with unification. However, there do

exist values of b̃i for which our low-energy gauge
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couplings experience not only power-law evolution but also
unification [32–34]. One example is an accelerated, power-
law evolution which usually occurs soon after the onset of
the KK modes, leading to values of MGUTR which are
tightly constrained and often smaller than a single order of
magnitude.
There is, however, a second option [36]: all b̃i can be

equal, with b̃i ¼ b̃ for all i. In this case each gauge coupling
continues to experience a power-law running, but the
differences between the gauge couplings evolve only
logarithmically. Indeed, for appropriate values of bi, we
can reproduce a logarithmic unification which inevitably
occurs at the traditional high scale MGUT. Of course, since
each individual coupling experiences a power-law evolu-
tion over this entire energy range, we must be sure that none
of these couplings hits a Landau pole en route to unification
or otherwise accrues a value which would invalidate our
overall implicit perturbativity assumptions. This generally
requires that b̃ < 0. This in turn ensures that our measured
individual gauge couplings at low energies flow to
extremely small (rather than extremely large) values in
the UV, ultimately yielding a unified gauge coupling
gGUT ≪ 1. Thus, in this manner, the very small values
gGUT ∼ g4 ≪ 1 can naturally be reconciled with the mea-
sured Oð1Þ values of the gauge couplings at low energies,
all while preserving a traditional logarithmic unification of
gauge couplings and a correspondingly large value for
MGUTR. Hence gauge coupling unification survives, even
with large-volume compactifications.
There is also another way to understand this result and to

verify its perturbativity. In theories such as this for which
there are many degrees of freedom, an effective measure for
the strength of gauge interactions is not the gauge coupling
αi but rather the ’t Hooft coupling α̃i ≡ Nαi, where N is a
measure of the number of degrees of freedom running in the
loops. Indeed, for any energy scale Λ, we may take N as the
number of KK levels that have already been crossed, i.e.,
N ≡ XδðΛRÞδ. According to Eq. (3.4), the individual gauge
couplings αi all scale in the UV (i.e., for ΛR ≫ 1) as
αðΛÞ ≈ −2πδðΛRÞ−δ=ðb̃XδÞ. Thus the corresponding ’t
Hooft couplings scale as α̃ ≈ −2πδ=b̃. In other words, as
originally noted in Ref. [37], the effective ’t Hooft
couplings α̃i become independent of ΛR as ΛR increases
and actually approach a UV fixed point α̃ ≈ −2πδ=b̃.
Moreover, this UV fixed point is perturbative so long as
α̃ ≪ 4π, or δ=ð2b̃Þ ≪ 1—indeed, the ’t Hooft coupling α̃
can then be interpreted as the dimensionless coupling
associated with the (4þ δ)-dimensional theory that
emerges in the infinite-volume limit. Consequently, if b̃
is sufficiently large and negative, there is no obstruction to
having an arbitrarily large compactification volume with
ΛR ≫ 1. This is the underlying reason why this scenario
can tolerate a large separation of scales between the GUT
precursor scale 1=R and the unification scale MGUT.

It is not difficult to realize such theories in a natural way.
For example, let us imagine, as in Ref. [3], that our zero-
mode fields exhibit N ¼ 1 SUSY and are those of the
MSSM, while our unified gauge group is SUð5Þ. Let us
further imagine that only one extra dimension is compac-
tified, i.e., δ ¼ 1. It then follows that the states at each
excited KK level are N ¼ 2 SUSY vector multiplets
transforming in the adjoint of SUð5Þ, with b̃i¼ b̃¼−10
for all i. This then leads to a unified perturbative fixed-point
coupling α̃ ≈ 0.63.
The presence of N ¼ 2 multiplets at each excited KK

level is an extremely beneficial outcome, since the presence
of N ¼ 2 SUSY in the bulk ensures that any higher-loop
power-law effects are suppressed by a factor of 1=ðΛRÞ
relative to the one-loop effects. Such higher-loop effects
therefore become increasingly insignificant for ΛR ≫ 1
[3,4,32,33,38]. Likewise, there can be other effects (such as
nonuniversal logarithms or contributions from brane-
kinetic terms [3]) which, at first glance, also appear to
have the power to eliminate the logarithmic unification in
this scenario. However it can be shown [3] that such effects
are ultimately subleading and generally leave the unifica-
tion intact.
Thus far, we have shown how the measured low-energy

gauge couplings αiðMZÞ can, through power-law running
associated with a large compactification volume, lead to a
logarithmic gauge coupling unification αi ≈ αGUT at a
relatively high scale MGUT. As we have seen, the principal
required ingredients are the existence of complete GUT
multiplets at each excited KK level, the presence of N ≥ 2
SUSY at each excited KK level, and a field content at each
excited KK level such that b̃ < 0. These properties for the
excited KK states ensure that the differences between the
low-energy couplings αiðΛÞ evolve at most logarithmically,
that each individual coupling becomes extremely weak at
the GUT scale for ΛR ≫ 1, and that the contributions from
higher loops do not disturb our one-loop results. Properly
choosing the field content of the zero modes then ensures
that these couplings actually unify, just as they would have
in four dimensions.
Given this field-theoretic scenario, the final step is to

embed this scenario within a UV-complete theory such as
string theory. However, this is not difficult to arrange: we
simply identify αGUT with the four-dimensional gauge
coupling α4 in Eq. (3.3). Likewise, we identify MGUT with
Ms. Note that our identification of MGUT with Ms is not
meant to be a precise one, for there can be many Oð1Þ
effects which could explain a discrepancy between MGUT
and Ms. Such effects are reviewed, for example, in
Ref. [31]. Likewise, at first glance it may seem strange
to match a one-loop “bottom-up” coupling such as αGUT
with a tree-level “top-down” string coupling such as α4.
However, this lopsided matching between a one-loop
coupling and a tree-level coupling arises only because
our determination of α4 was itself the result of a tree-level
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string analysis. Indeed, we could equally well have per-
formed a more complete one-loop string analysis, carefully
integrating out all heavy string states before applying our
matching conditions. In such a case, we would then
understand the volume dependence as arising from string
threshold corrections. As an example, in the toroidal 6D
case (such as in the explicit example we shall present later),
the result is expressed in terms of the usual moduli for the
T2 compactification, namely T andU. The gauge couplings
are then found to behave universally as

α−1i ðμÞ ¼ α−1i ðMsÞ þ
bi
2π

ln
Ms

μ
þ Δ
4π

; ð3:5Þ

where [2,14]

Δ ¼ −b̃ log ð4T2Ũ2jηðiTÞj4jηðiŨÞj4Þ
þ ðb̃ − biÞ log ð4T2Ũ2jϑ4ðiTÞj4jϑ4ðiŨÞj4Þ;

¼ π

3
b̃ðT2 þ Ũ2Þ − bi log ð4T2Ũ2Þ

þOðe−πŨ2 ; e−πT2Þ: ð3:6Þ
Here iT ¼ T1 þ iT2 and iU ¼ U1 þ iU2 with iŨ ¼
−1=ðiU − 1Þ, where T2 is the compactification two-volume.
In Eq. (3.6) we see both the b̃vd leading terms and the
logarithmic contribution from the running of the N ¼ 1
sector between the KK scale and the string scale.
In this connection, we note that the presence of twisted

orbifold sectors does not disturb the gauge coupling uni-
fication. In general, the twisted sectors in such scenarios are
insensitive to the compactification. They therefore retain
both the supersymmetry and the GUT symmetry, and any
splittings that arise are driven only radiatively. This therefore
cannot disrupt the unification, since the unification is only
logarithmically sensitive to such induced splittings.
Given that we are forced to embed the GUT-precursor

structure into string theory, one natural issue is to determine
the scale at which gravitational effects become strong.
Since Ms ¼ g4MP and g4 ≪ 1, it follows that MP ≫ Ms.
At first glance, this might seem to imply that gravitational
effects do not arise until far beyond the string scale.
However this scenario involves a large volume of com-
pactification, and it is well known that under such circum-
stances the actual quantum-gravity scale M� is given by
M� ∼ ðM2

P=VδÞ1=ð2þδÞ where Vδ ∼ Rδ is the volume of
compactification. We thus consistently find that
M� ∼Ms, implying that the effective quantum-gravity scale
is not greatly separated from the string scale, just as occurs
in more traditional scenarios involving Planck-scale com-
pactification volumes.
Combining the above relations, we find that

ðMsRÞδ=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−8π2δ
b̃Xδ

s
MP

Ms
: ð3:7Þ

Thus the Planck scale MP, the string scale Ms, and the
Kaluza-Klein scaleMKK ≡ R−1 are all balanced together in
any self-consistent heterotic string-theoretic scenario. It is
useful to examine some representative cases. If MP ≈
1018 GeV andwe identifyMs ≈MGUT ≈ 1016 GeV, we find
ðMsRÞδ=2≈102. For δ¼1, this implies R−1≈1012GeV,
while for δ ¼ 2 this impliesR−1 ≈ 1014 GeV. Indeed, taking
larger values of δ only increases the value of R−1. From the
perspective of the low-energy theory, this is an extremely
large scale for SUSY breaking. We nevertheless find
from Eq. (2.3) that Λ ∼ exp ð−4π104Þ for δ ¼ 1 and Λ ∼
exp ð−4π102Þ for δ ¼ 2, assuming that Nð0Þ

b ¼ Nð0Þ
f in each

case. Thus the dangerous one-loop dilaton tadpole is
extremely suppressed and essentially zero for all practical
purposes.
It is important to note that the overall scaling relations we

have been working with are ultimately governed by b̃,
the universal beta-function coefficient associated with the
matter content of the excited KK states. By contrast, the
value of the unification scale MGUT is set by the values of
the individual beta-function coefficients bi associated with
the zero-mode states. Thus, there remains the freedom—
just as in all field-theoretic GUT scenarios—to choose our
low-lying matter content in such a way as to alter these
beta-function coefficients and thereby adjust the unification
scale. In this way, it might even be possible to bring MGUT
significantly below the traditional unification scale.
Continuing to identify Ms with MGUT would then lead
to a self-consistent scenario in which Ms ≪ 1016 GeV,
with R−1 correspondingly reduced even further, perhaps
even all the way into the TeV range. Indeed, taking R−1 ≈
1 TeV within Eq. (3.7), we find that Ms ≈ 1013 GeV for
δ ¼ 1, whereupon we see that Ms=MKK ≈ 1010. Even for
δ ¼ 6 we findMs ≈ 106 GeV, whereuponMs=MKK ≈ 103.
Thus, even in such cases with significantly reduced string
scales, we continue to find that the one-loop dilaton tadpole
is extremely suppressed. Such scenarios thus retain dilaton
stability and incorporate not only an effective TeV-scale
breaking of SUSY but also GUT-precursor states that are
potentially observable at the TeV scale—orders of magni-
tude lower than the scale of gauge coupling unification.
Such states would have the gauge quantum numbers of
leptoquarks and would thus give rise to dramatic collider
signatures.

C. The structure and ubiquity of e-SUSY

As we have seen, nonsupersymmetric strings can be
made stable in a consistent fashion if the excited KK modes
consist of GUT representations falling into N ≥ 2 super-
multiplets. Therefore, in order to obtain the StandardModel
for the zero modes, our compactification must not only
break the GUT gauge symmetry but also simultaneously
break the remaining supersymmetry. As we now discuss,
this inevitably gives rise in the resulting theory to a
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structure involving what we call “entwined SUSY” (e-
SUSY). We begin by describing more explicitly what we
mean by entwined-SUSY, both in terms of the allowed
spectrum as well as the allowed couplings. We shall then
discuss why this structure arises.
As an example, let us consider a theory in which an

underlying SUð5Þ N ¼ 1 GUT model contains two gen-
erations of chiral supermultiplets, 5̄0 and 5̄1

2
. Here the

subscripts indicate the charges under a horizontal Uð1Þ
symmetry which we will refer to generically as Qhoriz.
(These multiplets may also carry other horizontal charges,
but only one horizontal charge is needed in order to
illustrate the entwined-supersymmetric structure.) Under
the group decomposition SUð5Þ → SUð3Þc × SUð2ÞL, we
recall that 5̄ ¼ ð3̄; 1Þ ⊕ ð1; 2̄Þ. Our two chiral multiplets 5̄0
and 5̄1

2
thus have states consisting of

5̄0 ¼
�
fermions∶ ð3̄; 1Þ0 ⊕ ð1; 2̄Þ0 ≡ dc0 ⊕ l0

bosons∶ ð3̄; 1Þ0 ⊕ ð1; 2̄Þ0 ≡ d̃c0 ⊕ l̃0

5̄1
2
¼

(
fermions∶ ð3̄; 1Þ1

2
⊕ ð1; 2̄Þ1

2
≡ dc1

2

⊕ l1
2

bosons∶ ð3̄; 1Þ1
2
⊕ ð1; 2̄Þ1

2
≡ d̃c1

2

⊕ l̃1
2
;

ð3:8Þ

where the hypercharges (which we do not show) are the
canonical ones. Indeed, this is the matter content that would
emerge upon compactification without the crucial Scherk-
Schwarz twists.
Implementing the twists then eliminates part of this

matter content. Of course, which states survive and which
are projected out depends on the details of the relevant
Scherk-Schwarz twists and GSO projections. In many
simple string constructions, these projections would elimi-
nate either one or the other of these supermultiplets.
Likewise, supersymmetry would be broken if the internal
structure of each multiplet was also destroyed, leaving
behind bosonic and fermionic states that could no longer be
paired with each other. However, what we find in the
configuration described above—where the last stage of
compactification breaks the supersymmetry and GUT
symmetry simultaneously—is that the projections instead
lift the masses of certain states according to a nontrivial
combination of their SM representations, horizontal
charges and spin-statistics. Indeed, what remains at the
massless level are a set of states which together fill out a
single light “fake” supermultiplet which we shall denote 5̄e:

5̄e ¼
(
fermions∶ ð3̄; 1Þ0 ⊕ ð1; 2̄Þ1

2
≡ dc0 ⊕ l1

2

bosons∶ ð3̄; 1Þ1
2
⊕ ð1; 2̄Þ0 ≡ d̃c1

2

⊕ l̃0:
ð3:9Þ

All other components from the original pair of 5̄’s in
Eq. (3.8) are given masses of order the compactification
scale.

It is immediately apparent from the structure of the
multiplet in Eq. (3.9) that the SUSY breaking is “entwined”
with the horizontal charges in a nontrivial way. Indeed, the
matter spectrum is not symmetric under a supersymmetry
transformation alone, but only a supersymmetry trans-
formation coupled with a permutation of Qhoriz charges.
Thus, the supersymmetry is completely broken in the
resulting theory. For example, no massless gravitinos or
gauginos survive in the massless spectrum. Nevertheless,
due to the controlled structure of the SUSY breaking, a
residual imprint of the original supersymmetry remains.
This is our “entwined” SUSY (e-SUSY).
A similar entwining also occurs for the other GUT

multiplets. For example, suppose that (e.g., as dictated by
anomaly cancellation) the content of our original GUT
model fills out entire SM generations with the inclusion of a
100 representation and a 101

2
representation. In the sponta-

neously broken theory, the entwined 10 multiplet is then
given by

10e¼
(
fermions∶ ð3;2Þ1

2
⊕ ð3̄;1Þ0⊕ ð1;1Þ0≡q1

2
⊕uc0⊕ ec0

bosons∶ ð3;2Þ0⊕ ð3̄;1Þ1
2
⊕ ð1;1Þ1

2
≡ q̃0⊕ ũc1

2

⊕ ẽc1
2

;

ð3:10Þ

where we have adopted the same convention as for the
5̄’s, namely that Qhoriz ¼ 1

2
goes with the SUð2ÞL doublet

fermions and singlet bosons, and vice-versa for Qhoriz ¼ 0.
Note that anomaly cancellation (such as cancellation of the
SUð3Þ2Uð1Þhoriz anomalies) requires the existence of a
second e-multiplet which we do not show with the
horizontal charges negated. This will be present in the
explicit example to be presented in Sec. IV.
For vectorlike pairs, in particular the Higgses, anomaly

cancellation is achieved with a slightly different entwining
in which the supersymmetry transformation is coupled with
a permutation of SUð2ÞL with SUð3Þ fundamental. Let us
assume that there is a vectorlike pair of Higgs super-
multiplets 5hu;12 and 5̄hd;−1

2
. In contrast with the matter

5’plets, entwined SUSY leaves light the scalar doublets
hu and hd as well as a vectorlike pair of fermionic color
triplets. The entwined multiplet takes the form

5̄hd;e ⊕ 5̄hu;e ¼
(
fermions∶ ð3̄;1Þ−1

2
⊕ ð3;1Þ1

2
≡ T̃d;−1

2
⊕ T̃u;1

2

bosons∶ ð2̄;1Þ−1
2
⊕ ð1;2Þ1

2
≡hd;−1

2
⊕ hu;1

2
;

ð3:11Þ

where T and T̃ are color triplets. Of course the e-SUSY
structure is a feature of the matter and Higgs sectors only. In
particular, it does not extend to the gauge sector; indeed, the
gauginos are heavy, as we have said, and there are no
partners for the gauge bosons.
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Entwined SUSY is not just a property of the spectrum—
it also governs the allowed couplings. As an example, let us
consider the part of the superpotential of the original GUT
theory that encapsulates the down and lepton Yukawa
couplings:

Wd-yuk ¼
ffiffiffi
2

p
g4ð101

2
5̄05̄hd;−1

2
þ 1005̄1

2
5̄hd;−1

2
Þ: ð3:12Þ

Note that both terms share the same coupling g4. We have
also assumed that the Higgs descends from a higher-
dimensional gauge boson and thus is an off-diagonal
component of the adjoint representation of a larger, broken
symmetry. Indeed, this is always the case if the Higgs is a
state from the Neveu-Schwarz Neveu-Schwarz (NS-NS)
sector; as we shall shortly see, such states are generic.
We can divide the superpotential in Eq. (3.12) into two

components,Wd-yuk ¼ Wf þWb, whereWf involves those
matter supermultiplets whose fermions remain light after
SUSY breaking while Wb involves the supermultiplets
whose bosons remain light. Keeping only those pieces that
include the Higgs doublets, we then have

Wf ¼
ffiffiffi
2

p
g4ðq1

2
dc0hd þ ec0l1

2
hdÞ

Wb ¼
ffiffiffi
2

p
g4ðec1

2

l0hd þ q0dc1
2

hdÞ; ð3:13Þ

where q;l; dc; ec; hd denote the complete supermultiplets.
However, the crucial point is that the scalar Higgs hd in the
light theory couples to an entire e-multiplet, i.e., both to
fermions and to their e-partners, with degenerate couplings.
Thus, for example, the quadratically divergent contribu-
tions to the Higgs squared-mass from these multiplets still
cancels, much as in genuine SUSY. Indeed, this e-SUSY
structure occurs for every pair of couplings in the original
GUT theory that are already independently invariant under
a permutation of Qhoriz. For example, if only the first piece
of the superpotential in Eq. (3.12) had existed, then only the
first pieces of Wb and Wf would have been present, and
e-SUSY would have been broken in these couplings.
A typical theory contains examples of both kinds of
coupling. In this connection, we remark that such a
structure also has the potential to solve the Higgs hierarchy
problem. We shall comment on this below.
At first sight, the emergence of e-SUSY may seem

surprising. However, in the present context, this structure is
essentially forced upon us. To see why, we begin by
recalling that in our scenario, we are compactifying from
ten dimensions to four dimensions in two stages: first
10 → 4þ δ, and subsequently 4þ δ → 4. Moreover, the
existence of the GUT-precursor structure means that only
the second stage of the compactification may break the
GUT symmetry. Indeed, if this were not the case, then there
would be OðMsÞ mass splittings between components of a
single GUT multiplet. However, there are two components
to this final stage of compactification. The first is an action

(i.e., a set of phases) on the fields associated with the
Scherk-Schwarz twist. By itself, this would break the 4D
theory from N ¼ 2 SUSY to N ¼ 0 SUSY, resulting in a
nonchiral theory. By contrast, the second ingredient is the
aforementioned orbifold action which, by itself, would
breakN ¼ 2 SUSY toN ¼ 1 SUSY. In principle, either of
these is a suitable place in which to embed the breaking of
the GUT symmetry, and indeed both options lead to
OðMKKÞ mass splittings between different components
of a single GUT multiplet. In this paper, we will without
loss of generality assume that the GUT symmetry is broken
via the latter procedure.
Let us now consider the properties of the resulting

spectrum. Relative to the orbifold action of Od, some
sectors of the theory will be untwisted and some will be
twisted. Of course, the twisted sectors remain fully super-
symmetric because they are blind to the large radius. Thus
we immediately see that it is only the untwisted sectors
which exhibit the SUSY breaking and the eventual
entwined SUSY. As discussed above, the GUT-precursor
structure indicates that any SUSY and GUT breaking that
occurs in these sectors must be driven entirely by nontrivial
GSO phases—i.e., by a nontrivial Scherk-Schwarz action.
The effect of these phases is to lift the masses of certain
components of the SUSY GUT multiplets to Oð1=RÞ,
where R is the typical compactification radius.
We can gain a simple understanding of which compo-

nents will have their masses lifted as follows. In general,
each string state has a corresponding charge vector which
we may write in the form

Q ¼ ðQs:t:; QRjQUð3Þ; QUð2Þ;QhorizÞ: ð3:14Þ

Here QUð3Þ and QUð2Þ denote the charges of this state under
the Standard-Model Uð3Þ and Uð2Þ gauge symmetries,
while Qhoriz generally denotes charges under other gauge
symmetries which may be viewed as horizontal relative to
those of the Standard Model. Likewise, Qs:t: are charges
indicating the spacetime helicity (spin-statistics) of the
state, while QR denote its internal R-charges.
Note that these charge vectors have natural identifica-

tions within the special case of the heterotic string. For
heterotic strings in six dimensions, the charge vectors of the
string states fill out a (8,20)-dimensional Lorentz self-dual
lattice where the 20 dimensions correspond to the bosonic
(or gauge) side of the heterotic string and the 8 dimensions
correspond to the superstring (or spacetime) side. For
SM-like strings, we may in general identify three dimen-
sions within the 20 as corresponding toUð3Þ charges, while
we may identify two others as corresponding to Uð2Þ.
Relative to these gauge groups, we may regard the
remaining 15 dimensions as corresponding to horizontal
symmetries. These three sets of charges therefore corre-
spond to QUð3Þ, QUð2Þ, and Qhoriz. Likewise, on the
spacetime side, two lattice dimensions correspond to the

ABEL, DIENES, and MAVROUDI PHYS. REV. D 97, 126017 (2018)

126017-12



spacetime helicities (spin-statistics). These are therefore the
charges we have denoted Qs:t:. Note that the remaining six
dimensions on this side are purely internal, and their
charges may be viewed as R-charges. String consistency
constraints concerning the worldsheet supercurrent corre-
late these charges with Qs:t:, and thus the R-charges, like
Qs:t:, are sensitive to whether a given state is bosonic or
fermionic in spacetime.
In general, different states within a given GUT multiplet

will have different charge vectors. For example, a complete
supermultiplet χ in the GUT theory might decompose into
fermionic and bosonic pieces with charge vectors

Qχ ¼
�
1

2
;
1

2

����QUð3Þ; QUð2Þ;Qhoriz

�
Qχ̃ ¼ ð0; 0jQUð3Þ; QUð2Þ;QhorizÞ; ð3:15Þ

wherewe have leftQUð3Þ; QUð2Þ unspecified in order to allow
for different Standard-Model charges. In an untwisted sector
the bosons typically have Qs:t: ¼ QR ¼ 0, which we have
adopted above for concreteness.
The question is therefore to determine which of the

massless states in such multiplets will have their masses
lifted by the Scherk-Scherk twist. In general, for a given
field ψ and a compactified direction with coordinate x5 and
radius R, such a twist takes the form

ψðx5 þ 2πRÞ ¼ eiπe·Qψðx5Þ; ð3:16Þ

where the vector e specifies the particular twist and takes
the form

e ¼ ðes:t:; eRjeUð3Þ; eUð2Þ; ehorizÞ; ð3:17Þ

and where the dot-product is Lorentzian (i.e., gauge minus
spacetime). In general, implementing this twist raises the
masses of those states which carry a net Scherk-Schwarz
charge. More specifically, in the presence of a universal
compactification radius R, we see from Eq. (3.16) that any
state with a charge vectorQwill experience a shift in its KK
mode number k ∈ Z of the form k → kþ e ·Q. This
implies that the mass of a previously massless state with
charge vector Q now becomes

m ¼ jΔkj
R

where Δk≡ e ·Q mod ð1Þ: ð3:18Þ

Of course, if e ·Q is an integer, then the KKmode numbers
of our states merely shift by an integer. There is thus always
another KK mode k0 ¼ −e ·Q ∈ Z which now becomes
massless and which takes the place of the original state in
the sense that it has the same spacetime properties. This
then explains the restriction “mod (1)” in Eq. (3.18). We
conclude that only those states for which e ·Q ∈ Z survive
in the massless spectrum.

Given this, each choice of e-vector corresponds a
specific resulting pattern of SUSY breaking and GUT
breaking. Certain aspects of the required twist are then
obvious. First, the Scherk-Schwarz twist has to distinguish
bosonic states from fermionic states. In principle, this can
be accomplished by having this twist be sensitive to either
Qs:t: or QR; for technical reasons the choice QR is more
natural. Likewise, in order to break the GUT group, the
twist must be sensitive to QUð3Þ or QUð2Þ. Finally, string
self-consistency conditions then require that the twist also
generically act on the different horizontal charges of the
states Qhoriz.
As an example, let us suppose that we wish the Scherk-

Schwarz twist to act on QR (in order to distinguish bosons
from fermions), and to simultaneously break the GUT
symmetry by acting on QUð2Þ and Qhoriz but not on QUð3Þ.
A relevant Scherk-Schwarz action for the projection above
is then given by the vector

e ¼ ð0; 1j0; 1; ehorizÞ: ð3:19Þ

The states from our original supermultiplet that remain
light therefore obey

QUð2Þ þQhoriz −QR ¼ 0 mod ð1Þ; ð3:20Þ

where we define Qhoriz ≡ ehoriz ·Qhoriz. Clearly there is
some model-building freedom in the choice of ehoriz and the
corresponding distribution of Qhoriz charges among the
matter multiplets.
In order to determine the resulting massless spectrum, it

is necessary to discuss the values of the trace Uð2Þ charge
QUð2Þ, which depends on how the representations are
constructed. In a typical construction the matter 10 and
5̄ come from spinor representations of a larger gauge group
[e.g., SOð16Þ], and in this case the matter doublets q and l
have QUð2Þ ¼ 0 while ec and dc have QUð2Þ ¼ 1

2
and uc and

νc have QUð2Þ ¼ − 1
2
. Meanwhile, given our previous

assumptions, the Higgses appear in the bifundamental
[with one factor in the SUð2ÞL group and the other factor
in a hidden gauge group]. They therefore haveQUð2Þ ¼ � 1

2
.

Adopting these charges and applying the projection in
Eq. (3.20) with the charges in Eq. (3.15), we see that the
remaining light matter fermions are q1

2
;l1

2
; uc0; d

c
0; ν

c
0; e

c
0

(and Higgs triplets). Likewise, the light scalars are hd,
hu, q̃0; l̃0; ũc1

2

; d̃c1
2

; ν̃c1
2

; ẽc1
2

. Thus, the massless left-handed

fermion matter doublets have Qhoriz ¼ � 1
2
after applying

the Scherk-Schwarz mechanism, while their bosonic “pseu-
dosuperpartners” actually come from the states with
Qhoriz ¼ 0. Conversely the massless right-handed matter
fermions have Qhoriz ¼ 0 and their bosonic “pseudosuper-
partners” have Qhoriz ¼ 1

2
. All other states acquire a mass

1=2R. Finally, the original GUT theory must be free of
SUð5Þ2 ×Uð1Þhoriz anomalies, which requires that two
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e-twisted generations descend from four GUT generations
(with corresponding horizontal charges 0; 1

2
; 0;− 1

2
).

This is precisely the e-SUSY structure described above.
The specific distribution of charges may differ from theory
to theory, but the general robust feature is that differently
charged components comprise e-supermultiplets. Indeed,
the particular distribution of charges described above is
quite typical. The crucial feature of the Scherk-Schwarz
mechanism that results in this structure is that the breaking
of supersymmetry and gauge group occur simultaneously
in the underlying string construction. This leads to a
correlation between Qhoriz and the R-charges, and hence
between Qhoriz and the spacetime spins of the components
of the e-supermultiplets that actually descend from differ-
ent supermultiplets of the original SUSY GUT.
Note that this mechanism operates only for supermul-

tiplets that carry horizontal charges overlapping with the
Scherk-Schwarz action e. States such as gauginos and
gravitinos that do not carry horizontal Uð1Þ charges are
simply made heavy, whereas the untwisted chiral matter
supermultiplets are typically projected in half into such
entwined-supermultiplets by the Scherk-Schwarz twist in
the manner described above. It is also important to note that
at large volumes, the horizontal Uð1Þ symmetries will be
exceedingly weak: their gauge couplings (like all of the
gauge couplings in such large-volume compactifications)
begin extremely small at the string scale, but because Uð1Þ
symmetries have b̃ > 0, their couplings become even
smaller upon running down to lower energies. Thus, for
all practical purposes, such Uð1Þ symmetries can be treated
as effectively global at low energies.
A final remark is in order. Given the above discussion, it

is clear that left- and right-handed SM fields are projected
differently. As we shall see in detail through our consid-
eration of an explicit model, in order to maintain anomaly
cancellation one must therefore be careful to include
sectors that are twisted under the orbifold but also have
a Scherk-Schwarz twist. The states arising from such
sectors are typically SM singlets and are evident in the
effective 6D theory at small radius, where the vector e has
the same status as the other projection vectors in the theory.
This has been discussed recently in Ref. [39]. Due to their
orbifold-twisted nature, these states cannot gain a mass
from the interpolation to large radius. They therefore fall
into genuine supermultiplets and do not contribute to the
one-loop cosmological constant. Thus, these sectors do not
change our conclusion, stated above, that the entwined-
SUSY structure is a feature of the untwisted sectors alone.

IV. CONSTRUCTING A METASTABLE NON-SUSY
HETEROTIC STANDARD MODEL

We now present a nonsupersymmetric heterotic string
model that displays the features described above while
at the same time exhibiting the required boson/fermion

degeneracy of the massless modes, as required for tadpole
stability in our construction. Our primary purpose here is to
explicitly demonstrate that the features claimed in the
previous sections indeed occur within the context of a
fully self-consistent metastable nonsupersymmetric heter-
otic string model. Moreover, this model is also phenom-
enologically semi-realistic: it incorporates the fundamental
building blocks of the Standard Model such as the
Standard-Model gauge group, complete chiral generations,
and Higgs fields, all without supersymmetry. The model
does not give rise to massless gravitinos and gauginos, and
thus SUSY is indeed broken. This model nevertheless
displays both the GUT-precursor structure and the e-SUSY
structure, all while retaining one-loop stability with a near-
vanishing one-loop cosmological constant. This model thus
provides a concrete and illustrative example of the ideas
presented in Sec. III, even if it is not fully realistic at a
phenomenological level. This model will also provide us
with a template for discussing some general phenomeno-
logical properties of e-SUSY, such as the existence of an
approximate moduli space and the prevention of rapid
proton decay. These issues will be discussed in Sec. V.
However the precise construction in this section will not be
crucial for understanding the more general points in Sec. V,
and thus the reader unconcerned with the specifics of the
model to be presented in this section can proceed directly
to Sec. V.

A. Building a suitable string model:
Basic architectural approach

We begin the construction of our model along the lines
described in previous sections. Specifically, following
Ref. [1], we generate the compactificationmanifoldKwithin
the free-fermionic formalism [40–42], whileOδ is taken to be
T2=Z2 (again noting that the Z2 acts also on the K). The 6D
model is defined by a set of basis vectors Vi which describe
the phases of worldsheet fermions in each sector and which
collectively generate the charges schematically indicated in
Eq. (3.14). In particular, these basis vectorsVi have rank 8 on
the spacetime side and 20 on the internal gauge side, and give
rise to a spectrum of states whose 28-dimensional charge
vectors Q were discussed in Sec. III. The model is also
specified through a set of so-called “structure constants” kij
(or GSO phases) which collectively determine the particular
chiralities and redundancies in the model. The orbifolding
compactification to 4D is then accompanied by an action (set
of phases) on the fermions described by a vector of charges
b3. The central ingredient in the compactification is the
introduction of the Scherk-Schwarz action following the so-
called coordinate-dependent compactification (CDC)
method of Refs. [43–48]. This spontaneously breaks super-
symmetry but retains the desirable properties of the original
theory, in particular modular invariance, misaligned SUSY,
and hence one-loop finiteness.
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As outlined in Sec. III, the CDC is described by a vector
e which encompasses a discrete Uð1Þ rotation of the
Lorentzian compactification lattice that depends on the
T2 coordinates and leaves the worldsheet supercurrent
invariant. However the local generator of this rotation does
not commute with the worldsheet supercurrent [i.e., it lives
partly in the SOð4Þ subgroup associated with the compac-
tification from 10D to 6D so it involves the R-symmetry],
and hence supersymmetry is spontaneously broken. As a
consequence the graviton remains massless but the grav-
itinos pick up a mass of order 1=2R where R is the generic
compactification scale. The CDC may simultaneously act
upon the internal worldsheet fermions, breaking gauge
symmetries, and in the present context this is the source of
GUT breaking. The broken gauge bosons as well as the
gauginos of the unbroken gauge groups gain a mass while
their superpartners remain massless.
As far as the massless spectrum is concerned, e can be

treated as just another set of projection phases. Indeed in
the R → 0 limit, the role of e explicitly reverts to that of the
other Vi, as discussed in detail in Ref. [39]. As we shall see
later, this allows a simple determination of the additional
states which are present—states which are required for
anomaly cancellation and which come from sectors twisted
under both the CDC and the orbifold.
One feature that makes finding a suitable model feasible

is that the orbifold and the CDC act somewhat independ-
ently of each other. Only the untwisted orbifold sectors
depend on the radius and therefore feel the CDC, while the
twisted sectors remain supersymmetric (until they too pick
up one-loop radiative corrections via what is essentially
gauge- or gravity-mediation). Conversely the orbifold acts
merely to remove half the states of the untwisted theory,
such that if, e.g., one finds a nonorbifolded theory that
exhibits a boson/fermion degeneracy, then up to a choice of
kij it follows that there exists an orbifolded theory that also
exhibits the boson/fermion degeneracy but with half the
untwisted particle content. This particular issue is explained
in more detail in the Appendix.
Despite these simplifications, the multiple consistency

conditions add up to a relatively constraining set of
requirements for any consistent model. Collected together,
these constraints are as follows:

(i) The basis vectors Vi and structure constants kij must
satisfy the usual modular-invariance constraints for
the original 6D theory [40–42].

(ii) The N ¼ 0 model must interpolate between the
N ¼ 1 6D model presented above in the R → ∞
limit and a different 6D model in the R → 0 limit
(which, in order to break the GUT symmetry, must
also be SUSY breaking [39]). In the R → 0 limit, the
CDC vector e reverts to the role of a normal vector
and is added in the spin structure of that model [39].
Therefore, the e vector must obey the samemodular-
invariance constraints as the other Vi vectors that

define the model in 4D. A simple way to do this is to
impose the constraint e · e ¼ 1 modð2Þ, where the
conventions for inner products are as presented in
Ref. [1] and where kie ¼ 0 [39].

(iii) Removing the CDC must restore supersymmetry. In
other words, supersymmetry breaking should be the
result of a mismatch between an N ¼ 1 supersym-
metry left invariant by the orbifold and a different
N ¼ 1 supersymmetry left invariant by the CDC.
This mismatch is governed by the choice of structure
constants kij.

(iv) There must exist an alternative choice of structure
constants kij that can also restore supersymmetry.

(v) In at least one twisted sector of the orbifold, there
must exist a basis in which the orbifold acts as a
conjugation on the charge lattice, which in con-
junction with the fact that the orbifold reverses all
KK and winding numbers, results in a consistent
projection on the spectrum. Note that overlaps of
complex phases with the CDC vector require special
treatment (see the Appendix).

In addition to the above, we may now also impose two
further constraints:

(i) In order to realize the GUT-precursor structure, only
the CDC may break the GUT symmetry.

(ii) The resulting model must exhibit a boson/fermion
degeneracy for all massless modes.

Finding working solutions that satisfy all of these
constraints is highly nontrivial. It is therefore remarkable
that one can find a theory which not only satisfies all of
these constraints but which also resembles the Standard
Model. In fact we can make very general statements about
the form of such a model, and about where the matter
generations and the Higgses will appear. In order to do this
we need to extend the discussion of Ref. [1] to include
cases where both the CDC vector e and the orbifold vector
b3 overlap more general complex GSO phases of the
compactification to 6D. It is less obvious how to define
a consistent basis in these cases, and this particular issue is
also treated in the Appendix. The upshot of that discussion
is that in order to determine the physical spectrum one can
perform projections as if the vectors were all defineable in
the same complex basis. This is ultimately because the
interaction of the orbifold with the CDC is somewhat
trivial: the orbifold simply projects out half the untwisted
states as above, while twisted sectors do not feel the CDC.
The minimal consistent unit that emerges is a pair of
complex worldsheet fermions with phases

Vn ⊃−
�
1

4
;
1

4

�
; b3 ⊃−

�
0;
1

2

�
; e⊃

�
1

2
;
1

2

�
: ð4:1Þ

With this in mind, we can sketch how the vectors for an
SM are expected to divide into their crucial blocks. With
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only a minor loss of generality, the structure one requires
for the phases (in units of 2π) is given by

Group ¼ ½ ψ1
s:t:ψ

2
s:t: …j… Uð3Þ ×Uð2Þ Uð1Þ3 …�

V0 ½ 1 1 …j… 1 1 1 1 1 1 1 1 …�
V1 ½ 0 0 …j… 1 1 1 1 1 1 1 1 …�
Vi¼2;…;n−1 ½ 0 0 …j… 0 0 0 0 0 � � � …�
Vn ½ 0 0 …j… 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

…�
b3 ½ 1 0 …j… 1 1 1 1 1 0 1 0 …�
e ½ 0 0 …j… 0 0 0 1 1 1 0 1 …�

Here there are 8 entries on the spacetime side and 20 on the
gauge side, and all entries are to be understood as multiplied
by −1=2. Comparing with the notation in Eq. (3.14), we see
that Qs:t: corresponds to ψ1;2

s:t: . Note that the notation “�”
denotes a wildcard 0 or 1. The boundary-condition phases of
the left-moving (gauge-side) fermions in the basis vectors
Vi¼2.:n−1 break the gauge symmetry at the string scale to
SUð5Þ × Uð1Þ1 ×Uð1Þ2 ×Uð1Þ3 ×…, because they act
degenerately on the components of the GUT. The compo-
nents denoted “�” allow these vectors to break the SOð6Þ
gauge factor at the string scale. The vector Vn is required to
break the gauge symmetry to unitary groups,with in this case
−1=4 complex phases on the worldsheet fermions. This,
then, is the 6D supersymmetric GUT. The vector b3 which
accompanies the orbifolding projects the theory down to
N ¼ 1 in 4D. In the absence of the Scherk-Schwarz action,
this gives a “parent”GUTmodel fromwhichonemaydeduce
the embedding of the multiplets of the eventual SM-like
model. This is a useful check.
The overlap of e is then prescribed by Eq. (4.1). Choosing

e to give the final breaking of the SUð5Þ symmetry and to
break the spacetime SUSY allows us to retain untwisted
Higgs states which appear as a bi-fundamentals. These states
are essentially components of the higher-dimensional gauge
fields. Such fields naturally have phenomenologically attrac-
tive shift symmetries (as evident in the effective tree-level
theory of Ref. [2] but broken at one-loop level [49]). These
untwisted Higgses will be found in the NS-NS sector, where
they will generically have the form

hd ∼ ψ2
s:t:j0i ⊗ ψ̃Uð2Þψ̃

†
Uð1Þ1;3 j0i

hu ∼ ψ2
s:t:j0i ⊗ ψ̃†

Uð2Þψ̃Uð1Þ1;3 j0i: ð4:2Þ

Note that in the notation of Ref. [42] we are using
ψ ⊃ bn>0 ⊕ d†n>0 and ψ† ⊃ b†n>0 ⊕ dn>0. The projections
in this sector are very general. That from the orbifold takes
the form b3 · N0 ¼ 1=2, and hence there are no Higgs states
involving ψ̃Uð1Þ2 . However there are light vectorlike triplets
of the form

T ∼ ψ2
s:t:j0i ⊗ ψ̃Uð3Þψ̃

†
Uð1Þ2 j0i ð4:3Þ

plus its conjugate.Note this vectorlike pair ofHiggs5-plets is
precisely in the form of Eq. (3.11). Another benefit of

choosing e to break the GUT symmetry is now evident:
states with e ·Q ¼ 1=2 mod ð1Þ are lifted by the CDC, so if
e were degenerate across the Uð3Þ ×Uð2Þ entries, then it
would either lift the Higgs mass or leave a larger SUð4Þ
symmetry.

B. A full nonsupersymmetric metastable
SM-like 4D string model

Thus far we have only presented the basic architectural
“kernel” of a successful model. However, given this, we
can now proceed to construct a full string model that meets
all of the requirements listed above while also satisfying all
of the constraints that we would expect for a full, self-
consistent string model. To do this, we shall begin by
presenting the parent 4D N ¼ 1 GUT-like model from
which our eventual SM-like model descends, as described
above. We shall then present our final, SM-like model.
As discussed above, our parent 4D N ¼ 1 GUT-like

model can be specified through those quantities that
uniquely generate it: a set of boundary-condition vectors
as well as a corresponding matrix kij of projection phases.
In the present case, the boundary-condition vectors are
given in Table I, while the kij projection phases (“structure
constants”) are given in the fV0; V1; V2; b3; V5; V7g
basis by

kij ¼

0
BBBBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 1
2

0 1
2

0 1
2

0 1
2

1
2

1
2

0 3
4

0 0 0 0 0 3
4

1
2

1
2

1
2

0 0 1
2

1
CCCCCCCCCCA
: ð4:4Þ

By and large, the set of Vi vectors determines a corre-
sponding symmetry-breaking pattern following the generic
scheme as outlined in Sec. IVA. In this case, V0 and V1 lead
to amodular-invariantN ¼ 4 SUSY theory (in 4D).V2 then
induces a breaking to N ¼ 2 SUSY and an SOð16Þ gauge
group, while V5 and the orbifold action b3 induce a further
breaking toN ¼ 1 SUSYand SOð10Þ. Finally V7 induces a
breaking to SUð5Þ. The action b3 accompanies the com-
pactification down to 4D on a freely acting orbifold T 2=Z2.
This introduces a twist around the T 2, through a Uð1Þ
subgroup of the internal symmetry [SOð4Þ in our construc-
tion] associated with the compactification from 10D to 6D.
As in Ref. [1], this structure is loosely based on the 4D
MSSM-like models of Refs. [50–56].
Given the specifying data in Table I and Eq. (4.4), the

spectrum of the resulting string model is uniquely deter-
mined. However, string models typically give rise to large
numbers of states, and lists of these states from both the
twisted and untwisted sectors are generally quite long and
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not always particularly illuminating. We have therefore off-
loaded these lists into Ref. [57]. Certain features of the
resulting spectrum are nevertheless important and can
easily be summarized. In particular, the gauge group of
the resulting string model is

GGUT ¼ SUð5Þ ⊗ SOð6Þ2 ⊗ ½Uð1Þ�9: ð4:5Þ

Likewise, the pseudoanomalous Uð1Þ in this model turns
out to be

Uð1ÞA ¼ −2Uð1Þ2 þ 7Uð1Þ5 −Uð1Þ6 −Uð1Þ7
þ 8Uð1Þ8 þ 2Uð1Þ10 − 12Uð1ÞTr; ð4:6Þ

where Uð1ÞTr denotes the trace of the Uð5Þ gauge group.
As always, the NS-NS sector gives rise to the gravity
multiplet as well as the massless scalar states required to
build N ¼ 2 gauge multiplets and hypermultiplets. There
are five untwisted 10 representations of the SUð5Þ. Along
with the 5 ⊕ 1 states they fill out complete chiral 16
spinorial representations of the parent SOð10Þ. In addition
we find a single conjugate representation. Thus the GUT
model has a total of four net generations of chiral matter
fields. Indeed, the vectorlike pair of 16’s is precisely the
origin of the Higgs 5-plets alluded to in Eqs. (4.2) and (4.3).
Given this GUT model, we can now proceed to construct

our final, N ¼ 0 SM-like string model. The boundary-
condition vectors that generate this model are shown in

Table II, and the kij phases are the same as in Eq. (4.4). The
introduction of the vector e breaks the gauge group down to

G ¼ Gvisible ⊗ Gsemi−hidden ⊗ Ghidden; ð4:7Þ

where

Gvisible ¼ SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY
Gsemi−hidden ¼ ½Uð1Þ�11

Ghidden ¼ ½SOð4Þ�2: ð4:8Þ

The hypercharge of the SM particles is determined by

1

2
Uð1ÞY ¼ −

1

3
½Uð1Þψ̄1 þ Uð1Þψ̄2 þUð1Þψ̄3 �

þ 1

2
½Uð1Þψ̄4 þ Uð1Þψ̄5 �; ð4:9Þ

and the theory is anomaly-free apart from the pseudoa-
nomalous Uð1Þ combination

Uð1ÞA ¼ 2Uð1Þ0 − 2Uð1Þ2 þ 7Uð1Þ6 − Uð1Þ7 − Uð1Þ8
þ 8Uð1Þ9 þ 2Uð1Þ13 þ 2Uð1Þ14 − 15Uð1ÞTr0 ;

ð4:10Þ

where Uð1ÞTr0 is the linear combination of the trace of
Uð3Þ andUð2Þ, descending from theUð5Þ trace in the GUT

TABLE I. Spin structure of the parentN ¼ 1 4D GUT model. This spin structure is accompanied by two bosonic degrees of freedom
compactified on a Z2 orbifold with twist action corresponding to the vector b3. For notational simplicity, each entry in this table is to be
understood as multiplied by −1=2.

Sector ψ34 ψ56 χ34 y34 ω34 χ56 y56 ω56 ȳ34 ω̄34 ȳ56 ω̄56 ψ̄1 ψ̄2 ψ̄3 ψ̄4 ψ̄5 η̄1 η̄2 η̄3 ϕ̄1 ϕ̄2 ϕ̄3 ϕ̄4 ϕ̄5 ϕ̄6 ϕ̄7 ϕ̄8

V0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V2 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
b3 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1
V5 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1
V7 0 0 0 1 1 0 0 0 0 1 0 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1 1 0 1 0

TABLE II. Spin structure of the 4DN ¼ 0 model. This structure is accompanied by two bosonic degrees of freedom compactified on
a T 2=Z2 orbifold with twist action corresponding to the vector b3. For notational simplicity, each entry in this table is to be understood as
multiplied by −1=2.

Sector ψ1
s:t: ψ2

s:t: ψ3 y3 ω3 ψ4 y4 ω4 ȳ34 ω̄34 ȳ56 ω̄56 ψ̄1 ψ̄2 ψ̄3 ψ̄4 ψ̄5 η̄1 η̄2 η̄3 ϕ̄1 ϕ̄2 ϕ̄3 ϕ̄4 ϕ̄5 ϕ̄6 ϕ̄7 ϕ̄8

V0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V2 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
b3 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1
V5 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1
V7 0 0 0 1 1 0 0 0 0 1 0 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1 1 0 1 0
e 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0
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theory. The entire combination descends from Eq. (4.6)
along with the components of two extra Uð1Þ’s in the
½SOð6Þ�2 factors of the GUT theory.
Just as with our previous GUT-like model, the complete

particle content of this model is listed in Ref. [57]. In general,
one finds that the twisted sectors remain (globally) super-
symmetric whereas in the untwisted sectors all states satisfy-
ing qe ¼ e ·Q ≠ 0mod ð1Þ are lifted. The graviton and
gauge-boson states are generally identified in the NS-NS
sector in the usual way, along with the complex radion and
antisymmetric tensor. These states aremassless after theCDC
is applied since they unavoidably have qe ¼ 0. Conversely,
the gravitino aswell as the gauginos becomemassive after the
CDC. We should add that it is possible for linear combina-
tions of the basis vectors fV0;…; V7g to produce sectors that
yield additional gauge bosons in the spinorial representations
of the observable SUð3Þ ⊗ SUð2Þ and/or hidden gauge
groups, indicating unwanted potential gauge enhancement.
One has to be careful to ensure that such states are indeed
projected from the massless physical spectrum of the theory
by the generalized GSO projections, a requirement which
partly determines the structure constants.
As mentioned in the general discussion of Sec. III,

complete anomaly cancellation requires the addition of
extra orbifold twisted sectors that have an e action. As
shown in Ref. [39], such sectors must be present because e
simply becomes another projection vector in the small-
radius limit. These sectors typically provide extra hidden
states that ensure consistency; moreover, being twisted,
these states are supersymmetric and cannot gain any radius-
dependent breaking from the CDC.Moreover, it was shown
in Ref. [39] that the small-radius limit corresponds to
structure constants of the form kei ¼ 0 and kee ¼ 1=2, and
that there exist further unexplored possibilities that have
nontrivial structure constants. For the present discussion,
the easiest way to determine the additional twisted sectors
is to add the vector V8 ¼ e to the theory, along with the
choices k8i ¼ 0 and k88 ¼ 1=2. This trick works because
this vector cannot generate new massless untwisted sectors
involving V8 since the GSO condition for a sector αV ≡
V8 þ αiVi is given by V8 ·Q ¼ 1=2, which inevitably
conflicts with the CDC-shifted Virasoro operators. In fact
the untwisted states that remain are precisely those odd
winding modes that will becomemassless in the zero-radius
limit, whereas the desired twisted states of the zero-radius
limit must already be present and massless.
It turns out that this model gives rise to 18 sets of Higgs

pairs which include states of the generic form shown in
Eq. (4.2). Explicitly, in the notation of Ref. [42], the Higgs
states remaining in the NS-NS sector (i.e., the 0 sector) are
given by

hð1Þ;ð2Þu ¼ fb; dg2
s:t:;−1

2

j0iR ⊗ b̃4;5−1
2

d̃1−1
2

j0iL
hð1Þ;ð2Þd ¼ fb; dg2

s:t:;−1
2

j0iR ⊗ d̃4;5−1
2

b̃1−1
2

j0iL: ð4:11Þ

The other Higgses as well as the singlets are produced from
various untwisted or twisted sectors, and they all carry
charges under the semi-hidden sector gauge group. It is
worth emphasizing that although the supersymmetric
counterparts of the Higgses and the singlets are lifted,
there are Higgsino states as well as singlino states which are
not lifted by the CDC and which have different horizontal
charges. Such states fill out e-SUSY multiplets for the
reasons outlined in Sec. III C. However, as we will see in
Sec. V, these states can be lifted by their Yukawa couplings.
As anticipated in our general discussion, once the SUð5Þ

GUT symmetry is broken by the CDC there are only two
complete chiral fermion generations that survive from the
original four net supermultiplets of the GUT. One gen-
eration is in the V0 þ V2 sector and the other is in the
V0 þ V1 þ V2 þ α7V7 sector. Although there are ulti-
mately no superpartners for the chiral matter fields from
the untwisted sector, it can be verified that the spectrum
exhibits e-SUSY, as expected, with smatter fields bearing
different horizontal charges. Indeed one can identify the
charge vector Qhoriz in Eq. (3.15) that distinguishes a field
and its e-partner. For example the field dcð4Þ occurs in the
V0 þ V2 þ V5 þ V7 sector. Its e-partner d̃cð12Þ appears in
the V1 þ V2 þ V5 þ V7 sector, which is also where its true
superpartner appears in the theory when there is no Scherk-
Schwarz twist. Inspecting similar e-partner pairs, we find
that Qhoriz ¼ Uð1Þ0 ⊕ Uð1Þ11.
Overall, this particular model has a total of Nð0Þ

b ¼ 552
complex bosonic degrees of freedom at the massless level.

Most importantly, however, it also has Nð0Þ
f ¼ 552 complex

fermionic degrees of freedom at the massless level. Thus
the one-loop cosmological constant is exponentially sup-
pressed, making this the first construction of a metastable,
nonsupersymmetric SM-like theory which also incorpo-
rates the all-important GUT-precursor and e-SUSY struc-
tures discussed in Sec. III. As such, the existence of models
of this type then paves the way for genuine phenomeno-
logical model-building.

V. ADDITIONAL PHENOMENOLOGICAL
ASPECTS OF METASTABLE STRING MODELS

In this section we briefly comment on two additional
phenomenological aspects that are important for general
non-SUSYmetastable string models: scalar fields acquiring
large VEVs, and the ever-present issue of proton decay. As
we shall see, both of these issues have interesting reso-
lutions within our metastable string models—resolutions
which are directly connected to the GUT-precursor and e-
SUSY structures we have been discussing.

A. Large VEVs and the existence
of an approximate moduli space

It is important that the scalar fields in our model be able
to accrue large VEVs—i.e., VEVs which are significantly

ABEL, DIENES, and MAVROUDI PHYS. REV. D 97, 126017 (2018)

126017-18



larger than the weak scale. One reason for this is that such
VEVs are a feature of Green-Schwarz (GS) anomaly
cancellation. Issues surrounding the GS mechanism in
our scenario will be discussed further below. A second
motivation for considering large scalar VEVs is purely
phenomenological: given that the renormalizable super-
potential couplings are all degenerate, introducing flavor
structure into the Yukawa couplings will typically require
additional VEVs for so-called flavons. Finally, large scalar
VEVs are also needed in order to lift the masses of many of
the matter fields that would otherwise appear in the KK
spectrum below MGUT and thereby produce the negative
universal beta-function coefficient b̃ < 0 required within
the GUT-precursor paradigm. Indeed, more generally,
string models typically contain many extraneous massless
states to which one would like to give mass. This can be
achieved most naturally by giving VEVs to scalars, thereby
lifting the masses of those states to which they couple via
Yukawa-type interactions.
However, these observations then raise a generic ques-

tion: is it possible to give large scalar VEVs without
changing the conclusion that the dilaton tadpole is sup-
pressed? In general, such VEVs would be expected to lift
the cosmological constant unless there is a residual flatness
in the potential. Thus, in order to be able to assign large
VEVs to the scalar fields in our model without destroying
the stability of the model itself, we must require that the
model exhibit an approximate moduli space—i.e., a space
of almost flat directions that remains even after the breaking
of supersymmetry.
We begin by discussing Green-Schwarz (GS) anomaly

cancellation, as this issue is critical for our analysis.
Generally in heterotic theories, and in the models presented
in the previous section, there is a single anomalous Uð1ÞA
symmetry whose mixed anomalies are cancelled by the
Kalb-Ramond field. At the level of the effective theory, the
spontaneous breaking of SUSY can be understood within
an entirely N ¼ 1 supergravity formulation as a linear
complex-structure modulus term in the superpotential, as
described in Ref. [2]. Of course, since the gravitino mass in
our theory is of the same order as the masses of the lowest-
lying KK modes regardless of the size of the compactifi-
cation radii, our theory is never really described by a 4D
supergravity; indeed, a 4D supergravity treatment is ulti-
mately not useful for describing quantities such as scatter-
ing amplitudes. However, such a treatment is nevertheless
useful in the sense that it successfully reproduces the
vacuum structure and spectrum of the low-energy theory.
The Green-Schwarz mechanism then corresponds to the
generation of a Fayet-Iliopoulos term in this effective
theory, which in turn leads to a VEV for one or more of
the scalar fields appearing in the anomalous DA-term [58].
Typically one expects such VEVs to be string-sized, while
the masses of any fields that couple to those scalars are
lifted.

In this connection it is important to stress that since the
cosmological constant is being calculated directly in a
nonsupersymmetric string theory, this effective GS field
theory picture is inferred “after the fact” of direct compu-
tation. In other words, the exponentially suppressed one-
loop cosmological constant that one calculates in the string
theory is the value that arises when one is already sitting in
the correct vacuum. This is analogous to the fact that the
anomalous photon is found to have a nonzero mass within
string perturbation theory, and that in a supersymmetric
theory one finds a one-loop cosmological constant that is
precisely zero. These are values that arise in the correct
(shifted) vacuum of the supergravity theory, but not in the
original (unshifted) vacuum.
It is also important to note that the GS mechanism in our

scenario is not typical: the associated scales are adjusted
from the usual ones by the large volume. In general, the
potential is minimized where the anomalous D-term
vanishes, which in turn implies a constraint of the formX

i

qX;ijϕ̂j2 ∼ ξg24M
2
s ; ð5:1Þ

where qi are theUð1ÞA charges, where ξ¼TrðqXÞ=ð192π2Þ
is the anomaly coefficient, where ϕ̂i are the canonically
normalized fields, and where g4 is the tree-level coupling
(without threshold corrections). However, as we have seen
in Sec. III A, the coupling g4 is suppressed by the
compactification volume. Indeed, when there are δ ¼ 2
large orthogonal dimensions of radius R, we learn from
Eq. (3.7) that

g4 ¼
Ms

MP
¼

ffiffiffiffiffiffiffiffiffiffiffi
−16π
b̃

r
1

MsR
: ð5:2Þ

Equation (5.1) then becomes

X
i

qX;ijϕ̂j2 ∼ −
TrðqXÞ
12πb̃

M2
KK; ð5:3Þ

from which we see that the solutions for the VEVs hϕ̂i of
the canonically normalized scalar fields ϕ̂ generally scale
asMKK rather thanMs. Indeed, this is true even though the
VEVs of the scalar fields in the string frame are string-
sized. Thus, if wewish the GS mechanism to retain its usual
field-theoretic interpretation, we need only require that the
4D supergravity description hold up to the KK scale rather
than the string scale. Of course, the KK scale is also
precisely the scale above which the 4D description breaks
down. Moreover, as we have seen, this scale may be as high
as 1014 GeV.
Given these observations, we may now return to our

original question, namely that of determining the condi-
tions under which there exists an approximate moduli space
which would allow such scalar VEVs without disturbing
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the exponential suppression of the dilaton tadpole that
occurs when Nð0Þ

b ¼ Nð0Þ
f . Note that there are two kinds of

scalars that we might consider: those that descend from
vector multiplets, and those that originate in 6D hyper-
multiplets. The former appear in the NS-NS sector of the
theory and take the form of off-diagonal (non-Abelian)
Wilson lines. Examples within the model presented in
Sec. IV include the SM singlet fields x̃ð1Þ, x̃ð2Þ, x̃ð11Þ, and
x̃ð12Þ as well as the two generations of Higgs fields, hð1;2Þd

and hð1;2Þu . By contrast, the fields that descend from
hypermultiplets appear in other “twisted” sectors (where
“twisted” here refers to sectors in the 6D theory, not to the
final orbifold compactification to 4D). Examples within the
model presented in Sec. IV include x̃ð93Þ and the remaining
Higgses. In both cases, the question of flatness is of course
synonymous with requiring a radiative correction to their
squared masses that is much smaller than the generic 1=R
value, which in the present context could be as high
as 1014 GeV.
Remarkably, there are already dramatic cancellations in

the radiative corrections to the squared masses of fields
such as x̃ð1;2Þ that descend from vector multiplets. This is
ultimately a consequence of the e-SUSY which is exhibited
by the Yukawa couplings, as discussed in Sec. III. In

particular, such fields couple equally to a field and its
e-SUSY partner. For this reason, e-multiplets are not able
to contribute in the quadratic divergences of their squared
masses in the effective field theory. In fact, as will be
discussed in detail in Ref. [59], it turns out that these
contributions are actually exponentially suppressed in the
full string theory. Note that this cancellation is not a
supersymmetric one, since the multiplets involved in the
cancellation are not supersymmetric partners of each other.
These cancellations nevertheless serve to remove those
contributions to the squared masses of these particles that in
the effective field theory would be quadratically divergent,
much as in the spirit of folded SUSY [5].
We can see this explicitly within the example model

presented in Sec. IV. Towards this end, let us consider
raising the masses of vectorlike pairs of certain superfluous
fields (such as the large number of vectorlike pairs of down
quarks and squarks and Higgses and leptons appearing in
the spectrum tables) through their Yukawa couplings to
singlet fields, in what are essentially generalizations of the
NMSSM “μ-term.” Given our effective spontaneously
broken classical supergravity description for the light
spectrum, we can think in terms of the relevant pieces of
the full superpotential. In particular, as dynamical “μ-
terms” for vectorlike matter, we find [57]

1ffiffiffi
2

p
gYM

Wf ⊃ x̃ð1Þðdcð4Þdð2Þ þ dcð9Þdð8Þ þ lcð3Þlð3Þ þ lcð5Þlð8Þ þ 4 × x-pairsÞ

þ x̃ð2Þðdcð3Þdð3Þ þ dcð10Þdð7Þ þ lcð2Þlð4Þ þ lcð6Þlð7Þ þ 4 × x-pairsÞ: ð5:4Þ

By contrast, the dynamical “μ-terms” for the e-SUSY partners of this vectorlike matter are given by

1ffiffiffi
2

p
gYM

Wb ⊃ x̃ð1Þðd̃cð12Þd̃ð11Þ þ d̃cð7Þd̃ð6Þ þ hð11Þu hð9Þd þ hð16Þu hð18Þd þ 4 × x̃-pairsÞ

þ x̃ð2Þðd̃cð14Þd̃ð13Þ þ d̃cð5Þd̃ð4Þ þ hð9Þu hð11Þd þ hð18Þu hð16ÞÞd þ 4 × x̃-pairsÞ: ð5:5Þ

The meaning of Wb and Wf is as before, but here we
explicitly label the pairs of scalars or fermions that remain
light. Note also that we label all scalar doublets as Higgses.
As expected, x̃ð1Þ and x̃ð2Þ couple degenerately to both
quark and lepton pairs and their squark and slepton/Higgs
e-partners. On the other hand, this degeneracy is broken
for fields such as x̃ð93Þ that do not descend from gauge
multiplets. Indeed, upon inspection, we find that
x̃ð93Þ couples only to the dcð2Þdð4Þ fermions and the
scalar doublets from a single e-partner parent SUð5Þ
supermultiplet.
We see, then, that certain directions such as x̃ð1;2Þ—

which must couple in the GUT theory to both superfield
parents of an entwined pair—will, upon acquiring a VEV,
give degenerate masses to the entire e-multiplet. Thus the

boson/fermion degeneracy in the massless sector can
only be affected by their couplings to gauge fields.
Unfortunately, since even SM singlets such as x̃ð1;2Þ are
charged under horizontalUð1Þ’s, they give masses to gauge
bosons and the cancellation of the quadratic divergences is
not generally complete. In particular, even though the Uð1Þ
symmetries that are not broken by the Scherk-Schwarz
compactification are phenomenologically global sym-
metries, without complete cancellation singlets such as
x̃ð1;2Þ will acquire masses that essentially stem from
Eq. (5.2). Thus, the squared masses induced by couplings
to gauge fields will have general magnitudes

m2
x̃ð1;2Þ ∼

g24
16π2

M2
s ∼

1

16π2R2
; ð5:6Þ
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and large VEVs would induce a correspondingly large
cosmological constant. Indeed, complete cancellation and
exponentially flat singlet directions would require coupling
to an equal number of fermion degrees of freedom that
correspond to off-diagonal gauginos that are left light by the
Scherk-Schwarz/GUT breaking. Furthermore, since the
anomalous linear combination of thegauge bosons ismassive
due to the GS mechanism, such considerations involve more
than simply counting massless tree-level degrees of freedom.
Ultimately, the best way to address this issue is through a

calculation in the full string theory. This will be discussed in
detail in Ref. [59]. The upshot of that calculation is that
ensuring the cancellation of the leading squared-mass
contributions simply becomes amatter of correctly adjusting
the breaking of gauge symmetry by the Scherk-Schwarz
phases. In particular, there are no tuneable couplings: either
a theory ends up with the correct particle content to produce
light scalars or it does not. Moreover, it turns out that there is
a high degree of degeneracy in the squared masses that are
radiatively induced in this manner: if the leading contribu-
tion cancels for one scalar descending from a higher-
dimensional gauge multiplet, it is likely to cancel for them
all. Thus we indeed expect certain theories to enjoy large
approximate moduli spaces, as desired.
If such a configuration can be found, then the structure of

the spectrum of such string models remains as originally
described in Sec. II regardless of the VEVs of fields like
x̃ð1;2Þ. Indeed, each KK level all the way up to the first string
excitations remains boson/fermion degenerate. In other
words, such directions in field space remain almost flat
in the presence of one-loop corrections. By contrast, heavy
directions such as x̃ð93Þ would lift different numbers of
bosons and fermions, and therefore the cosmological
constant will receive large corrections if such scalars
acquire a VEV. In this connection, we note that VEVs
whose magnitudes are integer multiples of 1=R can result in
a restoration of boson/fermion degeneracy, KK level by KK
level, even for heavy fields. Indeed, such directions are
actually periodic in nature due to spacetime modular
symmetries. This is a familiar phenomenon that can also
be seen directly if these directions are identified with a
continuous Wilson line, as in Ref. [2].
Finally, of course, we remark that we ultimately wish at

least one of the Higgs fields to correspond to such a flat
direction as well. Likewise, we seek to have most of the
scalars acquire squared masses of order ∼1=16π2R2, given
by the scale of SUSY breaking in the usual manner. This
will be discussed elsewhere [59].

B. Yukawa couplings and the general outlook
for proton decay

Another primary issue of interest in such theories is
the identification of matter, in particular the generation
assignment, and the resulting Yukawa couplings. This then
naturally leads to the question of proton decay.

Towards this end, we begin by presenting the Yukawa
couplings for our example model. The renormalizable
(dimension-three) nonvanishing Yukawa couplings, written
as superpotential terms, can be determined in a relatively
straightforward manner, and the results for our model are
listed in Ref. [57]. They include terms such as WYuk ⊃
hð3Þd qð2Þdcð5Þ but for the specific model presented here do
not include top Yukawa couplings at leading order. No
dimension-four Yukawa couplings for the matter fields are
allowed by the horizontal charges. The leading-order
Yukawa couplings for the up-quarks come from dimen-
sion-five operators involving SM singlet fields x̃i. These
couplings would obviously require a boson/fermion degen-
eracy-preserving VEV to be generated for the singlets in the
manner discussed above. The down-quark mass matrix and
electron mass matrix are both rank two, and thus the end
result can be two light generations with filled Yukawa
couplings.
Finally we comment on proton decay. In general, it can

be subtle to determine whether the first generation of chiral
matter fields should be twisted or untwisted. However the
absence of rapid proton decay suggests that in e-SUSY
scenarios, the first generation cannot be twisted. To see
this, let us consider for example the dimension-six proton-
decay operators:

qqql
Λ2

;
dcucucec

Λ2
;

ēc ūc qq
Λ2

;
d̄c ūc ql
Λ2

; ð5:7Þ

where Λ ∼OðMGUTÞ and where clearly the states are all
first generation. The discussion in Sec. III C tells us that the
twisted sectors of these theories must fall into complete
SUSY GUT multiplets; indeed the twisted sectors are
insensitive to the CDC and the spectrum is entirely
unaffected by it. Therefore all of the above operators are
uncharged and one would expect them to be generated in
the Lagrangian at the same order as in usual SUSY GUTs
but with Λ ∼ 1=R. As a consequence of the hierarchy
1=R ≪ MGUT, such operators would automatically lead to
disastrously rapid proton decay. By contrast, the states in
untwisted generations are not in GUT multiplets.
Consequently, the above proton-decay operators all carry
a nonzero horizontal charge. Such operators therefore
cannot be generated in the Lagrangian, and the proton
therefore cannot decay because this process would violate
the conservation of the horizontal charge.

VI. DISCUSSION

In Ref. [1] we established a method of constructing
nonsupersymmetric string models that are essentially sta-
ble, with near-vanishing one-loop dilaton tadpoles and
cosmological constants. This then opens up the tantalizing
possibility of realizing stable string models whose low-
energy limits directly resemble the Standard Model rather
than one of its supersymmetric extensions. In this paper we
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investigated the phenomenological structure of such strings.
Because our construction necessarily involves large-volume
compactifications, one pressing issue concerns the behavior
of the gauge couplings. As we discussed, this then requires
that our strings exhibit a variant of the so-called “GUT
precursor” structure originally proposed in Refs. [3,4].
Tightly coupled with this, we also found that the spectra
of such strings exhibit a so-called “entwined SUSY” (or
e-SUSY) in which members of the same e-multiplet have
different charges under a horizontal Uð1Þ symmetry. Thus,
this horizontal Uð1Þ symmetry is nontrivially “entwined”
with the same physics that renders the theory nonsupersym-
metric and also breaks the GUT symmetry.
We then proceeded to construct an actual SM-like

heterotic string model which provides direct illustration
of these observations. This model is nonsupersymmetric
and yet displays both the GUT-precursor and e-SUSY
structures, all while remaining one-loop stable with a near-
vanishing one-loop cosmological constant. We then dis-
cussed some general features of such models, in particular
how it is possible to give masses to unwanted states and
how singlet VEVs can be accommodated, all without
ruining the stability properties. Specifically, we found that
the contributions from all e-multiplets actually cancel. Thus
e-SUSY implies a remarkable cancellation of all purely
matter loop contributions to scalar squared masses at one
loop, which in turn means that instability at large VEVs is a
function only of the pattern of the gauge breaking.
Consequently, if there are models for which these con-
tributions vanish as well, the corresponding cosmological
constant would be exponentially insensitive to such VEVs.
Indeed, this might be the basis upon which one might hope
to build a complete phenomenology. We also found that the
horizontal Uð1Þ symmetries that are required in such
models naturally also protect against the kinds of rapid
proton decay that might otherwise occur in such GUT-
precursor models.
One striking observation concerning our results—

undoubtedly connected with the cancellations discussed
above—is that e-SUSY, which emerges automatically in our
construction, has a structure which bears a strong resem-
blance to the structures underlying “folded SUSY” [5],
“supersymmetry in slow motion” [60], and more recently
“hypertwisted SUSY” [61]. Indeed all of these latter
symmetries have been proposed in the literature as mech-
anisms for stabilizing the weak scale in a way that might be
hard or impossible to detect at current colliders. Of course
such “neutral naturalness” was never the purpose of
e-SUSY. It is nevertheless possible that relatively slight
modifications of the construction we have developed here
might be capable of yielding either folded SUSYor one of its
variants—all while remaining within our overall string
framework which ensures a near-vanishing one-loop dilaton
tadpole. Indeed, such a construction would undoubtedly
continue to involve GUT precursors and the emergence of a

UV fixed point, as discussed in Sec. III B. Such a con-
struction would thus provide a useful and genuinely UV-
complete laboratory in which such neutral-naturalness ideas
might be studied.
Even within the class of e-SUSY models we have

discussed here, however, it is important to realize that there
might exist a subset having exponentially suppressed one-
loop squared Higgs masses and cosmological constants,
simply as a result of a particular choice of particle content.
Indeed, such models may even display accidental discrete
symmetries, perhaps realizing one of the neutral-naturalness
scenarios mentioned above or one which is entirely new.
Moreover, the fact that we are working within a full string-
theoretic framework rather than within a mere effective field
theory already guarantees one important feature: as dis-
cussed in Sec. II, the fundamental symmetries that underpin
the finiteness of generic closed strings yields severe UV
constraints. Specifically, modular invariance andmisaligned
supersymmetry [29,30] ultimately restrict the spectrum of
the theory at all energy scales simultaneously and thereby
ensure a desirable UV behavior. There are consequently
almost no arbitrary parameters, and such cancellations
would be natural in the sense that they depend only on
the very restricted, discrete choices of particle content. This
issue will be explored in more detail in Ref. [59].
Throughout this paper, we have described the string

models in our construction as stable or metastable. As we
have emphasized throughout, this refers to the critical issue
of dilaton stability—i.e., the suppression of the dilaton
tadpole (cosmological constant). The issue of the dilaton
tadpole is uniquely problematic in the construction of
nonsupersymmetric strings, as the existence of such a
tadpole is the direct hallmark of the breaking of supersym-
metry. Moreover, the dilaton is the only field that cannot
easily be given amass by turning on aVEV.However, just as
for supersymmetric strings, there nevertheless remain fur-
ther moduli which also require stabilization through either
string-theoretic or field-theoretic means. Our models are
therefore not fully stable in this sense. However, by
successfully giving rise to vanishing dilaton tadpoles, these
models are now on essentially equal footing with their more
traditional supersymmetric counterparts. These models can
then provide the context for the development of a non-
supersymmetric string phenomenology which is on a par
with that of strings with spacetime supersymmetry.
In a similar vein, given that the analysis in this paper has

focused primarily on the suppression of the one-loop
dilaton tadpole, another immediate question concerns the
behavior that might emerge at higher loops and its possible
ramifications for the ultimate stability of these strings. In
particular, even though the one-loop dilaton tadpole is
exponentially suppressed in our construction, there are
likely to exist artificial uncancelled divergences at two
loops. This indicates that although our assumption of a
Minkowski background is a reasonable approximation, the
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theory is not quite stabilized in this sense either and thus is
not quite in its true vacuum. Of course, due to the
exponential suppression of the one-loop tadpole, one might
assume that the true dilaton-stabilized vacuum is not very
far away in field space. Moreover, once the theory is
stabilized in the true vacuum, such higher-loop divergences
should cancel as well.
Proceeding further, one would obviously like to engineer

this final stage of stabilization within the context of the full
string theory so that one can continue to benefit from the
UV-complete nature of the theory. There are then two
positions one can adopt as to what might happen to the
cosmological constant. First, it is possible that in the
hypothetical true vacuum, the two-loop tadpole also can-
cels (or is significantly suppressed) at leading order. In this
case the leading one-loop cancellation would be telling us
something profound about the stability of the whole theory.
Indeed, it is conceivable that the GUT-precursor and e-
SUSY structures that remain in the massless sector after
one-loop stabilization play an important role in helping to
ensure such a result at higher-loop order.
The second possibility is that the cosmological constant

in the hypothetical true vacuum has a generic magnitude
consisting of a two-loop factor times R−4. In this case one
could potentially derive a set of additional conditions
beyond bose/fermi degeneracy that must be satisfied if
such two-loop contributions are also to vanish or experi-
ence a significant suppression. Such conditions were
derived in Ref. [62], and interestingly the condition for
the suppression of a generic two-loop cosmological con-
stant is that the sum over the one-loop scalar squared
masses also be exponentially suppressed. This would then
suggest a possible connection between the exponential
suppression of scalar squared masses and higher-loop
stability. Note that this second approach essentially sets
us along a road originally outlined in Ref. [63], where
stability imposes ever more constraints at higher loops until
a sufficiently high order is reached. One should bear in
mind, however, that each constraint is simply a function of
the particle content, and in string theory we have no
possibility for tuning this: either there exist nonsupersym-
metric theories that simultaneously satisfy these con-
straints, or there do not.
At this stage, many of these ideas are somewhat specu-

lative and further work in these directions is needed.
However, the framework we have been investigating
here—and the generic predictions of phenomenological
GUT-precursor and e-SUSY structures in the resulting
spectrum—are likely to prove critical in any such analysis.
We can therefore hope that these structures may help us not
only in understanding the phenomenology of these strings
but also in addressing the central question of whether the
world in which we live can indeed ultimately be viewed as
the direct low-energy limit of a stable, nonsupersymmetric
string. In fact, despite the string-theoretic nature of this

paper, many aspects of our general construction can even be
formulated and understood within the framework of ordi-
nary higher-dimensional quantum field theory without
reference to string theory as the UV completion [59]. As
such, the overall phenomenology we have outlined here can
be viewed as very general expectation which can serve as
paradigm for any UV-complete theory that is rendered
nonsupersymmetric by Scherk-Schwarz compactification.
Indeed, any such theory would have a leading radius-
dependent instability that can be cured by arranging the
bosonic and ferminionic KK states as we have described.
The underlying supersymmetry then ensures (by the geo-
metric arguments in the text) that further contributions from
the UV completion must be exponentially suppressed at any
reasonably large radius.Moreover, following the logical line
in Sec. III, the GUT-precursor structure is then a prediction
of our need to have phenomenologically viable gauge
couplings, as originally described in field-theoretic terms
in Refs. [3,4], and in turn the e-SUSY structure follows
directly from the consequent entwining of the GUT- and
supersymmetry-breaking. Indeed, it would be interesting to
formulate a paradigmatic e-SUSYextension of the Standard
Model within a bottom-up extra-dimensional field theory
framework [59], following an approach similar to that in
Ref. [64]. We therefore expect that the structures we have
outlined here may serve as generic predictions not only of
stable, nonsupersymmetric strings but indeed of large
classes of nonsupersymmetric UV-complete field theories
as well.
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APPENDIX: MORE GENERAL FORMS OF CDC

In this appendix, we further consider the technical ques-
tion prompted by the analysis in Sec. IV, namely the question
of how a complex 1=4 phase (i.e., ψ → eiπ=2ψ ¼ iψ) can
overlap with the CDC vector and the orbifolding b3. In
particular, we shall demonstrate that models with more
general complex phases can still be understood (with certain
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caveats) in a diagonal basis. The discussion here builds very
much upon that in Ref. [1].
We begin by considering the orbifold and basis-vector

actions on a single complex fermion. We shall refer to these
by the basis vector containing them, namely V7, b3, and
e ·Q respectively. The required relations of the three
actions are

½b3; V7� ¼ ½V7; e ·Q� ¼ fb3; e ·Qg ¼ 0; ðA1Þ

where we recall from Ref. [1] that the orbifold commutes
with the CDC charge in order to have consistent mass
eigenstates for the KK tower.
Let us focus first on the b3 and e ·Q relation and try to

recreate it using only a single complex fermion. This will
eventually inform us how to handle V7. Recapping briefly
from Ref. [1], we may write this relation in terms of its real
components as follows. The creation/annihilation operators
become

ffiffiffi
2

p
b ¼ χ1 þ iχ2ffiffiffi
2

p
d ¼ χ1 − iχ2; ðA2Þ

where for readability we have dropped mode-number
subscripts. In terms of these components, e ·Q ¼
1
2
ðb†b − d†dÞ ¼ ið χ†1χ2 − χ†2 χ1Þ, while charge conjugation

corresponds to χ2 → −χ2. To write these actions in the
real formalism, we identify two real fermions as χ� ¼
1ffiffi
2

p ð χ1 � χ2Þ. According to Ref. [1], consistency requires

pairs of real fermions (i.e., χ�) to have equal and opposite
shifts under e; we therefore have

e ·Q ¼ 1

2
ð χ†þχþ − χ†−χ−Þ ¼

1

2
ð χ†1χ2 þ χ†2 χ1Þ

b3

�
χþ
χ−

�
¼

�
0 1

1 0

��
χþ
χ−

�
; ðA3Þ

and we can clearly see that these results inherit the correct
conjugation properties. The projection from b3 will there-
fore pick out even or odd eigenstates to be physical, and
these are precisely functions of χ†þ � χ†− ¼ ffiffiffi

2
p

χ†1;2.
Meanwhile, in the untwisted sector, χþ states are shifted
byþ 1

2
and χ− states by − 1

2
. This is required for a consistent

projection (because the orbifolding negates the KK and
winding numbers) and simultaneously e ·Q. It is then a
convenience in fermionic strings to note that the entire
partition function is invariant under a reversal of the sign of
the d†d term in Q, which becomes Qr ¼ 1

2
ðχ†1χ1 þ χ†2 χ2Þ.

Therefore in the real formalism one must instead use shifts
in e ·Qr¼ 1

2
ðχ†þχþþχ†−χ−Þ¼ 1

2
ðχ†1χ1þχ†2 χ2Þ, with both b3

and e written in the same real basis as b3¼−1
2
½…ð01Þr…�

and e ¼ 1
2
½…ð11Þr…�.

Clearly this “real-formalism” trick will not work for
fermions with more general complex phases V7. However it
is still convenient to start in the same way by expressing the
vectors as actions on pairs of real fermions. In terms of a
single pair of fermions χ1;2, the actions of b3 and V7 would
correspond to

b3 ≡
�
1 0

0 −1

�
; V7 ≡

�
0 −1
1 0

�
: ðA4Þ

There are therefore no commuting actions for b3 and V7

involving only a single complex fermion. On the other
hand, it is possible to find a commuting action involving
two complex fermions. Let the fermions be ψ12 ¼ χ1 þ iχ2
and ψ34 ¼ χ3 þ iχ4 and their conjugates, with b3 giving
conjugation in both:

b3

0
BBB@

χ1

χ2

χ3

χ4

1
CCCA≡

0
BBB@

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

1
CCCA
0
BBB@

χ1

χ2

χ3

χ4

1
CCCA: ðA5Þ

In order to commute with b3, the V7 has to operate on the
(1, 3) pair, or the (2, 4) pair, and thus takes the form

V7 ≡

0
BBB@

0 0 −1 0

0 0 0 −1
1 0 0 0

0 1 0 0

1
CCCA: ðA6Þ

Eigenstates of V7 with eigenvalue �i are therefore linear
combinations of ψ13 ¼ χ1 � iχ3 and ψ24 ¼ χ2 � iχ4. Note
that b3ψ13 ¼ þψ13 and b3ψ24 ¼ −ψ24, so the actions of b3
and V7 are simultaneously diagonal in the ðψ13;ψ24) basis,
with boundary conditions V7 ≡ −ð1

4
; 1
4
Þ and b3 ≡ −ð0; 1

2
Þ,

respectively.
A suitable form of e ·Q that anticommutes with b3 and

commutes with V7 takes the most general form

e ·Q ¼ ðχ†1χ†2χ†3χ†4Þ

0
BBB@

0 a 0 b

−a 0 b 0

0 −b 0 a

−b 0 −a 0

1
CCCA
0
BBB@

χ1

χ2

χ3

χ4

1
CCCA ðA7Þ

for arbitrary coefficients ða; bÞ. Thus

e ·Q ¼ aðQ12 þQ34Þ þ bðQ23 þQ14Þ: ðA8Þ

The above discussion pertains to the ðψ13;ψ24Þ basis in
which b3 and V7 are diagonal but e ·Q is not. There is,
however, an alternative basis in which V7 and e ·Q are
diagonal but b3 is not. To find this basis, we note two
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general properties of antisymmetric matrices: their eigen-
values are pure imaginary and appear in pairs along the
positive and negative imaginary axis. The former property
makes phases of 1=4 overlapping with values of � 1

2
in e

particularly easy to treat. Indeed for the above we have two
degenerate eigenvalues �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
. It is natural to then

choose b ¼ 0; a ¼ 1=2, which gives degenerate eigenval-
ues for e ·Q of � 1

2
. The two eigenvectors with eigenvalues

þ1=2 are b12 ¼ χ1 þ iχ2 and b34 ¼ χ3 þ iχ4, while not
surprisingly those with eigenvalue −1=2 are the charge
conjugates d12 ¼ χ1 − iχ2 and d34 ¼ χ3 − iχ4. Given the
above eigenvectors for V7, we are now able to identity
the orthogonal linear combinations of e ·Q eigenstates that
are also eigenstates of V7 with eigenvalue i. These are
given by

bþ ¼ b13 þ ib24 ¼ χ1 − χ4 þ ið χ3 þ χ2Þ
b− ¼ b13 − ib24 ¼ χ1 þ χ4 þ ið χ3 − χ2Þ; ðA9Þ

with the � subscript indicating the e ·Q charge. Likewise,
the eigenstates with eigenvalue −i are given by

dþ ¼ d13 − id24 ¼ χ1 − χ4 − ið χ3 þ χ2Þ
d− ¼ d13 þ id24 ¼ χ1 þ χ4 − ið χ3 − χ2Þ: ðA10Þ

It is easy to verify, e.g., that indeedV7bþ ¼ ibþ.We can also
verify that in this ðψþ;ψ−Þ basis, the charges are now
diagonal, i.e., that e ·Q¼ 1

2
ðb†þbþ−d†þdþ−b†−b−þd†−d−Þ¼

1
2
ðQ12þQ34Þ. Meanwhile b3, which sends χ2;4 → −χ2;4, is
readily identified as the charge-conjugation permutation
ψ� ↔ ψ∓, or in other words

b3 ≡
�
0 1

1 0

�
: ðA11Þ

Thus in the ðψþ;ψ−Þ basis we may write the boundary
condition and CDC phases asV7≡ð1

4
;1
4
Þ, andQe ¼ ð1

2
;− 1

2
Þ.

Let us now consider the physical states that obey all of
the above constraints. In particular, we shall focus on the
massless sector and determine how the projections act on
states at this particular mass level. States in the post-CDC
N ¼ 2 theory (i.e., the theory prior to the b3 projection) fall

into KK/winding towers, jψ ðN¼2Þ
qe;m;n i, where qe ¼ � 1

2
is the

e ·Q charge of the state. The orbifold then projects this
spectrum to states that are invariant under reversal of qe,
m; n, along with other possible phase shifts due to the
action of b3. However, the b3 projection was carefully
chosen to commute with the other projections that resulted
in the N ¼ 2 theory. Thus the invariant eigenstate of the
orbifold may be written as

jΨphysi ¼
1ffiffiffi
2

p
h���ψ ðN¼2Þ

qe;m;n

E
þ ð−1Þb̂3:Q

���ψ ðN¼2Þ
−qe;−m;−n

Ei
; ðA12Þ

where b̂3 ·Q accounts for the other possible phase shifts
induced by b3 for this particular state. For example, the
state b†þj 12 ; m; 0i þ b†−j − 1

2
;−m; 0i has a V7 charge of i,

sits at mass level ðmþ 1
2
Þ=2R, and is clearly an eigenstate of

b3, which simply exchanges the two components.
Meanwhile b†þj 12 ; m; 0i − b†−j − 1

2
;−m; 0i is projected

out by b3. This implies that the expressions in the untwisted
sector of the partition function are independent of the
orbifolding. Indeed, as long as Eq. (A1) holds, the partition
function can be written as

ZðeÞ¼1

2

�
Z
�
0

0

�
ðeÞ−Z

�
0

0

�
ð0Þ

�

þ1

2

�
Z
�
0

0

�
ð0ÞþZ

�
g

0

�
þZ

�
0

g

�
þZ

�
g

g

��
: ðA13Þ

Note that the final three terms are orbifold-twisted and thus
lack any dependence on e. The second bracket can be
identified as the partition function of the original N ¼ 1
theory. It is independent of the CDC vector e and thus
vanishes. It could be formally evaluated in the basis where
b3 is diagonal in the usual way. By contrast, the first bracket
corresponds to the untwisted N ¼ 2 contribution and does
depend on the vector e, but its dependence on b3 is trivial:
as described above, the factor of 1

2
is sufficient to encompass

the effect of the orbifold projection on the untwisted states.
Thus, due to Eq. (A1), the orbifold in such theories has a

rather trivial interaction with e in the sense that if a state
jψm;ni exists in the untwisted sector of the original theory,
then either qe ¼ 0 (in which case it undergoes the same
orbifold projection as in the non-CDCN ¼ 1 theory which
is incorporated in the second bracket above), or both

jψ ðN¼2Þ
qe;m;n i and its partner state jψ ðN¼2Þ

−qe;−m;−ni exist in the
post-CDC theory (together forming a single b3 eigenstate).
The projection is then incorporated through the factor of
1=2 in front of the first bracket. In this connection, and as
explained in the main body of the text, we emphasize that
implicit in the above are orbifold-twisted sectors that also
have an e action. However the radius-dependent shift in the
Virasoro generators does not apply to these sectors either;
indeed, these sectors are supersymmetric and (along with
the other twisted sectors) therefore make no net contribu-
tion to the partition function.
Finally we note that since the Scherk-Schwarz phase

induced for the worldsheet fermions on going around the
T2 compactification is e2πiqe , the spectrum of the N ¼ 2

theory is independent of the sign� 1
2
in e. Therefore, just as

in the real-fermion formalism, one may reverse the sign of
the ψ− shift, giving
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e0 ·Q ¼ 1

2
ðb†þbþ − d†þdþ þ b†−b− − d†−d−Þ

¼ ðQ13 þQ24Þ: ðA14Þ

In this formalism the vector components are represented as

V7≡−
�
1

4
;
1

4

�
; b3≡−

�
0;
1

2

�
; e0≡

�
1

2
;
1

2

�
: ðA15Þ

Indeed, the minimal unit for consistency is a block
containing two complex fermions that are overlapped by
V7 and e and only one which is overlapped by b3.
Thus, to summarize the above procedure,wemay evaluate

each contribution in its relevant basis. This is ultimately
because the e-dependent part of the untwistedN ¼ 2 sector
is simply projected to one-half of its original value by the
orbifold, while the twisted sector is independent of e.
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