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We have carried out a set of cosmological hydrodynamical simulations that follow galaxy formation in f(R)
modified gravity models. Our simulations employ the Illustris-TNG full physics model and a new modified
gravity solver in the AREPO code. For the first time we are able to investigate the degeneracy in the matter
power spectrum between the effects of f(R)-gravity and feedback from active galactic nuclei (AGN), and the
imprint of modified gravity on the properties of galaxies and on the distribution of dark matter, gas and stars
in the universe. f(R)-gravity has an observable effect on the neutral hydrogen power spectrum at high redshift
at a level of 20%. For both the F6 and F5 models, this is significantly larger than the predicted errors for the
SKA1-MID survey, making this probe a powerful test of gravity on large scales. A similar effect is present in
the power spectrum of the stars at high redshift. We also show that rotationally supported disc galaxies can
form in f(R)-gravity, even in the partially screened regime. Our simulations indicate that there might be more
disc galaxies in F6 compared to GR, and fewer in F5. Finally, we show that the back reaction between AGN
feedback and modified gravity in the matter power spectrum is not important in the F6 model but has a sizeable
effect in F5.

The physical nature of gravity and dark energy are cen-
tral unsolved problems in modern physics. Einstein’s General
Relativity (GR) is generally accepted as the standard theory
of gravity. GR has been empirically verified, to remarkably
high precision, on small scales, but on cosmological scales
the available tests are still not strongly constraining. Planned
astronomical surveys will deliver data capable of distinguish-
ing it from alternative theories of gravity. However, predic-
tions for these observables require accurate simulations of the
formation of cosmic structure in GR and alternatives, which
must include the interactions between baryons and dark mat-
ter. Here, we present a set of cosmological hydrodynamical
simulations of an attractive alternative to GR, the Hu & Saw-
icki f(R)-gravity, which is representative of the large class
of chameleon-type screening modified gravity models. These
simulations are the first to include galaxy formation processes,
such as feedback from supernovae and super-massive black
holes, which can affect observables at similar levels to the
modifications to GR. We find that it is possible to form ro-
tationally supported disk galaxies in f(R)-gravity and that
back-reaction effects on the matter power spectrum are small.
We also find that the stellar and neutral hydrogen power spec-
tra are suppressed in f(R)-gravity to a level that is detectable
with future neutral hydrogen surveys.

The results presented in this work were derived from the
SHYBONE (Simulating HYdrodynamics BeyONd Einstein)
simulations, a set of full-physics hydrodynamical simulations
employing the Illustris-TNG model in Hu-Sawicki f(R)-
gravity [1, 2], which is one of the most widely-studied models
of modified gravity. The theory introduces an extra scalar de-
gree of freedom which mediates a fifth force between matter
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particles. This enhances standard gravity by up to 4/3 in low-
density environments, while dense regions are screened from
such enhancements via the chameleon screening mechanism
[3]. This way, the model can pass the stringent constraints on
gravity in the solar system [4] and still leave detectable sig-
natures on large scales, making it an excellent tool to explore
how possible deviations from GR would be observable.
f(R)-gravity predicts identical propagation speeds of grav-

itational waves and photons, and so is compatible with the
recent gravitational wave detection with optical counterparts
[5–8]. With appropriate choices of model parameters (see
Methods), it can explain the late-time accelerated expansion
of our Universe without an explicit cosmological constant [2]
(Note that the value of ΩΛ still enters the theory as a parame-
ter). In addition to being theoretically well understood [9, 10],
f(R)-gravity has also been studied extensively in dark matter
only (DM-only) [11–20] and non-radiative hydrodynamical
cosmological simulations [21–24]. These works were never-
theless unable to include a suitably calibrated baryonic feed-
back model at the same time, which is nontrivial and compu-
tationally expensive.

Such simulations with feedback have recently become pos-
sible thanks to a modified AREPO [26] code, which employs
a new and optimized method to solve the fully nonlinear
f(R)-gravity equations in the quasi-static limit (see Methods).
In this work, this more efficient code is combined with the
Illustris-TNG galaxy formation model [27–31] which incor-
porates prescriptions for gas-hydrodynamics, magnetic fields,
star and black hole formation, feedback from supernovae and
AGN, gas heating and cooling processes, as well as galactic
winds. This new code made the SHYBONE simulations pos-
sible, which are dedicated to in-depth studies of the interplay
of baryonic physics and modified gravity for the first time. A
detailed description of the simulations used in our analysis can
be found in Methods.
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Figure 1. A selection of four galaxies from the F6 (top) and F5 (bottom) cosmology simulations at z = 0 (top left, top right, and bottom left)
and z = 0.8 (bottom right). For each galaxy, the top panels show an edge-on view where the angular momentum of the stars is pointing up; the
lower panels show a face on view. The left panels show the gas column density for the individual galaxies combined with the stars within the
objects. The middle panels show the gas density (brightness) color-coded with the modified gravity forces within a thin slice through the center
of the galaxies. Yellow coloured gas cells experience an enhanced total force Ftot = 4/3FGR while the dark blue regions do not experience a
force enhancement due to modified gravity. The scalar field to back ground field ratio fR/f̄R(a) (see methods) within the same slice through
the central region is shown in the right hand panels. Again, yellow regions are unscreened with fR ≈ f̄R(a). The dark blue regions are fully
screened fR < 10−2f̄R(a). We quote model, redshift, size of the plotted region from the center of the object and the total mass within r200crit
in the plots for each of the galaxies. Note that rotationally supported disk galaxies can form in f(R)-gravity despite the complicated force
morphology in the partially screened regime.

I. RESULTS

A. Galaxies in f(R)-gravity

Figure 1 shows a selection of galaxies from our full-physics
simulations for the F6 (a and b) and F5 model (c and d) in the
(total) mass range 1.5×1012 < M200c/M� < 5×1012. Three
of the objects are at z = 0 (a-c), while the galaxy in Panel d
is at z = 0.8 (only one disk galaxy is identified at z = 0 for
F5). The galaxies were selected to have a rotationally sup-
ported stellar disk, i.e., a rotational-to-total kinetic energy pa-
rameter κ =

∑
(jz/r)

2/
∑
v2 > 0.57 (where the z-direction

is defined by the total angular momentum of the stars in the
galaxy) [33].

It is evident from the central sub-panels of Figure 1 that
both galaxies shown for the F6 model are partially screened.
The gas in the inner regions is screened and experiences GR-
like forces (dark blue regions; af(R)/aGR ≈ 1), while the
gravitational force experienced by the gas in the outer regions

is enhanced by 4/3 (bright yellow regions in the gas). The size
of the central screened region depends on the total mass of the
galaxy and its host halo, and the results imply that objects sim-
ilar to the Milky Way Galaxy are partially screened for F6. In
the F5 model, in contrast, the chameleon screening is less effi-
cient, and the objects shown in the bottom panels show either
no (c) or very small (d) screened regions in the central pan-
els. Gas and stars will thus experience fully enhanced gravity
across the whole object, implying that the model is unlikely to
pass local tests of gravity.

Interestingly, this complicated force morphology in F6 does
not hinder galaxies from forming rotationally-supported disks
within the gas and the stars. We find that there are more galax-
ies with κ > 0.57 in F6 compared to GR and significantly
fewer in F5. The latter is an interesting observation that might
be related to the stability of the disks in the unscreened regime
or an enhanced galaxy merger rate. However, we caution that
the number of disk galaxies is small in all of our simulations
(7, 16, 1 objects at z = 0 and 34, 48, 22 objects at z = 0.8 for
GR, F6 and F5, in the large box, respectively and 56, 64 for
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Figure 2. The relative difference of the matter power spectra with
respect to the ΛCDM cosmology DM-only simulation for a ΛCDM
universe (red), the F6 model (blue) and F5 (green). Dashed lines
show relative differences for the DM-only f(R)-gravity runs, solid
lines for the full-physics simulations using the same colours as
above. An estimate for the combined effect of baryonic feedback and
modified gravity (displayed as dotted lines) was obtained by adding
the relative differences for the f(R)-gravity DM-only simulations to
those from the GR full physics run. The gray and magenta dash-
dotted lines indicate the impact of feedback on the matter power
spectrum in the Illustris TNG [28] and Eagle [58] simulations, re-
spectively. The horizontal black dotted line indicates equality.

GR and F6 at z = 1 in the small box). The number counts of
disk galaxies is therefore to be verified in future simulations.

B. The matter power spectrum degeneracy

It is well-known that f(R)-gravity can cause enhancements
in the matter power spectrum while baryonic effects, predom-
inantly AGN feedback, act in the opposite direction [15, 32].
Previous simulation works were nevertheless unable to study
both effects simultaneously and therefore could not model the
possible back-reactions between them – a challenge that the
full-physics simulations in this paper aim to tackle.

To inspect this degeneracy, in Figure 2 we plot the frac-
tional changes of the total matter power spectrum with respect
to results from the GR DM-only simulation. The dashed lines
show the enhancement predicted by the f(R) DM-only sim-
ulations. Solid lines show the combined effects predicted by
the full-physics f(R) simulations (for GR they show the im-
pact of baryons only). The dotted lines are produced by sim-
ply adding up the relative changes due to modified gravity,
as predicted by f(R) DM-only simulations, and due to AGN
feedback, as predicted by the GR full-physics simulation.

As one can see from the plot, baryonic feedback suppresses
power on scales k & 2hMpc−1, with the suppression reach-
ing ∼ 20% at scale k ∼ 10hMpc−1. These results are in
excellent agreement with previous works employing the same
hydrodynamical model ([28]) and from the EAGLE simula-
tion ([34]). Similar suppression at k & 2hMpc−1 due to
baryonic feedback can be seen for F6 and F5.

It is obvious from the plot that the effect of baryons on
the power spectrum for the F6 model is negligible for k <
2hMpc−1. The relative difference of the full-physics f(R)-
gravity power spectrum is thus dominated by the modified
gravity effect which increases power by a few percent at these
scales. As for GR, the suppression due to baryons becomes
active beyond k = 2hMpc−1. Due to the f(R)-gravity ef-
fects, the minimum of the relative difference is nevertheless
only 12% below the baseline. Interestingly, the blue dotted
line in Figure 2 shows that the power spectrum of the full-
physics F6 simulation can be predicted almost perfectly by
an additive combination of the effects due to modified grav-
ity and baryonic feedback. This suggests that there is negli-
gible back-reaction between these effects for F6, and there-
fore computationally costly full-physics simulations for this
model are not necessary as far as the matter power spectrum
is concerned. This simplification does not hold for the F5
model, where the back-reaction effect is strong enough that a
full-physics simulation is necessary if percent-accuracy pre-
dictions of the matter power spectrum are needed even at
k . 1hMpc−1. This will have important implications on
the tests of this and similar models in surveys like Euclid.

The different strengths of interplay between modified grav-
ity and AGN feedback in F6 and F5 can be explained by the
chameleon screening mechanism. In the F6 model, the central
regions of halos which are massive enough to carry AGN are
screened, so that the flow of matter onto the central black hole
(the AGN accretion) is not altered by modified gravity, result-
ing in similar AGN-feedback effects on the power spectrum as
in GR. For F5, on the other hand, many of the AGN-hosting
halos have become completely unscreened. The flow of mat-
ter towards central black holes therefore takes place in envi-
ronments with by 4/3 enhanced gravity, leading to modified
accretion and feedback efficiency, and in turn a non-negligible
back-reaction between the modified gravity and feedback ef-
fects in the matter power spectrum (for details on the different
types of AGN feedback see [35]).

C. Power spectra of individual components

The effect on the total matter power spectrum seen above is
a combination of effects on the different matter components.
In Figure 3 we display the power spectra of these individual
components for z = 2, 1 and 0 (Panel a, b and c, respectively).
The absolute spectra, which we find to agree with the original
Illustris-TNG simulation [28], are displayed in the upper pan-
els, the relative differences relative to GR in the lower panels.

The components react in very different ways to modified
gravity. The dark matter distribution is to first order only af-
fected by gravity, its power spectrum is thus enhanced in a
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Figure 3. The 3D matter power spectrum of the different matter components in our simulations for redshift z = 2 (a), z = 1 (b) and z = 0
(c). GR results are shown as dotted lines, results from our F6 and F5 simulations as solid and dashed lines, respectively. Absolute values are
shown in the upper panels while the relative differences are indicated in the lower panels for each redshift. Thick lines indicate results from
the 62h−1Mpc simulation box, thin lines results from the 25h−1Mpc box (these are only shown for z = 2 and z = 1). The power spectrum
of gas is displayed in red, stars in magenta, dark matter in blue and the total matter spectrum in black. For z = 2 and k < 10hMpc−1, we
show the neutral hydrogen power spectrum in cyan as well and compare it to predicted errors for SKA1-MID measurements of the HI power
spectrum (gray shaded region; [38]). In the upper panels, the grey lines indicate the linearly evolved initial power spectrum. The horizontal
grey lines in the lower panels indicate equality.

similar way as in DM-only simulations [e.g., 25, 32]. The
dark matter and total matter power spectra are converged at
k . 20hMpc−1 between the 25h−1Mpc and 62h−1Mpc
boxes, suggesting that the results in Figure 2 can be trusted
in this k-range.

The gas power spectrum is only mildly influenced by mod-
ified gravity at z = 2, and the effects are stronger at lower z.
In particular, the gas is more clustered in F6 and F5 than in
GR at intermediate (k < 10hMpc−1) scales. These effects
are caused by the interplay of a number of processes that we
only attempt to explain to first order here: the enhancement
in gas clustering on intermediate scales is mainly a result of
higher gas densities in the unscreened parts of galaxies – as
Figure 1 shows, this will be primarily the case in low-mass
unscreened objects or the outer regions of intermediate-mass
objects. Comparing the enhancements in the gas power spec-
trum for F6 at z = 1 for the small and the large simulation
boxes, we see that the results are consistent at few-percent
level for k < 10hMpc−1.

Unlike dark matter and gas, the clustering of stars is more
strongly effected by modified gravity at high redshift. At
z = 2, the stellar power spectrum from the 62h−1Mpc box is
suppressed by∼ 20-25% in F6 and∼ 30-40% in F5 on scales
k ∼ 1-10hMpc−1 (thick magenta lines). The predicted sup-
pression for F6 from the 25h−1Mpc simulation (thin magenta
line) is weaker, which is ∼ 10-15% in the same k range, indi-
cating that the clustering of stars has not converged in the big
box at this redshift. At z = 1, the two simulation boxes agree
to a few percent for k < 5hMpc−1.

A main reason for the suppression of the stellar power spec-
trum is the gas density in low-mass objects: as smaller halos
are already unscreened at high redshift, the gas within these
objects is denser and can cool more effectively, compared to
the similar objects in GR. This leads to enhanced star forma-
tion inside small halos. We have checked that the fraction of
m = 1010M� halos carrying stars is in fact 60% higher in F6
and 100% higher in F5 compared to GR at z = 2. These halos
form from lower initial density peaks, which are intrinsically
less clustered. This, together with the larger numbers of star-
forming halos at high redshift in f(R)-gravity compared to
GR, lead to a suppression of the stellar power spectrum in the
former. As this process does not involve stellar dynamics, we
expect it to be unaffected by potential self-screening of stars
(which is not taken into account in our simulations).

D. The neutral hydrogen power spectrum

The enhanced gas cooling efficiency in low-mass objects
in f(R) gravity at early times also affects the distribution
of neutral hydrogen (HI), a large fraction of which resides
in small halos. We quantify this using the HI power spec-
trum, calculated following the procedure outlined in [37].
The results from the 25h−1Mpc boxes are plotted in Figure
3(a), which shows that at z = 2 the HI power spectrum on
scales k ∼ 0.02-10hMpc−1 is suppressed by ∼ 15% for F6
(thin cyan line). The 62h−1Mpc simulation boxes have not
yet reached convergence as they cannot resolve small halos
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(m . 1010M�) which host a significant fraction of the total
HI. The small box, on the other hand, resolves halos down to
m ∼ 3 × 108M�, which host the vast majority of HI [37].
For both box sizes we checked that the relative suppression
of the HI power spectrum in f(R) gravity is almost identical
to the suppression of the power spectrum of HI-hosting halos
at k . 2hMpc−1, showing that it is more sensitive to the
clustering of halos than to baryonic feedback. Comparing our
results to the expected uncertainty for an intensity mapping
experiment similar to SKA1-MID (a future 21 cm intensity
mapping survey, [38]), we find that with 1000 hours of ob-
serving time, SKA1-MID should be able to distinguish F6 and
GR for z = 2. This is different from most other cosmological
tests of this model, which are usually at lower redshifts.

Also interestingly, at z = 2 the HI power spectrum for F5
is suppressed less than F6, which is because at this redshift F6
has a larger enhancement of the number of small halos while
in F5 such small halos have merged to form larger ones. We
checked that the F5 HI power spectrum is suppressed more at
even higher redshifts.

While both the HI fraction and star formation rate in low-
mass objects are sensitive to (stellar) wind feedback, we ex-
pect the impact by f(R)-gravity to be relatively robust against
changes in the feedback model. This is because such changes
cannot be arbitrary as that would otherwise lead to tensions
between the simulations and observational data for the stellar
observables (see Figure B1 in [35] for a detailed discussion on
how different wind feedback implementations affect the stel-
lar properties of galaxies at z = 0). It is also known [39] that
details in wind feedback are important in the strong Damped
Lyman-α regime where HI column density is > 1021.5cm−2,
while we have checked explicitly that modified gravity effects
are non-negligible only at column densities . 1021.2cm−2.

E. Galaxy properties

The SHYBONE simulations use the same hydrodynamical
model for all three gravity theories. To check that a re-tuning
of this model is not necessary for f(R) gravity, in Figure 4
we plot a few stellar observables which were used in the tun-
ing of the Illustris-TNG model. Panel a displays the stellar
mass fraction (SMF) at the centres of galaxies, as a function
of the host halo mass from the 62h−1Mpc box. We find that
f(R)-gravity introduces a . 25% change with respect to GR
for both F6 and F5, which is smaller than the 1σ errors of
the observational data [40] shown for comparison. The abso-
lute value of the SMF in our simulations does – as expected
– not match the observations: The TNG model was tuned for
a 25h−1Mpc box with 2 × 5123 initial resolution elements,
while simulations at lower resolution show lower star forma-
tion rates [35, see also the cyan lines in Panel d]. For compar-
ison, we also show the SMF from TNG simulations at several
resolutions (the cyan lines in Panel a). The mass resolution
of our 62h−1Mpc box is close to that in the 25h−1Mpc TNG
box with 2×1283 resolution elements, and so are the SMF re-
sults. Supplementary Material Figure 1 further confirms that
the SMF from our 25h−1Mpc box, which has the same reso-

lution as the highest-resolution TNG box, agrees with obser-
vational data at z = 1.

The galaxy stellar mass functions measured within 30 kpc
from the halo centres are shown in panel b. Again, the results
from the 62h−1Mpc box fall in between the TNG runs with
2×1283 and 2×2563 resolution elements, due to the reduced
star formation rate in low-resolution simulations. The relative
differences between f(R)-gravity and GR are smaller than the
uncertainties in the observational data (grey lines).

Panel c shows the galaxy gas fraction as a function of the
host halo mass. Unlike the stellar properties, the gas fraction
is not resolution dependent. The results from the simulations
presented in this work are therefore consistent with the three
25h−1Mpc TNG boxes. The differences between the gravity
models are again much smaller than the spread in observa-
tional data from [44, 45] at M200c & 1013M�.

Finally, the cosmic star formation rate densities (SFRD) as
a function of redshift are shown in panel d for the 62h−1Mpc
and 25h−1Mpc (for z > 1) boxes. The results from the three
TNG boxes confirm that the SFRD is resolution dependent.
Our 25h−1Mpc simulations match the observational data of
[40], and are comparable to the TNG test-box with the same
resolution. The 62h−1Mpc boxes, as expected, show a lower
SFRD which falls between the two TNG test-boxes with 2 ×
1283 and 2×2563 resolution elements. The relative difference
between F6 and GR is nevertheless converged.

The effects of f(R)-gravity on galactic properties are the
consequence of the interplay of different physical processes.
The star formation rate depends on gas density and tempera-
ture, with an enhanced gravity resulting in higher gas densities
within galaxies and consequently a higher SFRD, as shown in
Figure 4 d. In particular, at high redshift the star formation
rates in f(R)-gravity and GR are roughly the same because
most objects are screened; towards lower redshifts, galaxies
gradually become unscreened and the SFRD in the two f(R)
models is enhanced with respect to GR. Due to the less ef-
ficient chameleon screening, in F5 this process happens ear-
lier than in F6. At even later times, the relative enhancement
of the SFRD in f(R)-gravity starts to decrease and becomes
negative for F5 at z . 0.7. A reason for this is that the cold
dense gas gets consumed faster in the f(R) models, leaving
less material for star formation at later times. The increased
SFRD causes a higher stellar mass function (Panel b), as well
as making a larger number of small halos star forming, ex-
plaining the weaker clustering of stars.

In addition to the four stellar and gas properties shown in
Figure 4, we have also checked our simulation predictions of
the galaxy size and black hole mass, which were used to cali-
brate the Illustris-TNG baryonic model too. In all these cases,
the relative difference induced by f(R)-gravity does not lead
to tensions with observational data, and so we conclude that a
re-tuning of the baryonic model is not necessary.

II. DISCUSSION

Studying galaxy formation and its application to test gravity
models with full-physics hydrodynamical simulations used to
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Figure 4. The stellar and gaseous properties of galaxies. Results from the simulations presented in this work are shown as blue lines for GR,
red lines for F6 and green lines for F5 in the upper section for each of the four panels. The lower sections show the relative difference between
f(R)-gravity and GR. The cyan lines show the results from [35] for the 25h−1Mpc side-length Illustris-TNG test boxes with 2× 1283 (dash-
dotted lines), 2×2563 (dotted lines) and 2×5123 (dashed lines) initial resolution elements. Observational constraints from [40–45] are shown
as grey lines and symbols. a: The galaxy stellar mass fraction within 30kpc from the halo centre as a function of halo mass in the 62h−1Mpc
box. b: The galaxy stellar mass function measured within 30kpc from the halo centre in the 62h−1Mpc box. c: The galaxy gas fraction
within r500c as a function of total halo mass in the 62h−1Mpc box. d: The cosmic SFRD as a function of redshift for both the 25h−1Mpc
(dashed lines, for z > 1) and the 62h−1Mpc (solid lines) simulation boxes.

be a formidable task, because of the large computational cost
and the complexities in calibrating a realistic baryonic model.
There were also doubts regarding whether meaningful cosmo-
logical signals can be cleanly extracted given the uncertainty
in the subgrid physics model. In this work, we present a new
suite of high-resolution simulations of f(R)-gravity which in-
corporate a large number of baryonic processes to reproduce a
realistic population of galaxies as implemented in the Illustris-
TNG model. While this model has been applied in f(R) sim-
ulations without changes, we have checked various galaxy gas
and stellar properties, and found our simulation predictions in
f(R)-gravity to agree with observations and the TNG simu-

lations of similar resolutions, so that a re-tuning is not neces-
sary.

A key question addressed here is the degeneracy between
baryonic feedback and modified gravity, which has important
implications for physical quantities, such as the matter power
spectrum, that are central to future galaxy surveys such as Eu-
clid. We find that in weak models like F6 these two effects can
be modelled separately and combined additively, with better-
than-percent accuracy in the predicted matter power spectrum
at k . 1hMpc−1, while for stronger models like F5 there is a
back-reaction between them, necessitating costly full-physics
simulations if sub-percent accuracy is desired.
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Despite the complicated screening profile in them, we find
rotationally-supported disk galaxies can form even in partially
screened halos. There is an indication that strong f(R) mod-
els such as F5 produce fewer disk galaxies than GR, which can
be caused by the more frequent galaxy mergers in the former;
if this is confirmed by future larger simulations, it may offer
a possible test that is insensitive to baryonic physics (which
has little impact on the merger rate). More interestingly, we
find that the enhanced number of small dark matter halos in
f(R)-gravity can significantly alter the spatial distributions of
cool dense gas, stars and neutral hydrogen, and as a result the
latter can be used as tracers for the clustering of small halos,
which may offer useful model tests with future observations
such as 21cm intensity mapping.

As a final remark, we note that though the resolution of the
SHYBONE simulations is unprecedented in the case of f(R)-
gravity, their relatively small boxes inevitably place a limit on
a statistical analysis due to cosmic variance. Further, while the
results look promising, in some cases, e.g., neutral hydrogen,
research is still scarce even in GR, and in this sense we hope
that our results will serve as a reality check and a call for more
detailed studies in both GR and alternative models.

III. METHODS

The results presented in this work were derived from a suite
of cosmological hydrodynamical simulations of f(R)-gravity
which, for the first time, allow to study the interplay between
detailed baryonic feedback and modified gravity in the same
calculation. The simulations were carried out with the AREPO
[26] code, by combining the Illustris-TNG galaxy formation
model [27–31] and a new, much more efficient, modified grav-
ity solver in the code. Below we give an overview of the
TNG model and f(R)-gravity, and introduce the new modi-
fied gravity solver. Further details about the code verification
tests are included in the Supplementary Material.

The SHYBONE suite mainly consist of six simulations car-
ried out for ΛCDM, F6 and F5 universes using the same ini-
tial condition. For each model, we carried out a full-physics
hydrodynamical simulation and an associated DM-only run.
These simulations initially contain 5123 dark matter parti-
cles and the same number of gas cells (for the hydrody-
namical simulations only) in a 62h−1Mpc-a-side box, with
mass resolutions mDM = 1.28 × 108h−1M� and mgas ≈
2.5 × 107h−1M� (the mass within the gas cells can vary
by a factor of 2). For convergence test, two additional full-
physics simulations (for F6 and GR) employing the same
number of resolution elements in a 25h−1Mpc box, with
mDM = 8.39 × 106h−1M� and mgas ≈ 1.6 × 106h−1M�,
were run until z = 1. All simulation use the same starting
redshift, z = 127. The softening lengths for DM particles
and stars are 0.5 and 1.25h−1kpc for the small and large
boxes, respectively. The total run time is ∼ 2.5 million core
hours, and all simulations use Planck 2016 [46] cosmologi-
cal parameters σ8 = 0.8159, Ωm = 0.3089, ΩB = 0.0486,
ΩΛ = 0.6911, h = 0.6774 and ns = 0.9667.

Unless stated otherwise, we measure total masses of halos

in terms ofm200 c which is the mass within a sphere enclosing
200 times the critical density of the Universe.

A. Baryonic physics and feedback

The Illustris TNG model, a successor of the Illustris galaxy
formation model [47], incorporates prescriptions for a variety
of physical processes necessary to reproduce a realistic galaxy
population in cosmological simulations. The TNG model con-
sists of a magneto-hydrodynamics solver on a moving mesh,
a recipe for stellar formation, evolution and feedback, a pre-
scription for black hole growth and AGN feedback [49], as
well as an algorithm for the chemical enrichment and cooling
of the gas. It has been tuned to reproduce observational results
on the stellar mass function, cosmic star formation rate den-
sity (SFRD), the relation between black hole mass and galaxy
stellar mass, galaxy gas fraction, stellar mass fraction and the
size of galaxies, in ΛCDM simulations [35]. For a more de-
tailed overview of the TNG model, see [27, 48].

For the simulations carried out for this project, we applied
the same TNG model to all gravity theories considered. We
are primarily interested in the question how astrophysical and
cosmological observables in baryonic simulations are affected
by modifications to gravity given a fixed model of galaxy for-
mation. We explicitly checked that the changes to the observa-
tional gas and stellar properties against which the TNG model
has been tuned are small compared to the uncertainties in the
observations, so that a re-tuning is not necessary.

B. f(R)-gravity

f(R)-gravity [1] is an extension of Einstein’s general rela-
tivity (GR) including an additional, scalar degree of freedom
which induces an enhancement to the gravitational force in
low-density environments. In dense regions like the Solar sys-
tem, the model employs the chameleon screening mechanism
[3] to screen the modifications to gravity and recover GR-like
behaviour.

The theory is constructed by adding a scalar function f(R)
of the Ricci scalar R to the Einstein-Hilbert action of GR:

S =

∫
d4x
√−g

[
R+ f(R)

16πG
+ Lm

]
, (1)

where G is the gravitational constant, g is the determinant
of the metric gµν and Lm is the matter Lagrangian density.
Varying this action with respect to the metric leads to the Mod-
ified Einstein equations:

Gµν + fRRµν −
(
f

2
−2fR

)
gµν −∇µ∇νfR = 8πGTµν ,

(2)

where Gµν and Rµν denote the Einstein and Ricci ten-
sor, respectively, Tµν the energy momentum tensor and 2 ≡
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∇ν∇ν , where Einstein summation is used. The derivative of
the scalar function, fR ≡ df(R)/dR, becomes a new degree
of freedom whose dynamics is determined by the trace of the
modified Einstein equation.

In cosmological simulations one often works in the weak-
field and quasi-static limit (see [50] for a discussion of its
validity for f(R)-gravity), where Eq. (2) simplifies consid-
erably: similar to the Newtonian limit of GR, the gravitational
potential Φ is given by a modified Poisson equation,

∇2Φ =
16πG

3
δρ− 1

6
δR, (3)

where δρ is the matter density perturbation, and δR =
R − R̄ is the perturbation to the Ricci scalar R(fR), with fR
satisfying the following differential equation,

∇2fR =
1

3
(δR− 8πGδρ) . (4)

Throughout this work we adopt the model proposed by [2]:

f(R) = −m2 c1
(
R
m2

)n
c2
(
R
m2

)n
+ 1

, (5)

c denotes the speed of light here andm is a mass scale of the
model given bym2 ≡ ΩmH

2
0 , withH0 being the Hubble con-

stant, and c1, c2 are model parameters. We choose n = 1 in
this work (This is somewhat arbitrary but the most convenient
choice for the computations and widely used in simulations of
f(R)-gravity). In addition to its relatively simple functional
form, this model has two further advantages. First, it allows
the so-called chameleon screening mechanism to suppress the
modifications to GR in high-density environments, which is
necessary to pass the very tight constraints on gravity within
the Solar system [4]. Second, the model features a cosmic
expansion history which is very close to that of a ΛCDM uni-
verse if one chooses [2]

c1
c2

= 6
ΩΛ

Ωm
and

c2R

m2
� 1. (6)

Given the functional form in Eq. (5), under the conditions
of Eq. (6) the scalar field fR can be approximated as

fR ≡
df(R)

dR
≈ −c1

c22

(
m2

R

)2

, (7)

and consequently R can be written as a function of fR. In-
stead of m, c1, c2, the theory can be more conveniently de-
scribed by the parameters Ωm,ΩΛ and f̄R0, with f̄R0 having
the physical meaning of the present-day value of the back-
ground scalar field. With these parameters specified, the scalar
field at arbitrary time can be expressed as

f̄R(a) = f̄R0

[
R̄0

R̄(a)

]2

, (8)

where R0 is the value of the Ricci scalar today and R(a) is
its value at scale factor a,

R̄ = 3m2

[
a−3 + 4

ΩΛ

Ωm

]
. (9)

The threshold for the onset of chameleon screening is set by
f̄R0. Current astrophysical constraints on the theory limit the
background scalar field to values smaller than |f̄R0| = 10−6

(F6); cosmological constraints are weaker [51] ([52] find that
the motions of galaxies in F6 predicted by DM-only simula-
tions and sub-halo abundance matching (SHAM) are in ten-
sion with SDSS data. The authors of this paper nevertheless
assume, that the same SHAM model can be applied to GR
and f(R)-gravity if the mass of halos in the DM-only simu-
lation, which is used as a parameter of the SHAM model in
GR, is replaced by the dynamical mass for f(R)-gravity. The
dynamical or effective mass is the mass a massive test parti-
cle would feel under the assumption of standard gravity. This
mass measure accounts for the by 4/3 enhanced gravitational
forces in unscreened objects and is the same as the true mass
in screened objects. This assumption is to be validated against
full-physics MG simulations to asses the robustness of the
constraint). We also consider a model with |f̄R0| = 10−5 (F5)
within this work as a toy model which features more promi-
nent effects due to modified gravity in the simulations but is
in tension with observations [51].

C. A new modified gravity solver in AREPO

AREPO [26] is a massively-parallel, highly-optimized, cos-
mological simulation code. It employs a second-order Rie-
mann solver using a moving Voronoi mesh to solve the Euler
equations of hydrodynamics. The code also features state-of-
the-art prescriptions of star formation, feedback from super-
novae and active galactic nuclei, and magneto-hydrodynamics
[35, 47, 49].

The original gravity solver of AREPO is based on the solver
in P-GADGET3, which is itself based on GADGET2 [53]. The
solver employs an oct-tree algorithm to obtain the short-range
gravitational forces while the long-range forces are calculated
using a particle-mesh algorithm to reduce the communication
load when running in parallel. AREPO’s gravity solver has re-
cently been improved and extended in several ways but for the
implementation of the modified gravity solver we (currently)
stick to the original version.

Because of the similarity between the gravity algorithms in
P-GADGET3 and AREPO, we use the modified gravity solver
in MG-GADGET ([15], also based on P-GADGET3) as the start-
ing point for the implementation of the f(R) gravity solver in
AREPO. As the first step, we ported the solver from GADGET
to AREPO, carrying out the necessary changes to adapt it to the
code structure of AREPO and optimizing the data structures of
the solver to reduce its memory footprint. We will refer to this
implementation as the ‘old’ method in the following. In order
to improve the convergence behaviour of the multigrid solver,
we implemented a ‘new’ method to solve for the scalar field
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based on the f(R) gravity solver in ECOSMOG [54] developed
by [55].

In order to ensure that the new f(R) solver implemented in
the code gives the correct result, we performed extensive com-
parison tests between the old and the new methods, as well as
convergence tests for the MG-timestep criterion and the resid-
ual threshold on the individual grid levels. A selection of these
tests are presented in the Supplementary Material.

1. AMR-grid construction and mass assignment

In order to solve for the gravitational forces one has to solve
Eq. (4) first before the scalar field can be used to calculate the
gravitational potential through Eq. (3). Due to the chameleon
screening mechanism, which causes the scalar field value to
drop by many orders of magnitude in dense environments with
respect to the background value f̄R(a), Eq. (4) is highly non-
linear. The commonly-adopted method in cosmological sim-
ulation codes is therefore to solve the equation iteratively on
a grid [15, 54, 56]. All modified gravity codes optimized for
cosmological simulations employ an adaptively refining mesh
(AMR-grid) for this purpose to allow for high spatial resolu-
tion in high-density regions while keeping the total computa-
tional cost down to a realistic level [25].

In AREPO we use an AMR-grid to solve for fR as well.
This is constructed from the gravitational oct-tree of the stan-
dard gravity solver in the same way as in MG-GADGET. Up
to a maximum level, each tree node represents a mesh cell. In
order to avoid a mesh that is too sparse on the finer AMR lev-
els, all eight daughter tree nodes are created whenever a father
node contains more than one simulation particle (this differs
from the standard tree construction in AREPO; for more de-
tails see [15]). Because the tree is constructed from scratch
for every time step in AREPO, there is no need to take care of
tree-updates for this implementation. It is nevertheless neces-
sary to construct the tree and solve for fR before computing
the long range gravity forces on the PM-grid as opposed to the
standard gravity implementation in the code, where the tree is
stored during the short-range force calculation only [26].

As in MG-GADGET, the particle masses are assigned to the
mesh using a cloud-in-cell (CIC) assignment algorithm allow-
ing to calculate the density contrast field for each mesh cell.
The following step, to actually solve for the scalar field fR, is
where the old and new methods differ.

2. Scalar field solver

In the old method, Eq. (4) is rewritten in the following form
by defining a new variable u = ln

(
fR/f̄R(a)

)
,

∇2eu = − 1

3c2f̄R(a)

[
R̄(a)

(
1− e−

u
2

)
+ 8πGδρ

]
, (10)

which is solved using the Newton-Raphson relaxation
scheme with red black sweeps and multigrid acceleration (see
[15] for more detail). This way unphysical positive values of

fR which might occur due to numerical errors during the iter-
ations can be avoided.

The new method makes use of a different re-
parametrisation of fR. Following [55], we define

u ≡
√

fR

f̄R(a)
, (11)

which prevents positive values for fR as well. This leads to
a different form of the scalar field equation in terms of u,

∇2
(
u2
)

=
1

3

[
R̄(a)

f̄R(a)

(
1

u
− 1

)
− 8πG

f̄R(a)
δρ

]
. (12)

This equation is then discretised on the AMR-grid con-
structed before. On a mesh of cell side-length l, the Laplace
operator becomes

∇2
(
u2

i,j,k

)
=

1

l2
[(
u2

i+1,j,k + u2
i−1,j,k + u2

i,j+1,k + . . .
)
− 6u2

i,j,k

]
≡ 1

l2
[
Li,j,k(u2)− 6u2

i,j,k

]
, (13)

where we defined the operator L. Further defining

α ≡ R̄(a)

18f̄R(a)
β ≡ 8πG

18f̄R(a)
, (14)

and

p ≡ −Li,j,k(u2)

6
− αl2 − βl2δρ, (15)

q ≡ −αl2, (16)

the discretised version of Eq. (12) becomes [55]

u3
i,j,k + p ui,j,k + q = 0. (17)

This cubic equation has a few advantages over the discre-
tised equation in the old method. First, the result of the cubic
equation can be found analytically for each mesh cell in each
iteration step. The Newton-Raphson numerical update rule
of the old method is thus avoided, leading to improved con-
vergence speed and numerical stability of the solver. Second,
the large number of expensive exponential and logarithm op-
erations for each iteration step and mesh cell associated with
the definition of u are avoided. Finally, the new method does
not introduce extra nonlinearities – through the exponentials
in Eq. (10) – in screened regions which slowed down the con-
vergence of the solver in the old method, particularly at high
redshift.

Applying Cardano’s method in order to solve Eq. (17), one
has to distinguish the three branches of solutions depending on
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the values of p and q. In order to be consistent with [55], we
define ∆0 ≡ −3p and ∆1 ≡ 27q. Independent of the density
within a given cell and the field value of its neighbours, q < 0
and thus ∆1 < 0 in all cases. The behaviour of the solution
depends on the sign of the discriminant D:

D ≡
(q

2

)2

+
(p

3

)3

. (18)

A: For the caseD > 0, Eq. (17) takes only one real solution
which is given by

ũi,j,k = −1

3

[
C +

∆0

C

]
,

where C ≡
{

1

2

[
∆1 +

(
∆2

1 − 4∆3
0

) 1
2

]} 1
3

. (19)

We have used ũi,j,k to stress that the solution obtained is an
approximation to the true solution ui,j,k because the quantity
Li,j,k in p, cf. Eq. (15), depends on the values ui±1,j±1,k±1

from the the neighbouring cells. Note that this branch of the
solution includes the case p = 0, for which Eq. (19) simplifies
to ũi,j,k = 3

√−q.
B: For D < 1, Eq. (17) admits three real solutions:

ũi,j,k = −2

3

√
∆0 cos

(
Θ

3
+

2

3
jπ

)
, (20)

where Θ = cos−1

(
∆1

2∆
2
3
0

)
, (21)

and j ∈ {0, 1, 2}. The cases j = 0 and j = 2 lead to
ũi,j,k < 0 which is in contradiction with our definition of u.
The only physical solution thus is j = 1.

After the cubic equation is solved for a cell, the value of u
therein is replaced by the above solution. In order to allow for
efficient parallelisation on distributed-memory compute clus-
ters and to allow for a faster convergence, we carry out the cell
updates using a red-black-sweep pattern. We start from an ini-
tial guess of u = 1 for the first time step of the simulation and
use the result of the previous time step as an initial guess for
all subsequent steps.

At the end of each iteration, an approximate error for u2
i,j,k

(∝ fR) is calculated as

ei,j,k =
ri,j,k

ρ̄(a)l2β
, (22)

where

ri,j,k = ũ3
i,j,k + p ũi,j,k + q, (23)

is the residual for a given approximate solution ũi,j,k. We
consider the solution on a given AMR-level to be converged
and stop the iterations once

max(ei,j,k) < 10−2. (24)

This criterion translates to an (approximate) maximum er-
ror of 1% on fR/f̄R(a) on a given grid level. We note that the
resulting fifth force errors are smaller than the random stan-
dard gravity errors originating from the tree walk.

3. Multigrid acceleration

The relaxation method used above successively reduces the
error of the initial guess by iterations. It is well known that the
decay of long wave-length modes of the error can be dramati-
cally sped up by multigrid methods. For both the old and the
new method we therefore use multigrid acceleration arranged
in terms of V-cycles to speed up the convergence of the scalar
field solver. Our V-cycle implementation for the old method
is identical to MG-GADGET, and so we refer the reader to [15]
for further details.

For the new method, we use the standard nonlinear full ap-
proximation storage (FAS) algorithm [57]. Eq. (17) is rewrit-
ten in terms of a non-linear operator

Ll(ul) = 0, where Ll(ul) ≡ u3
l + plul + ql. (25)

The subscript l denotes quantities and operators defined on
the ‘fine’ grid level with cells of side-length l here, we will
use L for quantities and operators defined on the ‘coarse’ level
with cells of side-length L = 2l. Eq. (23) can be written as

Ll(ũl) = rl, (26)

for some approximate solution ũl. After a few pre-
smoothing iterations to ensure that the short-wavelength
modes in ũl have been reduced sufficiently, both sides of
Eq. (26) are mapped to the coarse level using the restriction
operator

Rũl ≡
8∑
i=0

ũil
8
, (27)

where the summation is over the 8 daughter cells of the
coarse cell. This leads to the following equation on the coarse
level

LL(uL) = LL(Rũl)−Rrl, (28)

which can be solved either through iterations or further
mapping to even coarser levels, to obtain an approximate
coarse-level solution ũL. Using the prolongation operator
PũL = ũL the coarse-level solution can then be used to cor-
rect the fine-level solution as

ũnew
l = ũl + P(ũL −Rũl). (29)
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This correction is applied in our multigrid implementation
as follows. If no initial guess for u is available, the solver
starts to solve Eq. (17) iteratively on level 3 (the top-level
node covering the whole simulation volume is level 1), and
maps down this solution as the initial guess for the next finer
level. This process is continued recursively until the finest
level that covers the whole simulation volume (max-level-full-
tree, MLFT) is reached. If an initial guess is available, the
solver starts on MLFT directly.

All the finer levels (including MLFT) are then solved by V-
cycles using corrections from the two next coarser grid levels.
The solver would, for example, repeat the cycles 7-6-5-6-7 on
level 7 until convergence is reached and then continue on level
8 with 8-7-6-7-8 V-cycles using the solution of level 7 as the
initial guess on level 8. During the V-cycles, the solver carries
out 4 pre- and 4 post-smoothing iterations before mapping to
and after mapping back from the coarser level, to ensure that
the short-wavelength modes of the error of ũ have sufficiently
decayed. If the solver determines that the V-cycles do not lead
to convergence on a given level, that level will be solved by
iterations only. On the finest level which the mesh refinements
extend to, the solution is obtained by iterations only for sta-
bility reasons.

4. Force calculation

Both the old and new methods adopt the effective mass ap-
proach to calculate the total gravity force as in MG-GADGET,
making use of the fact that the modified Poisson equation, (3),
can be rewritten in terms of an effective density

∇2Φ = 4πG(δρ+ δρeff), (30)

where

δρeff =
δρ

3
− δR

24πG
. (31)

The advantage of this approach is that it allows to calculate
the gravitational accelerations from Eq.(30) using the standard
oct-tree – particle-mesh gravity solver readily implemented in
AREPO.

5. Local time stepping

To keep the number of computationally expensive modified
gravity force calculation low, we adopt the local time-stepping
scheme that was first implemented in MG-GADGET (for more
details see [36]). This scheme takes advantage of the fact that
the regions which require the smallest time steps, i.e., the re-
gions with the highest accelerations, lie primarily within mas-
sive halos and are thus screened by the chameleon mechanism.
For reasonable values of fR, the maximum modified gravity
acceleration in the simulation box at a given time is orders
of magnitude smaller than the standard gravity acceleration.

Decoupling the modified gravity time step from the standard
gravity and hydro time steps can therefore significantly reduce
the computational cost of the simulations without loss of ac-
curacy.

In practice, we decouple these time steps using a local time-
stepping scheme already implemented in AREPO. The modi-
fied gravity time step is coupled to the long-range gravity PM
time step global, while the short range gravitational forces and
hydrodynamics are calculated on smaller time steps for the
particles individually. In order to avoid very large time steps
for the modified gravity solver, the global modified gravity
time step is calculated according to

∆tMG global = min(∆tMG i), (32)

where ∆tMG i is the individual modified gravity time step
for particle i assessed using an acceleration criterion. The
global PM+modified gravity time step is finally determined
by

∆tMG+PM global = min(∆tMG global,∆tPM global). (33)

D. Power spectrum calculation

The power spectra of the total density field and the density
field of the matter components are calculated using a module
implemented within the AREPO code. The resolution elements
are assigned to a Cartesian mesh using a CIC mass assignment
in order to perform the required Fourier transforms [see 28, for
a detailed description].
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