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Abstract. Laser tweezers have been used to drive the oscillations of a chain of entangled colloidal particles in
the nematic liquid crystal 5CB. The amplitude and phase of light-driven oscillations have been determined
for the motion of individual colloidal particles. The collective motion of 4.8 um silica particles is highly
damped for a driving frequency above 0.5 Hz. The results were compared to an effective bead-spring
model, where the motion of elastically coupled particles is hindered by viscous damping and hydrodynamic
coupling. Qualitative agreement between theory and experiment was obtained.

1 Introduction

Nematic colloids are dispersions of solid, liquid or gaseous
objects in a nematic liquid crystal. During recent years
they have attracted a lot of attention [1-13] because of
the unusual ability of self- or directed assembly of colloidal
particles into ordered colloidal crystalline structures [13]
and superstructures [14]. The assembled colloidal struc-
tures are bound by strong inter-colloidal forces, which are
mediated by the elastic distortion of the nematic liquid
crystals. Binding energies of several 1000kgT per microm-
eter size particles have been determined, which makes
nematic colloidal assemblies very robust against exter-
nal perturbations and therefore potentially interesting for
technological applications in photonic devices.

When a colloidal particle is immersed in a nematic
liquid crystal, the surface of the particle interacts with
liquid crystalline molecules and forces them to align into
a certain direction with respect to the surface. As the sur-
faces of colloidal particles are curved, liquid crystalline
molecules cannot fill the space around the particle with-
out elastic distortion of the nematic LC, and without cre-
ating defects. As a result, the nematic colloidal particle
induces a long-range elastic distortion of the director field,
describing the local orientation of the nematic liquid crys-
tal around the inclusion and this distorted region is ac-
companied by a topological defect in a form of a point
or closed loop. In the core of the defect, the nematic or-
der parameter is strongly decreased with respect to the
bulk value. For a perpendicular (homeotropic) anchoring
of nematic LC at the surface of the microsphere, dipolar
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and quadrupolar symmetries of the colloidal particle were
predicted and observed [15].

The elastic distortion caused by the surface anchoring
of LC molecules at curved surfaces is of long range and is
responsible for interaction forces when two colloidal par-
ticles are positioned close to each other. The reason for
the appearance of forces is simple: as the regions of elas-
tic deformation around each colloidal particle overlap, this
overlapping may be energetically in favor for both parti-
cles, which results in an attractive force. If however, the
deformed regions are not energetically favorable for both
particles, a repulsive force between the colloidal particles
is generated.

Whereas forces and force equilibria in nematic colloids
are now well understood, much less is known about the
dynamic properties of nematic colloids. Brownian motion
of colloidal particles in the nematic LC is usually used to
measure the viscosity coefficients, which are needed to cal-
culate the separation dependence of pair forces and bind-
ing potentials in nematic colloids. It is known that the
motion of micrometer-size objects in the nematic LC is
highly damped due to the large viscosity of the nematic
LC. Now, as we are able to assemble relatively large-size
nematic colloidal chains and 2D crystals of very differ-
ent types, interesting questions arise about the collective
dynamic motion of such assemblies. Such a motion can in
principle be determined in two different ways: i) by analyz-
ing the thermal noise spectra of the assemblies, or ii) by
applying an external force and measuring the response
of the structure. We have chosen the second option and
have used the laser tweezers [16-21] to apply the time-
harmonic external force to a 1D colloidal assembly. Us-
ing video-microscopy and particle tracking technique, we
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Fig. 1. (a) Entangled hyperbolic defect colloidal chain,

stretched by two laser tweezers. The left laser trap at colloid 1
is fixed, while the right laser trap at colloid 4 is harmonically
oscillated with fixed amplitude and frequency. (b) Recorded
horizontal positions of the third particle x3, while the right
laser tweezer was oscillating with frequency of 0.2 Hz and am-
plitude of 0.75 ym.

have measured the motion of individual colloidal particles
in the colloidal chain and compared it to the theoretical
calculations.

2 Experiment and results

In the experiment we have measured driven oscillations
of the entangled hyperbolic defect colloidal chain of silica
microspheres (fig. 1a), where the time-periodic external
force was provided by the strongly focused light of the
laser tweezers, driving small oscillations of the captured
colloidal particle.

Entangled nematic colloidal chains were reported re-
cently by our group [22]. Colloidal particles in the entan-
gled colloidal chain are bound by topological defect lines
in a form of closed loops, which are entangling an arbi-
trary number of particles. There are three known types of
entangled nematic colloidal chains and we have here stud-
ied the entangled hyperbolic point defect colloidal chain
(see fig. 4b), where a single and non-twisted defect loop
encircles all colloidal particles and there is a hyperbolic
point defect between each pair of colloidal particles [22].

The dispersion of silica spheres with diameter of 4.8 ym
(Bangs Laboratories) in NLC pentylcyanobiphenyl (5CB)
was prepared first. The dispersion was inserted into the
planar nematic cell with thickness of 6-7 ym, made of
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two glass substrates covered with the rubbed polyimide
alignment layer to induce uniform planar alignment of the
NLC throughout the cell. The surfaces of colloidal parti-
cles were treated chemically to induce perpendicular align-
ment of LC molecules at their surface. In a thick planar
cell such particles are accompanied with the hyperbolic
hedgehog defect, whereas in a thin planar cell, this point
defect opens into the “Saturn ring” defect loop. Since in
our experiment the thickness of the cell is only ~ 50%
bigger than the diameter of the particles, almost all parti-
cles are encircled with the “Saturn ring” defect loop [23].
We have used an optical tweezers setup to assemble col-
loidal chains. The tweezers setup is based on two acousto-
optic deflectors, driven by a computerized system (Aresis,
Tweez 70) and a cw argon laser (Coherent, Innova 90C) at
514nm was used as a laser source. Using the laser tweez-
ers as a tool to manipulate nematic colloidal particles, we
have assembled these Saturn-like particles into entangled
hyperbolic defect colloidal chains of N particles. These
chains are spontaneously oriented in a direction perpen-
dicular to the rubbing direction.

Once the entangled colloidal chains were assembled,
two optical traps of the laser tweezers were used in the
driven-oscillation experiment. The first optical trap of the
laser tweezers was positioned at the left-end particle of
the colloidal chain, whereas the second optical trap of the
same optical power was positioned at the right-end par-
ticle in the colloidal chain. The focus of the right laser
tweezers trap was then set into a time-periodic motion
in a direction x along the chain, with a pre-selected fre-
quency and amplitude. The oscillations of each particle
in the colloidal chain were observed by the optical mi-
croscopy using an inverted polarizing microscope (Nikon
Eclipse, TE2000-U) with water immersion microscope ob-
jective (Nikon, NIR Apo 60/1.0W). The positions of in-
dividual particles were video monitored and determined
by the off-line analysis of captured frames with an accu-
racy of £5nm. This unusually high spatial resolution in
determining the absolute position of a colloidal particle is
based on a rather simple but efficient method [24]. Images
of micrometer-sized colloidal particles are taken during
their motion using a good quality optical microscope and
a digital camera. Then, an off-line analysis of particle’s
positions is performed for each recorded frame. In this
analysis, we are seeking for the best overlap of the image
of the colloidal particle with a graphic object of the same
shape (i.e. filled circle) and the colloidal image. A typi-
cal accuracy for determining colloidal position of several
nanometers could be achieved using the software employ-
ing image recognition algorithms to track the bead [25].

We focused on driven-oscillation experiments with
N = 4 colloidal particles in the entangled hyperbolic point
defect colloidal chain. The fourth colloidal particle (see
fig. 1a) was driven into harmonic oscillations with an am-
plitude of 0.75 pm and frequency which was varied in dif-
ferent experiments from 0.05Hz to 2.5 Hz. We observed
that at higher frequencies the colloidal particles were not
oscillating any more due to the high viscosity of the liquid
crystal. Positions of all four particles were monitored with
the rate of 50fps, and total acquisition time was around
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Fig. 2. (a) Measured frequency dependence of the relative
amplitudes of the first three colloids (symbols) in the col-
loidal chain together with fitted analytical solutions (curves),
see sect. 3. (b) Measured frequency dependence of the relative
phases of the first three colloids (symbols) in the colloidal chain
together with fitted analytical solutions (curves).

150 seconds. The recorded z-positions of the third col-
loidal particle for one typical experiment are presented in
fig. 1b. It is clear that the colloidal particle in the chain
oscillates harmonically with the driven frequency. Using
discrete Fourier transformation, we have determined the
amplitude and the phase of each colloidal particle in the
chain. The frequency dependence of relative amplitudes
and relative phases of the first three colloidal particles
with regard to the fourth driven colloidal particle are pre-
sented in fig. 2. One can see that the amplitudes of the
oscillations of the particles are strongly decreased by in-
creasing the driving frequency due to the strong viscous
damping of the liquid crystal. Colloidal particles, which
are closer to the fourth driven colloid also oscillate with
higher amplitudes and smaller phase shifts, as one can
expect for a highly viscous medium.

Oscillations of colloidal particles in colloidal chains are
determined by the mass of the particles, the effective inter-
particle binding, binding between the laser tweezers and
the particle and the strong viscous damping of the parti-
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Fig. 3. Measurement of the spring constant k; between the
optical trap and the colloidal particle with the Saturn ring.
(a) Two optical traps are used at the beginning of the experi-
ment. The first trap provides the attractive force between the
laser tweezers focus and the particle and the second is used
to hold the particle. The right trap is then switched off and
the particle is attracted into the optical trap. (b) Optical force
between the trap and the colloidal particle as a function of
separation. The resulting spring constant of the optical trap is
determined from the slope of the graph.

cles. We have therefore determined in three different ex-
periments i) the effective viscosity of the particle ., which
determines the viscous drag force F, = ~,&, ii) the ef-
fective spring constant of the entangled hyperbolic defect
line which binds two neighboring particles, and iii) the
effective spring constant between the laser tweezers and
the particle. First the effective viscosity was determined
by observing the thermal motion of the single Saturn-like
particle [26]. By measuring the average displacement of
the single particle, we have determined the effective vis-
cosity in the horizontal direction v, = 6.6 x 10 Ckg/s.

Second, we have measured the effective spring constant
between the fixed trap of the laser tweezers and the parti-
cle k; by using two laser tweezers traps (fig. 3). The first
optical trap was fixed at the one side of the Saturn ring,
while the second trap grabbed the other side of the Sat-
urn ring and stretched the Saturn ring. When the second
optical trap was switched off, the released colloidal par-
ticle approached its equilibrium position. By measuring
the time dependence of positions of that colloidal parti-
cle, the velocity of the colloidal particle & could be deter-
mined. Due to the high viscosity of the LC, the attractive
force of the optical trap k:x is balanced with the Stokes
viscous force v,4. As shown in fig. 3b, the measured at-
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Fig. 4. (a) Bead-spring model for the vibrating entangled col-
loidal chain. The first particle interacts with the optical trap
via the spring-like bond k:. Note the spring-like bonds k be-
tween the particles. v, is the effective Stokes viscosity coeffi-
cient for the motion of particles and I' is the hydrodynamic
interaction between neighboring particles. As in the experi-
ment, particle No. 4 is harmonically driven into oscillation
with amplitude X4 and frequency w. (b) Hyperbolic defect
colloidal chain, as calculated within the Landau-de Gennes
approach [22]. The defects are visualized as isosurfaces with
nematic order parameter S = 0.50.

tractive force depends linearly on the separation between
the optical trap and the colloidal particle and the effective
spring constant k; ~ 1.4 x 107° N/m was determined.

Third, we have determined the effective spring con-
stant k of the entangled defect line and the hyperbolic
defect in the experiment where an entangled pair of col-
loidal particles was stretched by moving two laser traps
in the opposite directions to some predetermined posi-
tion, and then the traps were switched off [22]. Again,
similar to previous experiment, the attractive force of
the entanglement, kx, was balanced by the viscous force
%'ym(dvl — Z9). We found that the measured attractive
force, binding a pair of entangled colloidal particles, de-
pends linearly on the separation between the two parti-
cles. The effective spring constant of the hyperbolic defect
line was k ~ 2.3 x 107°N/m. We can now compare the
damping coefficient 7, /m ~ 7.2 x 10°s~! with the nat-
ural angular frequency of the elastically bound colloids,
VEk/m ~ 5.0 x 10%s7L, where m ~ 9.2 x 103 kg is the
mass of the colloidal particle. Since the damping coeffi-
cient is much higher than the eigenfrequency of the oscil-
lator, the oscillations of entangled nematic colloidal chains
in LC are highly overdamped.

3 Theory and discussion

Forced vibrations of a colloidal chain, bound by entangled
hyperbolic defects (fig. 4b), can be qualitatively described
by an effective bead-spring model [27]. Three basic phe-
nomena characterize the vibrations: i) the effective liquid
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crystal mediated inter-particle binding, ii) strong (Stokes)
viscous damping of the movement of the particles, and
iii) hydrodynamic coupling between neighboring particles.
All three phenomena intertwine in the coupled amplitude
and phase response of vibrated particles. Typically, at low
frequencies (i.e. below ~ 0.5 Hz), the response of particles
is determined primarily by the attractive inter-particle po-
tential of the liquid crystal, whereas at higher frequencies
(2 1Hz), the response is saturated and is governed by the
hydrodynamic coupling between the particles.

Figure 4a shows the diagram of the effective bead-
spring model for a colloidal chain with N = 4 parti-
cles, applied to the experimental configuration shown in
fig. 1. The attractive liquid crystal interactions —the “LC
bonds”— between sequent particles are approximated by
the effective springs with elastic constant k. Analogously,
the interaction of the first particle with the optical trap
can be represented by a separate spring with elastic con-
stant k;. Dynamics of vibrating particles is deeply in
the low-Reynolds-number regime (Re ~ 107%), therefore
Stokes drag force acting on the j-th particle is Fj = .45,
where +y, is the effective viscosity coefficient and &, is the
velocity of the j-th particle. The hydrodynamic coupling
between the particles is introduced via effective hydrody-
namic forces and is assumed to be isotropic with a single
friction coefficient I' [28]. The elastic constants, the ef-
fective viscosity, and the friction coefficient, are used as
phenomenological constants, whereas in a more general
sense they are dependent on the inter-particle separation.

In the low-Reynolds-number regime and therefore ne-
glecting inertia of colloidal particles, the dynamic equa-
tions of particles j = 1,2, 3 are written as

0= k(l‘g — 1‘1) — Y X1 + F(J'UQ — Jbl) + kyxq,
0= k(xy — 223 + 03) — Yoo + (1 — 239 + 3),
0= k(l‘g — 2x3 + 334) — Y X3 + F(xg — 223 + 1‘4)

(1)
(2)
(3)

Here, the motion of the particles is along the x axis,
with particle amplitudes X ;. In egs. (1)—(3), the first terms
characterize the attractive LC-mediated binding between
the particles, the second terms represent viscous Stokes
damping, and the third terms determine the hydrody-
namic coupling between sequent particles. In eq. (1), the
last term accounts for the interaction between the optical
trap and the first particle. To mimic the experiment, the
fourth particle is harmonically oscillated as x4, = X e™?
with fixed amplitude and frequency.

We use the harmonic Ansatz for the vibrational ampli-
tudes of particles x; = X;e’, and in this case egs. (1)-(3)
can be solved analytically, e.g., by standard functions in
Mathematica 7.0. The following solutions for the complex
particle amplitudes X; are obtained:

_jA3
X1: -ZD X4a (4)
—A%C
X2: _D X47 (5)
: _ 2_ (0?4 k2
Xy = Aleelb =) 4T~ CP 4K ()

D
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Here A =T'w —ik, By, = (Yz + nl)w, C =By + k+
ki, and D = A%(iBy + 2k) — (By — ik)(Bs — 3ik)(iB1 +
k + k;) are the material parameters, dependent on the
vibration frequency. Finally, to allow for comparison with
experiments, relative amplitudes X ; and relative phases
¢; are introduced as Xj = ei‘i’J'Xj/X47 where Xj, ¢; €N

The analytical solutions for the relative amplitudes X j
and relative phases ¢; were used to fit the experimental
data (see fig. 2). The set of equations in egs. (1)—(3) was
however predetermined by one material parameter (e.g.
the whole set can be divided by k, v, or I'), therefore
only k; and two out of (k, v, I') could be extracted. To
obtain the physical values of the modeling parameters, we
thus first independently extracted the effective viscosity
coefficient v, = 6.6 x 10~%kg/s from the measured Brow-
nian motion of a single particle.

The fits of the analytical solutions to the measured
oscillation amplitudes and phases in fig. 2 correspond
to the material parameters k = 1.41 x 107°N/m, k; =
1.11 x 107°N/m, and I = 2.8 x 10~ %kg/s. Note that
full experimental data of both relative amplitudes phases
was simultaneously fitted for all three particles with the
three material parameters. Good qualitative agreement
between calculated (fitted) solutions and experimental
data is observed in the full frequency range. Indeed, the
material constants k and k;, extracted by fitting, qualita-
tively agree with those measured in the larger number of
different experiments, k& = 2.3(1 £ 0.2) x 107> N/m and
ki = 1.4(140.2) x 107> N/m. Here, the values of the elas-
tic constant k were measured on different entangled pairs
of colloidal particles, which were first separated by using
two laser tweezers traps and then released. On the other
hand, the elastic constant k; was measured in different ge-
ometries, such as between the trap and a single colloidal
particle with the Saturn ring, or between the trap and a
pair of entangled particles. We have found that the overall
accuracy of determining the elastic constants of the light
trap is of the order of £20% and we cannot distinguish
the differences in the effective trapping elastic constants
for different experimental geometries.

To generalize the response of liquid crystal colloids to
driven oscillations, a stability analysis of analytical solu-
tions was performed. Liquid crystal inter-particle inter-
action, i.e. effectively the string constant k, affects the
oscillation amplitudes and phases in the whole frequency
interval. At lower frequencies (< 1 Hz), larger k makes col-
loidal chain more rigid, whereas at higher frequencies the
effect is reduced. Coupling of the optical trap to the col-
loidal structure (parameter k;) affects substantially only
the trapped particle, i.e. the first particle. On the other
hand, Stokes friction has a strong impact on both ampli-
tudes and phases in the whole frequency interval. If we
increase the effective viscosity coeflicient 7, by a factor of
2, the saturated oscillation amplitudes at larger frequen-
cies (Z 1.5Hz) decrease by 4.2, 2.5, 1.6 for particles 1,
2, 3, respectively. However, if v, is decreased by a factor
of 2, the colloidal chain becomes effectively more rigid,
the particles start to oscillate in phase, and the saturated
amplitudes at larger frequencies (2 1.5Hz) increase by
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3.2, 2.1, 1.4 for particles 1, 2, 3, respectively. The hy-
drodynamic coupling —the parameter I'— affects both
the amplitudes and phases primarily at higher frequencies
(2 0.5Hz), where larger I" stiffens the chain, similarly as
a smaller ~,. It is important to note that both oscillation
amplitudes and relative phases indeed must be considered
simultaneously for a correct characterization of colloidal
oscillations. For example, even if neglecting the hydrody-
namic coupling (I" = 0), the agreement with experiments
can be achieved for oscillation amplitudes, but not simul-
taneously for relative phases.

4 Conclusion

In this work, we have presented experimental and theoret-
ical analysis of forced oscillations of an entangled chain of
colloidal particles in the nematic liquid crystal 5CB. The
colloidal oscillations were driven by the strongly focused
light of the laser tweezers and the response was measured
by particle tracking of the recorded colloidal motion. As
expected, driven oscillations are strongly damped by the
large viscosity of the liquid crystal, which limits the me-
chanical response of colloidal structures to the frequency
range below ~ 1 Hz for micrometer-diameter colloidal par-
ticles. We have shown that collective colloidal motion can
be well described using a rather simple model of elasti-
cally coupled particles in viscous media, where the hydro-
dynamic coupling has to be considered as well.
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effective bead-spring model. Funding from ARRS P1-0099 and
Center of Excellence NAMASTE is acknowledged. MR ac-
knowledges support from Marie Curie grant ACTOIDS.
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