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Abstract: The authors present an improved feature selection solution for the view-invariant gait recognition problem, based on
their previously proposed method called view-invariant feature selector (ViFS), which automatically reconstruct an optimised
gallery template from a set of multi-view gallery templates. They improved ViFS by introducing a constraint to make sure that the
reconstructed features have the same scale as the original features, thus reducing the number of misclassifications caused by
data misalignment. They evaluate the improved ViFS on the CASIA B and OU-ISIR large population datasets by performing a
wide range of comparative studies in order to explore and confirm its effectiveness. Evaluation results indicate that the proposed
framework is very effective for view-invariant gait recognition tasks.

1 Introduction
The ever-growing demand of reliable human identification systems
for law-enforcement, national security and commercial use has
promoted the development of biometrics in the past 50 years.
Advanced biometric techniques provide solutions to a wide range
of challenges with the overarching intention of preventing
imposters from accessing protected resources. Various biometric
systems are capable of offering solid performance in real-world
applications, such as fingerprint, face, and iris recognition.

Despite the fact that biometric traits are intrinsic to humans,
they cannot always be easily captured by Close Circuit Television
(CCTV) cameras or other types of sensors. Furthermore, it is
highly preferable that the biometric analysis and authentication be
performed at a distance in a non-invasive and non-obtrusive
manner to avoid the cyber arms race (Development of deception
and anti-deception techniques.). Gait, which is considered to be a
behavioural biometric trait, can be measured unobtrusively at a
moderate distance, thus it is predominant in remote human tracking
and identification tasks. The past two decades have witnessed an
important development of gait recognition systems. However, there
are still important challenges that confine the practical application
of gait analysis, one of which is concerned with the view angle
variation between gallery data (data with known identities) and
probe data (query data with unknown identities). It is therefore
imperative to develop view-invariant gait recognition systems for
the sake of its competitiveness in practical applications.

Gait recognition approaches can be broadly classified into two
categories: model based and appearance based. Model-based gait
recognition refers to identifying people by modelling their
distinctive gait characteristics with underlying mathematical
structures [1]. Most model-based methods rely on high-quality gait
sequences captured under controlled environments (e.g. indoor
environments, a close-distance between subject and camera, multi-
view cameras, and depth cameras), thus they are effective at
handling occlusions and changes in scale, as well as view-angle
changes. However, the restrictions imposed by the underlying
sensors used to acquire the data and their low tolerance to low-
quality video makes these methods less applicable for outdoor gait
recognition.

Appearance-based methods usually adopt gait silhouettes as the
feature source to build effective gait templates. The silhouettes are
obtained by subtracting the subject profile from the background

using gait sequences acquired by video cameras. The classification
is usually performed by measuring the pixel-to-pixel distance
between gallery and probe templates. A commonly used
appearance-based template is the gait energy image (GEI), which is
computed as the average of the binary silhouettes from a gait cycle
[2]. Experiments on several large gait datasets (over 4000 subjects)
suggest that GEI is the most statistically stable and efficient
template for gait recognition, while other templates such as chrono-
gait image [3] and gait entropy image [4] failed to show such
robustness across various datasets [5, 6]. The advantages of
appearance-based approaches based on GEIs are their robustness to
low-quality video and low-computational complexity. However,
GEIs are usually not robust to view angle and scale changes.

View-invariant gait recognition is one of the major challenges
in people identification. Many researchers have evaluated view
angle transformation techniques, discriminant analysis and
manifold learning approaches for cross-view gait recognition.
Their proposals are usually based on a common factor; namely to
establish a cross-view mapping between gallery and probe
templates. However, the effectiveness of many of these proposals is
restricted to small view-angle variances. A promising approach to
perform view-invariant gait recognition is through multi-view
feature learning.

We have previously proposed the view-invariant feature
selector (ViFS) [7], which is a linear regression-based feature
selector that reconstructs gallery templates from arbitrary view
angles, thus minimising the cross-view variance between gallery
and probe features. Within the context of multi-view gait
recognition, this equals to reducing the intra-class variance.
Subspace learning methods, i.e. linear discriminant analysis
(LDA), have been applied to ViFS as feature enhancers to reduce
the computational cost and improve the recognition accuracy. In
this work, we introduce a feature scaling process to ViFS to further
improve its performance by making sure that all the templates,
original and reconstructed, are regularised before the similarity
measurement. The scaling process reduces the noise in the
reconstructed templates and thus minimises misclassifications. We
test the proposed framework on the CASIA dataset B (CASIA B)
and the OU-ISIR large population (OU-ISIR LP) dataset. The
average recognition accuracy of our framework over 11 different
views exceeds 99%.

This paper is organised as follows: Section 2 reviews the
literature on view-invariant gait recognition. Section 3 briefly
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explains the formulation of ViFS, as well as other fundamental
concepts. Section 4 explains in detail the improvements proposed
to ViFS. Section 5 presents the evaluations on the CASIA B and
the OU-ISIR large population datasets. Section 6 concludes the
paper.

2 Related work
In general, there are two types of view-invariant gait recognition:
cross-view recognition, where only a single view angle is available
in both, the gallery and probe sets (the view angles are different),
and multi-view recognition, where templates from multiple view
angles are available in the gallery set while the probe templates are
from a single view angle, or vice versa (This case can be reversed,
i.e. multi-view templates available in the probe set, while the
gallery templates are from a single view angle.).

Depending on the underlying algorithms used, current view-
invariant gait recognition algorithms can be classified into one of
three categories: (i) those based on human models, (ii) those based
on view-invariant features, and (iii) those based on unitary
projections. Methods within the first category are concerned with
creating models that represent the human anatomy. When multi-
view gait templates can be obtained, or depth information is
available, it is possible to reconstruct 3D or 2.5D models, from
which arbitrary views of gait sequences can be obtained by
projection, and the parameters associated with various body parts
can be easily determined. Tang et al. [8] propose to construct
parametric 3D gait models from three cameras and use partial
similarity matching to improve recognition rates. Their method
achieves promising results on several major gait datasets.
Similarly, Luo et al. [9] propose to use 3D gait models and sparse
representation-based classification to perform view-invariant
classification. Their framework and its performance are very
similar to the one prosed by Tang et al. [8].

Methods within the second category attempt to obtain view-
invariant features from single-view gait silhouette sequences to
perform recognition under lateral views, i.e. those views different
from the frontal and back views. For example, Kusakunniran et al.
[10] and Goffredo et al. [11] employ view-invariant gait features
for cross-view recognition. In [10], the authors propose the gait
texture image and apply domain transformation obtained through
invariant low-rank textures to obtain common canonical side view
gait features (i.e. the walking trajectory is perpendicular to the
camera's viewpoint) from other view angles. Despite the good
performance of this method, it is difficult to project features from
the front or back views to the side view. In [11], the authors
propose model-based view-invariant gait features, which use lower
limb pose estimation to perform view angle rectification. However,
as with other model-based methods, it is difficult to extract model's
parameters (height, length of limbs, joint angles etc.) from gait
sequences acquired from a distance at low resolutions and with
occlusions.

Methods within the third category usually adopt appearance-
based features, e.g. GEIs, and learn the mapping relationship of
features from two different views. Makihara et al. [12] propose the
view transformation model (VTM) to effectively project gait
features between two different views. However, as with any other
singular value decomposition (SVD)-based method, VTM is
sensitive to noise in the training dataset and requires a huge amount
of memory and high computational power to compute the matrix
factorisation if the training set is large. To solve these issues,
Kusakunniran et al. [13] use truncated SVD and LDA to enhance
the performance. In [14], Muramatsu et al. further enhance the
VTM by matching gait features locally, i.e. by separating the gait
into head, torso, thigh and shank regions, in order to avoid over-
fitting and reduce the influence of local-feature corruption.
However, VTM-based methods still fail to provide satisfying
results with large view-angle differences (over 30∘) between gallery
and probe.

An alternative to feature mapping is to learn a unitary subspace
where features from the same subject but at different view angles
are clustered together, while features from different subjects but at
the same view angle are far from one another [15–17]. After

learning such subspace, features from various views can be
projected into it for distance matching. Within this context, Hu et
al. [18] propose a novel unitary liner projection method named
ViDP, which enables cross-view gait recognition to be conducted
without knowing the query view angle. The recent work by Zhang
et al. [19] proposes a list-wise constrained discriminative
projection framework on a novel gait representation to tackle the
view angle variance. Apart from reporting results for cross-view
matching, they also report results for the multi-view case, which
outperforms other conventional subspace learning methods.

Convolutional meural networks (CNNs) have been recently
used to tackle gait recognition challenges. Alotaibi et al. apply a
full CNN with four convolutional layers and a softmax layer for
simple gait recognition tasks, i.e. matching gallery and probe data
under the same view angle [20]. Yan et al. use a five-layer CNN
with three convolutional layers and two fully connected layers for
gait recognition. They also introduce a multi-task learning
approach, which performs gait recognition, view angle prediction
and scene prediction simultaneously. According to their findings,
multi-task learning can accelerates the convergence of CNNs in the
training process. However, the cross-view recognition performance
of their network appears to attain small improvements compared
with traditional approaches using principal component analysis
(PCA) + LDA. Shiraga et al. successfully use a four-layer CNN,
consisting of two convolutional layers and two fully connected
layers, for large-scale gait recognition on the OU-ISIR large
population dataset [21]. Their network has important advantages
over other approaches on large-scale datasets when the view angle
difference between gallery and probe data is small < 30∘ . They
also show that CNN-based methods can significantly reduce the
equal error rates and thus improve the gait verification accuracy.
Feature maps learned by CNNs have strong discriminant power
and thus provide robustness in gait recognition. However,
performance of cross-view gait recognition with large view angle
variations > 54∘  is still not ideal. Wu et al.’s work in [22]
represents the state-of-the-art of CNN-based cross-view gait
recognition.

In our previous work [7], we introduce ViFS to reconstruct
gallery templates from arbitrary view angles, and help to transfer
the cross-view gait recognition problem to the identical-view gait
recognition problem. However, despite its very good performance,
some important aspects of ViFS require improvements. For
example, the selected features occasionally degrade the
performance compared with the performance attained when using
single-view features. We realise that this is due to the fact that the
ViFS does not force the features to be normalised, thus the
reconstructed templates do not align with other templates. This
misalignment of data inevitably introduces noise in the
reconstructed templates and thus leads to misclassifications. Based
on these observations, in this work we introduce a feature scaling
process to ViFS to make sure that all the templates, original and
reconstructed, are regularised before the similarity measurement.
This is explained in detail in Section 4.

3 Background information
3.1 Gait recognition pipeline using GEIs

GEI-based gait recognition focuses on both the human body shape
in the spatial domain and the movement in the temporal domain. A
conventional gait recognition pipeline based on GEIs consists of
three steps:

• Acquisition of the gait signature: This involves extracting the
binary silhouette of the subject from a video sequence. Several
well-known techniques have been adopted for this task,
including least median of squares [23], Gaussian mixture models
[24], and most recently, fully convolutional networks [25].

• Construction of the GEIs templates: Fig. 1 shows an example of
the binary silhouettes extracted from a video sequence for a
complete gait cycle (the two columns on the left hand side) and
the corresponding GEI computed as the average of the binary
silhouettes (right hand side). By compressing spatial and
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temporal information into one image, a GEI is able to reduce the
effect of noise and increase computational efficiency.

• Similarity measurement: After modelling gallery and probe data
using GEIs templates, the distance between them is measured to
find the matching identity.

3.2 View-invariant feature selector

Let us assume that h samples (i.e. GEIs) from h different unknown
view angles are available in the gallery set G = {xi}i = 1

h , as well as
one probe sample, y, from an unknown view angle in the probe set,
P. Due to the view angle difference between gallery and probe
samples, the intra-class distance can be larger than the inter-class
distance for the same subject, leading to misclassifications. To
reduce the negative effects of view angle differences on the
classification results, one can minimise the cross-view distance
between gallery and probe samples. If the view angles of the
gallery and probe samples are unknown, one would like to find a
feature vector w = {wi}i = 1

h  that minimises the objective function:

f (w) = ∥ Gw⊺ − y ∥2 = ∥ ∑
i = 1

h
wixi − y ∥2 . (1)

The minimiser w^  of f (w) satisfies ∇ f (w^ ) = 0, leading to
∇ f (w^ ) = 2G⊺(Gw^ ⊺ − y) [26]. Then w^  can be calculated as follows:

w^ = G⊺G −1G⊺y . (2)

Since the gallery set G and its covariance matrix G⊺G are highly
unlikely to be upper-triangular, we cannot solve (2) directly.
Instead, we use QR-factorisation, i.e. G = QR, to generate an
orthogonal matrix Q and upper-triangular matrix R from G. Thus
(2) can be formulated as

w^ = G⊺G −1G⊺y

= QR ⊺ QR −1(QR)⊺y
= R−1Q⊺y .

(3)

We can obtain w^  by solving Rw^ = Q⊺y with back substitution. We
call minimiser w^  the ViFS, as it selects features from the multi-
view gallery samples to reconstruct an optimal template G^ = Gw^ ⊺

that accurately matches probe sample y. In Fig. 2, we present a set

of examples to demonstrate the effectiveness of ViFS for feature
reconstruction. We take four samples of the same subject from the
gallery set at view angles 18∘, 72∘, 126∘, 180∘ . We denote these set
of samples by G. We train ViFS so to reconstruct gallery samples
representing 11 different view angles. For example, for the
reconstruction of the 0∘ gallery sample, we use the four gallery
samples and one probe sample from 0∘ to generate the ViFS for 0∘,
denoted as w^

0, and obtain the reconstructed template G^
0 = Gw^

0
⊺.

The reconstructed gallery samples in the third row of Fig. 2 are
visually similar to the ground truth samples in the fourth row of
Fig. 2, suggesting that ViFS achieves an accurate view-
transformation on gallery samples. 

3.3 2D PCA: Yang et al. [27] propose the 2D extension of PCA.
Consider the training set Ii | i = 1, …, n , where Ii is a single
sample (e.g. a GEI) in 2D form with size dr × dc, and n is the total
number of samples. The image covariance matrix, C, is then
calculated as

C = 1
n ∑

i = 1

n
Ii − Ī ⊺ Ii − Ī , (4)

where Ī = (1/n)∑i = 1
n Ii is the mean value of all training samples.

By performing the eigen-decomposition of C, we can obtain the 2D
PCA projection basis Vpca = vi | i = 1, …, p , as the p orthonormal
eigenvectors corresponding to the p largest eigenvalues. Compared
with the canonical PCA, 2D PCA is much more computationally
efficient. For example, for GEIs of size 128 × 88, the covariance
matrix of vectorised samples using canonical PCA has a
complexity O(2d), d = dr × dc = 11264; while the complexity of
calculating the image covariance matrix, C, is only
O 2dr , dr = 128.

In this work, we use Ii to represent sample i in 2D form. In the
following, all samples are assumed to be vectorised into features
vectors instead of being in 2D form. Therefore, we denote feature
vector i by xi and yi for gallery and probe, respectively.

4 Proposed improved ViFS
In this section, we present the methodology followed to improve
ViFS. Specially, we introduce a constraint in the objective function
to achieve data normalisation by performing feature scaling in the
minimiser w^ .

Fig. 1  Example GEI computed by averaging all the binary silhouettes within a gait cycle
 

Fig. 2  Example reconstruction by ViFS of gallery templates for missing view angles. The ground truth shows the gallery templates from all views provided by
the CASIA B dataset
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4.1 Feature scaling

The reconstructed feature template of a specific view, v, is denoted
as G^

v = Gvw^
v
⊺. As presented in Section 3, the QR-factorisation

solution does not guarantee that the l −1 norm of w^  is equal to 1,
thus it is not guaranteed that G^

v and Gv have an identical feature
scale, i.e. max (Gv) ≠ max (G^

v) (Generally, the sparsity of the
feature matrix results in min (Gv) = min (G^

v) = 0.). Therefore, we
reformulate the object function of ViFS as

arg min
w

∥ Gw⊺ − y ∥2 s . t . ∥ w ∥1 = 1. (5)

4.2 Feature enhancement using subspace learning

In order to further enhance the extracted features and increase the
inter-class variance, we apply subspace learning. Since subspace
learning methods are designed to project the input features into
another space with lower dimensionality, the redundant
information is removed and the discriminant features are preserved.
Furthermore, since they are linear transformations, the
computational cost and processing times are very low. In our
previous work, we have shown that when used as features
enhancers, locality preserving projection and LDA attain a nearly
identical performance. Hence, in this paper, we only implement
LDA for its low computational cost and popularity. Before
applying LDA, we reduce the dimensionality of the data and make
sure that the matrices are non-singular by applying PCA.

Let us denote the 3D matrix containing nT training samples by
T = Ti i = 1

nT , with size dr × dc × nT. The eigenvectors
Vpca = vi i = 1

nT , as well as the corresponding eigenvalues
λpca = λi i = 1

nT , are obtained by eigen-decomposition of the
covariance matrix. We select the first p eigenvectors according to:

∑i = 1
p λi

∑i = 1
nT λi

> 0.99. (6)

Thus, we obtain Vpca = vi i = 1
p , a dc × p subspace projection

matrix. The subspace projection is then Ti = TiVpca, which results
in matrix T = Ti i = 1

p . We reshape the 3D matrix T to 2D form
with dimensions dpca = dr × p and n samples. We then use T and
the corresponding class labels to train the LDA projection matrix,
Vlda.

Let us assume that there are h views in gallery set G, and nG
samples in total. After obtaining the ViFS, w^ , the subspace
projection matrices, Vpca and Vlda, and the reconstructed gallery set,
G^ = Gw^ ⊺, we project G^

 onto the subspace matrices to obtain an
enhanced gallery feature set:

Gpca = G^
iVpca i = 1

nG , reshape Gpca to 2D,

Glda = Vlda
⊺ Gpca,

(7)

Following the same procedure, we also obtain the enhanced probe
set Plda. For simplicity, we use G and P to represent the enhanced
gallery and probe feature sets, respectively, in the formulation of
the similarity measurement.

4.3 Similarity measurement

We use the Euclidean distance to obtain matching scores between
gallery and probe. The Euclidean distance between gallery feature
set G and probe feature set P is calculated as

D(Gi, Pl) = ∥ Gi − Pl ∥ , i = 1, …, c, (8)

where c is the number of classes, and l denotes the unknown probe
data. If D(Gk, Pl) = mini = 1

c D(Gi, Pl), the probe feature vector is
assigned to the same class label k of the gallery feature.

5 Performance evaluation
In this section, we validate the performance of the improved ViFS
on two datasets: the CASIA Gait B and OU-ISIR Large Population
Datasets. As part of these evaluations, we also analyse the trade-off
between accuracy and speed of different feature enhancers when
used in conjunction with the improved ViFS.

5.1 Experiments on the CASIA B dataset

The CASIA B dataset is a multi-view gait dataset that contains 124
subjects in total [28]. The size of each silhouette image is
normalised to 128 × 88; one video sequence produces a single GEI.
Since this work focuses on studying the performance of the
improved ViFS across different view angles, we only employ those
sequences that are not affected by changes in clothes or carrying
objects. The sequences of the first 74 subjects are used for training,
and the other 50 subjects are used for testing. In the testing set,
each subject has six sequences; the first four sequences are
regarded as gallery sequences, and the remaining two sequences as
probe sequences.

We first present the performance of PCA + LDA for view-
invariant gait recognition on the CASIA B dataset. This
performance can be used as a baseline to assess the effectiveness of
ViFS. Table 1 presents the cross-view matching results when using
PCA + LDA. It is obvious that the diagonal values in the table are
the highest among each row. As expected, the accuracy drops
dramatically when the view angle difference is equal or above to
36∘. The same pattern can be identified in Table 2, which
corresponds to the case of 2D PCA + LDA. 

Table 1 Cross-view matching accuracy (%) using PCA + LDA on the CASIA B dataset
G
P 0∘, % 18∘, % 36∘, % 54∘, % 72∘, % 90∘, % 108∘, % 126∘, % 144∘, % 162∘, % 180∘, %
0∘ 98.00 92.00 78.00 42.00 24.00 24.00 26.00 26.00 32.00 62.00 80.00

18∘ 94.00 98.00 96.00 84.00 54.00 42.00 40.00 62.00 66.00 84.00 80.00

36∘ 82.00 98.00 98.00 98.00 96.00 78.00 72.00 88.00 86.00 74.00 56.00

54∘ 50.00 76.00 96.00 98.00 98.00 94.00 94.00 90.00 86.00 52.00 40.00

72∘ 26.00 36.00 82.00 100.00 100.00 100.00 98.00 88.00 58.00 38.00 24.00

90∘ 20.00 24.00 48.00 88.00 100.00 100.00 100.00 90.00 56.00 28.00 18.00

108∘ 20.00 28.00 64.00 92.00 100.00 100.00 100.00 98.00 92.00 40.00 28.00

126∘ 36.00 54.00 80.00 92.00 96.00 96.00 100.00 100.00 98.00 82.00 52.00

144∘ 42.00 58.00 80.00 78.00 70.00 74.00 82.00 98.00 98.00 92.00 68.00

162∘ 72.00 80.00 78.00 54.00 48.00 42.00 38.00 66.00 88.00 100.00 92.00

180∘ 86.00 70.00 56.00 34.00 14.00 22.00 18.00 30.00 64.00 94.00 100.00
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5.1.1 Evaluation of feature scaling: We examine the effect of
feature scaling on the recognition accuracy. The feature enhancer is
PCA + LDA, and the eigenvalue ratio of PCA is set to 99%. The
feature dimensions are reduced from 11,264 128 × 88  to 207.
Since ViFS is designed to be applied to a multi-view gallery set,
the combination of gallery data from different views is verified and
analysed. Let us denote by ViFS1_2 the case of the original ViFS
with PCA + LDA with data from two different view angles in the
gallery set (Here the 1 refers to 1D PCA, and two refers to the two
views available in gallery set.). Let us denote by OViFS1_2, the
case of the improved ViFS with PCA + LDA with data from two
different view angles in the gallery set. As shown in our previous
work [7], view angles widely spread usually result in higher
matching accuracy. Thus, we select two views that differ from each
other as much as possible. Specifically, we evaluate view angles
72∘180∘  and 18∘108∘  in the gallery set. In other words, we make

sure that we have gallery data captured from one frontal-view and
one lateral-view. Tables 3 and 4 tabulate the results, along with the
baseline performance. Baseline_1D refers to PCA + LDA, while
Baseline_2D refers to 2D PCA + LDA. The matching accuracy
values for Baseline_1D and Baseline_2D are the average of each
corresponding row in Tables 1 and 2, respectively. When gallery
data from two views are available, OViFS outperforms the baseline
framework by ∼28%, on average. In Table 3, note that when the
probe data are at 0∘ or 36∘, OViFS outperforms the original ViFS by
2%. The underlying reason for this improvement is that the
minimiser of the original ViFS for 0∘ is w^

0 = {0.49, 0.47}, and
∥ w^

0 ∥ = 0.96, thus the reconstructed gallery features do not align
with the probe features. By normalising w^

0, as in (5),
w^

0 = {0.51, 0.49} with ∥ w^
0 ∥ = 1.00. The improvement attained

for the probe data at 36∘ can be explained in the same way. These
results suggest that the proposed feature scaling method works

effectively when the original ViFS minimiser fails to retain the
same feature scale. 

We also observe identical improvements when gallery data from
three view angles are available. Let us denote this case by ViFS1_3
for the original ViFS and by OViFS1_3 for the improved ViFS.
Table 5 tabulates results for gallery view angles 72∘, 126∘, 180∘ .
Note that the feature scaling method manages to improve the
recognition accuracy for the 0∘ view angle from 84.00 to 88.00%.
For this view angle, the minimiser of the original ViFS is
w^

0 = {0.23, 0.45, 0.29}, and ∥ w^
0 ∥ = 0.97, which represents a

situation similar to the one explained before. It is interesting to
note the results for view angles 0∘, 18∘ and 144∘ in Tables 3 and 5. It
is well known that the frontal and back view GEIs have greater
variation with other GEIs. The additional gallery data, i.e. the 126∘

view angle, strengthens the reconstructed features for other views
(except for the front view – 0∘), thus improving the overall
performance. 

Table 6 tabulates the highest accuracy that OViFS1_3 can
achieve with gallery data from view angles 18∘, 108∘, 180∘ . The
average accuracy over all 11 views reaches 99.27%, with very
good results for views angles 0∘, 144∘ and 162∘. 

As expected, the performance of our improved ViFS increases
as the number of different view angles are available in the gallery
set, as depicted in Fig. 3. Note that OViFS1_2 achieves the poorest
performance, especially for the view angles that are the most
different from the two available view angles in the gallery set.
OViFS1_3 achieves a high accuracy across all views, while the
performance of OViFS1_4, OViFS_5 and OViFS_6 is very similar
and the best. Therefore, one can conclude that if gallery data
contains samples from more than three different view angles that
are widely spread, our improved ViFS has a very good

Table 2 Cross-view matching accuracy (%) using 2D PCA + LDA on the CASIA B dataset
G
P 0∘, % 18∘, % 36∘, % 54∘, % 72∘, % 90∘, % 108∘, % 126∘, % 144∘, % 162∘, % 180∘, %
0∘ 98.00 86.00 72.00 36.00 18.00 22.00 22.00 24.00 32.00 60.00 74.00

18∘ 94.00 98.00 94.00 72.00 34.00 22.00 34.00 48.00 54.00 74.00 74.00

36∘ 76.00 98.00 98.00 96.00 78.00 58.00 52.00 72.00 76.00 64.00 52.00

54∘ 46.00 64.00 96.00 98.00 94.00 94.00 82.00 78.00 70.00 54.00 40.00

72∘ 30.00 38.00 72.00 86.00 100.00 100.00 98.00 80.00 58.00 32.00 24.00

90∘ 24.00 28.00 40.00 78.00 100.00 100.00 100.00 80.00 48.00 34.00 18.00

108∘ 26.00 32.00 48.00 80.00 100.00 100.00 100.00 98.00 78.00 38.00 24.00

126∘ 30.00 68.00 80.00 82.00 96.00 94.00 96.00 98.00 98.00 72.00 42.00

144∘ 38.00 64.00 72.00 70.00 72.00 70.00 80.00 98.00 96.00 96.00 60.00

162∘ 70.00 74.00 68.00 48.00 42.00 28.00 40.00 66.00 80.00 100.00 94.00

180∘ 82.00 64.00 60.00 28.00 20.00 20.00 18.00 32.00 46.00 92.00 100.00
 

Table 3 Recognition accuracy (%) of ViFS. Feature enhancer: PCA + LDA. Views available in the gallery set: 72∘ and 180∘

Gallery 72∘, 180∘ Average, %
Probe 0∘, % 18∘, % 36∘, % 54∘, % 72∘, % 90∘, % 108∘, % 126∘, % 144∘, % 162∘, % 180∘, %
Baseline_1D 53.09 72.73 84.18 79.45 68.18 61.09 69.27 80.55 76.36 68.91 53.45 69.75
Baseline_2D 49.45 63.45 74.55 74.18 65.27 59.09 65.82 77.82% 74.18 64.55 51.09 65.40
ViFS1_2 88.00 90.00 96.00 100.00 100.00 100.00 100.00 98.00 92.00 100.00 100.00 96.73
OViFS1_2 90.00 90.00 98.00 100.00 100.00 100.00 100.00 98.00 92.00 100.00 100.00 97.09
The bold values indicates the values that outperform the previous works.
 

Table 4 Recognition accuracy (%) of ViFS. Feature enhancer: PCA + LDA. Views available in the gallery set: 18∘ and 108∘

Gallery 18∘, 108∘ Average, %
probe 0∘, % 18∘, % 36∘, % 54∘, % 72∘, % 90∘, % 108∘, % 126∘, % 144∘, % 162∘, % 180∘, %
ViFS1_2 92.00 98.00 98.00 100.00 98.00 98.00 100.00 100.00 96.00 90.00 70.00 94.55
OViFS1_2 92.00 98.00 98.00 100.00 100.00 98.00 100.00 100.00 96.00 90.00 70.00 94.73
The bold values indicates the values that outperform the previous works.
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performance across all views, i.e. it achieves robust view-invariant
gait recognition. 

5.1.2 Evaluation of different eigenvector ratios: We evaluate
the effect of using different eigenvector ratios for the feature
enhancers on the improved ViFS. This evaluation assumes that
gallery data from three views angles are available: 18∘, 108∘, 180∘ .
For the case of PCA + LDA, denoted by OViFS1_3, the evaluated
eigenvector ratios, e_ratio, are {0.8, 0.9, 0.95, 0.99}. Table 7
tabulates these results. As e_ratio increases, the performance
improves significantly, indicating that a sufficient number of
eigenvectors are required to preserve useful information from the
original feature space. For the case of 2D PCA + LDA, denoted by
OViFS2_3, the evaluated eigenvector ratios are
e_ratio ∈ {0.7, 0.8, 0.85, 0.9, 0.95}. Table 8 tabulates these results.
Differently from the results presented in Table 7, the average
performance of OViFS2_3 has very small variance for different
values of e_ratio. Note that when e_ratio is set to 0.95 or higher,
the performance drops, indicating that the additional eigenvectors
might introduce redundant information to the feature subspace,
thus decreasing the performance. One can conclude that OViFS2_3
has a higher tolerance to this parameter change, thus providing a
more stable performance than OViFS1_3. However, a well-
adjusted OViFS1_3 can achieve higher accuracy, which may be

suitable for tasks under controlled environments. Another benefit
of using OViFS2_3 is the low computational cost. We evaluate
both OViFS1_3 and OViFS2_3 on a laptop with Intel i7–6820HK
and DDR4 16 GB memory. The average training time for
OViFS1_3 is 51.19 s, while OViFS2_3 takes 1.57 s, ∼32 times
faster than OViFS1_3. Therefore, PCA + LDA is suitable for high
accuracy, while 2D PCA + LDA is suitable for real-time processing
tasks. 

5.1.3 Evaluation of different dataset partitions: We evaluate the
influence of dataset partition on the proposed framework using
OViFS1_3 with view angles 18∘, 108∘, 180∘ . It is well known that
for machine learning approaches, including the adopted subspace
learning method, the amount of available training data has a huge
impact on the performance. Furthermore, different dataset partition
strategies are adopted by the state-of-the-art view-invariant
methods, e.g. Wu et al. [22] evaluate the performance of CNNs
with 74 subjects for training, and 50 for testing (74–50, hereafter),
and with 24 subjects for training, and 100 for testing (24–100,
hereafter). Therefore in this section, we evaluate OViFS using
different dataset partitions.

Table 9 tabulates results for three cases: Training # 24, Training
# 34 and Training # 44, where the number indicates the number of
subjects used for training the framework. Note that when we
reduce the number of training samples from 74 to 24, the average

Table 5 Recognition accuracy ( of ViFS. Feature enhancer: PCA + LDA.
Gallery 72∘, 126∘, 180∘ Average, %
probe 0∘, % 18∘, % 36∘, % 54∘, % 72∘, % 90∘, % 108∘, % 126∘, % 144∘, % 162∘, % 180∘, %
ViFS1_3 84.00 96.00 98.00 98.00 100.00 100.00 100.00 98.00 96.00 100.00 100.00 97.27
OViFS1_3 88.00 96.00 98.00 98.00 100.00 100.00 100.00 98.00 96.00 100.00 100.00 97.64
The bold values indicates the values that outperform the previous works.
Views available in the gallery set: 72∘, 126∘ and 180∘.

 

Table 6 Recognition accuracy (%) of ViFS. Feature enhancer: PCA + LDA.
Gallery 18∘, 108∘ and 180∘ Average, %
probe 0∘, % 18∘, % 36∘, % 54∘, % 72∘, % 90∘, % 108∘, % 126∘, % 144∘, % 162∘, % 180∘, %
ViFS1_3 96.00 98.00 98.00 100.00 98.00 98.00 100.00 100.00 98.00 98.00 100.00 98.55
OViFS1_3 100.00 98.00 98.00 100.00 98.00 98.00 100.00 100.00 100.00 100.00 100.00 99.27
The bold values indicates the values that outperform the previous works.
Views available in the gallery set: 18∘, 108∘ and 180∘

 

Fig. 3  Recognition rates of the proposed improved ViFS when data from various view angles are available in the gallery set
 

Table 7 Recognition accuracy (%) of OViFS for different values of e_ratio. Feature enhancer: PCA + LDA. No. views available:
3 (18∘, 108∘ and 180∘)
Gallery 18∘, 108∘, 180∘ Average, %
probe 0∘, % 18∘, % 36∘, % 54∘, % 72∘, % 90∘, % 108∘, % 126∘, % 144∘, % 162∘, % 180∘, %
e_ratio = 0.8 32.00 88.00 68.00 64.00 42.00 78.00 92.00 52.00 52.00 54.00 90.00 64.73
e_ratio = 0.9 70.00 96.00 94.00 84.00 80.00 96.00 96.00 90.00 94.00 90.00 98.00 89.82
e_ratio = 0.95 88.00 98.00 96.00 98.00 94.00 96.00 98.00 94.00% 96.00 98.00 100.00 96.00
e_ratio = 0.99 100.00 98.00 98.00 100.00 98.00 98.00 100.00 100.00 100.00 100.00 100.00 99.27
The bold values indicates the values that outperform the previous works.
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accuracy drops from 99.27% (see Table 6) to 93.36%, which is
mainly caused by the poor recognition accuracy on probe data at
72∘. However, as the number of training samples increases to 34,
the accuracy on the 72∘ probe data increases to over 90%. One can
then conclude that the poor accuracy of Training # 24 on the 72∘

view angle is due to the lack of sufficient good quality training data
for this view angle, i.e. noisy data may be present causing
overfitting. However, if the training set is not badly affected by
noise, even with a small amount of training samples, the proposed
framework can still attain a reliable performance, as the accuracy
for other view angles is relatively high. 

Fig. 4 shows the variation on the average performance of
OViFS1_3 across all views when the number of training samples
varies from 24 to 74. In general, our proposed framework is robust
to training set size variation, and as expected, as the number of
training samples increase, the recognition rate increases. 

5.1.4 Comparison with the state of the art: Finally, we compare
our improved ViFS against the state-of-the-art multi-view gait
recognition approaches. Table 10 tabulates the recognition
accuracy of our improved ViFS and the recently proposed methods
by Tang et al. [8]. Tang_9 refers to the experiment that uses nine
training views from 18∘ to 162∘. Tang_4 refers to the experiment
that uses four training views, 36∘, 72∘, 108∘, 144∘ . It is important to
note that no results for the 0∘ and 180∘ view angles are reported in
their work. We use four different settings for comparison: 

OViFS1_3: PCA + LDA, e_ratio = 0.99, available views: 18∘,
72∘ and 162∘.

OViFS1_2: PCA + LDA, e_ratio = 0.99, available views: 72∘

and 162∘.
OViFS2_3: 2D PCA + LDA, e_ratio = 0.9, available views: 18∘,

72∘ and 162∘.
OViFS2_2: 2DPCA + LDA, e_ratio = 0.9, available views: 18∘

and 108∘.

Table 8 Recognition accuracy (%) of OViFS for different values of e_ratio. Feature enhancer: 2D PCA + LDA. No. of views
available: 3 (18∘, 108∘ and 180∘)
Gallery 18∘, 108∘, 180∘ Average, %
probe 0∘, % 18∘, % 36∘, % 54∘, % 72∘, % 90∘, % 108∘, % 126∘, % 144∘, % 162∘, % 180∘, %
e_ratio = 0.7 96.00 98.00 98.00 98.00 98.00 100.00 100.00 100.00 98.00 98.00 100.00 98.55
e_ratio = 0.8 98.00 98.00 96.00 98.00 98.00 100.00 100.00 100.00 98.00 98.00 100.00 98.55
e_ratio = 0.85 98.00 98.00 96.00 98.00 98.00 100.00 100.00 100.00 98.00 98.00 100.00 98.55
e_ratio = 0.9 98.00 98.00 98.00 96.00 100.00 100.00 100.00 100.00 98.00 100.00 100.00 98.91
e_ratio = 0.95 94.00 98.00 96.00 94.00 96.00 100.00 100.00 100.00 98.00 98.00 100.00 97.64
The bold values indicates the values that outperform the previous works.
 

Table 9 Recognition accuracy (%) of OViFS with different dataset partition strategies. Feature enhancer: PCA + LDA. No. of
views available: 3 (18∘, 108∘ and 180∘)
Gallery 72∘, 126∘, 180∘ Average, %
probe 0∘, % 18∘, % 36∘, % 54∘, % 72∘, % 90∘, % 108∘, % 126∘, % 144∘, % 162∘, % 180∘, %
Training # 24 88.00 97.00 98.00 96.00 77.00 97.00 99.00 96.00 87.00 93.00 99.00 93.36
Training # 34 97.78 98.89 100.00 94.44 92.22 98.89 98.89 100.00 92.22 94.44 98.89 96.97
Training # 44 96.25 100.00 100.00 97.50 95.00 98.75 98.75 98.75 91.25 98.75 98.75 97.61

 

Fig. 4  Recognition rate of OViFS1_3. Scenario 1 corresponds to gallery view angles {72∘, 126∘, 180∘}. Scenario 2 corresponds to gallery view angles
{18∘, 108∘, 180∘}

 
Table 10 Recognition accuracy (%) of OViFS and Tang et al.’s methods [8]
Method 18∘, % 36∘, % 54∘, % 72∘, % 90∘, % 108∘, % 126∘, % 144∘, % 162∘, % Average, %
Tang_9 94.00 98.00 99.00 98.00 99.00 98.00 98.00 98.00 93.00 97.30
Tang_4 91.00 98.00 92.00 98.00 94.00 98.00 93.00 98.00 90.00 94.70
OViFS1_3 98.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.78
OViFS2_3 98.00 98.00 100.00 100.00 100.00 100.00 98.00 98.00 100.00 99.11
OViFS1_2 92.00 98.00 98.00 100.00 100.00 100.00 98.00 100.00 100.00 98.44
OViFS2_2 92.00 98.00 98.00 100.00 100.00 100.00 98.00 100.00 100.00 98.44
OViFS1_4 99.00 100.00 94.00 99.00 93.00 89.00 98.00 97.00 94.00 95.89
The bold values indicates the values that outperform the previous works.
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OViFS1_4: PCA + LDA, e_ratio = 0.99, available views: 36∘,
72∘, 108∘ and 144∘.

From Table 10, one can observe that OViFS achieves higher
accuracy, while requiring less view angles in the gallery set
compared to Tang et al.’s work. Note that for the three-view
setting, PCA + LDA achieves higher accuracy than 2D PCA + 
LDA, on average; while in the two-view setting, both attain
identical average results.

Table 11 tabulates the recognition accuracy of OViFS_2 and
different state-of-the-art methods using a 24–100 dataset partition
with a gallery view angle of 54∘ and probe data with view angles of
36∘, 72∘ , 18∘, 90∘  and 0∘, 108∘ . Table 12 tabulates the

recognition accuracy for the case of a gallery view angle of 54∘ and
probe data with view angles of {108∘, 144∘}, {90∘, 162∘} and
{72∘, 180∘}. In these tables, Zhang et al. (1) refers to the feature
level fusion adopted by [19], Zhang et al. (2) refers to the score-
level fusion from the same work, and Zhang et al. (3) refers to their
multi-view DPLCR (DPLCR is the acronym of discriminative
projection with list-wise constraints with rectification, which is the
framework proposed by Zhang et al. in their paper [30]. In their
paper its performance reported on the mainstream datasets is the-
state-of-the-art.). From these two tables, one can observe that
OViFS1_2 outperforms the state-of-the-art methods. Let us recall
that ViFS is designed to match gallery data from multiple view

angles with single-view angle probe data. However, it is possible
for ViFS to work with the opposite situation, since the feature
selection is a feature mapping process from a multi-view set to a
single-view template. Note that OViFS1_2 is also more robust to
large view angle variances according to the tabulated results. For
example, in Table 11, when the view angle of the gallery data is 54∘

and the view angles of the probe data are {18∘, 90∘}, our framework
outperforms Zhang et al.'s method by 8%. In Table 12, when the
view angle of the gallery data is 126∘ and the view angles of the
probe data are {72∘, 180∘}, OViFS_2 outperforms other methods by
up to 12%. 

5.2 Experiments on the OU-ISIR LP dataset

The OU-ISIR large population dataset includes more than 4000
subjects, each recorded using cameras from four view angles: 55∘,
65∘, 75∘, and 85∘. Among all the datasets commonly used for gait
recognition evaluation, this dataset is one of the largest in terms of
the number of subjects, thus it is more statistically reliable for
performance evaluation. According to the existing evaluation
protocols [21, 29, 30], a common experiment setting is to use a
sub-set of 1912 subjects, which is divided into two groups, where
956 subjects are used for training and the rest for testing. We refer
to this subset as the OU-ISIR LP dataset in the following
discussions and results. As shown in Section 5.1, our improved
ViFS when used with 2D PCA + LDA attains a strong performance
on the CASIA B dataset can be trained faster and is less affected by
parameters (e_ratio values). Hence, we focus here on evaluating
OViFS2.

5.2.1 Cross-view evaluation using 2D PCA + LDA: Table 13
tabulates the recognition accuracy using 2D PCA + LDA (without
OViFS) on the OU-ISIR LP dataset. The purpose of these results is
to set a baseline to measure the improvements attained by OViFS2.
From this table, one can observe than when the view angle
difference between gallery and probe data is small (e.g. 10∘ or less),
2D PCA + LDA achieves a high accuracy, close to the identical-
view matching results. However, when the view angle difference is
larger than 20∘, the accuracy decreases fast. 

5.2.2 Multi-view evaluation: We evaluate OViFS2 for multi-view
matching on the OU-ISIR LP dataset. We use four views, 55∘, 65∘,
75∘ and 85∘, to train OViFS2_4. Here, we compare the performance
of OViFS2_4 with two CNN-based approaches proposed by Wu et
al. [22] and Shiraga et al. [21]. As done in [21, 22], five-fold cross-
validations are employed to reduce the effect of randomness.
Specifically, the training and testing sets (each contains 956
subjects) are randomly selected five times; each time we record the
recognition accuracy, and the final accuracy is the average of the
five experiments.

Table 14 tabulates the recognition accuracy (%) of OViFS2_4
and the CNN-based approaches. Wu et al. (i) refers to the case of
identical-view matching, while Wu et al. (a) is the average
matching accuracy of the gallery view angles with a certain probe
view angle. The same notations apply to Shiraga et al.’s method.
We notice that Wu et al.’s method achieves the highest accuracy
for identical-view matching, which confirms the effectiveness of
CNN to extract discriminative features, especially when sufficient
number of training samples is available. Shiraga et al.’s method
uses a shallower network than that used by Wu et al., and it does
not use the pair-image approach to train the network, thus its
performance is lower than that attained by Wu et al.’s method.
OViFS2_4 attains a very good performance. Moreover, its overall
performance is very close to that attained by Wu et al.’s method for
the identical-view scenario. It is worth mentioning that the training
and testing time of ViFS2_4 is shorter than that required by the
CNN-based approaches. 

6 Conclusion
In this paper, we introduced feature scaling to improve ViFS,
which is a feature selector that achieves robust view-invariant

Table 11 Recognition accuracy (%) of various methods for
54∘ gallery data. Two view angles are available in the probe
set
Gallery 54∘ Average, %
probe 36∘, 72∘, % 18∘, 90∘, % 0∘, 108∘, %
FT-SVD 72.00 55.00 33.00 53.33
GEI-SVD 95.00 74.00 40.00 69.67
GEI-SVR 99.00 80.00 54.00 47.67
co-clustering 99.00 83.00 57.00 79.67
Zhang et al. (1) 95.00 82.00 58.00 78.33
Zhang et al. (2) 97.00 83.00 68.00 82.67
Zhang et al. (3) 99.00 85.00 72.00 85.33
OViFS1_2 97.00 93.00 74.00 88.00
The bold values indicates the values that outperform the previous works.

 

Table 12 Recognition accuracy (%) of various methods for
126∘ gallery data. Two view angles are available in the probe
set
Gallery 126% Average, %
probe 108%,

144%, %
90%,

162%, %
72%,

180%, %
FT-SVD 86.00 63.00 32.00 60.33
GEI-SVD 97.00 72.00 35.00 68.00
GEI-SVR 98.00 88.00 54.00 80.00
Co-clustering 99.00 90.00 60.00 83.00
Zhang et al. (1) 97.00 85.00 60.00 80.67
Zhang et al. (2) 99.00 89.00 69.00 85.67
Zhang et al. (3) 99.00 90.00 72.00 87.00
OViFS1_2 97.00 95.00 84.00 92.00
The bold values indicates the values that outperform the previous works.

 

Table 13 Cross-view recognition accuracy (%) of 2D PCA 
+ LDA
Gallery Average, %
Probe 55∘, % 65∘, % 75∘, % 85∘, %
55∘ 90.4 89.9 73.8 53.8 77

65∘ 72.2 94.8 93.1 79.6 84.9

75∘ 44.1 92.1 95.5 93.7 81.4

85∘ 35.3 76.4 94.5 96.9 75.7
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recognition by reconstructing gallery data at different view angles
to be matched with single view angle probe data. The
improvements introduced to ViFS in this paper normalise the
associated minimiser so that the reconstructed gallery features are
aligned with the probe features. To enhance the reconstructed
features, our improved ViFS, denoted by OViFS, employs PCA + 
LDA. We evaluated OViFS with a wide range of gallery view
angles, for a different number of eigenvectors. Our results showed
that for high precision tasks, OViFS with PCA + LDA is most
appropriate, which can attain an average recognition accuracy of
99% with gallery data from three widely spread view angles. For
real-time processing, our results showed that OViFS with 2D PCA 
+ LDA is the best choice due to its small sensitivity to parameter
changes and low computational cost. Our results also showed that
OViFS achieves a better performance than the state-of-the-art
methods, while requiring less available gallery data from different
view angles. OViFS has the potential to be used in practical
scenarios when more than two cameras are available, such as in
border control, smart homes and surveillance systems.
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