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a b s t r a c t

The relationship between covert shift of attention and the oculomotor system has been the

subject of numerous studies. A widely held view, known as Premotor Theory, is that covert

attention depends upon activation of the oculomotor system. However, recent work has

argued that Premotor Theory is only true for covert, exogenous orienting of attention and

that covert endogenous orienting is largely independent of the oculomotor system. To

address this issue we examined how endogenous and exogenous covert orienting of

attention was affected when stimuli were presented at a location outside the range of

saccadic eye movements. Results from Experiment 1 showed that exogenous covert ori-

enting was abolished when stimuli were presented beyond the range of saccadic eye

movements, but preserved when stimuli were presented within this range. In contrast, in

Experiment 2 endogenous covert orienting was preserved when stimuli appeared beyond

the saccadic range. Finally, Experiment 3 confirmed the observations of Exp.1 and 2. Our

results demonstrate that exogenous, covert orienting is limited to the range of overt

saccadic eye movements, whereas covert endogenous orienting is not. These results are

consistent with a weak, exogenous-only version of Premotor Theory.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Every day we are faced with numerous visual inputs that our

visual system needs to filter in order to select the information

of interest. This selection can be driven endogenously, by our

current goals and desires, or exogenously, in response to

salient visual events in the environment (Posner & Cohen,

1980). Under normal circumstances this visual selection is

achieved by making a saccadic eye movement that places the
hology, Durham Universi
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object or location of interest on the fovea, thus greatly

enhancing the perception of fine detail. These ‘overt’ shifts of

attention are always preceded by transient enhancement of

perception at the saccade goal which is only observed in the

moments before saccade onset (Deubel & Schneider, 1996;

Shepherd, Findlay, & Hockey, 1986). This process of target

selection that precede the saccade triggering can be referred

to as ‘selection for action’ processes (Schneider, 1995;

Schneider & Deubel, 2002). However, it is also possible to
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orient attention without making any overt eye movements at

all (Posner, 1980). In this case, the eyes remain fixated and the

‘spotlight’ of attention is moved around independently of

where one is looking. These ‘covert’ shifts of attention appear

functionally similar to overt attention shifts, in that they allow

the viewer to selectively process task-relevant information.

However, the extent to which covert and overt attention rely

on similar cognitive and neural mechanisms is controversial.

It is broadly agreed that the two systems are tightly

coupled (Awh, Armstrong,&Moore, 2006; Corbetta et al., 1998;

Smith & Schenk, 2012). For example, saccadic eye movements

are preceded by a mandatory ‘presaccadic’ shift of attention

(Deubel & Schneider, 1996; Hoffman & Subramaniam, 1995;

Kowler, Anderson, Dosher, & Blaser, 1995; Shepherd et al.,

1986; Van der Stigchel and Theeuwes, 2005) and saccades

suppress processing at non-target distractors location (Khan,

Blohm, Pisella, & Munoz, 2015). Furthermore shifts of atten-

tion affect the trajectory of saccadic eye movements, consis-

tent with the idea that shifts of attention activate a saccade

plan (Sheliga, Riggio, & Rizzolatti, 1994; Van der Stigchel and

Theeuwes, 2005). This association between saccade control

and attention can also be observed at the neural level. Eye

movements and covert shifts of attention appear to activate

similar networks of brain areas, including the Frontal Eye

Fields (FEF), the Lateral Intraparietal cortex and the Superior

Colliculi (SC) (Andersen, 1989; Beauchamp, Petit, Ellmore,

Ingeholm, & Haxby, 2001; Corbetta et al., 1998; de Haan,

Morgan, & Rorden, 2008; Ignashchenkova, Dicke, Haarmeier,

& Thier, 2004; Nobre, Gitelman, Dias, & Mesulam, 2000; Perry

& Zeki, 2000), and lesions to these brain areas are associated

with deficits of both covert orienting and saccade control

(Grosbras & Paus, 2002; Muggleton, Juan, Cowey, & Walsh,

2003; Müri, Hess, & Meienberg, 1991; Muri, Vermersch,

Rivaud, Gaymard, & Pierrot-Deseilligny, 1996; Smith, Jack-

son, & Rorden, 2005, 2009a; Thickbroom, Stell, & Mastaglia,

1996). Moreover, electrical stimulation of FEF neurons in the

non-human primate can elicit fixed-vector saccadic eye

movements, and sub-threshold stimulation of the same

neurons significantly enhanced perceptual discrimination at

the saccade goal, even though the eyes were still centrally

fixated (Moore, Armstrong, & Fallah, 2003; Moore & Fallah,

2001).

However there is less consensus about the precise nature

of this coupling. One proposal, originally known as the Ocu-

lomotor Readiness Hypothesis (OMRH) (Klein, 1980a) and later

as the Premotor Theory of Attention (Rizzolatti, Riggio,

Dascola, & Umilta, 1987; Rizzolatti, Riggio, & Sheliga, 1994)

holds that covert attention is entirely dependent on the ocu-

lomotor system, such that a covert shift of attention depends

upon the activation of a saccade plan. Recently, Belopolsky

and Theeuwes (2012) proposed a revision to Premotor the-

ory, arguing that although saccade preparation is required for

orienting of spatial attention, the maintenance of attention

may not be associated with sustained activation of a saccade

plan. In contrast, Schneider and Deubel have argued for an

opposite direction of causation, proposing that attentional

selection is a necessary precondition for the programming of

accurate saccades (Schneider, 1995; Schneider & Deubel,

2002). Furthermore, Klein entirely rejected the idea of a

causal link between saccade preparation and covert orienting,
based on the observation that preparing but cancelling a

saccade does not elicit a shift of attention (Klein, 1980b; Klein

& Pontefract, 1994a) (see also Born, Mottet, & Kerzel, 2014).

Similar to Klein, our previous experiments have shown some

behavioural and neuropsychological dissociations between

covert attention and oculomotor control (Smith, Ball, &

Ellison, 2014; Smith, Ball, Ellison, & Schenk, 2010; Smith,

Rorden, & Jackson, 2004; Smith, Schenk, & Rorden, 2012).

However, we proposed that the relationship between covert

attention and oculomotor control depends on the mode of

covert orienting being studied. Specifically, we have argued

that exogenous attention (the rapid, unconscious but short-

lived facilitation triggered by salient objects in the periphery)

is tightly coupled to oculomotor control, whereas endogenous

attention (the slow, volitional orienting to task-relevant lo-

cations) can be deployed independently of oculomotor control

(Smith & Schenk, 2012).

The idea that exogenous covert orienting is more tightly

coupled to oculomotor control than endogenous covert

attention is consistent with a number of neuropsychological

studies. Firstly, patients suffering from Progressive Supra-

nuclear Palsy, a neurological disease characterised by

destruction of the brainstem saccade centres which leads to

paralysis of vertical gaze (Steele, Richardson, & Olszewski,

1964), experience impaired covert orienting along the verti-

cal axis which is more severe for exogenous orienting than

endogenous orienting (Rafal, Posner, Friedman, Inhoff, &

Bernstein, 1988). Secondly, Smith et al. (2004) reported case

of A.I who suffered from chronic ophthalmoplegia, a paralysis

of the extraocular muscles which made her unable to make

any eye movements. They observed a deficit of covert, exog-

enous attention with intact endogenous orienting. Similarly,

Gabay, Henick and Gradstein (2010) demonstrated that pa-

tients with Duanes Syndrome (a developmental disorder

associated with an inability to make abductive eye-

movement) have impaired exogenous orienting but pre-

served endogenous orienting. Interestingly, Craighero, Carta,

and Fadiga (2001), reported the case of eight patients with a

chronic ophthalmoplegia caused by VIth nerve palsy that

showed disrupted endogenous orienting, perhaps indicating

that the decoupling of endogenous attention form oculomotor

control may demand more time.

Consistent with the idea that attention could not be shifted

to a location that cannot be reached with an eye-movement,

Craighero, Nascimben, and Fadiga (2004) imposed an acute

disruption of the oculomotor system by asking healthy par-

ticipants to monocularly look at a screen rotated by 40� into

the temporal hemifield. This manipulation is known to

disrupt saccade programming (Boon, Theeuwes,& Belopolsky,

2017). Participants were presented with an informative foveal

cue (a line on either the left or right of fixation) that accurately

indicated the position of the upcoming target in 70% of the

trials. The target could appear either in the nasal hemispace

(i.e., at a position that can potentially be the goal of a saccadic

eye-movement) or in the temporal hemispace (i.e., at a posi-

tion that cannot become the goal of a saccadic eye-

movement). As with the VIth nerve palsy patients, the atten-

tional benefits of the valid cuewas reducedwhen stimuli were

presented in the temporal hemispace but not when presented

in the nasal hemispace. The authors concluded that covert

https://doi.org/10.1016/j.cortex.2018.11.007
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endogenous attention and saccadic eye movements share the

same ‘stop limit’, which is the range of eye movements, also

referred to Effective OculoMotor Range (EOMR) and is usually

estimated to be around þ/� 40� (Guitton and Volle, 1987).

However, using the same paradigm we observed a dissocia-

tion between saccade planning and endogenous covert

attention (Smith et al., 2012). In our study eye-abduction led to

an impairment of exogenous covert orienting to a peripheral

cue, but did not affect endogenous attention directed by a

central foveal cue. We speculated that this discrepancy in the

results occurred because Craigheros' cue was lateralised to

one or other side of fixation, and thus has a spatial component

that may have engaged the oculomotor system. Consistent

with this idea we showed that eye-abduction affected arrow

cueing, but somewhat surprisingly, not gaze-cueing (Morgan,

Ball, & Smith, 2014). Furthermore, when we applied eye-

abduction during visual search we found that feature search

in the temporal hemispacewas disrupted, whereas inefficient,

conjunction searches that rely on endogenous attentional

processes are unaffected (Smith et al., 2010, 2014). Together,

the neuropsychological and behavioural works seem consis-

tent with the view that covert exogenous orienting of atten-

tion is dependent on the oculomotor system whereas covert

endogenous orienting is largely independent of the oculo-

motor system.

An issue regarding the interpretation of both eye abduction

paradigm and the patient studies is that in both cases there is

abnormal eye-proprioception. Proprioception is essential for

providing information about the initial motor location and is

critical for controlling many aspects of upcoming planned

movements (Paap & Ebenholtz, 1976). In order to execute an

accurate eye movement, the eye-muscles communicate with

the brain areas responsible for the oculomotor planning. In

the case of eye-abduction, participants are asked to turn the

eye by 40� into the temporal hemispace, thus the lateral rectus

muscle is restricted and the medial rectus muscle tense,

which leads to an abnormal proprioceptive signal. Eye pro-

prioception is thought to play a role in spatial attention, for

example Balslev, Newman, and Knox (2012) showed that

extraocular muscles modulate the deployment of visual

attention and Balslev, Gowen, and Miall (2011), using TMS,

reported that eye proprioception influences the spatial dis-

tribution of attention resources. It has been proposed that the

attention map incorporates eye-proprioception in order to

align the retinotopic representations to the physical locations

(Odoj & Balslev, 2016), suggesting that a distortion of propri-

oceptive signal would cause a systematic shift of the locus of

attention. Thus, abnormal oculoproprioception, rather than

disrupted saccade programming, could explain why the abil-

ity to orient attention is reduced in the case of eye-abduction

and ophthalmoplegia.

One way to address this issue is to examine covert ori-

enting to locations that can be seen, but are not directly

accessible by a saccadic eye movement. The range of saccadic

eye movements is very considerably smaller than the extent

of the visual field. Indeed, the EOMR is estimated to be ~40�

(Guitton andVolle, 1987), whereas the visual field extends to at

least 90� in the temporal field (Niederhauser & Mojon, 2002).

Here, we took advantage of this limitation on saccadic eye

movements using an adaptation of the Posner cueing task
where stimuli are presented in the far periphery but partici-

pant's eyes and trunk stay in their canonical, natural position.

This manipulation allowed us to present stimuli beyond the

range of eye movements without the potential confounds

associated with eye-abduction. If exogenous but not endoge-

nous orienting of attention is linked to the oculomotor sys-

tem, covert, endogenous shift of attention should be

unaffected by the eccentricity of the stimuli, whereas covert,

exogenous orienting should be impaired when stimuli appear

beyond the range of eye movements.

Three experiments were designed to test these predictions.

Experiment 1 tested exogenous shift of attention whereas

Experiment 2 tested endogenous shift of attention. Experi-

ment 3 was designed to confirm the observations of Exp.1 and

2 using a within-participants design. In all three experiments

the stimuli (placeholder and target) could appear at 2 different

eccentricities (Below vs Beyond the EOMR) and at different

stimulus-onset-asynchrony (SOAs). We used a Presentation in

Extreme Periphery paradigm (PEP) as we presented stimuli at

extremely unusual large eccentricities (up to 44�). Note that

before starting each experiment we ran two blocks of trials in

order to assess each participant's very own eye movement

range, separately for nasal and temporal sides. This allowed

us to calculate placeholders' eccentricities for each participant

individually.
2. Establishing the effective oculomotor
range

Each individual that took part in Experiment 1 (n ¼ 25),

Experiment 2 (n ¼ 11) and Experiment 3 (n ¼ 12) completed a

simple goal directed saccade task in order to measure their

effective oculomotor range (EOMR). Sample sizes for Experi-

ments 1 & 2 were based on previous studies examining the

effect of eye-abduction on covert attention (Craighero et al.,

2004; Smith et al., 2012). The sample size for Experiment 3

was established using an apriori power calculation. This first

task lasted about 30 min andwas performed at least 24 h prior

to the cueing task in order to allow the experimenter to

analyse the data and create the images for the cueing task.

During this first phase, participants were presented with a

discrimination target that could appear at different angular

positions on the horizontal axis, either to the left or to the

right of fixation. The EOMRwas calculated separately for nasal

and temporal visual field, as the temporal field extended

farther in the periphery compared to the nasal. Participants

performed the task monocularly with the dominant eye, the

non-dominant eye being patched (see Smith et al., 2014 for

procedure regarding eye-dominance assessment).

2.1. Method

2.1.1. Apparatus
Eye movements of the dominant eye were recorded using a

head-mounted EyeLink II (SR Research Ltd., Mississauga,

Ontario) at a sample rate of 500 Hz. Because of the large range

of eccentricities and the specifications of the eye-tracker, eye-

movements were recorded in pupil only mode. Stimuli were

generated using PsychoPy (Pierce, 2009) and saved as a jpeg.

https://doi.org/10.1016/j.cortex.2018.11.007
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Theywere displayed on a 32 inches LEDmonitor (BenQ) driven

by an NVIDIA GeForce GTX 750 Ti graphics board at a refresh

rate of 60 Hz. The resolution of the monitor was set at

2560 � 1440 pixels, which corresponded to physical di-

mensions of 708 mm wide by 398 mm high. At a viewing dis-

tance of 30 cm, the display occupied a viewing area of 99�

horizontally and 67� vertically.

2.1.2. Material and procedure
Each block of trials started after setting up the eye tracker and

running a calibration phase. During calibration, five dots were

presented successively on the screen, three dots on the hori-

zontal axis [i.e., (xdot1 ¼ 1280 pixels, ydot1 ¼ 720 pixels),

(xdot2 ¼ 905 pixels, ydot2 ¼ 720 pixels), (xdot3 ¼ 1655 pixels,

ydot3 ¼ 720 pixels)] and two dots on the vertical midline

[(xdot4 ¼ 1280 pixels, ydot4 ¼ 470 pixels), (xdot5 ¼ 1280 pixels,

ydot5 ¼ 970 pixels)].

Participants were asked to fixate very precisely at each dot

location, if fixations were correctly aligned with the calibra-

tion dots experimentwas started. Otherwise a new calibration

phase was initiated. As participants were asked to generate

very large eye-movements, there was a risk of eye-tracking

loss, it was thus important to have a correct calibration

before starting the experimental blocks.

A drift correction was performed at the beginning of each

trial; procedure is illustrated on Fig. 1. A fixation stimulus was

initially displayed on the computer screen; this consisted of a

fixation cross on a black background (.20� � .20�). After a

random time interval (400e1200 msec), the central cross was

removed and the target was displayed (gap of 0 msec).

The target was a circle shape (diameter .20�) filled with

black and grey gradient diagonal stripes orientated either

leftward or rightward (see Fig. 1 for target illustration). The
Fig. 1 e Sequence of events in the EOMR establishment task. Ea

fixation cross. Target was always presented on the horizontal m

accurately as possible the target and make an orientation discr
target was randomly presented at eight various possible ec-

centricities varying between 20� and 41� spaced by steps of 3�,
to the right or the left of the fixation cross, with side kept

constant within a block of trial. Participants were asked to

fixate the target as quickly and as accurately as possible and

perform an orientation discrimination task using a custom-

ized response box set with a TTL trigger. After a delay of two

seconds, a new trial began. Session was divided in two blocks

of 80 trials (10 repetitions per target eccentricity) and eachwas

preceded by a 10 trials practice block.

2.2. Data selection, results and analyses

Amplitude of the initial saccade following target onset was

considered for analysis, this corresponds to the difference

between the initial and the final eye position. Each individual

data set was analysed separately, however same exclusion

criteria were used for all participants. Trials were rejected

when (1) first saccade amplitude was of less than 2� (4.5% on

average across participants), (2) a blink occurred before or

after the saccade (1.1%), (3) the saccade was anticipatory (la-

tency less than 80 msec; 6.4%), (4) initial saccade was in the

opposite direction to the target or deviated too much from the

horizontal axis (8.4%) and (5) the average eye-position before

the saccade deviated from the fixation cross by more than 1�

in the horizontal direction (14.6%).

Analyses were achieved using R 3.0.3 (R Core Team, 2014),

data visualisation was performed with the package ggplot2

(Wickham, 2009).

2.2.1. Establishing the effective oculomotor range (EOMR)
Data were filtered to removed saccades with amplitude less

than 75% of the target eccentricity and saccades with an
ch trial started with a drift correction, followed by a central

eridian and participants were instructed fixate as

imination response.

https://doi.org/10.1016/j.cortex.2018.11.007
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amplitude greater than 25% of the target eccentricity. The

EMOR was defined as the point at which the mean saccadic

gain, defined as the ratio of the actual saccade amplitude to

the target eccentricity, dropped to .8 or below. The partici-

pantsmean saccade amplitude for targets at this position plus

2 standard deviationswas used to set the target position in the

Beyond condition. Their mean saccade amplitude minus 2 SD

in the 20� condition was used to set the target position in the

Below condition. Distribution of all participants’ saccade

amplitude for each target eccentricities are shown on Fig. 2

and the mean amplitudes are reported in Table 1.

We also looked at the frequency of corrective saccades,

which are saccades that are likely to happen after an inaccu-

rate primary saccade. After selection criteria (see Data selec-

tion) and across all our participants, 25% of the initial saccades

were followed by a corrective saccade in the same direction as

the target. Corrective saccades were mostly present when

target was presented at large eccentricities, as 32% of the

saccades made to a target presented a 41� were followed by a

corrective saccade. The proportion of corrective saccades and

their mean amplitude for each target eccentricity are shown

on Fig. 3.
1 Note that the eccentricity of 20� was used as a default value
when participants indicated that they were not able to fully see
the placeholder/target because it accidentally fell into their
blindspot. Due to the display restriction, 44� was the maximal
eccentricity at which we could present the cue/target. We used it
as a default value for four participants for whom the meanþ2sd
3. Experiment 1 e covert, exogenous
orienting

3.1. Method

3.1.1. Participants
Twenty five volunteers, between 18 and 28 years old (Mage¼ 19

years, 20 females); took part in Experiment 1. Participants

reported having normal vision and were all unaware of the

purpose of the experiment. Written informed consent was

gathered for all individuals and they received course credit for

participating. Studies were approved by the Department of

Psychology Research Ethics Committee and were conducted

in accordance with the BPS code of ethics. One participant

showed more than 40% of error rates and was excluded.

Another participant failed to maintain fixation so did not

complete the data collection.

3.1.2. Materials and procedure
3.1.2.1. STIMULI. The initial array comprised a fixation point

(“þ” sign, .20�) and two white placeholders (1 pixel thick, .50�

square contours) on a black background (<.10 cd/m2). The cue

was the appearance of a second contour with a thickness of 2

pixels around one of the two placeholders. The target was a

circle shape (.20�) filled with black and grey gradient diagonal

stripes (see Fig. 4 for example).

In order to equate proximal (Below EOMR) and distal

(Beyond EOMR) placeholders and target sizes were scaled in

accordance with the cortical magnification equation of

Rovamo and Virsu (1979). Both nasal (n) and temporal (t)

placeholder sizes were scaled according to the following two

formulas,

n ¼ p* [(1 þ .33*e) þ (.00007*e3)] (1)
t ¼ p* [(1 þ .29*e) þ (.000012*e3)] (2)

where p was the placeholder size and e was the placeholder

eccentricity. Placeholder/cue eccentricities ranged between

10� and 20� for the Below EOMR condition and between 30 and

44�1 for the Beyond EOMR condition. For example, a cue of .50�

will have a size of 2 � 2� when presented at 10� and a size of

6.5 � 6.5� when presented at 30�.

3.1.2.2. PERIPHERAL CUEING TASK. Each trial began with the pre-

sentation of a fixation point and placeholders for 1000 msec.

The cue then appeared at one of the peripheral locations for

100 msec. After a further delay of 0, 100, 200 or 500 msec, the

target appeared, this produced SOAs of 100, 200, 400 or

600 msec. The target remained visible until the manual

response was made.

On “Valid” trials, the target appeared at the previously cued

location (2/5 of trials) whereas on Invalid trials, the target

appeared contralateral to the cued location (2/5 of trials). Valid

and Invalid trials were interleavedwith catch trials, where the

cue appeared but without any target (1/5 of the total trials).

Reaction Times (RTs) were measured using a button box set

with a TTL trigger, participants were asked to press the upper

button when they detected a target being present in one of the

two placeholders and lower button when target was absent

(catch trials). Participants were instructed to maintain fixa-

tion, not to make any eye movements and to respond as fast

as possible upon target detection. After button response, a

black screenwas presented for 2000msec, before the next trial

to begin. Experimental procedure is presented on Fig. 4.

All the different conditions were manipulated within each

block of trial, 20 repetitions per valid/invalid condition and 10

repetitions for catch trials were assessed. This led to a total of

800 trials divided into ten blocks of 80 trials.

3.1.2.3. DATA SELECTION AND ANALYSES. Before analysing data,

trials were filtered and excluded if participants made a

detectable saccadic eye movement (i.e., amplitude of more

than 2�) which corresponds to 11.3% of the observations. Tri-

als with response time of less than 100msec were excluded as

they were considered as anticipations (4.5%) and outliers that

were more than 2.5 standard deviation greater than the in-

dividual's mean reaction time were removed (2.2%). Catch

trials were not analysed for our purpose and incorrect re-

sponses (i.e., participants wrongly detected the presence/

absence of the target) were discarded (.49%). Altogether these

criteria resulted in a total of 12.5% of trials rejected, leading on

average to 592 experimental trials per participant.

Mean manual response times (RTs) were calculated for

each participant and were then averaged across participants.

Previous studies using eye-abduction paradigm did not report

any significant difference between nasal and temporal di-

rections when participant's eyes were in their canonical
was larger than this maximum.

https://doi.org/10.1016/j.cortex.2018.11.007
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Fig. 2 e Distributions of first saccade amplitude (in degrees of visual angle) for Nasal (grey) and Temporal (black) target side

of presentation, separately for each target eccentricity for all individuals. Black dotted line represents the actual target

position. Amplitudes were grouped into 1� bins.

Table 1 e Mean saccade amplitude (in degrees of visual angle), and standard errors (in parentheses) as a function of target
eccentricity (20e41�).

Target eccentricity (degrees)

20 23 26 29 32 35 38 41

Mean Amplitude of the 1st Saccade (degrees) 18.9 21.1 23.2 24.8 26.3 27.1 28.5 29.3

(Standard Error) (.07) (.1) (.14) (.13) (.14) (.15) (.16) (.18)

c o r t e x 1 2 2 ( 2 0 2 0 ) 1 7 0e1 8 6 175
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Fig. 3 e Frequency of corrective saccades (grey bars) and

mean amplitude (black line) as a function of target

eccentricities. Note that for target eccentricities of 35� or

greater the first corrective saccade was not sufficiently

large to foveate the target.

c o r t e x 1 2 2 ( 2 0 2 0 ) 1 7 0e1 8 6176
position (Craighero et al., 2004; Smith et al., 2012, 2014), hence

data were collapsed across both directions for analysis. Note

that Rafal, Henik, and Smith (1991) did observe a naso-

temporal asymmetry in using a peripheral cueing task, but

their task required a manual localisation which confounded

the effects of covert attention with stimulus-response

compatibility effects.

Repeated measure ANOVA tested the RTs with placeholder

eccentricity (Below or Beyond), validity (valid or invalid) and

SOAs (100, 200, 400 or 600 msec) as factors. In case of a

violation of the assumption of sphericity (Mauchly's test of

sphericity), we used the Greenhouse-Geisser correction to

report the corrected degrees of freedom and p values. Signif-

icant effects were explored using Bonferroni corrected paired

sample t-tests, where the p value was multiplied by the

number of comparison. Statistical analyses were performed

using R 3.0.3 (R Core Team, 2014), anovas were conducted

using the ez package (Lawrence, 2011), and data visualisation

was performed with the package ggplot2.

3.2. Results & discussion

3.2.1. Initial fixation positon
To ensure that each participant was presented with the

placeholder at the accurate eccentricity, it was important that

they were correctly positioned at the centre of the screen at

the beginning of each trial. We thus checked the position of

the initial fixation relative to the fixation cross. Eyes were

mostly perfectly aligned with the centre of the screen, mean

deviation from the fixation cross remained very small, that is

.14� (range: �2.33� e 2.66�).

3.2.2. Manual reaction time
Repeated measure ANOVA revealed a main effect of cue ec-

centricity (F(1,22) ¼ 24.71, p < .001, h2
p ¼ .52), with participants

being on average longer in the Beyond (521msec) compared to

the Below (503 msec) condition. Cue validity did not show any

main effect (F(1,22) ¼ 1.33), however the interaction between

eccentricity and validity was significant (F(1,22)¼ 6.69, p¼ .02,
h2
p ¼ .23). Pairwise t-tests showed that the difference in mean

RT observed between Valid and Invalid condition was only

significant for Below EOMR condition (Invalid

Below¼ 508msec, SD¼ 153, Valid Below¼ 498msec, SD¼ 160,

t(22) ¼ 2.15, Bonferroni corrected p ¼ .025, Invalid

Beyond ¼ 520 msec, SD ¼ 154, Valid Beyond ¼ 523 msec,

SD ¼ 160, t(22) ¼ .66).

As can be seen on Fig. 5 mean RT varied with SOA

(F(2.56,56.4) ¼ 15.99, p < .001, 3¼ .78, h2
p ¼ .42), being gradually

shorter as the SOA increased, until 600 msec where it

increased slightly again. The t-test revealed that each SOA

condition only differed significantly from the 100 msec con-

dition (SOA 100: 532 msec, SD ¼ 154, SOA 200 ¼ 508 msec,

SD ¼ 156, t(22) ¼ 5.87, SOA 300 ¼ 498 msec, SD ¼ 153,

t(22) ¼ 9.38, SOA 600 ¼ 510 msec, SD ¼ 150, t(22) ¼ 3.34, Bon-

feronni corrected P values always <.001), indicating that the

mean RTs were systematically longer for the shorter SOA

condition. We did not observe any significant interaction be-

tween SOA and our two other factors (all Fs< ¼ 1.4).

3.2.3. Accuracy
When participants correctly detected the presence or absence

of a target the trialwas considered as correctwhereas trialwas

incorrect when they responded that the target was absent

while present. Here, accuracy refers to the percentage of cor-

rect responses. Across all participants accuracy was of 98.7%

(range: 95.77% - 99.88%). As accuracy was very high, we will

just report themeans for each condition separately. As shown

onTable 2, participantswere less accurate in the 600msec SOA

condition compared to the three other ones. This simplymight

be due to participant's expectation: as the SOA was very long,

they wrongly expected the absence of target, leading them to

make an incorrect response. The mean reaction time for

incorrect responses in the 600 msec SOA condition was

315 msec, which indicates that incorrect responses were

indeed due to anticipation. Accuracy did not vary with stimuli

eccentricity; hence participants correctly detected target

presence even if it was presented in the far periphery.

3.3. Discussion

In line with previous reports the present experiment showed

that stimuli presented outside the usual range of saccadic eye-

movements produce a deficit of exogenous/reflexive atten-

tion. Furthermore, it revealed that using amore natural set up,

like a Presentation in Extreme Periphery (PEP) paradigm, pro-

duced a similar deficit as the eye-abduction paradigm, sug-

gesting that this effect results from the limitations linked to

the oculomotor plan rather than any other motor constraints.

We did not observe an Inhibition of Return (IOR) either in

the Below or in the Beyond condition, although there was a

hint of an IOR in the 600 msec SOA in the Beyond condition.

This result was a bit surprising, given that our previous work

has found normal IOR effects beyond the EOMR (Smith,

Jackson & Rorden, 2009, Smith et al., 2004 although see

Michalczyk, Paszulewicz, Bielas, & Wolski, 2018 for a contrary

view) and Bao and colleagues report that IOR effects get larger

with increasing stimulus eccentricity (Bao, Lei, et al., 2013; Bao

& P€oppel, 2007; Bao, Wang, et al., 2013). One possibility is that

the lack of IOR reflects the difficulty of the task. IOR is known
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Fig. 4 e Sequence of events in the exogenous cueing condition for below (a) and beyond (b) the EOMR (see Materials and

Methods). Stimuli were presented on the horizontal meridian.
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to be highly sensitive to task difficulty, such that the onset of

IOR is delayed as task difficulty increases (Lupi�a~nez, Milliken,

Solano,Weaver,& Tipper, 2001). Themanual RTs we observed

were quite long for a detection task (~500msec), and it may be

that target detection in the far periphery is sufficiently diffi-

cult to push the onset of IOR back beyond the 600 msec SOA

we measured here.

These data demonstrate that covert, exogenous shifts of

attention are restricted to the effective oculomotor range,

consistent with previous evidence of a tight coupling between

exogenous attention and the oculomotor system. Experiment

2 was designed to test the hypothesis that covert, endogenous

orienting can be decoupled from oculomotor control, and

therefore should not be restricted to the effective oculomotor
range. To this end, we used the same methodology as pro-

posed by Craighero et al. (2004) but with a PEP paradigm

instead of eye-abduction.
4. Experiment 2: Endogenous covert
orienting

4.1. Method

4.1.1. Participants
Eleven volunteers, between 19 and 35 years old (Mage ¼ 21

years, all female) took part in Experiment 2. Participants re-

ported having normal vision and were all unaware of the

https://doi.org/10.1016/j.cortex.2018.11.007
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Fig. 5 eMeanmanual reaction time (RT) in ms as a function

of Stimulus Onset Asynchrony (SOA) and cue validity for

Below and Beyond the EOMR separately. Error bars

represent þ/¡ 1 standard error.

Table 2 e Mean detection accuracy in percentage as a
function of SOA, Eccentricity and Cue validity.

SOA (ms)

100 200 300 600

Below EOMR Valid 99.4 99.7 99.2 96.5

Invalid 99.8 99.6 99.6 97.4

Beyond EOMR Valid 99.4 98.9 99.1 95.9

Invalid 99.8 99.7 98.8 96.1

c o r t e x 1 2 2 ( 2 0 2 0 ) 1 7 0e1 8 6178
purpose of the experiment. Written informed consents were

gathered for all individuals and they received course credit for

participating.

4.1.2. Materials and procedure
Each trial began with the presentation of a fixation square

(.20�) and two placeholders (1 pixel thick .50� squares) on a

black background for 1000 msec. After this delay predictive

cues were presentedwhich consisted of a thin line attached to

the fixation box (.40�) for 300 msec. After cue appearance the

initial fixation screen was presented for 300 or 600 msec (SOA

of 600 or 900 msec). After this delay, the target, a circle filled

with black and grey lines was presented and remained visible

until manual response was made (see Fig. 6 for experimental

set up). In the target present experimental trials, the target

could appear at a previously cued position in 3/4 of the trials

(“valid” trials), and in 1/4 of the trials it could appear at the

opposite position (“invalid” trials). Valid and invalid trials

were filled with catch/no target trials. As in Experiment 1,

participants were instructed to maintain fixation, not to make

any eye movements. They were told to respond as fast as

possible to the target by pressing a button on a response box

set up with a TTL trigger and were not informed about cue

predictability before the study began. Thiswas followed by the

presentation of a black screen for 2000 msec, after this delay

the next trial began. All the different conditions were

manipulated within each block of trial, there were a total of

480 repetitions for valid, 160 repetitions for invalid condition

and 80 repetitions for catch trials. This led to a total of 720

trials divided into ten blocks of 72 trials. The order of the
conditions was randomized in each block. A short practice

block of 20 trials preceded each session.

Placeholders eccentricities were calculated based on to

each individual's EOMR and sizes were scaled according to the

cortical magnification factor (see Experiment 1).

4.1.3. Data selection and analyses
We applied same criteria as in Experiment 1. Saccadic eye

movement selection (i.e., amplitude >2�) led to 4.7% of rejec-

tion, short (<100 msec) and long RT (>2.5 SD) led to .1% and

2.8% of rejection respectively and catch trials as well as

incorrect responses (1.1%) were also discarded. This resulted

in a total of 16% of trials rejected leading on average to 515

trials per participant. For data analyses and software used, see

Data selection and analyses section of Experiment 1.

4.2. Results & discussion

4.2.1. Initial fixation positon
As for Experiment 1, we looked at participant's eye position on

the fixation square. Participants were on average perfectly

aligned with the central square, eye position variation ranged

between �1.98 and 1.97� (Mfix ¼ �.02�).

4.2.2. Manual reaction time
Results of mean RTs across all participants are resumed on

Fig. 7. On average participants were longer to respond in the

Invalid condition (448 msec) compared to the valid condition

(401 msec), repeated measure ANOVA revealing a significant

effect of cue validity [F(1,10)¼ 61.69, p< .001, h2
p¼ .86]. Aswith

Experiment 1 there was a small but significant effect of

placeholders eccentricity on mean reaction time

[F(1,10) ¼ 5.42, p ¼ .04, h2
p ¼ .35] as participants were on

average longer in the Beyond compared to the Below condition

(419 msec and 406 msec respectively). RT did not vary ac-

cording to SOA, but we did find an interaction between SOA

and cue eccentricity [F(1,10)¼ 6.59, p¼ .02, h2
p¼ .39], such that

RTs tended to be faster in the Below compared to the Beyond

condition at the 600 msec SOA [396 msec, SD ¼ 88 and

412 msec, SD ¼ 97 respectively for Below and Beyond;

t(10) ¼ 3.05, Bonferonni corrected P < .05], but not at the

900 msec SOA [416 msec, SD ¼ 94 and 426 msec, SD ¼ 94

respectively for Below and Beyond, t(10) ¼ 1.92, Bonferonni

corrected P ¼ .082].

The difference between invalid and valid cues for both cues

eccentricities was calculated, revealing that on average

invalid cues delayed response time by 50 msec in the Below

and 45 msec in the Beyond condition. This difference was not

statistically significant [F(1,11) ¼ 1.11].

4.2.3. Accuracy
Accuracy was on average very good (98.9%) and did not vary

according to either cue eccentricity, validity or SOA.

4.3. Discussion

Experiment 2 was designed to disentangle between the con-

flicting results previously reported in the literature regarding

the link between endogenous cueing and the oculomotor

programming. Consistent with the hypothesis that
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Fig. 6 e Sequence of events in the endogenous/central cueing condition when placeholders were presented Below (a) or

Beyond (b) the EOMR.

Fig. 7 eMeanmanual reaction time (RT) in ms as a function

of Stimulus Onset Asynchrony (SOA) and cue validity for

Below and Beyond the EOMR separately for the

endogenous cueing task. Error bars represent þ/¡ 1

standard error.
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endogenous attention can be decoupled from oculomotor

control, there was no interaction between cue validity and

placeholder eccentricity, suggesting that covert, endogenous

orienting of attention was not disrupted when stimuli were

presented outside the participants’ effective oculomotor

range. Altogether, these results are accordance with previous

studies reporting that motor programming of a saccadic eye

movement is neither necessary nor sufficient to trigger a

voluntary shift of attention (Hunt & Kingstone, 2003; Klein,

1980b; Klein & Pontefract, 1994b; Smith et al., 2012).
5. Experiment 3: Endogenous and
exogenous covert orienting

The results of Experiment 1 showed that exogenous covert

orienting is limited to the range of eye-movements and the

https://doi.org/10.1016/j.cortex.2018.11.007
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results of Experiment 2 suggested that endogenous covert

orienting is not. It is tempting to interpret these results as a

replication of the dissociation between impaired exogenous

orienting and intact endogenous orienting previously re-

ported in ophthalmoplegic patients. However, comparisons

between Experiments 1 and 2 should bemadewith caution for

several reasons. Firstly, the SOAs used in the two experiments

were very different and it is well established that attentional

effects are highly sensitive to SOA. Secondly the sample sizes

were also rather different. Finally, in Experiment 1 the atten-

tional cue appeared in the periphery, whereas in Experiment 2

the cue was central and therefore potentially much easier to

detect. It is therefore possible that participants simply failed

to detect the cue in Experiment 1. To address these issues we

conducted a third experiment in which we examined endog-

enous and exogenous covert orienting within and beyond the

range of eye-movements using the same SOAs in the same

participants. Participants also completed an additional task in

which they simply reported the location of the exogenous cue,

which allowed us to rule out the possibility that participants

were unable to detect it. Prior to beginning the experiment we

conducted two apriori power analyses using the package pwr

(Champely, 2012) to establish the minimum sample sizes

required to observe an endogenous cueing effect in the Below

and Beyond condition, based on the data from Experiment 2.

The analysis estimated that at least 5 participants would be

needed to obtain a statistical power at the recommended .80

level (Cohen, 1988) in the Below condition (Mdiff ¼ 45 msec,

sddiff ¼ 23.17, dz ¼ 1.94) and a minimum of 10 participants

would be required for the Beyond condition (Mdiff ¼ 47 msec,

sddiff ¼ 36.03, dz ¼ 1.32).

5.1. Method

5.1.1. Participants
Twelve volunteers, between 19 and 44 years old (Mage ¼ 31

years, seven female) took part in Experiment 3. Participants

reported having normal vision and were all unaware of the

purpose of the experiment.

5.1.2. Materials and procedure
Materials and Procedure for Experiment 3 were the same as

for Experiment 1 (Exogenous) and Experiment 2 (Endogenous)

(see Figs. 4 and 6) with the exception that the SOAs were set to

200 and 400 msec for both tasks. All the different conditions

were manipulated within each block of trials and the order of

the conditions was randomized. Endogenous and Exogenous

taskswere run separately. For the Exogenous task, there was a

total of 264 trials divided into 3 blocks of 88 trials (120 repeti-

tions for valid, 120 repetitions for invalid condition and 24

repetitions for catch trials). Before starting the Exogenous

task, we made sure that participants were able to detect the

exogenous cue when presented in the Beyond condition. To

this end participants completed 20 trials in which they re-

ported the location of a cue which could be flashed either to

the left or to the right of fixation. All participants were 100%

accurate, which confirmed that they were perceptually able to

detect the peripheral cue. For the Endogenous task, 528 trials

were presented divided into 6 blocks of 88 trials (360 repeti-

tions for valid, 120 repetitions for invalid and 48 for catch
trials). A short practice block of 20 trials preceded each ses-

sion. Participants were not informed about cue predictability

before the experiment began. As for Experiment 1 and 2,

placeholders eccentricities were calculated based on each

individual's EOMR and sizes were scaled according to the

cortical magnification factor (see Experiment 1).

5.1.3. Data selection and analyses
We applied same criteria as in Experiment 1 and 2. Saccadic

eye movement selection (i.e., amplitude >2�) led to 3.7% of

rejection, short (<100 msec) and long RT (>2.5 SD) led to .6%

and 2.4% of rejection respectively and catch trials as well as

incorrect responses (3.9%) were also discarded. In total 16.7%

of trials were excluded. For data analyses and software used,

see Data selection and analyses section of Experiment 1.

5.2. Results & discussion

As for Experiment 1 and 2, participants eye-position at the

beginning of each trial was aligned with fixation, deviation

was on average of .05� (range between-2.09� and 2.49�).

5.2.1. Manual reaction time
Correct responses to target present trials were analysed and

mean reaction times were subjected to a 2*2*2*2 mixed model

ANOVA with within subject factors of task (Endogenous vs

Exogenous), cue validity (Valid vs Invalid), eccentricity (Below

vs Beyond) and SOA (200 vs 400 msec). The ANOVA revealed a

main effect of cue validity, participants being on average

longer in the Invalid (493 msec) compared to the Valid

(425msec) condition [F(1,11)¼ 29.22, p < .001, h2p ¼ .72]. We also

observed a significant 2-way interaction between cue validity

and cue eccentricity [F(1,11) ¼ 5.51, p < .05, h2p ¼ .33] and a

significant 2-way interaction between task and cue validity

[F(1,11) ¼ 10.39, p < .001, h2p ¼ .48].

ANOVA also revealed a significant 3-way interaction be-

tween cue validity, eccentricity and task [F(1,11) ¼ 23.66,

p < .001, h2p ¼ .68]. This interaction was broken down into a 2

(eccentricity) by 2 (cue validity) repeated measure ANOVA at

each level of task. For the Exogenous cueing task, cue validity

interacted with cue eccentricity [F(1,11) ¼ 15.06, p < .01,

h2p ¼ .58]. Bonferroni corrected pairwise t-tests showed that

the difference in mean RT between Valid and Invalid condi-

tion was only significant when cue/target were presented

Below the EOMR [Invalid Below ¼ 472 msec, SD ¼ 146, Valid

Below ¼ 418 msec, SD ¼ 121, t(11) ¼ 7.27, p < .001, Invalid

Beyond ¼ 474 msec, SD ¼ 152, Valid Beyond ¼ 473 msec,

SD ¼ 169, t(11) ¼ .06]. In contrast, for Endogenous task, the

ANOVA revealed a main effect of validity [F(1,11) ¼ 19.63,

p < .001, h2p ¼ .86], but no effect of eccentricity and no inter-

action (all Fs � 2.07). As can be seen on Fig. 8, this 3-way

interaction was driven by a cueing effect present for both

Below and Beyond EOMR condition in the Endogenous task,

but only in the Beyond EOMR condition in the Exogenous task.

Finally, a 3-way interaction between SOA, cue validity and

task was observed [F(1,11) ¼ 8.54, p < .05, h2p ¼ .43]. Inspection

of Fig. 8 showed that in the Exogenous task, the validity effect

varied with SOA, the difference between Valid and Invalid

trials being greater for SOA of 200msec compared to 400msec,

the interaction was marginally significant [F(1,11) ¼ 5.13,
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Fig. 8 eMeanmanual reaction time (RT) in ms as a function

of Stimulus Onset Asynchrony (SOA) and cue validity for

Below and Beyond the EOMR separately for the

endogenous and exogenous cueing task. Error bars

represent þ/¡ 1 standard error.
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p¼ .04, h2p ¼ .31]. However in the Endogenous task, SOA did not

significantly affect mean RTs [F(1,11) ¼ 2.50] and did not

interact with the other factors (all Fs � 4.01).

5.2.2. Accuracy
Accuracy was on average very good (96.15%) and did not vary

according to the task (Endogenous ¼ 96.03%,

Exogenous ¼ 96.33%). None of the different factors (Eccen-

tricity, validity or SOA) had any effect on accuracy.

5.2.3. Discussion
Experiment 3 was designed to directly compare the effect of

exogenous and endogenous shift of attention within partici-

pants and using the same SOAs for both tasks. Results are in

accordance with the observation reported in Exp.1 and Exp.2;

that is, we observed a strong cueing effect when participants

are asked to endogenously shift their attention irrespective of

whether stimuli are presented within or beyond the range of

eye movement. On the other hand, when attention was

summoned exogenously we observed a cueing effect solely

when cue/target were presented within the range of eye

movement. When stimuli were presented outside the range of

eye-movement the cueing effect was almost completely

abolished.
6. General discussion

The goal of the present work was to test the claim that exog-

enous but not endogenous covert attention is mediated by the

oculomotor system (Smith et al., 2014; Smith & Schenk, 2012).

More specifically we tested whether cue presented outside the

range of eye movement disrupted exogenous but not endog-

enous covert orienting. In Experiment 1 there was no exoge-

nous covert orienting when stimuli were presented beyond

the participant's usual range of eyemovement (EOMR), but we

did observe an effect when presentedwithin this range. These

results are in accordance with previously reported studies

with patients (Gabay, Henik, & Gradstein, 2010; Rafal et al.,
1988; Smith et al., 2004) and with the eye-abduction para-

digm (Smith et al., 2010, 2012, 2014). In contrast, Experiment 2

demonstrated that the endogenous shift of attention was

unaffected when stimuli appeared beyond the EOMR. Finally,

Experiment 3 confirmed the dissociation using a within

participant design and the same timing for both Endogenous

and Exogenous cueing. Together these data are consistent

with the proposal that covert, endogenous orienting can be

decoupled from oculomotor system, whereas covert exoge-

nous orienting cannot.

Our findings appear contrary to the findings of Craighero

et al. (2004, 2001), who observed, in an endogenous cueing

task, that the attentional benefit for valid cues was reduced

when stimuli were presented at a location not reachable by a

saccadic eye-movement. The precise reason for the incon-

sistency between Craighero's results and the current data is

not clear.We have previously argued that the central cue used

by Craighero et al. is both spatial and predictive, and thus the

cueing effect they observed may reflect elements of both

exogenous and endogenous attention (Smith et al., 2012). We

speculated that eye-abduction affected the exogenous

contribution of the cueing effect, thus reducing the overall

effect. Consistent with this explanation, covert orienting to a

nonspatial, predictive central cue that engaged purely

endogenous attention was not affected by eye-abduction

(Smith et al., 2012) whereas orienting to a nonpredictive

spatial cue that engaged reflexive attention (an arrow) was

affected by eye abduction (Morgan et al., 2014). On first in-

spection this explanation cannot easily account for the cur-

rent data, as the central cue condition in Experiment 2 was

similar to that used by Craighero et al. (2004). However, the

predictive power of the cues was different in the two studies.

Our cue predicted target location on 75% of trials, whereas

Craigheros cue predicted target location on 66% of trials. It

may be that the greater predictive power of our cue engaged

the endogenous orienting system, whereas the cueing proto-

col used by Craighero et al., engaged both exogenous and

endogenous mechanisms.

A close reading of Craighero et al. (2004) suggests a less

theoretically interesting possibility, in that they do not actu-

ally report a significant interaction between Validity, Hemi-

field and Eye Position. Rather, their conclusion that eye-

abduction disrupts endogenous orienting is based on

observing a significant cueing effect in the Eye Abducted/

Nasal Hemifield condition, but no significant cueing effect in

the Eye Abducted/Temporal Hemifield condition. It is there-

fore possible that their failure to observe a cueing effect in the

temporal hemispace during eye-abduction is a type II error

rather than a genuine disruption of endogenous orienting.

The conclusion that endogenous orienting is dissociable

fromoculomotor control echoes that drawn by Belopolsky and

Theeuwes (2009, 2012), who showed that participants could

sustain attention at a location while simultaneously

supressing saccade programming to that same location. In

these experiments both exogenous and endogenous covert

orienting were associated with the activation of a saccade

motor plan. However, in the case of endogenous attention the

saccade execution was rapidly suppressed without disrupting

the allocation of attention. Belopolsky& Theeuwes proposed a

revision to Premotor Theory that they called a ‘Shifting and
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Maintenance (S&M) account of attention’. This revised theory

retains the core assumption of Premotor Theory, that endog-

enous orienting depends upon a saccade motor plan but ar-

gues that once attention has moved; an active saccade plan is

not required to sustain attention. Our data suggest that this

revised S&M assumption needs to be updated to account for

the finding that endogenous orienting of attention can occur

in the absence of a saccade plan. Indeed, it is worth noting

that, while Belopolsky & Theeuwes elegantly demonstrated a

dissociation between endogenous attention and saccade

programming, they do not demonstrate a causal link between

saccade programming and attention shift. This is an impor-

tant issue, because the ‘mandatory coupling’ between covert

orienting and saccade motor control might occur because

attending a location leads to saccade programming, which is

the opposite of what Premotor Theory of Attention predicts

(see Deubel & Schneider, 1996; Schneider, 1995).

One can also interpret our results in terms of Premotor

theory. The theory argues that covert attention is driven by

activation in ‘spatial pragmatic maps’, which are the brain

areas used to encode the targets of goal directed actions. In the

case of stimulus driven eye-movements these spatial prag-

matic maps are probably represented in the superior collicu-

lus (SC). In this view, the probability of observing a reflexive

shift of attention to any given spatial location depends pri-

marily on the level of activity in the SC associated with the

location of the peripheral cue. At large eccentricities we know

that stimulus driven saccades systematically undershoot the

intended goal (Frost & P€oppel, 1976; Stahl, 1999), and this un-

dershoot reflects the locus of activation in the SC (Vitu,

Casteau, Adeli, Zelinsky, & Castet, 2017) rather than visuo-

motor strategy designed to minimize accidental overshoot

(Deubel, Wolf, & Hauske, 1986; Henson, 1978; Robinson, 1973).

In the case of exogenous attention the peripheral cue gener-

ates a peak of activity in the SC.When the cue appears beyond

the EOMR this peak will be closer to fixation than the actual

location of the cue. As a consequence, the shift of attention

should also be shifted towards fixation, and not at the actual

spatial location of the cue. Thus, according to Premotor The-

ory, peripheral cues beyond the EOMR should elicit a shift of

attention to the edge of the EOMR, not the actual spatial

location of the cue. Consistent with this view, there is some

evidence that saccade adaptation can result in reflexive shifts

of attention that are directed to the adapted saccade goal,

rather than the veridical location of the cue (Collins & Dore-

Mazars, 2006). In contrast, Endogenous shifts of attention

generated by centrally presented cues rely on activation of

spatial maps in the Frontal Eye Fields (Smith et al., 2005;

Smith, Jackson, & Rorden, 2009b; Taylor, Nobre, &

Rushworth, 2007) and attention related activation in FEF is

dissociable from saccade related activation (Juan et al., 2008;

Juan, Shorter-Jacobi, & Schall, 2004; Sato & Schall, 2003;

Thompson, Biscoe, & Sato, 2005). This dissociation between

oculomotor and visual selection means that the location of

activation peaks in FEF accurately signals the cued location.

As a consequence, Endogenous covert attention may be un-

constrained by the EOMR. Our data could therefore be

considered as consistent with the weak version of Premotor

theory proposed by Smith and Schenk (2012), in which only

exogenous shifts of attention rely on saccade programming.
However, these data may be understood in terms of a

Biased Competition approach to attention, in which activation

in themotor system influences competitive interactions in the

visual system (Desimone, 1998). In this model, signals relating

to stimulus salience (e.g., their brightness, size, contrast,

orientation) compete with each other in a topographic map of

space, called a priority map (Bisley & Goldberg, 2010), in a

winner-takes-all competition. This competition is biased by

the current goals of the observer, such as the knowledge that a

target is likely to appear at particular location, which allows

the observer to bias the outcome of the competition towards

task-relevant locations. The signal that wins the competition

can be used by the visual system to prioritize processing and/

or by the oculomotor system to specify the goal of a saccade

eye movement. The oculomotor signals are self-reinforcing;

such that activation in the oculomotor system is fed back

into the saliencemap, thus further biasing activity in favour of

the activated location (Bisley, Mirpour, Arcizet, & Ong, 2011).

This interactionwill typically produce very rapid selection of a

peripherally cued location, which will facilitate target detec-

tion. However, when the cued location is beyond the EOMR

there will be a discrepancy between the representation of the

cue location in the SC (which is biased towards fixation: Vitu

et al., 2017) and the representation of the cue location in the

rest of the visual system which is veridical. This mismatch

will lead to a competition between the representation of the

cued location in the visual system and its representation on

the SC map. This competition takes time to resolve, and may

end up with selection of the location represented in the ocu-

lomotor system rather than the location of the target, thereby

impeding target detection. We can therefore understand the

failure of exogenous orienting to cues beyond the EOMR as the

consequence competition between different sources of input

to the priority map.

We have shown that exogenous orienting is abolished

when a location is beyond the range of saccadic eye move-

ments. However, several studies have argued that exogenous

attention is independent of the oculomotor system. For

example, MacLean, Klein, and Hilchey (2015) adapted the dual

task procedure of Klein & Pontefract (1994), and reported that

exogenous orienting does not facilitate saccadic reaction

times. In a related study Dunne, Ellison, and Smith (2015) have

shown that instrumental conditioning of the eye-movement

system modulates saccade latencies, but has no effect on

exogenous covert orienting. On first inspection these studies

seem hard to reconcile with the proposal that exogenous

attention relies on saccade programming. However, we

believe these studies need to be interpreted with caution.

MacLean et al. (2015) used an SOA of 250msec, allowing ample

time for suppression of saccade programming following a

shift of attention. Indeed, the authors themselves concede

that their data only demonstrates that maintenance, not ori-

enting of attention can be decoupled from programming of a

saccade, as suggested by Belopolsky and Theeuwes (2009,

2012). Furthermore, MacLean study utilises very high propor-

tion of ‘no-go’ trials, where a cue appears but no saccade is

permitted. This design is problematic, because the presence of

a high proportion no-go trials can mask saccadic priming ef-

fects caused by peripheral cues (Belopolsky& Theeuwes, 2012;

Smith & Casteau, 2018). The finding that oculomotor learning

https://doi.org/10.1016/j.cortex.2018.11.007
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doesn't modulate the magnitude of cueing effects (Dunne

et al., 2015) is interesting, but one might predict that re-

wards that facilitate saccadic reaction time should modulate

the speed at which exogenous attention shifts to the cued

location, rather than the amount of attention allocated to the

cued location. Dunne et al., sampled attention at a single time-

point, so it remains possible that instrumental conditioning of

saccades changed in the time-course of attention. Thus, in our

view, neither of these studies unambiguously demonstrates a

dissociation between exogenous, covert orienting and oculo-

motor control.

Our finding of impaired exogenous orienting beyond the

range of eye-movements may also be relevant to understand

the ‘attentional window’, which describes a form of spatial

attentional control that sets a limit on the range of locations

from which salient items can summon attention (Belopolsky

& Theeuwes, 2010; Belopolsky, Zwaan, Theeuwes, & Kramer,

2007). The size of the attentional window can be voluntarily

modulated with a maximum size of 29.74 þ/- 1.82� for young

adults (Hüttermann, Bock, & Memmert, 2012). This figure

roughly corresponds to the average of the 1st saccade ampli-

tude we observed for our most eccentric target positions, and

may suggest that themaximal range of eye-movement sets an

upper limit on the size of the attentional window.

It might be argued that there are some limitations to our

measure of the EOMR. First, we have decided to take into ac-

count the amplitude of the very first saccade. However, it is

very well known that there is a large discrepancy between the

actual saccade landing position, at the level of saccade

execution, and the saccade goal, that is a the level of the

saccade plan. Saccades are known to undershoot the target

position by about 10% of its eccentricity, and as the target is

presented further in the periphery the likelihood of producing

a corrective saccade is increased (Becker & Fuchs, 1969). The

most common explanation for this saccadic undershoot is

that it reflects visuo-motor strategies. If this was correct,

taking only the first saccade as a measure of participants'
range of eye-movement would give an inaccurate estimate of

the saccade goal that would reflect a visuo-motor strategic

saccade execution. However, empirical tests of the ‘visuo-

motor’ explanation are more consistent with the idea that the

undershoot observed during large saccades is likely to origi-

nate at (or upstream of) the SC, suggesting that systematic

hypometria of large saccades is a consequence of saccade

programming (Vitu et al., 2017). Second, the maximal target

eccentricitywe usedwas of 41�, whichmay have restricted the

maximal saccade amplitude participants would have been

able to make. Stahl (1999) showed that the average eye-only

range when a target was presented at 50� was of about 35.9�,
and in his paper of 2001, he confirmed these findings reporting

an average amplitude of about 30.2� for the same target ec-

centricity. We are therefore confident that our technique did

not significantly underestimate participants EOMR.
7. Conclusions

To summarize, across 3 experiments we have shown that

covert, exogenous attention is impaired when targets are pre-

sented beyond the range of saccadic eye-movements but covert
endogenous attention is preserved. These results are in accor-

dance with previous studies with patients with defective ocu-

lomotor control and with neurotypical participants in an eye-

abduction situation. We hypothesise that presenting a periph-

eral cue beyond the EOMR elicits different representations of

the location of the stimulus in the visual and oculomotor sys-

tem. These representations compete with one another, thus

prolonging the time required to select the cued location and

abolishing the processing advantage typically associated with

valid peripheral cues. We conclude that only covert, exogenous

attention is dependent on the activation of the oculomotor

system, consistent with the weak, exogenous-only version of

premotor theory proposed by Smith and Schenk (2012).
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