
Journal of Geophysical Research: Planets

Image Reconstruction Techniques in Neutron and Gamma Ray
Spectroscopy: Improving Lunar Prospector Data

J. T. Wilson1 , D. J. Lawrence1 , P. N. Peplowski1 , J. T. S. Cahill1, V. R. Eke2, R. J. Massey2,
and L F. A. Teodoro3

1The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA, 2Institute for Computational Cosmology,
Department of Physics, Science Laboratories, University of Durham, Science Laboratories, Durham, UK, 3BAER, Planetary
Systems Branch, Space Sciences and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA, USA

Abstract We present improved resolution maps of the Lunar Prospector Neutron Spectrometer
thermal, epithermal, and fast neutron data and gamma ray spectrometer Th-line fluxes via global
application of pixon image reconstruction techniques. With the use of mock data sets, we show that the
pixon image reconstruction method compares favorably with other methods that have been used in
planetary neutron and gamma ray spectroscopy. The improved thermal neutron maps are able to clearly
distinguish variations in composition across the lunar surface, including within the lunar basins of
Hertzsprung and Schrödinger. The improvement in resolution reveals a correlation between albedo
and thermal neutron flux within the basins. The consequent increase in dynamic range confirms that
Hertzsprung basin contains one of the most anorthositic parts of the lunar crust, including nearly pure
anorthite over a region tens of kilometers in diameter. At Orientale, the reconstructed epithermal neutron
data show broad overlap with circular polarization ratio but there remains a mismatch between measures
of regolith maturity that sample the surface and those that probe the near subsurface, which is consistent
with a complex layering scenario.

1. Lunar Gamma Ray and Neutron Spectroscopy

The global distribution of all major and several minor elements on the Moon was mapped by the Lunar
Prospector (LP) gamma ray spectrometer (GRS) and neutron spectrometer (NS; Elphic et al., 1998, 2000;
Feldman et al., 1998, 2000, 2002; Lawrence et al., 1998, 2000, 2002; Prettyman et al., 2006). Information in these
maps has given rise to an improved understanding of the formation and evolution of the lunar surface and
interior (e.g., Jolliff et al., 2000; Hagerty et al., 2006, 2009). Unlike other spectroscopic techniques, both gamma
ray and neutron spectroscopy have the advantage of being able to provide bulk measurements of elemental
composition at depths of a few tens of centimeters, which is orders of magnitude deeper than that available
from ultraviolet to near-infrared spectroscopy.

For gamma rays detected from the natural decay of thorium (Th), uranium, and potassium, the inferred
abundances do not depend on cosmic ray flux or the abundance of other elements (Metzger et al., 1977).
Because these ions preferentially partition into the melt phase during igneous processing, their abundance
acts as an indicator of past magmatic activity and differentiation.

Planetary neutron data are typically separated into three energy ranges: high-energy, fast neutrons (500 keV
≲ E ≲ 10 MeV); intermediate-energy, epithermal neutrons (0.3 eV ≲ E ≲ 500 keV); and slower, thermal
neutrons (E ≲ 0.3 eV). Epithermal neutron data are sensitive to the presence of hydrogen, and the LP-NS
epithermal data have revealed the presence of subsurface hydrogen at the poles (Feldman et al., 2000, 2001),
which is preferentially concentrated within the cold traps in permanently shaded regions (Eke et al., 2009;
Feldman et al., 2001; Teodoro et al., 2010). Thermal neutron data provide a map of neutron-absorbing ele-
ments, which on the Moon are predominately Fe, Ti, and the rare Earth elements Gd and Sm (Elphic et al.,
2000). Analysis of these data to create maps of absolute neutron absorption also revealed the presence of
nearly pure plagioclase in parts of the highlands (Peplowski et al., 2016). The fast neutron data provide a mea-
sure of mean atomic mass within the top meter of lunar regolith (Gasnault et al., 2001; Maurice et al., 2000),
because the higher neutron to proton ratio in Fe and Ti leads to a higher fast neutron flux.
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In addition to their ability to measure bulk elemental abundance, the penetrating power of gamma rays and
neutrons leads to the footprint of the point spread functions (PSFs) of orbital GRS and neutron NS to be similar
to the spacecraft’s altitude; thus, spatial resolution is improved by lowering orbital altitude. This relatively large
PSF hinders comparison with other, better resolution, remotely sensed data, such as visible imaging, due to
the averaging effects of observation with the GRS/NS. This averaging also results in a reduction of the dynamic
range of the measured data.

An efficient method of reducing these complications with the GRS/NS data is the application of image recon-
struction techniques to sharpen the maps and suppress the effects of noise. Several image reconstruction
or deconvolution techniques have been used with GRS/NS data from several missions, including Jans-
son’s method on Mars Odyssey Neutron Spectrometer (MONS) epithermal data at Tharsis (Elphic, Feldman,
et al., 2005) and the Martian poles to monitor CO2 cap growth and retreat (Prettyman et al., 2009), the pixon
method on LP Th data (Lawrence et al., 2007; Wilson et al., 2015) and LP-NS epithermal data to map hydro-
gen within permanently shadowed craters at the lunar poles (Eke et al., 2009; Elphic et al., 2007), the global
MONS epithermal data to map near-subsurface water on Mars (Wilson et al., 2018), and a new method called,
here, the regularized maximum likelihood method to examine the near-subsurface H distribution from MONS
epithermal data (Pathare et al., 2018).

In this paper we apply image reconstruction methods to the global, lunar neutron, and gamma ray data to
improve the utility of the mapped data. Additionally, several deconvolution and image reconstruction meth-
ods, commonly used in planetary sciences, are compared to find that most suitable to the problem. In the
following section we offer a brief discussion of image reconstruction in planetary neutron and gamma ray
spectroscopy. More detailed explanations can be found in the references provided. Section 3 describes tests,
carried out using mock data, of the various image reconstruction and deconvolution methods. Section 4
details the data used in this study and the results of applying pixon image reconstruction methods to these
LP data. We conclude in section 5.

2. Image Reconstruction in Planetary Sciences

Observation by an imperfect instrument can often be modeled by stating that the data obtained, D, are the
result of the convolution of the true, underlying, image, I, that would be measured with a perfect instrument,
with the PSF of the actual detector, B, and the addition of noise, N, that is,

D(x) = I ∗ B(x) + N(x), (1)

where the argument x refers to position or pixel number (as appropriate) and ∗ is the spatial convolution
operator. Solving for the inverse of equation (1) to find the reconstruction closest to the original image, I, is
the problem of image reconstruction. As the noise is known only statistically, equation (1) cannot be inverted
analytically, so we must instead adopt some statistical or iterative technique to perform the inversion.

Given that the number of degrees of freedom that may be involved in the problem is as large as the number of
pixels that make up the image, searching significant regions of the parameter space can be computationally
expensive. Several techniques have been developed to combat this problem including direct inversion using
iterative procedures such as Jansson’s method (Jansson, 1984). However, these techniques often lead to the
production of spurious features in the reconstruction, driven by, and amplifying, noise in the data (Lawrence
et al., 2007). To avoid these problems, Bayesian image reconstruction techniques have been developed that
make use of prior information, favoring simplicity, in addition to the measured data. The Bayesian technique
most often employed in the reconstruction of planetary neutron and gamma ray data is the pixon method
(Eke, 2001; Pina & Puetter, 1993). Below, we provide a brief description of some commonly used reconstruction
techniques that will be examined in this paper.

2.1. Smoothing
The most straightforward method of regularizing the data is to smooth the maps via convolution with a kernel.
For simplicity this kernel is often chosen to be the PSF (e.g., Elphic et al., 2000; Lawrence et al., 2003; Peplowski
et al., 2016); however, any function may be selected. This technique does not attempt to remove the effect of
blurring due to observation but only to suppress statistical noise. Ideally, the kernel would be large enough
to average away noise variations but not so large as to wash out real variations in the detected signal.
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2.2. Jansson’s Method
If one considers the problem of deconvolution (neglecting the presence of noise), the most immediate solu-
tion is to find the inverse of the PSF and convolve this with the data. However, when combined with the
presence of noise, this can give rise to reconstructions that are dominated by large, spurious, and often oscil-
latory features (Starck et al., 2002). A series of linear, iterative algorithms have been developed with the aim
of controlling this undesired behavior as it evolves (e.g., Jansson, 1984; Lagendijk et al., 1988; Lucy, 1974;
Katsaggelos et al., 1991; Richardson, 1972).

Jansson’s method is one of these algorithms (Jansson, 1984). It contains an additional relaxation factor, r,
modifying each iteration, which is intended to suppress spurious noise-derived features that arise in linear
deconvolution techniques. The method is defined by the relations

Î(0)(x) = D ∗ B(x), (2)

Î(k+1)(x) = I(k)(x) + r[I(k)](D(x) − I(k) ∗ B(x)), (3)

r[I(k)(x)] = r0

(
1 − 2

|||||
I(k)(x) − Imin

Imax − Imin
− 1

2

|||||
)
, (4)

where r0 is a relaxation constant whose value is determined empirically and Imin and Imax are the smallest and
largest permitted values of the reconstruction. That is, the new guess at the truth, Î(k+1), is the sum of the old
guess, Î(k), and the residuals (corresponding to the kth guess) scaled by a relaxation factor, r. The initial guess,
Î(0), is set equal to the data convolved with the instrumental PSF. The form of r prevents solutions that are
moving out of the allowed range of values from changing further, as it goes to 0 in pixels where the solu-
tion approaches Imin or Imax. It was hoped that avoiding nonphysical solutions (e.g., negative fluxes) would
improve the final image, even in regions outside of those truncated (Jansson, 1984). This method has seen
some use in planetary sciences for the spatial deconvolution of neutron and gamma ray data sets (Elphic,
Feldman, et al., 2005; Elphic, Lawrence, et al., 2005; Lawrence et al., 2007; Prettyman et al., 2009). However, it
is still liable to produce spurious, noise-derived, features in the deconvolved images (Lawrence et al., 2007).

As repeated iterations of Jansson’s method amplify noise, an appropriate maximum number of iterations must
be found for each data set. In planetary science, following Prettyman et al. (2009), this is usually done by cre-
ating a mock set of data with statistics and, ideally, features that closely match the actual data. The method
is then applied to this mock data, and the number of iterations required to find the reconstruction most
closely matching the known truth is determined. The method is then run on the actual data for the number
of iterations found to be the most appropriate for the mock data.

2.3. Regularized Maximum Likelihood
A recent scheme for attempting to perform deconvolution was introduced in Pathare et al. (2018). This method
involves describing the reconstructed image in spherical harmonic space and varying the spherical harmonic
coefficients to minimize the measured reduced chi-square, 𝜒2

r , value based on the difference between the
reconstruction, blurred with the instrumental PSF, and the data. In this scheme the effects of noise on the
reconstruction are suppressed by truncating the spherical harmonic power series to a given degree.
The maximum degree used is that necessary to reduce 𝜒2

r to ∼1.

2.4. Pixon Reconstruction
Unlike direct inversion methods, whose aim is deconvolution with the suppression of noise a secondary con-
sideration, Bayesian image reconstruction techniques start by asking a different question: given the data and
our prior knowledge, what is the most likely true, underlying image?

Answering this question requires maximizing the posterior conditional probability:

P(Î,M|D) = P(D|Î,M)P(Î|M)P(M)
P(D)

, (5)

where Î is the inferred truth and M the model describing both how the image is represented in pixel space and
our knowledge of equation (1). For our purposes P(D) is simply a normalization factor and P(M) will be taken
as uniform. Thus, two terms are of interest: the first, P(D|Î,M), is the likelihood of the data given a particular
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inferred truth and model, which can be calculated using a goodness-of-fit statistic. For data with Gaussian
errors 𝜒2 can be used, where

P(D|Î,M) = exp(−0.5𝜒2) (6)

and

𝜒2 =
∑(

D(x) − I ∗ B(x)
𝜎(x)

)2

, (7)

where 𝜎(x) is the expected random statistical noise in pixel x. The second term of interest, P(Î|M), is the image
prior, that is, the probability of obtaining a particular inferred truth given the model.

Many Bayesian image reconstruction techniques assume that the model, M, in equation (5) is fixed (such as
Wiener deconvolution; e.g., Press et al., 1992) and maximum entropy reconstruction (Narayan & Nityananda,
1986). However, this is not a necessary assumption: Allowing both I and M to vary in the reconstruction enables
the prior to be interpreted as a mathematical statement of Occam’s razor. More complex models, which allow
a larger number of reconstructed truths, are naturally disfavored and allowed only if they provide a sufficiently
good improvement in the likelihood. In the pixon method, the model, that is, the pixel arrangement, is allowed
to vary.

It was noted by Pina and Puetter (1993) that each cell, or pixel, represents a degree of freedom, and in regions
of the image with low signal-to-noise ratio (SNR) or containing little structure this may cause the image to
be overspecified. Grouping sets of pixels together would remove this problem and greatly improve the prior,
which is strongly dependent on the number of cells. It is these groups of pixels, called pixons, that form the
fundamental image units in pixon reconstruction. For an image consisting of n pixons and containing C sep-
arate and indistinguishable detections (e.g., neutrons or photons), the probability of observing Ii detections
in each pixon i is

P(Î|M) = C!
nCΠn

i=1Ii!
. (8)

The problem of image reconstruction is then reduced to finding the pixon basis that restricts the prior while
also allowing an acceptable likelihood to be found. In the maximum entropy pixon (MEP) method the prior
is maximized perfectly, for a given number of pixons, by having the same information content in each pixon,
that is, Ii = C∕n for all i (Pina & Puetter, 1993). The most probable reconstruction is then found by varying
the number of pixons to maximize the posterior probability (equation (5)). Alternatively, the locally adaptive
pixon (LAP) method uses the definition of a local misfit statistic, E′

R (A2), to determine how the pixon sizes
must be modified at each location (Wilson et al., 2018).

In both pixon methods the maximization of the posterior proceeds in a two-stage iteration. First, for a given
pixon distribution, the best reconstruction is found by minimizing the global misfit statistic, ER (A1). ER is cho-
sen over the more commonly used 𝜒2 as it penalizes correlations in the residuals, which helps to prevent the
emergence of spurious features in the reconstruction. Second, the pixon distribution is altered. In the MEP
scheme this involves adjusting the number of pixons in the reconstruction. In the LAP case the pixon size dis-
tribution is modified directly, based on E′

R. This modification provides more freedom so that the pixon size
is changed only where required, unlike in the MEP case where it must be varied globally to fit any local fea-
ture. The combination of global misfit statistic minimization and pixon size modification is repeated until the
posterior probability is maximized.

The pixon method (Pina & Puetter, 1993) has successfully been used in a range of disciplines including medical
imaging and infrared and X-ray astronomy (Puetter, 1996, and references therein). In addition, it has recently
been used to reconstruct remotely sensed neutron (Eke et al., 2009; Wilson et al., 2018) and gamma ray data
(Lawrence et al., 2007; Wilson et al., 2015) and has been shown to give a spatial resolution 1.5–2 times that
of other methods in reconstructing planetary data sets (Lawrence et al., 2007). A modified pixon technique
in which the reconstructed image is the result of combining decoupled regions has been developed for
use when sharp boundaries are expected to exist based on other data (Eke et al., 2009; Wilson et al., 2015).
However, as we are concerned here with general reconstructions, not relying on external data, we will not
explore this extension here.

WILSON ET AL. 1807
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2.5. Wiener Deconvolution
The Wiener filter was designed to reduce noise. Wiener deconvolution is an extension of this technique to
the problem of deblurring (Bracewell, 1958; Helstrom, 1967). Although the original motivation was to mini-
mize the mean square error in the reconstruction, Wiener deconvolution turns out to be the optimal Bayesian
reconstruction when both the signal and noise are Gaussian random variables.

In practice, the filtering is performed in the spectral domain where the filter is given by Zaroubi et al. (1995)

W̃ =
B̃⋆CI|B̃|2CI + CN

, (9)

where the tilde indicates the spectral domain (i.e., Fourier or spherical harmonic transform), ⋆ denotes
complex conjugation, and CI and CN are the power spectra of the signal and noise, respectively.

As Weiner deconvolution consists of a single convolution, it is the fastest of the deconvolution methods
discussed here. However, for the Wiener deconvolution technique to be effective, the covariance, or power
spectra, of the signal and noise must be known before the deconvolution is performed, which will often not
be the case.

3. Validation of Image Reconstruction Techniques Using Mock Data
3.1. Mock Planetary Data Sets
To illustrate the effect of image reconstruction on noisy data sets, we created a series of mock data sets
that simulate observations. The true image in these mock data are based on Lunar Orbiter Laser Altimeter
(LOLA) 1,064-nm albedo data (Lucey et al., 2014). These data have complete coverage and are not affected by
latitude-based effects, as are imaging data relying on solar illumination. To create this true image, the LOLA
data were inverted and linearly scaled so that the highest reflectance was set to 0 and lowest to 1. Two classes
of mocks are created: one with complete coverage and Gaussian noise with a set SNR and a second with cov-
erage and noise amplitude equivalent to that of the LP-NS fast and GRS Th data. Nine mock data sets were
created with complete coverage, with SNR of 100, 10 and 5, each with three different-sized PSFs selected to
approximate those of LP (full width at half maximum, FWHM, ∼ 45 km), Mars Odyssey Neutron Spectrometer
(FWHM ∼ 550 km), and Dawn’s Gamma Ray and Neutron Spectrometer. The PSF, B′, was chosen to be a kappa
function as described in Lawrence et al. (2003). That is,

B′(x; h) = A

(
1 + x2

2𝜎(h)2

)−𝜅(h)−1

, (10)

𝜎(h) = 0.704h + 1.39, (11)

𝜅(h) = −4.87 × 10−4h + 0.631, (12)

where h is the detector altitude. Some of these data are shown in the top panels in Figures 1 and 2.

3.2. Validation Using Mock Data
The mock data sets described in section 3.1 were reconstructed using the methods described in section 2.
In the case of these mock reconstructions the correct PSF and statistical properties of the noise are known pre-
cisely. This assumption means that the effect of uncorrected systematics, which may be present in a real data
set, on the reconstruction algorithms is not considered. Some of these results are illustrated in Figures 1 and 2.
The achieved reduction in noise for all three methods is immediately obvious. The improvement in resolution
is more easily observed when considering small features in profile (Figure 4). On global scales, which are large
compared with the PSF, the effect of the reconstruction techniques on the spatial resolution and dynamic
range of the signal are not as apparent. Two broad criteria can be used to assess the effectiveness of each
image reconstruction method, namely, the reconstruction’s accuracy and spatial resolution improvement.
These two criteria are described below.
3.2.1. Quantifying Improvement in Accuracy
One measure of the accuracy of each reconstructed image is the RMS difference between the reconstructions
and the true image, that is,

𝜀 =
√∑

x

(
I(x) − Î(x)

)2
, (13)
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Figure 1. Global maps of the true image, mock data sets, and reconstructed versions of the data. The top image shows
the true image on which the mock data are based, an inverted and scaled map of the LOLA 1,024-nm reflectance data
(Lucey et al., 2014). The other rows are in three columns each based around a mock data set with different
signal-to-noise ratios. The SNR decreases going left to right from 100 to 10 and 5. The rows from the second going down
show the mock data, PSF-smoothed mock data, maximum entropy pixon, and locally adaptive pixon reconstructions of
the mock data sets. LOLA = Lunar Orbiter Laser Altimeter; SNR = signal-to-noise ratio.

where the sum is over all pixels. This value is plotted for each of the image reconstruction techniques and
mock data sets in Figure 3. Examination of this plot shows that Wiener deconvolution and Jansson’s method,
although offering some improvement for the smallest PSF case, compare poorly to a simple smoothing of the
data. The regularized maximum likelihood reconstruction shows a considerable improvement in the accuracy
of the data, but the pixon methods provide the closest reconstruction to the true image.

Cross sections through several small features, shown in Figure 4, also provide information about reconstruc-
tion accuracy. The different curves in Figure 4 correspond to the following: (1) the true image chosen as the
basis for the mock data; (2) the mock data themselves, which are the true image convolved with a PSF appro-
priate for observation from a 30-km orbit with added noise; (3) a smoothed map, in which the mock data have
been smoothed with the PSF in order to suppress the effects of noise; and (4) MEP and LAP reconstructions of
the mock data set. These cross sections provide a means to assess the relative performance of reconstruction
techniques by comparing the reconstructions with the true image and smoothed data, which is the form in
which neutron and gamma ray data are usually presented.

Figure 4 shows these data sets for two SNR runs and focuses on three locations containing features
∼ 60–150 km across. The cross sections shown in the figure are 1 pixel in width, which corresponds to 11 km
at the equator. For the high SNR case (right-hand column in Figure 4) it can be seen that, although, simply
smoothing the data tends to preserve the features that are present and effectively average out the noise; the
dynamic range is suppressed so the count rate in positive anomaly features is underestimated. The recon-
structed data sets also effectively suppress the noise but, typically, have the advantage that they increase the
dynamic range of the counts, as compared with the raw data, and become closer to the true, underlying image
than the smoothed data.

The low SNR data in the left-hand column of Figure 4 show another advantage of pixon reconstruction
methods, the avoidance of spurious features in the reconstruction. In all of the low SNR panels, the pixon
reconstructions show almost no variation in count rate over the cross sections. This is because the SNR is
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Figure 2. Global maps of the true image, mock data sets, and reconstructed versions of the data. The top panel shows
the true image on which the mock data are based, an inverted scaled map of LOLA 1,024-nm reflectance data (Lucey
et al., 2014). The other rows are in two columns each based around a mock data set with different coverage. The left and
right columns have the same coverage as the fast neutron and GRS Th-line data, respectively. The rows from the second
going down show the mock data, maximum entropy pixon, and locally adaptive pixon reconstructions of the mock data
sets. The maps are 1, 024 × 512 pixels, which results in some gaps in the coverage. LOLA = Lunar Orbiter Laser Altimeter;
GRS = gamma ray spectrometer.

not sufficient to require the inclusion of the small features examined in the reconstruction. In the case of the
smoothed data some features still appear. However, there are also features that do not correspond to real vari-
ations in the true image but are simply artifacts introduced by the noise. Thus, smoothed maps (and those
derived by deconvolution or image reconstruction methods that are not adept at dealing with noise-derived
artifacts) based on a real data set can contain features that are not physical. However, the pixon methods avoid
this shortcoming and all features that are present in the maps are really present on the surface.

Although the features present in the pixon reconstructions are required by the data and correspond to real
variations in the underlying image, it is clear that pixon reconstruction techniques produce maps that have
an intrinsic spatial resolution that varies across the image and is not equal to the original image. This results
in an effective smoothing of the true image and consequent loss in the definition of small-scale features in
the truth, including sharp boundaries. Thus, the shapes of small features in the reconstructed map will most
likely be smoother than is actually the case. This should be kept in mind when attempting to match features
in the reconstructed neutron and gamma ray data with other, higher-resolution data sets.
3.2.2. Quantifying Resolution
Previously, linear spatial resolution has been quantified by comparing the data and reconstruction power
spectra (Wilson et al., 2018). However, when dealing with reconstructions of mock data sets, their resolutions
can be estimated more directly by determining by how much the original image must be blurred for it to most
closely match the reconstructions. This was calculated using the 𝜒2-like statistic defined as

𝜀′ =
√∑

x

(
I ∗ B′(x) − Î(x)

)2
, (14)
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Figure 3. Cross sections across the various data sets shown in Figure 1. The cross sections all follow lines of constant
longitude (indicated in each plot). The two columns show data sets with different signal-to-noise ratios (5 on the left
and 100 on the right), and each row corresponds to a different location on the surface.

where B′ is the blurring function the size of which is varied to minimize 𝜀′. For B′ we chose to use the kappa
function PSF, which is described in equation (12). This allows for the translation of the resolution gain into an
effective height to which the LP would have to descend to obtain an equivalent resolution. The statistic, based
on reconstructions of the LP-like (i.e., FWHM ∼45 km) mock data using each technique described in section
2, is shown in Figure 5. As expected, smoothing the data increases the effective height of the detector (i.e.,
worsens the resolution); however, its reduction of 𝜀′ close to 0 shows that the blurred truth and smoothed data

Figure 4. The RMS difference between various reconstruction methods and the true image, i.e 𝜀 defined in equation
(13). Low values indicate accurate image reconstruction. The reconstructions are labeled and described in section 2. The
shades of the same color correspond to different signal-to-noise ratios, with 100 being most solid and 5 most
transparent. The colors indicate different point spread functions with the bottom, green being LP like; middle, orange
bar Mars Odyssey Neutron Spectrometer like; and top, purple bar Dawn like.

WILSON ET AL. 1811
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Figure 5. Left. The misfit between the reconstruction and true image blurred by a PSF parameterized as an effective
height. The data used in this panel are the MONS-like mocks with SNR of 100. The different colored curves correspond
to different reconstruction methods, labeled in the legend. The dashed lines indicate the locations of the minimum of
each curve, which is equivalent to the effective resolution achieved by each technique. Right. Bar chart showing the
resolution obtained in each mock reconstruction as determined by the method illustrated in the left panel. The shades
of the same color correspond to SNR, with 100 being most solid and 5 most transparent. The colors indicate different
PSFs with the bottom, green being LP-like; middle, orange bar MONS-like and top, purple bar Dawn-like.

match well (i.e., smoothing effectively removes noise). The regularized maximum likelihood and Jansson’s
method have little effect on the resolution; however, the absolute value of 𝜀′ suggests that the regularized
maximum likelihood method is much more effective than Jansson’s method at suppressing noise. Both pixon
techniques provide a substantial improvement in resolution; in the MEP case the resolution is improved such
that the effective height of the spacecraft is nearly halved from 36km to 19.5 km.

3.3. Mock Data Summary
Given the results of the previous two sections, we conclude that the pixon methods provide the most effec-
tive tool for image reconstruction of remotely sensed planetary data in terms of accuracy and resolution
improvement. It is these techniques that we will use to reconstruct the LP data sets.

4. Pixon Reconstruction of LP Data Sets

In this study we will improve the utility of the LP neutron and gamma ray (Th) data sets by applying image
reconstruction techniques. The LP data are first described, followed by the LP reconstructions and specific
regional studies that illustrate different aspects of the reconstruction method.

4.1. Overview of LP data
Time series LP-NS and GRS observations from the 7 months the LP spent in its low-altitude orbit (at ∼ 30 km)
are used in this work (Lawrence, 2005).

The reduction of the neutron data is described in Maurice et al. (2004) and the gamma ray data in Lawrence
et al. (2004), with the counts in the Th decay line at 2.61 MeV being defined as the excess over a background
value within the 2.5–2.7 MeV range. Absolute Th abundances are determined following the procedures used
by Lawrence et al. (2003) and based in part on spectral unmixing work described in Prettyman et al. (2006).

There are three NS-derived data products. Epithermal neutrons are measured by a 3He proportional counter
coated in a 0.63-mm Cd sheet to screen out thermal neutrons (Feldman et al., 2004). Thermal neutrons
are measured as the difference between this 3He proportional counter and one coated in Sn, which does
not screen thermal neutrons. Fast neutron measurements are provided by pulse-pair events in the GRS
anticoincidence shield (Feldman et al., 2004).

The PSFs of the two instruments were determined from functions described in Lawrence et al. (2003) and
Maurice et al. (2004), using the method in Wilson et al. (2015) to account for the motion of the spacecraft. The
noise in each pixel determined empirically as the standard error on the mean of the data count rate within
the pixel.
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Figure 6. Top to bottom: Lunar Prospector thermal, epithermal and fast neutron data, and Lunar Prospector GRS Th-line
data. The left column shows point spread function-smoothed data and the right column the pixon reconstructions.
Maximum entropy pixon reconstructions for the neutron data and a locally adaptive pixon reconstruction for the GRS
data. GRS = gamma ray spectrometer.

4.2. LP Reconstruction Results

The results of the global pixon reconstructions of each of the LP data sets are shown in Figure 6. Maximum

entropy pixon reconstructions of the neutron data are shown as is a LAP reconstruction of the LP-GRS

Th-line.data. These reconstructions were chosen to illustrate both pixon methods. Small regions in each of

these reconstructions are discussed below, including multiring basins of various sizes. The examples below

demonstrate, with a real data set, some of the effects explored in the previous section’s mock reconstructions.
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Figure 7. The angular two-point correlation functions of the smoothed (dashed) and reconstructed (solid) Th-line GRS
and thermal, epithermal, and fast neutron fluxes. The black dotted line shows the resolution of the smoothed data.
The other dotted lines indicate the separation at which the correlation functions of the reconstructions have fallen to
the level that those of the PSF-smoothed data fall to at a separation equal to their resolution. Consequently, this
provides a measure of the effective resolution of the reconstructions. GRS = gamma ray spectrometer.

4.3. Resolution Improvement Achieved
Unlike the reconstructions in the previous section, based on mock data sets, the resolution of the recon-
struction of the LP data cannot be estimated by direct comparison with the true image, which is unknown.
Instead, to estimate the resolution of the reconstructions, we compare the angular two-point autocorrelation
functions of the data and reconstructions following Wilson et al. (2018). Due to the relatively low SNR of the
LP-NS/GRS data compared with the Mars Odyssey Neutron Spectrometer data sets, it was found to be nec-
essary to first smooth the unreconstructed data with the instrumental PSF. Without the PSF smoothing, the
unreconstructed data show strong variation on small scales due to the noise in each pixel. This would imply
a much smaller resolution than is the case.

Figure 7 shows that a significant improvement is seen in the resolution of the LP-GRS Th-line data, with the
reconstruction having a resolution of 26 km compared with the PSF-smoothed data’s 63-km resolution (deter-
mined by adding the FWHM of the PSF in quadrature). The fast and thermal reconstructions show only small
changes in resolution having two-point correlation function-derived resolutions of 49 and 38 km, respectively.
The epithermal reconstruction is seen to result in an increase in resolution to 61 km. This is consistent with
the earlier results of McClanahan et al. (2010) and with pixon reconstruction providing an optimal smoothing
when the SNR of the data does not allow for an improvement in spatial resolution.

4.4. Investigation of Specific Regions
To show the utility of these reconstructed maps, this section provides descriptions of five different regions
that illustrate different aspects of spatial reconstruction methods given in section 3. In some cases, resolution
improvement is achieved that reveals new information about particular features. In other cases, mapped data
are made more accurate by minimizing spurious features. A full understanding of these maps will require
multiple detailed investigations that are beyond the scope of this paper.

4.4.1. Hertzsprung Basin
Hertzsprung is a well-preserved impact basin on the Moon’s farside at 2∘N, 128∘W. With an outer rim diameter
of 570 km it is an intermediate-sized lunar basin, transitional between two-ring basins, such as Schrödinger
(320-km diameter), and true multiring structures (i.e., those that clearly display three or more rings), such as
Orientale (Wilhelms et al., 1987). Thus, it is expected to excavate material from depths intermediate between
the two classes of features. It has been estimated, from the crater’s morphology, that the impact excavated
material from as deep as 40 km below the surface but with most ejecta sourced from shallower than about
25 km (Spudis, 1993). The crust at Hertzsprung is estimated to be around 50-km thick (Wieczorek et al., 2012),
implying that material excavated by the Hertzsprung impactor predominantly samples the top half of the
crust. The crater contains two clear rings, the main rim of 570-km diameter and an inner ring of 270-km
diameter (illustrated in Figure 8).
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Figure 8. Clockwise from top left: PSF-smoothed thermal neutron count rate at Hertzsprung. The maximum entropy
pixon reconstruction of the thermal neutron count rate at Hertzsprung; the color bar also indicates the conversion to
macroscopic neutron absorption cross section, Σa, from Peplowski et al. (2016). A LOLA 1,064-nm albedo map of
Hertzsprung. Clementine-based FeO concentrations at Hertzsprung (Lucey et al., 2000). In all panels the black dashed
lines indicate the inner and outer crater rims, with diameters of 270 and 570 km. The neutron data are superimposed
on a LOLA-shaded relief image. LOLA = lunar orbiter laser altimeter.

Previous work examining ultraviolet/visible camera data from NASA’s Clementine spacecraft has shown that
the ejecta from Hertzsprung is unusually feldspathic (Spudis et al., 1996) and that the inner ring massifs con-
tain almost completely iron-free regions (Stockstill & Spudis, 1998), as seen in the lower left panel of Figure 8.
These Fe-free regions were interpreted as outcrops of nearly pure anorthosite. Hertzsprung is one of several
basins, including Humorum, Nectaris, and Orientale, that have exposed pure anorthosite massifs. These obser-
vations are consistent with pure anorthosite being a significant component of the crust at depths of several
kilometers, despite being uncommon on the surface.

Peplowski et al. (2016) derived a map of macroscopic neutron absorption cross section( Σa) in the lunar high-
lands based on the high-altitude LP thermal neutron data. Within the feldspathic highlands terrane (FHT) they
identified several large regions whose low neutron absorption cross section implied the presence of high (> 85
wt.%) plagioclase abundance. These include regions co-located with the large basins Orientale, Hertzsprung,
Birkoff, Korolev, Dirichlet-Jackson, Freundlich-Sharonov, and Mendeleev.

Hertzsprung has among the lowest neutron absorption on the surface and therefore also the highest abun-
dance of plagioclase on the surface of the Moon. It was observed by Peplowski et al. (2016) that the higher
thermal neutron flux area extended beyond the crater on the western side, but the main area of low ther-
mal neutron absorption was assumed to be coincident with the inner peak ring where Fe concentration is
lowest (lower left panel of Figure 8). However, the reconstructed thermal neutron data shows that the deficit
and therefore the anorthosite abundant region is located more broadly in the interring region (upper right
panel of Figure 8). This region overlaps with the high albedo region identified in Lunar Reconnaissance Orbiter
(LRO)/LOLA 1,064-nm laser reflectance (lower right panel of Figure 8) and contains part of the inner peak ring.
Compared with the unreconstructed data, the thermal neutron count rate is higher in the feldspathic region,
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Figure 9. Left: A LOLA normal albedo at 1,064-nm map at Schrödinger crater. Center: An unreconstructed, point spread function-smoothed LP-NS thermal
neutron map. Right: A maximum entropy pixon reconstruction of the Lunar Prospector thermal neutron data at Schrödinger crater; the white arrow shows the
location of a pyroclastic vent. The neutron data are superimposed on a LOLA-shaded relief image. LOLA = lunar orbiter laser altimeter.

implying an even more Fe poor composition. Thus, the thermal neutron data reveal a large (∼100 km) region
containing nearly pure anorthosite. In Peplowski et al. (2016) Σa ⪅ 28 corresponds to > 95 wt.% plagioclase,
with ≈ 5 wt.% uncertainty in the plagioclase estimate. The basin is significantly mantled by deposits of the
younger, Orientale basin, particularly in its southeastern sector. This may be the reason for the decreased
albedo and thermal neutron flux seen in the eastern half of the basin.
4.4.2. Schrödinger Basin
The Schrödinger basin, located at 75∘S, 135∘E, is somewhat smaller than Hertzsprung with a diameter of ∼
320 km, but it too contains a peak ring, with a diameter of ∼ 150 km (Figure 9). Like Hertzsprung, this peak
ring has been confirmed as containing kilometer-scale regions of pure or nearly pure anorthosite on the basis
of spectral data (Kramer et al., 2013). Unlike Hertzsprung, Schrödinger contains a large pyroclastic deposit
(Mest, 2011), visible as a darker region in the left panel of Figure 9 at 75∘S, 140∘E, with the vent from which
the deposit was sourced observable in the shaded relief in the right-hand panel. The effect of performing
a pixon reconstruction on the data is seen by comparing the panels in Figure 9. Before reconstruction the
separate features in the basin cannot be resolved; after reconstruction the pyroclastic deposit and western
limb of the peak ring are clearly seen. The absence of a clear eastern limb in the thermal neutron data is either
the result of its proximity to the pyroclastic deposit and the resolution limitations of even the reconstructed
data or an indication that the western limb is more plagioclase rich. Indeed, there are a greater number of
spectral detections of pure anorthosite in the west of the peak rim (Kramer et al., 2013). However, at near-polar
latitudes the angle of solar incidence places constraints on the relative error of spectral data.
4.4.3. Orientale Basin
Orientale is located in the lunar highlands on the southwestern limb of the lunar nearside. At ∼930-km diam-
eter, it is the youngest large impact basin on the Moon. Due to its young age, it is considered the standard
example of a well-preserved, multiring basin in comparative studies of large impacts on terrestrial planetary
bodies. The basin exhibits at least three concentric topographic rings (including the Inner Rook, the Outer
Rook, and the Cordillera rings) in a concentric arrangement around the Inner Depression. The Inner Depres-
sion is a central topographic low associated with the zone of excavated crust that extends to 160 km from the
basin center and is bounded by a scarp.

Lawrence et al. (2015) showed that there is a general correlation in the lunar highlands between various mea-
sures of regolith maturity and epithermal neutron-derived H abundances. The maturity measures considered
were Clementine-derived 750-nm albedo, the highlands variation of which is attributed to long-term modi-
fications of lunar soils by solar wind and micrometeorite bombardment (Lucey et al., 2000); optical maturity
(OMAT), defined as an empirical relationship of the 750- and 950-nm reflectance ratios (Lucey et al., 2000);
and LRO Diviner-derived wavelength position of the Christiansen Frequency (Greenhagen et al., 2010), which
provides diagnostic information about bulk silicate polymerization and is found to be correlated with matu-
rity (Allen et al., 2012; Greenhagen et al., 2010). Epithermal neutrons are strongly moderated by implanted
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Figure 10. (top left) Point spread function-smoothed epithermal neutron data at Orientale basin. (top right) Maximum entropy pixon epithermal neutron
reconstruction at Orientale basin, superimposed on a Lunar Orbiter Laser Altimeter-shaded relief image. (bottom left) Orientale basin seen in Mini-RF S-band
circular polarization ratio. (bottom middle) Kaguya-derived OMAT (Lemelin et al., 2016). (bottom right) Diviner-derived rock abundance (Bandfield et al., 2011).
Mini-RF = miniature radio frequency; CPR = circular polarization ratio; OMAT = optical maturity.

hydrogen, so an increase in epithermal flux corresponds to a decrease in implanted hydrogen abundance.
One interpretation of the correlation between these measures of maturity and epithermal neutron-derived H
is that lunar surfical H abundance increases with exposure time due to solar wind protons being embedded
into the regolith (Lawrence et al., 2015); however, further study would be required to confirm this.

Another measure of surface maturity is circular polarization ratio (CPR), defined as the ratio between power
reflected in the same sense of circular polarization as that transmitted and the reflected echo in the opposite
sense of circular polarization. CPR is strongly enhanced by the presence of surface or near-subsurface rough-
ness on the scale of the transmitted signal’s wavelength (Thompson et al., 1981). Typically, as near-subsurface
rockiness decreases with age so does CPR (Bell et al., 2012). However, Orientale has an age of around 3.8
Ga (Neukum et al., 2001) and as expected shows OMAT and albedo consistent with this Late Imbrian age
(Cahill et al., 2014). However, LRO miniature radio frequency S-band (12.6 cm) radar CPR is consistently imma-
ture in most parts of the basin. The western part of the basin between Montes Rook and Cordillera exhibits
some of the highest regional CPR values (> 0.7) on the lunar surface (Figure 10). Cahill et al. (2014) concluded
on the basis of both these data sets and the lack of a substantial Diviner rock abundance signature in Orientale
(Figure 10) that the likely cause of varying degrees of contradiction between different maturity measures was
the result of higher levels of roughness in the near subsurface on the scale of the S-band (12.6 cm) radar
wavelength. As shown in Figure 7 the reconstruction of the epithermal neutron data does not offer improved
resolution. However, it does effectively suppress the noise that was present in allowing for a clearer com-
parison with other data. It is apparent in Figure 10 that the MEP epithermal neutron reconstruction and CPR
values appear to be consistent. This is to be expected as both measure maturity to depths on the order of tens
of centimeters.

The original smoothed epithermal neutron data (Lawrence et al., 2015; Maurice et al., 2004) are shown in
Figure 10 (top left) and the reconstructed data are shown in Figure 10 (top right). These maps illustrate the
point described in section 3.2 that for data sets with low SNR the pixon reconstruction minimizes spurious
artifacts but preserves statistically robust features in the data. The epithermal neutron data, which have a
relatively low dynamic range compared with the thermal neutron and Th data sets, have many small-scale
features in the smoothed map. These small-scale features are all absent from the reconstructed map, which
nonetheless contains all the large-scale features seen in the smoothed data.
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Figure 11. A region of the feldspathic highlands terrane with approximately uniformly low Fe content seen in (left)
a maximum entropy pixon reconstruction of and (right) a PSF-smoothed map of the LP-NS fast neutron data.

When comparing the reconstructed epithermal neutron data to the noisy data, it is interesting to note that
at Orientale the maturity measures that sample the subsurface (CPR and epithermal neutrons) seem to con-
flict with those that are sensitive to the topmost surface (normal albedo, OMAT, and rock abundance; Cahill
et al., 2015). Lucey et al. (2000) noted that the various types of maturity indices (e.g., albedo, soil grain size, and
OMAT) are determined by different factors (e.g., composition, density, depth, and solar exposure) that are not
necessarily correlated. Thus, the correlation of these indices, at a particular location, implies that the effective
maturity is consistent across different time and depth scales. Conversely, as at Orientale, conflicting indices
imply a more complex history or exposure layering scenario.

4.4.4. Feldspathic Highlands Terrane
The iron content of the central FHT is nearly uniformly low (Jolliff et al., 2000). Fast neutron flux is a measure
of the mean atomic mass of the lunar surface as heavier nuclei produce more neutrons through nuclear spal-
lation reactions. As such, on the Moon fast neutrons trace the abundances of Fe and Ti (Gasnault et al., 2001;
Maurice et al., 2000), with higher fast neutron flux corresponding to higher Fe concentrations.

We have chosen this portion of the FHT to illustrate the effects of image reconstruction on a region of
the surface with little signal contrast, to show how the noise in the data is reduced. The unreconstructed,
PSF-smoothed fast neutron data and pixon reconstruction of these data are shown in Figure 11. These
smoothed data show variations with a small dynamic range on the spatial scale of the PSF, in the reconstruc-
tion only broad variation is seen. As was also seen with the epithermal neutron data, this map illustrates how
even in the absence of an increase in the spatial resolution of the data Bayesian image reconstruction improves
the utility of the data by removing artifacts caused by the presence of random statistical noise.

4.4.5. Th Abundances at Copernicus Crater
Copernicus is a 93-km diameter rayed crater in eastern Oceanus Procellarum. Dating of Copernicus ejecta
returned by Apollo 12 revealed that Copernicus originated 800 Ma ago, consistent with its extensive ray sys-
tem and pristine shape. The crater has been noted as containing unusually low concentrations of Th based
on LP-GRS data (Lawrence et al., 2003) and low FeO concentrations in Clementine reflectance observations.
Both of these observations are explained by the excavation of anorthositic, lower-Th material.

The reconstructed Th map shows significantly more structure than the unreconstructed map from Lawrence
et al. (2003). We note (but do not show) that this reconstructed map also shows more structure than a prior
Pixon reconstructed map of Lawrence et al. (2007). The fact that this map shows more structure is likely due
to the fact that the LAP method was used here, which allows for more freedom than the prior version of the
algorithm.

In the low-Th region coincident with the crater, the smoothed map shows a distribution that is nearly sym-
metric around the crater (Figure 12). In contrast, the reconstructed map shows a distribution that is shifted
northwest and has a noncircular shape that is similar to the low-FeO concentrations around the crater.
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Figure 12. Top left: PSF-smoothed Lunar Prospector GRS Th-line data at Copernicus crater. Top right: A locally adaptive
pixon reconstruction of the Lunar Prospector GRS Th-line data at Copernicus crater. Note that the color scale for the two
Th maps is fixed at the same minimum and maximum values to illustrate the increase in dynamic range provided by the
reconstruction. Bottom left: A clementine-derived FeO concentration map at Copernicus crater. Bottom right: A
clementine spectral reflectance ratio map of the region around Copernicus crater showing 414 nm/750 nm ratio. The
low 415 nm/750 nm ratio regions typically correspond to old (∼4.5 billion years) highlands-like gabbroic anorthosite
rocks. GRS = gamma ray spectrometer.

Finally, the Th data show that the low-Th region in Copernicus crater is coincident with both a small area
exhibiting low Clementine 415 nm/750 nm reflectance ratio in the northwestern quadrant of the crater and
the diffuse low-FeO ejecta, which stretches to the east. However, the agreement seems to be better with the
Clementine albedo ratio feature due to both of these data being skewed to the west of the crater. This albedo
ratio feature has been suggested to demarcate a red spot, that is, a region with high albedo and strong ultra-
violet absorption (Hagerty, 2015). Some red spots do show a silicic lithologic signature, while others do not.
They may therefore be expected to be associated with high Th concentrations, as Th ions are incompatible
and preferentially remain in a melt as it evolves. However, the coincidence of the low-Th and low 415 nm/750
nm reflectance ratio region implies that the material excavated by the Copernicus impact was composed of
typical lunar highlands minerals not highly evolved rhyolite/granite.

5. Conclusions

We have investigated, using mock data sets, several image reconstruction and deconvolution techniques
commonly used with planetary gamma ray and neutron data. Using mock data sets, we found that the pixon
methods are most effective at improving the resolution of, and suppressing noise in, these data at all SNRs
and for all PSF footprint sizes. However, the resolution improvement achieved was found to be dependent
on both the SNR and the structure of the image being reconstructed. Reconstruction of low-SNR images with
few distinct features yields only a reduction in noise.

We applied the pixon image reconstruction methods to the LP-NS and GRS Th-line data. The improved reso-
lution, achieved via image reconstruction, allows for direct identification of features in the NS/GRS data sets
and higher-resolution spectroscopic and imaging data. We saw that the high Clementine 750 nm/415 nm
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reflectance ratio feature in Copernicus matches the low-Th region, revealing a FHT-like composition in the
center of the Procellarum KREEP Terrane. Similarly, improving the resolution allows the identification of high
albedo regions within Hertzsprung and Schrödinger basins with high thermal neutron flux.

Appendix A: Misfit Statistics Used in Pixon Reconstruction
A1. Global Misfit Statistic, ER

ER is defined as

ER =
m∑

y=0

AR(y)2, (A1)

where AR is the autocorrelation of the residuals, AR(y) = ∫ R∗(x)R(x + y)dx for a pixel separation, or lag, of y.
And the reduced residuals between the data and the blurred model are

R(x) = D(x) − (Î ∗ B)(x)
𝜎(x)

, (A2)

where 𝜎(x) is the anticipated statistical noise in pixel x.

Minimizing ER instead of 𝜒2 helps suppress spatial correlations in the residuals, which prevents spurious
features being formed by the reconstruction process.

A2. Local Misfit Statistic, E′
R

The local ER statistic, E′
R, was created via localizing AR by multiplying by a kernel, K , such that

A′
R(x, z) = ∫ R(y)R(x + y)K(z − y)dy, (A3)

which we can rewrite in a form resembling a convolution, by defining Cx(y) = R(y)R(x + y), as

A′
R(x, z) = ∫ Cx(y)K(z − y)dy. (A4)

For computational simplicity we select a Gaussian kernel. The kernel smoothing length is chosen to be larger
than the largest pixon width so that it is the pixon size that sets the smoothing scale in the reconstruction.
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