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Abstract

We present an analytic, perturbative solution to the Einstein equations with a scalar field that

describes dynamical black holes in a slow-roll inflationary cosmology. We show that the met-

ric evolves quasi-statically through a sequence of Schwarzschild-de Sitter like metrics with time

dependent cosmological constant and mass parameters, such that the cosmological constant is

instantaneously equal to the value of the scalar potential. The areas of the black hole and cos-

mological horizons each increase in time as the effective cosmological constant decreases, and the

fractional area increase is proportional to the fractional change of the cosmological constant, times

a geometrical factor. For black holes ranging in size from much smaller than to comparable to

the cosmological horizon, the pre-factor varies from very small to order one. The “mass first law”

and the “Schwarzchild-de Sitter patch first law” of thermodynamics are satisfied throughout the

evolution.
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I. INTRODUCTION

The dynamics of black holes in cosmology is important for understanding several questions

about the very early universe. During very hot phases a population of black holes will affect

the behavior of the plasma and impact upon phase transitions, and could even have a

significant effect on the the geometry near the big-bang. On the late time, or ‘cooler’ side,

there has been interesting recent research [1–4] about the possibility of an early population

of black holes that could seed galaxies and provide progenitors for the larger black holes

detected by LIGO [5, 6].

Such situations are highly interactive involving classical accretion, the expansion of the

universe, as well as classical and quantum mechanical radiation exchange. Known analytic

solutions include the stationary Kerr-Reissner-Nordstrom de Sitter metric [7], the cosmolog-

ical McVittie black hole spacetime [8], which has an unphysical pressure field except when

it reduces to Schwarzschild-de Sitter [9], and cases of multi, maximally charged, black holes

[10–13] that exploit fake supersymmetries [14, 15]. A range of approximations and numerical

analyses have been used to study accretion and estimate the growth of black holes in these

interactive systems, including [16–39]. Many of these studies incorporate test stress-energy

and infer time rate of change of the black hole mass by computing the flux of stress-energy

across the horizon. In this paper we continue our studies of the evolution of black holes

in inflationary cosmologies by solving the full coupled scalar field plus Einstein equations

in the slow-roll and perturbative approximations. This system has the advantage that it

is only “mildly dynamical”, and quantities can be computed in controlled approximations.

While mild, we anticipate that the solution presented here will be useful for computing ob-

servational signals of black holes that are present during the inflationary epoch, and helpful

in developing techniques applicable to hotter early universe situations.

Slow-roll inflationary cosmologies are described by quasi-de Sitter metrics, in which the

cosmological constant, Λ, is provided by the potential of a scalar field φ, and Λ slowly

evolves in time as φ rolls down a potential. If a black hole is included, one thinks about

the spacetime as being approximately described by quasi-Schwarzschild-de Sitter metrics,

with both Λ and the mass parameter M changing slowly. But is this picture correct? Here

we answer this question in the affirmative. We show that the black hole plus scalar field

system evolves through a sequence of very nearly Schwarzschild-de Sitter (SdS) metrics as
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the inflaton rolls down the potential.

In earlier work, Chadburn and Gregory [28] found perturbative solutions for the black

hole and scalar field cosmology, as the field evolves slowly in an exponential potential. Their

null-coordinate techniques were particularly useful for analyzing the behavior of the horizon,

and computing the growth of the horizon areas. Recently we extended the work of [28] to

general potentials [40], with a focus on evolutions that interpolate between an initial SdS

and final SdS with a smaller cosmological constant Λ. The analysis yielded geometrical

expressions for the total change in the horizon areas. Further, it was found that the “SdS-

patch” first law was obeyed between the initial and final SdS states. The SdS-patch first

law [41] only involves quantities defined in the portion of the spacetime between the black

hole and cosmological horizons, see equation (9) below. That result supports the picture of

a quasi-static evolution through SdS metrics, which we address in detail in this paper.

Consider Einstein gravity coupled to a scalar field with potential W (φ) governed by the

action

S =

∫
d4x
√
−g
(
M2

p

2
R− (∇φ)2 − 2W (φ)

)
(1)

where M2
p = 1/8πG is the reduced Planck Mass in units with ~ = c = 1. Varying the action

yields Einstein’s equation Gab = Tab/M
2
p with the stress-energy tensor given by

Tab = ∇aφ∇bφ−
1

2
gab
[
(∇φ)2 + 2W (φ)

]
(2)

and the scalar field equation of motion is given by

gab∇a∇bφ =
∂W

∂φ
. (3)

The coordinate system used in [40] was chosen to facilitate analysis of the horizons and

clarify the degrees of freedom of the metric, but did not prove amenable for finding the full

time-dependent corrections to the metric throughout the SdS patch. In this paper we aim to

find the metric in a transparent and physically useful form. In particular, the metric ansatz

ultimately promotes the SdS parameters Λ and M to time dependent functions Λ(T ) and

M(T ) in a natural way. The solution determines dΛ/dT and dM/dT , which are found to

be proportional to (dφ/dT )2. Additional analysis gives the rate of change of the area of the

black hole horizon Ab to be
dAb
dT

=
Ab

κbM2
p

(
dφ

dT

)2

(4)
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where κb is the surface gravity of the background SdS black hole, and T a suitable time

coordinate to be identified. A similar relation holds for the cosmological horizon, which

also grows in time. In the slow-roll approximation, dφ/dT is proportional to ∂W/∂φ, so the

complete solution is known once the potential and the initial black hole area are specified.

It is then shown that both the SdS-patch first law, and the more familiar mass first law, are

obeyed throughout the evolution.

The analysis starts by asking: “Who sees the simple evolution?” In Section II we review

basics of the static SdS spacetime, and then take some care in choosing a natural time

coordinate T such that for a slowly rolling scalar, φ only depends on T . Transforming SdS

to the new coordinate system then facilitates finding a useful anzatz for the time dependent

metric. The necessary conditions on the potential for this approximation to be valid are

found in §II C. In Section III the linearized Einstein equations are solved. Section IV analyzes

the geometry near the horizons. In Section V the rate of change of the horizon areas is

found, both the SdS-patch first law and the mass first law are shown to hold throughout

the evolution, and a candidate definition of the dynamical surface gravity is computed.

Conclusions and open questions are presented in Section VI.

II. SCHWARZSCHILD-DE SITTER WITH A SLOWLY EVOLVING INFLATON

Finding the metric and scalar field of a black hole in general in an inflationary cosmology

is a complicated dynamical problem, even in the spherically symmetric case. On the other

hand, in the case that the inflaton and the effective cosmological constant change slowly,

there is an expectation that the metric evolves quasi-statically through a sequence of SdS-

like metrics, with Λ approximately equal to the value of the potential at that time. In

this paper we address this expectation, and show that the picture is remarkably accurate

within the slow-roll and perturbative approximations, with some small adjustments. To be

concrete, we assume that the scalar potential W (φ) has a maximum where the field starts,

and a minimum to which it evolves, so that the metric is initially SdS with an initial value

of the black hole horizon area, then evolves to an SdS with different values of Λ and the

black hole area.

The first step is to come up with a workable ansatz for the metric that is compatible with

a quasi-SdS evolution. The key question is then to whom does the dynamical spacetime
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look simple? Analytically, the equations are likely to be simpler using a time coordinate

T in which the scalar field only depends on T . This would imply that the potential W (φ)

also only depends on T , and hence is consistent with the idea that the potential acts as

a slowly changing cosmological constant with W (φ) ' Λ(T ). In the initial unstable SdS

phase φ is a constant, so a time-dependent φ would then be first order in a perturbative

expansion. Hence when solving the wave equation for φ(T ), the metric takes its background

or zeroth order values, which allows us to find the preferred coordinate T without knowing

the back-reacted metric.

In this section we review some required properties of SdS metrics, then analyze the slow-

roll wave equation in SdS to find T . We then transform SdS to this new coordinate system,

and base our ansatz for the back-reacted metric on this new slicing of SdS, as we know

it is compatible with an evolution of φ that only depends on T . Finally, we identify the

conditions for an analog of the slow roll approximation to be valid.

A. Schwarzschild-de Sitter spacetime

The starting point for our construction is Schwarzschild-de Sitter (SdS) spacetime

ds2 = −f0(r)dt2 +
dr2

f0(r)
+ r2dΩ2, f0(r) = 1− 2GM

r
− Λ

3
r2 (5)

where M is interpreted as the mass, and Λ is a positive cosmological constant. The coupled

Einstein-scalar field system (1) will have SdS solutions if the potential W (φ) has a stationary

point φ0, such that W (φ0) > 0. SdS solutions then exist having φ = φ0 everywhere and

Λ = W (φ0)/M2
p .

The SdS metric is asymptotically de Sitter at large spatial distances. For GM ≤
√

Λ/3,

the SdS metric function f0(r) has three real roots, which we will label as rc, rb and rn, and

the SdS metric function can be rewritten as

f0(r) = − Λ

3r
(r − rc)(r − rb)(r − rn) (6)

The absence of a term linear in r in f0(r) implies that rn = −(rb + rc), and we will assume

that rc ≥ rb ≥ 0. The parameters M and Λ of the SdS metric are then related to these roots

according to

GM =
rcrb(rb + rc)

2(r2
b + r2

c + rbrc)
, Λ =

3

r2
b + r2

c + rbrc
(7)
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Provided also that M > 0, the SdS metric describes a black hole in de Sitter spacetime,

with black hole and cosmological Killing horizons at radii rb and rc respectively. Letting

the subscript h denote either horizon, the surface gravities κh at the two horizons are found

from the formula κh = f ′0(rh)/2 to be

κb =
Λ

6rb
(rc − rb)(2rb + rc) , κc = − Λ

6rc
(rc − rb)(2rc + rb) (8)

where we note that κc is negative. The horizon temperatures are given by Th = |κh|/2π and

the horizon entropies are given by GSh = Ah/4 = πr2
h.

The thermodynamic volume V is another relevant thermodynamic quantity, arising as

the coefficient of the δΛ term when the first law of black hole thermodynamics is extended

to include variations in the cosmological constant [42]. See [43] for an excellent review on

this topic. As shown in [41], two different first laws may be proved for de Sitter black holes.

The derivation of the first, and less familiar, of these focuses on the region between the black

hole and de Sitter horizons, and relates the variations in areas of the two horizons to the

variation of the cosmological constant:

Tb δSb + Tc δSc +M2
pVdSδΛ = 0 . (9)

We refer to this statement as the SdS-patch first law. It holds for arbitrary perturbations

around SdS that satisfy the vacuum Einstein equations with cosmological constant Λ. The

thermodynamic volume VdS for an SdS black hole works out to be simply the Euclidean

volume between the horizons, which can be written equivalently in the two forms

VdS =
4π

3

(
r3
c − r3

b

)
=

4π

Λ
(rc − rb) (10)

In particular, even though the de Sitter patch first law (9) does not include an explicit

δM term, it holds for perturbations within the SdS family in which both the parameters

M and Λ, or equivalently rb and rc, are varied, as can be verified straightforwardly using

the formulae above. An alternative approach to a de Sitter patch first law is contained in

[44], in which the volume is varied. An SdS patch Smarr formula [41, 45], can be obtained

by integrating the first law (9) with respect to scale transformations, giving (in a general

dimension D)

(D − 2)TbSb + (D − 2)TcSc − 2M2
pVdSΛ = 0 (11)

where the factors of (D − 2) and −2 arise respectively from the scaling dimensions of the

horizon entropies and cosmological constant. In this paper we will be working in D = 4.
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(See also [46] and references therein for earlier “phenomenological” arguments for an SdS

Smarr relation.)

A second, independent first law, which we call the mass first law, can be derived [41] by

considering a spatial region that stretches from the black hole horizon out to spatial infinity,

and is given by

δM − TbδSb +M2
pVbδΛ = 0 (12)

The thermodynamic volume Vb that arises in the mass first law is given in SdS by the

Euclidean volume of the black hole horizon1, Vb = 4π
3
r3
b . Integrating the mass first law (12)

also gives a second independent Smarr formula

(D − 3)M − (D − 2)TbSb − 2M2
pVbΛ = 0 (13)

B. Convenient time coordinate for slow roll dynamics

As in [40], we now suppose that Λ is an effective cosmological constant that varies in

time as a scalar field, described by the action (1), evolves in its potential W (φ). Our first

step is to identify a preferred time coordinate T , such that the value of the scalar field

throughout the spacetime depends only on T , and hence makes viable a scenario in which

the effective cosmological constant Λ also only depends on this time. Such a time coordinate

was identified for perturbative slow-roll evolution with an exponential potential in [28], and

for a general slow transition in [40],

x = t− 1

2κc
ln

(
rc − r
rc

)
+

1

2κb
ln

(
r − rb
rb

)
+

(
rc

2κbrb
− 1

2κn

)
ln

∣∣∣∣r − rnrn

∣∣∣∣+ rbrc
rc − rb

ln
r

r0

(14)

where rn = −(rb + rc), as above, is the negative root of the SdS metric functionf0(r),

κn = f ′0(rn)/2 is the surface gravity evaluated at this root, and r0 is an arbitrary constant

of integration.

Starting from first principles we review the argument that leads to our choice of a new

time coordinate, which then gives SdS in an interesting new set of coordinates. Let us begin

1 A third first law, which we call the cosmological first law, can also be obtained by considering the spatial

region stretching from the cosmological horizon out to spatial infinity. The cosmological first law has the

same form as (12) with the subscript b replaced by c, and with the corresponding thermodynamic volume

given in SdS by Vc = 4π
3 r

3
c . However, only two of the first laws are independent. For example, subtracting

the black hole and cosmological horizon versions, the mass term drops out giving the relation (9) that

only involves the geometry of the horizons.
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by making a coordinate transformation of the SdS metric (5)

T = t+ h(r) , (15)

where, for now, h(r) is an arbitrary function of radius. The SdS metric then has the form2

ds2 = −f0 dT
2 + 2f0h

′ dTdr +
1

f0

(
1− (f0h

′)
2
)
dr2 + r2dΩ2 (16)

We look for solutions to the scalar wave equation (3) in these coordinates with φ = φ(T ),

so that the wave equation then reduces to

− 1

f0

(1− (f0h
′)

2
)φ̈+

1

r2
∂r(r

2f0h
′)φ̇ =

dW

dφ
(17)

Assuming that the scalar field evolution may be approximated as a slow roll, we neglect the

φ̈ term on the left hand side. Under the assumption that φ = φ(T ), the right hand side of

the wave equation depends only on T and hence it is necessary that

1

r2
∂r(r

2fh′) = −3γ (18)

where γ is a constant to be determined, and the factor of −3 is included for convenience.

The wave equation then becomes

− 3γφ̇ =
dW

dφ
, (19)

giving 3γ the interpretation of a damping coefficient. Equation (18) can be integrated to

obtain the required function h(r) in the coordinate transformation (15), with the result

h′ =
1

f0

(
−γr +

β

r2

)
(20)

Here, β is a further integration constant that is determined, along with γ, by regularity at

the two horizons3. Specifically, we require that a solution φ(T ) be an ingoing wave at the

black hole horizon and an outgoing wave at the cosmological horizon, so that the scalar field

is regular and physical in the SdS bulk. These conditions can be understood in terms of

Kruskal-type coordinates which are smooth at the horizons

Uh = − 1

|κh|
e−|κh|(t−r

?) , Vh =
1

κh
eκh(t+r?) (21)

2 Note that for the Schwarzschild metric, the choice dh
dr f = ±1 corresponds to outgoing/ingoing Eddington-

Finkelstein coordinates.
3 The constants β and γ will be key features of the slowly evolving black hole solutions found in Section

III, determining the relation between the rates of change of the mass and cosmological constant.
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where the subscript h = (b, c) designates either the black hole (b) or cosmological (c) hori-

zons, and r? is the tortoise coordinate defined by

dr? =
dr

f0(r)
(22)

The black hole horizon is located at r? = −∞, while the cosmological horizon is at r? = +∞.

It follows that Ub = 0 on the black hole horizon, with Vb a coordinate along the horizon.

For the cosmological horizon, the situation is reversed with Vc = 0 on the horizon and Uc a

coordinate along the horizon. Hence a regular solution for the scalar field must behave like

φ(T ) ' φ(t + r?) near the black hole horizon, and φ(T ) ' φ(t − r?) near the cosmological

horizon. This implies that the function h(r) in the coordinate transformation (15) has the

boundary conditions h(r) ' +r? and h(r) ' −r? as r approaches rb and rc respectively.

It follows from the definition of the tortoise coordinate (22) that the derivative of h must

behave like

h′(r) '


+1

2κb(r−rb)
, r → rb

−1
2κc(r−rc)

, r → rc

(23)

On the other hand, equation (20) implies that as r approaches rb or rc, we must have

h′(r) '


+1

2κb(r−rb)

(
−γrb + β

r2b

)
, r → rb

+1
2κc(r−rc)

(
−γrc + β

r2c

)
, r → rc

(24)

Comparing these two conditions we see that the constants β and γ must satisfy

− γrb +
β

r2
b

= 1, −γrc +
β

r2
c

= −1 (25)

which we can solve to obtain

γ =
r2
c + r2

b

r3
c − r3

b

, β =
r2
cr

2
b (rc + rb)

r3
c − r3

b

(26)

Having found these expressions for γ and β, we can now integrate equation (20) and deter-

mine the function h(r) that specifies the time coordinate T . After some algebra, one finds

that T agrees with the coordinate x in (14), discovered in the specific case of an exponential

scalar field potential [28]. Combining the formulae (16) and (20) now gives the SdS metric

in the stationary patch coordinates (T, r),

ds2 = −f0dT
2 + 2η0drdT +

dr2

f0

(1− η2
0) + r2dΩ2 (27)
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FIG. 1. A plot showing how the null lines u = t − r? =const, v = t + r? =const appear in the

(T, r) coordinate system. Note how the v-lines meet the black hole horizon and the u-lines the

cosmological horizon at finite T .

where

f0h
′ ≡ η0(r) = −γr +

β

r2
(28)

with γ and β as given in (26). Noting that η0(rb) = 1 and η0(rc) = −1, one sees that

the boundary conditions on the scalar field have yielded the result that near the black hole

horizon, the time coordinate T coincides with the ingoing Eddington-Finkelstein coordinate,

while near the cosmological horizon it becomes the outgoing coordinate. Hence the (T, r)

coordinates are well behaved in the region between and on the horizons. Figure 1 shows

schematically how the null (t± r?) coordinates (u, v) appear in this alternate system. These

properties will be useful when analyzing the near-horizon behavior of our dynamical solutions

in Section IV B.

The constants γ and β are both positive, and the damping coefficient 3γ in the evolu-

tion equation (19) for the scalar field has a simple geometrical interpretation as the ratio
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of the sum of the black hole and cosmological horizon areas Atotal = 4π(r2
c + r2

b ) to the

thermodynamic volume VdS = 4π(r3
c − r3

b )/3 from the SdS patch first law (9),

3γ =
Atotal
VdS

. (29)

as was noted in [40]. The damping of the scalar field evolution is greatest for small VdS,

which corresponds to a large black hole with radius approaching that of the cosmological

horizon.

C. Interlude on slow-roll approximation

Before proceeding with finding the solution, we outline more precisely the approximations

within which we will be working. The resulting conditions on the potential are essentially

the same as those in slow-roll inflation without a black hole [47, 48], summarized in equations

(32) and (34) below.

The picture is that we have a scalar potential with a shallow gradient so that the kinetic

contribution of the scalar energy momentum tensor and the time-dependent corrections to

W are sub-dominant to the zeroth order contribution from the potential. In inflation, we

summarise the slow-roll conditions in terms of the acceleration of the universe: “Ḣ/H < 1”.

Here however we are in stationary coordinates for SdS spacetime, therefore we must identify

our slow-roll in a slightly different way. However, the useful parameters turn out to be the

same as the conditions familiar for typical inflationary models.

Similar to slow roll inflation, we will demand that the stress-energy is dominated by the

contribution of the scalar potential, and that the φ̈ term be subdominant to the φ̇ term in

the scalar equation of motion. That is,

1− η2

f
φ̇2 � W ,

1− η2

f
φ̈� 1

r2

∣∣∣(r2η
)′
φ̇
∣∣∣ (30)

Since φ̇ is assumed perturbatively small, the metric coefficients in the above relations can

be taken to be their zeroth order values. Note that (1− η2
0)/f0 is monotonically decreasing

between the two horizons, and (r2η0)′/r2 = −3γ is constant. Hence we can manipulate the

first relation to give

1− η2
0

f0

φ̇2

W
< −η

′(rb)

κb

φ̇2

W
=

2

3Λ

(2r3
c + 3r2

crb + r3
b )(r

2
b + r2

c + rcrb)

(2rb + rc)(r2
b + r2

c )
2

W ′2

W
'M2

p

W ′2

W 2
� 1 (31)
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suggesting that we use the slow-roll parameter

ε = M2
p

W ′2

W 2
� 1 (32)

to quantify how “small” the kinetic term of the scalar is: φ̇2 . εW .

For the second relation, we take the leading order approximation to the φ−equation, (19),

and differentiate to find φ̈, giving∣∣∣∣∣1− η2
0

3γf0

φ̈

φ̇

∣∣∣∣∣ < 2

3Λ

(2r3
c + 3r2

crb + r3
b )(r

2
b + r2

c + rcrb)

(2rb + rc)(r2
b + r2

c )
2

W ′′ 'M2
p

W ′′

W
� 1 (33)

suggesting again that we use the parameter

δ = M2
p

W ′′

W
� 1 (34)

to quantify how small the variation of the kinetic term is: φ̈ . φ̇δ/rc. Note that this is again

similar to the ‘eta’ parameter of the traditional slow-roll approach, here renamed as δ.

We see therefore that the slow-roll relations are more or less the same as for the FRW

cosmology without a black hole, however, the black hole introduces a radial dependence

in the stationary patch coordinates that is easily bounded. The main difference between

slow-roll with and without a black hole is the γ−parameter responsible for the friction of the

scalar field. Since Λ = O(r−2
c ), γ = O(

√
Λ)/(1 − rb/rc) can be very much greater than the

Hubble parameter that usually serves as the friction term in inflationary slow-roll, although

it should be noted that the time with respect to which the scalar is rolling is the stationary

patch time coordinate T .

III. SOLUTION FOR THE DYNAMICAL METRIC

In the last section we analyzed the slow-roll evolution of a test scalar field φ with po-

tential W (φ) in a background SdS spacetime. We found a suitable time coordinate T , such

that there exist solutions φ = φ(T ) that are purely ingoing at the black hole horizon and

outgoing at the cosmological horizon. Our next goal is to solve the back-reaction problem

in perturbation theory to obtain the leading corrections to the SdS black hole metric as the

scalar field rolls down its potential. We will present a preview of the results here and then

provide their derivation in the next subsection. We start by making an ansatz for the form
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of the metric, taking the form of the SdS metric in the (T, r) coordinates (27) but allowing

the metric functions to depend on both the T and r coordinates

ds2 = −fdT 2 + 2ηdrdT +
dr2

f
(1− η2) + r2dΩ2 (35)

where f = f(r, T ) and η = η(r, t). To be specific, we assume that the scalar field starts

at time T = T0 with a value φ0 corresponding to a maximum of the potential. The initial

cosmological constant is given by Λ0 = W (φ0)/M2
p , and we assume that we start with an

SdS black hole, so that the unperturbed metric has the form (27) with

f(r, T ) = f0(r;M0,Λ0) = 1− 2GM0

r
− Λ0

3
r2 (36)

where M0 is the initial black hole mass. Corresponding to the values of M0, Λ0 are initial

values rb0, rc0 of the black hole and cosmological horizon radii, which in turn give the

parameters β, γ for the unperturbed SdS spacetime via (26).

Moving forward in time, the scalar field φ evolves via the scalar equation. In the back-

ground SdS spacetime, φ is constant, and therefore the time-dependent part of φ is pertur-

bative and to leading order evolves according to the wave equation (19) in the background

SdS spacetime. We note for future use that the time coordinate is related to the evolving

scalar field by

T = − 1

3γ

∫
dφ

(dW/dφ)
(37)

With this set-up, we can now state our results for the evolution of the spacetime geometry.

The physical picture is that for slow-roll evolutions, the metric should transition through a

progression of SdS metrics, with the parameters M and Λ varying slowly in time. We will

show that the solutions come very close to realizing this expectation. Explicitly, we find

that to leading order in perturbation theory, a metric of the form (35) satisfies the Einstein

equations with stress-energy coming from the rolling scalar field, and metric functions given

by

f = fQS(r, T ) + δf(r, T ) , η = η0(r) + δη(T, r) (38)

where

fQS(r, T ) = f0 (r;M(T ),Λ(T )) = 1− 2GM(T )

r
− Λ(T )

3
r2

δf(r, T ) = − 1

2r

φ̇2

M2
p

∫ r

rb0

1− η2
0

f0

r′2dr′, δη(r, T ) =
r(1− η2

0)

2f0

∫ T

T0

φ̇2

M2
p

dT
(39)
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with

Ṁ =
dM

dT
= 4πβφ̇2, Λ̇ = −3γ

φ̇2

M2
p

(40)

We will also demonstrate that the function δf above is transient, and sub-dominant to

the time dependent part of fQS(r, T ). Thus the time dependent black hole and cosmological

horizon radii rh(T ) are well approximated by the zeros rQSh (T ) of the quasi-statically evolving

portion fQS(r, T ). By construction these zeros are related to the time dependent mass and

cosmological constant M(T ) and Λ(T ) according to the SdS formulae in (7). Hence the time

derivatives of M(T ) and Λ(T ) in (40) can be converted into time derivatives of the horizon

radii rh(T ), giving

ṙh =
rh

2|κh|
φ̇2

M2
p

, h = (b, c) (41)

Expressions for the time dependent mass and cosmological constant can be obtained by

using the integral ∫ T

T0

φ̇2dT ′ = − 1

3γ
[W (φ(T ))−W (φ(T0))] (42)

Integrating Ṁ , Λ̇ and ṙh using (42) we arrive at the results

Λ(T ) ≈ W (φ(T )) , M(T ) ≈M0 +
β

6γ
[W0 −W (φ(T ))] (43)

and

rh ≈ rh0 +
rh0

6γ|κh|
[W0 −W (φ(T ))] (44)

and similarly for the function δη(r, T ) in (39). Note, we use the approximate equality

above, as in the slow roll approximation it is possible for M and Λ to have additional slowly

varying contributions (such as φ̇2) whose derivatives are order φ̈ or higher, and hence would

not contribute to (40) at this order. We have denoted here T0 as an initial time, which

could be at T0 → −∞, when the scalar field is at the top of the potential with value φ0,

the metric is SdS with mass parameter M0, Λ0 = W (φ0)/M2
p , and the horizon radii are the

corresponding rh0 determined by (7). Note that the value of the scalar field potential, and

hence the effective cosmological constant, is decreasing in time, so that the mass and both

horizon radii are increasing functions of time.
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A. Solving the Einstein equations

We now present the derivation of the quasi-de Sitter black hole solutions given above.

With the assumption that φ = φ(T ), there are two independent components of the stress

tensor,

TTT =

(
W (φ) +

1 + η2

2f
φ̇2

)
|gTT | , and

Tαβ =

(
−W (φ) +

1− η2

2f
φ̇2

)
gαβ otherwise.

(45)

and the Einstein tensor is:

GTT =

[
1

r2
(1− f − rf ′)− ηḟ

rf

]
|gTT |

Grr =

[
− 1

r2
(1− f − rf ′) +

ηḟ

rf
+

2η̇

r(1− η2)

]
grr

GrT =

[
− 1

r2
(1− f − rf ′)− (1− η2)ḟ

rηf

]
grT

Gθθ =

[
f ′′

2
+
f ′

r
− η′ḟ

2f
+
η̇f ′

2f
+
η̇

r
+ η̇′ +

1

2

(
(η2 − 1)

f

)··
]
gθθ =

Gφφ

sin2 θ

(46)

First consider the linear combination GTT

|gTT |
+ GTr

gTr
= M−2

p

(
TTT

|gTT |
+ TTr

grT

)
, which gives the

relation

ḟ = −rη φ̇2

M2
p

(47)

and then GTT

|gTT |
+ Grr

grr
= M−2

p

(
TTT

|gTT |
+ Trr

grr

)
, which yields

η̇ =
r(1− η2)

2f

φ̇2

M2
p

(48)

thus both of our metric functions have a time-dependence determined by a radial profile

times the kinetic energy of the scalar field. Since the quantity φ̇2 is already perturbative,

we need only consider the metric functions on the right hand sides of equations (47) and

(48) to leading order, i.e. f → f0 and η → η0, the zeroth order SdS functions given in (5)

and (28). So in perturbation theory, these equations give explicit expressions for the time

evolution of f and η.

Equations (47) and (48) can now be substituted back into the Einstein tensor in (46) to

eliminate ḟ and η̇. One then finds that the TT , Tr, and rr components of the normalized
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Einstein equation all reduce to

1

r2
(1− f − rf ′) =

W (φ)

M2
p

+
(1− η2

0)

2f0

φ̇2

M2
p

(49)

There remains the θθ equation, which using (47) and (48) becomes

− 1

2
f ′′ − f ′

r
=

W

M2
p

+
1

2f0

[
(1− η2

0)− rη0η
′
0 − r(1− η2

0)f ′0
] φ̇2

M2
p

(50)

Taking the derivative with respect to r of the Einstein equation (49) gives (50). So the

equations of motion for the coupled Einstein scalar field system have been reduced to four

equations, namely (47), (48) and (49), together with the slow-roll equation (19) for the scalar

field.

Physical considerations now give insight as to the perturbative form of the metric func-

tions f(r, T ) and η(r, T ). During slow roll evolution in an inflationary universe without a

black hole the scalar field potential W (φ) provides a slowly varying effective cosmological

constant. The stress-energy is dominated by the potential, with small corrections coming

from the kinetic contribution of the scalar field. As the potential changes, the metric is

approximately given by a progression of de Sitter metrics. With a black hole present, for

sufficiently slow evolution, one expects that the metric will be close to an SdS metric with

slowly evolving parameters M(T ) and Λ(T ). Looking at the expressions for the first three

normalized components of the Einstein tensor (46), one sees that if f = f0, then the terms

in the first round parentheses are all proportional to Λ0. Since these terms only depend on

radial derivatives, if we use the ‘quasi-static’ metric function fQS(r, T ) defined in (39) then

these terms will be proportional to Λ(T ). Further, looking also at the normalized stress-

energy components (45), one sees that the Einstein equations suggest a strategy of balancing

Λ(T ) with W [φ(T )] and then equating the remaining terms. These are corrections to a pure

cosmological equation of state from the kinetic energy of the scalar field.

Based on this reasoning, we adopt an ansatz of the form

f(r, T ) = fQS(r, T ) + δf(r, T )

η(r, T ) = η0(r) + δη(r, T )
(51)

It may appear redundant to have the time dependence for f explicit in both the function

fQS(r, T ), as well as δf(r, T ). However, it turns out this is a convenient way of packaging

the time dependence implied by the Einstein equations in a physically relevant manner.
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One might also question the asymmetry in (51) between f(r, T ) and η(r, T ). However, this

is simply what turns out to work. The next step is to substitute (51) into the Einstein

equations, show that the ansatz allows a solution, and solve for the four functions M(T ),

Λ(T ), δf(r, T ), and δη(r, T ).

Starting with f(r, T ), we substitute our ansatz into equations (49) and (47), to get

Λ(T )− 1

r2

∂

∂r
(rδf) =

W [φ(T )]

M2
p

+
(1− η2

0)

2f0

φ̇2

M2
p

(52)

Λ̇r2

3
+

2GṀ

r
− ˙δf =

(
−γr2 +

β

r

)
φ̇2

M2
p

(53)

respectively. According to our physical picture, we try for a solution such that the cosmo-

logical constant tracks the value of the scalar potential, Λ(T ) = W [φ(T )]/M2
p . Taking the

time derivative of this, and using the slow-roll equation (19) for the scalar field, we get

Λ̇(T ) = −3γ
φ̇2

M2
p

, (54)

consistent with the O(r2) terms in (53).

Next, we integrate (52) (after cancelling the Λ and W terms) to obtain

δf(r, T ) = − 1

2r

(∫ r

rb0

dr′(r′)2 1− η2
0

f0

)
φ̇2

M2
p

(55)

Here, we have chosen for convenience to fix the lower limit of the integral to be the initial

black hole horizon radius rb0, so that δf(r0b, T ) = 0; an alternate lower limit would corre-

spond to a shift in δf ∝ φ̇2/r that without loss of generality can be absorbed in M(T ) –

recall that within the slow roll approximation, the rate of change of φ̇2 is ignorable. Since

second derivatives of φ are being neglected in the slow roll approximation, equation (55)

implies that to this order
d

dT
δf ' 0 (56)

and hence we read off from (53)

Ṁ(T ) = 4πβ φ̇2 (57)

This rate of change of M corresponds to the accretion of scalar matter into the black hole.

We have therefore demonstrated the quasi-static form of the solution for f , subject to the

slowly varying δf .
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It is interesting to compare this expression for Ṁ to that obtained for fluid accretion onto

an asymptotically flat black hole by Babichev et al. [31, 33],

Ṁ(V ) = −4πr2T rV , (58)

where V is the Eddington-Finkelstein advanced time coordinate for the black hole, and

we have used the more general expression from [33] to facilitate comparison. Taking the

cosmological constant tending to zero, that is, rb � rc, we find that our expression for T

reduces to the Eddington-Finkelstein coordinate V , and β ≈ r2
b . Finally, using the expression

for the energy momentum tensor, φ̇2 = −T rV giving precisely the expression (58) of Babichev

et al.

Finally, we integrate (48) to obtain

δη(r, T ) =
r(1− η2

0)

2f0

∫ T

T0

φ̇2

M2
p

dT ′ + η1(r, T ) (59)

where η1 is a slowly varying function (η̇1 ≈ 0) that will turn out to be proportional to φ̇2,

and we require that δη is zero at the start of the slow roll process T0.

This completes the derivation of the slow-roll solution. The evolution of all the functions,

M(T ), Λ(T ), δf(r, T ), and δη(r, T ) in the quasi-SdS metric (51) are determined in terms of

the unperturbed SdS metric and φ̇(T ), which is in turn determined through the slow roll

equation (19) by the slope dW/dφ of the scalar potential. While the quasi-SdS solution is

not quite as simple as the static SdS spacetime, we will see that the quasi-SdS form allows

us to study the thermodynamics of both the black hole and cosmological horizons in an

intuitive way.

IV. HORIZONS

In this section we locate the horizons rh(T ) of the dynamical metric. In the background

static SdS metric, M0 and Λ0 are related to the horizon radii rb0 and rc0 by the formulae (7).

Since our solutions almost track a sequence of SdS metrics we expect that the black hole

and cosmological horizons are given by almost the same SdS formulae, with M(T ) and Λ(T )

replacing the constant parameters. However, “almost” is the operative word, since both f

and η receive modifications. Nonetheless, our findings are that:

• After an initial time period, the δf corrections become negligible;
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• η(T, r) still satisfies the needed boundary conditions, and as a result,

• the simple quasi-static formulae for the horizon radii apply after that initial period.

The derivation proceeds in two steps. We first find the time dependent zeros of f(T, r)

and identify the “start up” time interval. Second, we look at the form of the metric near

the zeros of f and show that these are horizons. We close this section by comparing the

results to those in our previous paper [40] which used a different coordinate system for the

evolving system.

A. Finding zeros of f(r, T )

Here we show that after an initial time period estimated below, the horizons rh(T ) are

given by the zeros of fQS, that is, the rh(T ) with h = (b, c), have the same algebraic relation

to M(T ) and Λ(T ) as do the quantities in static SdS. In the unperturbed SdS spacetime,

the black hole and cosmological Killing horizons are located at the zeros of f0(r), so we start

by finding the zeros of f(r, T ), which we designate by rz,h(T ). That is,

f (rz,h(T ), T ) = 0 (60)

where f(r, T ) is given in equation (38) by

f(r, T ) = fQS(r, T )− 1

2r

φ̇2

M2
p

I(r) (61)

with

I(r) =

∫ r

rb0

(1− η2
0)

f0

r′2dr′ (62)

Denote the zeroes of the quasi-static metric function fQS(r, T ), defined in (39), as rQSh (T ),

so that

fQS

(
rQSh (T ), T

)
= 0 (63)

It follows that the quasi-static radii rQSh (T ) are given in terms of the time dependent mass

and cosmological constant parameters M(T ) and Λ(T ) by the SdS relations (7).

Let us now compare the rz,h(T ) to the rQSh (T ). Since by construction I(rb0) = 0, these

two types of zeroes coincide at the black hole horizon4,

rz,b(T ) = rQSb (T ) (64)

4 Recall that the factor φ̇2 preceding I(r) in (61) is perturbative. It is therefore sufficient to evaluate the

integral at the unperturbed horizon radius.
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On the other hand, when r = rc0 in I, equation (60) becomes

− Λ(T )

3
r3
z,c + rz,c − 2GM(T )− 1

2

φ̇2

M2
p

I(rc0) = 0 (65)

which is not the same as the condition (63). Hence, the radii rQSc (T ) and rz,c(T ) differ, with

the difference arising from I(rc0), which enters the polynomial equation (65) as a contribution

to the time dependence of the mass term M(T ). Let us compare the magnitudes of the last

two terms in (65). One might be concerned that I(rc0) would diverge due to the factor of

1/f0 in the integrand in (62). However, the zeros of 1− η2
0 cancel the zeros of f0 at rb0 and

rc0. Explicitly,

1− η0 =
(r − rb0)

(r3
c0 − r3

b0)r2
P (r, rb0, rc0) , 1 + η0 =

(rc0 − r)
(r3
c0 − r3

b0)r2
P (r, rc0, rb0) (66)

where P (r, d, e) = r2(d2 + e2) + re2(d + e) + de2(d + e). Therefore the integral may be

rewritten as

I(r) =
3

Λ(r3
c0 − r3

b0)2

∫ r

rb0

dr′
P (r′, rb0, rc0)P (r′, rc0, rb0)

r′(r′ − rN)
(67)

which is manifestly finite at r = rc0. So the final term in (65) is then proportional to the

instantaneous value of φ̇2 times this finite, time-independent, quantity, while from (40) we

know that the change in M(T ) from its initial value M0 depends on the accumulated change

of φ̇2 integrated over time (plus a possible slowly varying term). Therefore, after a start up

time the contribution to rz,c coming from φ̇2I(rc0) will be small compared to the contribution

from the evolution of [M(T )−M0]. Explicit comparison of these terms shows that the shift

due to the I(rc0) term is negligible5 after a time interval (T − T0) ' rb0 ln(rc0/rb0) for small

black holes with rb0 � rc0, and after (T − T0) ' rb for large black hole with rb0 of order rc0.

Note that if the initial time T0 is taken to be −∞ then the extra term is irrelevant6. After

this initial time period the zeros of f(r, T ) coincide with the zeros of fQS(r, T )

rz,b(T ) = rQSb (T ) , rz,c(T ) = rQSc (T ) (68)

and hence evolve in a quasi-static way determined by the evolution of the quasi-SdS param-

eters M(T ) and Λ(T ). It may seem odd that the additional function δf is needed to solve

the Einstein equation at early times, rather than at late times. This likely illustrates the

5 For clarity, we have dropped numerical constants in making the following estimates.
6 Naturally, a different gauge choice could have been made to set I = 0 at rc, and the correction would

show up at rb.
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teleological nature of the horizon, as it starts to grow in anticipation of the influx of stress-

energy from the evolving scalar field. This effect was also noticed in a simpler inflationary

example with no black hole in [40].

B. Near horizon behavior

In this section we find the form of the metric near the zeros of f and show that it takes

the form of a black hole or cosmological horizon. This then implies that the functions rz,h(T )

do locate the horizons, and combining with the results of the previous section, we will have

demonstrated that the horizon radii evolve quasi-statically,

rh(T ) = rz,h(T ) ' rQSh (T ) (69)

after an initial period as discussed above.

Let us recall what the horizons look like in the static SdS metric, starting with the static

time coordinate t, and r. Defining the radial tortoise coordinate by dr? = dr/f0 and the

ingoing Eddington-Finklestein coordinate at the black hole horizon by v = t + r?, the SdS

metric near the black hole horizon is approximately given by

ds2 ' −2κb(r − rb)dv2 + 2drdv + r2dΩ2 (70)

Although the metric component gvv ' −2κb(r − rb)dv2 vanishes at the horizon, the metric

is non-degenerate there. The vector ∂/∂v is null and ingoing at the horizon. To study

the cosmological horizon, one uses outgoing coordinates with u = t − r?. Then near the

cosmological horizon the metric becomes

ds2 ' 2|κc|(r − rc)dv2 − 2drdu+ r2dΩ2 (71)

The vector field ∂/∂u is outgoing and null at the horizon and the cross term in the metric

changes sign.

One can also look at the metric near the horizons of SdS using the the stationary coordi-

nate T given in (14). As noted earlier, T interpolates between the ingoing null Eddington-

Finklestein coordinate v on the black hole horizon, and the outgoing null coordinate u on

the cosmological horizon. So there is no need to transform the coordinates, we just look at

the metric functions near the horizons. As r → rb the SdS metric becomes

ds2 ' −2κb(r − rb)dT 2 + 2dTdr +
Cb
κb
dr2 + r2dΩ2 (72)
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where Cb = −η′0(rb) = (2r3
c +3r2

crb+r3
b )[rb(r

3
c −r3

b )]
−1 > 0. The essential difference between

(70) and (72) is that grr = 0 in the (v, r) coordinates, while grr is non-zero but finite in the

(T, r) coordinates. This is due to the fact that T is not identical to v near rb. Similarly,

near the cosmological horizon of SdS the metric in stationary cooordinates has the form

ds2 ' 2|κc|(r − rc)dT 2 − 2dTdr +
Cc
|κc|

dr2 + r2dΩ2 (73)

and one sees explicitly that T has become an outgoing null coordinate. Here Cc = −η′0(rc) >

0.

The analysis of the time-dependent metric in (38) near the zeros of f proceeds in a similar

way. Take the time T to be sufficiently large that the zeros of f are well approximated by

the zeros of fQS. Further, to avoid repetition of bulky notation, we will simply abbreviate

rQSh (T ) = rh(T ), and the end result justifies this replacement. As r approaches rb(T ), the

metric function f behaves like

f ' −2κb(T ) (r − rb(T )) (74)

where κb(T ) is defined as the derivative

κb(T ) =
1

2
f ′|r=rb(T ) (75)

At present we will not ascribe any significance to κb(T ) as a possible time-dependent surface

gravity or temperature.

The behavior of the metric function

grr =
(1− η2)

f
(76)

in the time dependent solution (38) appears to be more subtle, since although the zeros of f in

the denominator are cancelled by zeros in the numerator for exact SdS, it is not immediately

obvious whether this is still true for the perturbed functions f and η. However, (47) and

(48) together imply that grr is in fact independent of T , provided only that φ = φ(T ), hence

grr remains regular even if the locations of the zeros of f shift. Let us now confirm this,

by deriving explicitly the locations of these zeros. Denote rh0 as an horizon radius in the

unperturbed SdS spacetime (a zero of f0) and expand the time-dependent horizon radius

around this as

rh(T ) = rh0 + xh(T ) (77)
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where the shift in the position of the zero is assumed small, |xh|/rh0 � 1. rh(T ) is defined as a

zero of f(r, T ), therefore xh can be deduced by Taylor expanding the relation f(T, rh(T )) = 0

around rh0 and using the expression we have derived for f(r, T ), yielding

xh(T ) =
rh

2κh
η0(rh)

∫ T

T0

φ̇2

M2
p

dT ′ − I(rh)

2rh

φ̇2

M2
p

(78)

thus verifying (44). Expanding η near each horizon similarly shows

η(rh(T )) = η0(rh) + xhη
′
0(rh) +

rh(1− η2
0)

2f0

∫ T

T0

φ̇2

M2
p

+ η1(rh, T )

= η0(rh) + η1(rh, T )− I(rh)

2rh

φ̇2

M2
p

(79)

i.e. fixing η1 = I(r)φ̇2/2rM2
p , we have that η(rh(T )) = η0(rh0) = ±1, explicitly confirming

that grr remains regular at the new horizon radii.

Therefore although the metric function gTT vanishes at rh(T ), the metric is non-

degenerate there, as was the case in the unperturbed SdS spacetime. The cross term

+2dTdr in the metric at the black hole horizon illustrates the ingoing nature of the T

coordinate near that horizon, where it becomes a null coordinate that is well-behaved7, a

property that was built into the choice of T to ensure ingoing boundary conditions for φ(T ).

A similar analysis applies to the cosmological horizon as r approaches rc(T ). The cross term

in the metric in this case will have the opposite sign illustrating the outgoing nature of the

coordinate T near the cosmological horizon.

The preceeding subsections are summarized by the formula for rh(T ) given in (44), valid

after an initial start-up time.

C. Calculation in null coordinates

In this subsection we show that these results for the growth of the horizon radii agree

with the calculations in our previous paper [40]. This is a useful exercise since the first

paper worked in null coordinates, in which it was simple to locate the horizons but difficult

7 The vector (∂/∂T ) is null at r = rb and is normal to the surface dr = 0, and the second null radial

direction is defined by (−η′0(rb(T ))/κb)dr+ 2dT = 0. So the two null directions on the black hole horizon

are

T a =
∂

∂T
, Ka = −η

′
0(rb(T ))

2κb

∂

∂T
− ∂

∂r
(80)

normalized so that T aKa = −1.
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to find the metric throughout the region. In contrast, the coordinates used in the cur-

rent paper allow us to find the metric straightforwardly, but the horizon structure requires

more work. Comparison requires further processing of the results of [40] using the slow-roll

approximation requirements derived earlier.

In [40], we showed that the linearized Einstein equations on the horizon reduced to simple

second order ODE’s in terms of the advanced time coordinate Vb on the black hole horizon,

and Uc on the cosmological horizon:

d2

dV 2
b

δAb = − Ab
κ2
bM

2
p

φ̇2

V 2
b

,
d2

dU2
c

(UcδAc) = − Ac
κ2
cM

2
p

φ̇2

Uc
(81)

where Ah is the area of the respective horizon. In the background SdS metric, these coor-

dinates are related to T by

κbVb = exp[κb(T − T0)] , κcUc = exp[κc(T − T ′0)] (82)

Integrating (81) gave the general expressions for the horizon areas, from which we can deduce

the values of horizon radii as

δrb = − rb
6γκbM2

p

Vb

∫ ∞
Vb

δW [φ(V ′b )]
dV ′b
V ′2b

δrc = − rc
6γκcM2

pUc

∫ 0

Uc

δW [φ(U ′c)]dU
′
c

(83)

At first sight, these look somewhat different from the values of δrh obtained from (44),

however, armed with the slow roll analysis for integrating the Einstein equations, let us

re-examine these expressions. Integrating by parts in δrb, and using κbVb = exp[κb(T − T0)]

we find

δrb = − rb
6γκbM2

p

[
δW [φ(Vb)]− 3γeκbT

∫ ∞
T

φ̇2e−κbT
′
dT ′
]

(84)

Similarly, the rc equation can be integrated by parts to give

δrc = − rc
6γκcM2

p

[
−δW [φ(Uc)] + 3γe−κcT

∫ ∞
T

φ̇2eκcT
′
dT ′
]

(85)

To approximate these integrals, we use (34) to compare how rapidly φ̇2 is varying compared

to the exponential, in other words, the magnitude of∣∣∣∣ 1

φ̇2κh

d

dT
φ̇2

∣∣∣∣ =

∣∣∣∣W ′′

γκh

∣∣∣∣ =
r2
c + rcrb + r2

b

r2
c + r2

b

4rhδ

2rh + rh̄
< 3δ � 1 (86)
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(where the ‘h̄’ subscript stands for ‘the other’ horizon). Thus φ̇2 varies much more slowly

than the exponential, and we can approximate each of these integrals by φ̇2e−|κh|T/|κh|

yielding

δrh ' −
rh

6γ|κh|M2
p

[
δW − 3γ

|κh|
φ̇2

]
(87)

Let us now compare these two terms. At the start of slow-roll, i.e. at the local maximum of

W ,

W ' W0 +
1

2
W ′′δφ2 ⇒ δφ ∝ e−W

′′T/3γ as T → −∞ (88)

hence ∣∣∣∣∣ 3γφ̇2

κhδW

∣∣∣∣∣ =

∣∣∣∣2W ′′

3κhγ

∣∣∣∣ < 2δ � 1 (89)

thus δW is initially the dominant term in (87). Moreover, throughout slow-roll, examining

the rate of change of each term,

˙δW = −3γφ̇2 ,

(
3γφ̇2

κh

)·

= −3γφ̇2 2W ′′

κhγ
⇒

∣∣∣∣∣
(

3γφ̇2

κh

)·∣∣∣∣∣� ∣∣∣ ˙δW
∣∣∣ (90)

shows that if δW is dominant initially, it will remain so throughout the transition between

vacua, meaning that the evolution of the horizon area is dominated by the shift in the

cosmological constant which is the first term in (87), in agreement with (44).

V. HORIZON AREAS, BLACK HOLE MASS, AND FIRST LAWS

In this section we compute the rates of change for the areas of the black hole and cosmo-

logical horizons, the black hole mass, and the thermodynamic volume between the horizons.

We then show that the de Sitter patch first law (9) and the mass first law (12) are satisfied

throughout the evolution. In our previous paper [40] we showed that (9) held between the

initial and final SdS states, relating the total changes in these quantities over the evolution.

In this earlier work we lacked the detailed form of the time dependent metric and were

unable to verify the mass first law equation, though we inferred the value of the late time

mass based on assuming that the mass first law was true. Here, equipped with the solution

for the metric (38), we are able to do more.
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A. Horizon area growth and first law

A priori one expects that the black hole horizon area should be increasing in time due

to accretion of scalar field stress-energy. However, for the cosmological horizon there are

competing influences on its area that tend in opposite directions. For fixed Λ the cosmolog-

ical horizon gets pulled in as the black hole mass grows, while for fixed black hole mass the

cosmological horizon grows as Λ shrinks. The solutions showed that both horizon radii are

increasing, so the latter effect dominates the behavior of the cosmological horizon.

Throughout this section we will work in the late time limit defined above in §IV A,

so the black hole and cosmological horizons are located at the zeros of the quasi-static

metric function fQS(r, T ). This implies that rb(T ) and rc(T ) are given in terms of the time

dependent mass M(T ) and vacuum energy Λ(T ) by the same relations (7) that apply in the

unperturbed SdS spacetime. The expressions for Ṁ and Λ̇ in the time dependent solution

(38) then yield the expressions given in (41) for ṙb and ṙc. It follows that the rate of change

of the black hole and cosmological horizon areas is

Ȧh =
Ah
|κh|

φ̇2

M2
p

, h = (b, c) (91)

Now it can be checked that the SdS-patch first law (9) holds in a dynamical sense.

Summing the expressions for the rate of growth of the horizon areas (91) gives

|κb|Ȧb + |κc|Ȧc = Atot
φ̇2

M2
p

(92)

Using the formulae for Λ̇ in (40) and the thermodynamic volume of the de Sitter patch VdS,

equation (29), gives

V Λ̇ = −Atot
φ̇2

M2
p

(93)

and so

|κb|Ȧb + |κc|Ȧc = −V Λ̇ (94)

Interpreting the variations in (9) as time derivatives, and translating |κh|M2
p δAh = ThδSh,

we see that the SdS-patch first law (9) holds between successive times. Hence the decrease

of the effective cosmological constant due to the scalar field rolling down its potential goes

into increasing the black hole and cosmological horizon entropies.

It is also straightforward to check that the mass first law (12) is satisfied throughout the

evolution for the time dependent solutions. Plugging in for Ṁ and Λ̇ using (38), and Ȧb
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using (91), one finds that the mass first law reduces to the first relation in (25), that is, the

evolution satisfies
Ṁ

M2
p

− |κb|Ȧb + VbΛ̇ = 0 (95)

The accumulated growth in time for each horizon is obtained by integrating the expres-

sions (91) for Ȧh, which at late times gives

δAh(T ) = − AhVdS
3|κh|Atot

δΛ (96)

where δAh(T ) ≡ Ah(T ) − Ah0 and δΛ = Λ0 − Λ[φ(T )]. The prefactors all refer to values

in the initial SdS spacetime, and keeping in mind that δΛ(T ) is negative, δAh is positive.

Hence the change in area of each horizon between T0 and T is proportional to the initial

horizon area times the change in the effective cosmological constant. It is also interesting to

note that during the evolution that the fractional increase in area, times the magnitude of

the surface gravity, is the same for both horizons

|κc|
δAc
Ac

= |κb|
δAb
Ab

(97)

The geometrical quantities appearing in equation (96) are not all independent. The initial

SdS spacetime is specified by two parameters, which we have been taking to be the initial

black hole horizon radius and the initial value of the potential, and so one wants formulae

that only depend on rb and Λ. Substituting in the surface gravity and thermodynamic

volume gives, for the black hole horizon,

δAb = Ab
|δΛ|
Λ

2rb(r
2
c + r2

b + rcrb)

(2rb + rc)(r2
b + r2

c )
(98)

The corresponding expression for δAc is obtained by interchanging rb and rc. In (98) rc is

still an implicit function of rb and Λ. We will display the results in the limits of small and

large black holes. For the black hole horizon area one finds

δAb '

Ab
2|δΛ|√

3Λ

√
Λr2

b ,
√

Λr2
b � 1

Ab
|δΛ|
Λ

,
√

Λr2
b ∼ 1

(99)

One sees that the fractional growth is parametrically suppressed for small black holes, and

of order |δΛ|/Λ for large ones. Likewise, one can examine how much the growth of the

cosmological horizon is suppressed by the presence of the black hole. One finds

δAc '

12π |δΛ|
Λ2 ,

√
Λr2

b � 1

4π |δΛ|
Λ2 ,

√
Λr2

b ∼ 1
(100)

27



The small black hole result is the same as if there were no black hole. On the other hand,

the growth of the area of the cosmological horizon can be diminished by as much as a factor

of two-thirds for large black holes. This suggests that the effect of a large black hole on

the spectrum of CMBR perturbations created during slow roll inflation is worthy of further

study.

While both horizon areas increase, the black hole gets smaller compared to the cosmo-

logical horizon in certain ways. The volume VdS between the horizons increases according

to

V̇dS = 2π

(
r3
c

|κc|
− r3

b

|κb|

)
φ̇2

M2
p

(101)

Since |κc| < κb [49] the right hand side is positive. Another measure is how the difference

between the black hole and cosmological horizon areas changes in time:

Ac(T )−Ab(T )− (Ac0−Ab0) = δAc− δAb = 24π
|δΛ(T )|

Λ2

(rc − rb)(rc + rb)
3

(r2
c + r2

b )(2rc + rb)(2rb + rc)
(102)

Since |δΛ(T )| increases with time, the black hole is getting smaller in comparison to the

cosmological horizon. To unravel the parameter dependence of (102), we again look at

different limiting cases

δAc − δAb '


12π |δΛ|

Λ2

√
Λr2

b ,
√

Λr2
b � 1

6π |δΛ|
Λ2 , rb = 1

2
rc

32π
3
|δΛ|
Λ2 (1−

√
Λr2

b ) ,
√

Λr2
b ∼ 1

(103)

We see in this case that the effect is parametrically suppressed both for very small and very

large black holes and most prominent in the intermediate regime.

B. Dynamical temperature

We have not yet discussed horizon temperature for the time dependent quasi-SdS black

holes (38). These represent non-equilibrium systems, for which it is not clear that a well-

defined notion of dynamical temperature should exist. Nevertheless, given that our system

is only slowly varying, we might expect that an adiabatic notion of temperature makes

sense [50, 51] and indeed candidate definitions have been suggested in the literature. We

will focus, in particular, on the proposal [52] which defines a dynamical surface gravity

κdyn for outer trapping horizons in nonstationary, spherically symmetric spacetimes. In this
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construction, the Kodama vector [53] substitutes for the time translation Killing vector of

a stationary spacetime in providing a preferred flow of time. Further, the authors use a

variant of the tunneling method of [54], adapted to the non-stationary setting, to argue that

particle production has a thermal form with temperature Tdyn = κdyn/2π.

The dynamical surface gravity is defined in [52] as

κdyn =
1

2
? d ? dr (104)

where the Hodge ? refers to the two dimensional T, r subspace orthogonal to the 2-sphere,

and the quantity is to be evaluated at the horizon. The Hodge duals of the relevant forms

are given by

? dr = fdT − hdr , ?dr ∧ dT = 1 (105)

Using these expressions, and evaluating (104) on the black hole horizon, one finds that

κdyn(T ) = (f ′ + η̇) = κb(T ) +O(εδ) (106)

where κb(T ) was defined in equation (75) as the derivative of the perturbed metric function

f(r, T ) evaluated at radius rb(T ). Note that although the contribution δf(r, t) to the metric

function vanishes at rb0, its derivative is non-zero and therefore κb(T ) gets contributions

both from fQS and from δf , with the result that

κb(T ) = κQS(T )− Cb
2κb

φ̇2 (107)

Here the quasi-static surface gravity κQS(T ) is given by the SdS relation (8) using rb(T ) and

rc(T ), and expanding to linear order in the perturbative quantities. These time-dependent

corrections to the radii rh(T ) are proportional to the integral over time of φ̇2, but the second

term in (107) depends on the instantaneous value of φ̇2. So after an initial time period

the latter term is small compared to the first, and the dynamical surface gravity is well

approximated by

κb(T ) ' κQS(T ) (108)

We see that the proposal of [52] yields a simple, intuitive result. This is in agreement with

our results in [40] where the calculation was done using null coordinates.
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VI. CONCLUSION

In this paper we have found a tractable form for the metric of a black hole in a slow-

roll inflationary cosmology, to first order in perturbation theory, which one can readily

understand in terms of expectations for the slowly evolving system. The solution directly

gives the time dependence of Λ and M and it is straightforward to then find the time

dependent horizon areas, the thermodynamic volume, and the dynamical surface gravity. A

topic for future study is to compute the flux of the energy-momentum of the scalar field

across surfaces of constant r. The flux is ingoing at the black hole horizon, and outgoing

at the cosmological horizon, and it would be good to understand our results for the growth

of the horizons and the mass in terms of the fluxes in greater detail, as was done in [28].

Further, there must be a transition surface between the horizons where the flux vanishes,

so mapping out the flux throughout the domain would be of interest. A related issue is to

look at the energy density and pressure variation across spatial slices that interpolate to a

standard inflationary cosmology in the far field. The range of validity of the approximate

solution we have derived is another issue for further study. Conservatively, one assumes that

|δΛ/Λ| must be small. However, since the slow-roll conditions require that the derivatives

of the potential must be small, one might ask if larger accumulated change in W is allowed,

as long as the evolution is slow enough. In any case, our approximation is equally valid as

the slow roll approximation in the inflationary evolution of the early universe.

It is of interest to calculate the perturbations from inflation with the black hole present,

as such signatures in the CMBR may be a method for detecting, or inferring, primordial

black holes [55]. Although the black hole itself is small-scale, the wavelength of its signature

on modes that re-enter the horizon at late times is stretched with the modes themselves. A

related problem is to compute the Hawking radiation in this metric by extending the methods

of [56] to the quasi-static case. Such a calculation is needed to support the interpretation

of the dynamical surface gravity as a physical temperature. While this quasi-static set-up

would only represent a step in understanding horizon temperature in a dynamical setting,

this metric is one of the few known dynamical examples where the cosmological and black

hole temperatures are not equal.

There are examples of elegant analytic descriptions in which an evolving physical system

tracks a family of static solutions, such as charge-equal-to mass black holes [57–59], or
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magnetic monopoles [60, 61], with small relative velocities. In these cases there is a BPS

symmetry of the zeroth order time-independent solution, which apparently protects small

perturbations from being too disruptive. There is not obviously any such symmetry in the

black hole plus scalar field system, and yet the slow-roll dynamics is analogous. One avenue

for future study is to see if there is an underlying reason for this behavior, which in turn

could lead to a more fundamental understanding.
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