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Abstract. Capturing nuclear dynamics through conical intersections is pivotal to understand the fate of
photoexcited molecules. The concept of a conical intersection, however, belongs to a specific definition of
the electronic states, within a Born–Huang representation of the molecular wavefunction. How would these
ultrafast funneling processes be translated if an exact factorization of the molecular wavefunction were to be
used? In this article, we build upon our recent analysis [B.F.E. Curchod, F. Agostini, J. Phys. Chem. Lett.
8, 831 (2017)] and address this question in a broader perspective by studying the dynamics of a nuclear
wavepacket through two types of conical intersections, differing by the strength of their underlying diabatic
coupling. Our results generalize our previous findings by (i) showing that the time-dependent potential
energy surface smoothly varies, both in time and in position, between the corresponding diabatic and
adiabatic potentials, with sometimes more complex features if interferences are observed, (ii) highlighting
the non-trivial behavior of the time-dependent vector potential and the fact that it cannot be gauged away
in general, and (iii) justifying some approximations employed in the derivation of a mixed quantum/classical
scheme based on the exact factorization.

1 Introduction

Conical intersections (CIs) [1–8] are often invoked to
interpret relaxation processes undergone by photoexcited
molecules. CIs are prototypical examples of the break-
down of the Born–Oppenheimer (BO) approximation,
as they represent efficient funnels [9–11] for population
transfer between electronic states, mediated by nuclear
motion. They are regions of configuration space where the
adiabatic potential energy surfaces (PESs) are degener-
ate and exhibit, within the so-called branching place, a
typical double-cone shape. These curious features of adi-
abatic PESs have been widely studied in the chemical
physics literature, not only for their role in nonadia-
batic processes but also for the effect that the related
Berry phase (a topological phase) has on adiabatic phe-
nomena, for instance occurring purely in the electronic
ground state [2–8,11–20]. The concept of CI appears as
consequence of the particular choice in our description of
the electronic system at a given nuclear configuration. In
the diabatic basis, CIs and Berry-phase effects disappear.
Unfortunately, the diabatic basis is not rigorously defined
as the set of eigenstates of an electronic hermitian operator
[21–23], meaning that sometimes more chemical argu-
ments are needed to define (quasi-)diabatic states. Despite
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the obvious challenges, both fundamental and numerical,
encountered when dealing with CIs, the adiabatic repre-
sentation is commonly employed to perform trajectory-
based on-the-fly nonadiabatic molecular dynamics simu-
lations of photoinduced phenomena (sometimes coupled
with a local diabatization [24]). Perhaps, this choice is
related to the fact that an alternative to the adiabatic
framework, more rigorous than switching to the diabatic
representation, has not yet been exhaustively investigated.
It is maybe important to realize at this stage that the
description of nonadiabatic processes proposed in the pre-
vious paragraphs – and its corresponding vocabulary –
directly emanates from a Born–Huang representation of
the molecular wavefunction. Such representation offers the
well-known picture of nuclear amplitudes evolving on cou-
pled potential energy surfaces and transferring from one
electronic state to the other in coupling regions, possibly
at a conical intersection in the adiabatic representation.
Hence, instead of questioning the electronic representa-
tion itself within this picture, one could prefer to change
the overall representation for the molecular wavefunction
and see how the deactivation of an electronically-excited
molecule takes place. In the following, we will make
use of the exact factorization (EF) of the molecular
wavefunction [25,26], and this paper aims at discussing
such alternative theoretical framework in the context of
nonadiabatic phenomena through conical intersections.

Recently [27], we have employed the EF to analyze
nuclear dynamics at a CI in a model potential for the
photoisomerization of retinal. We have concluded that no
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peculiar, i.e., singular, behavior that can be traced back
to the CI arises either in the evolution of the nuclear
wavepacket or in the time-dependent potentials that drive
its evolution. This study was the first detailed analysis
in the time domain of the properties of the EF in con-
nection to CIs. (The EF can also be performed in the
time-independent picture [28–35], and analyses of CI in
this framework were also proposed [36–39].)

In the framework of the EF, nuclear dynamics is gener-
ated by a Hamiltonian containing scalar and vector poten-
tials that are time-dependent, since they represent the
excited-state (dynamical) effect of the electrons. Formally,
this structure is equivalent to an adiabatic picture, where
the static adiabatic PES replaces the time-dependent
scalar potential, for instance the ground-state PES, and
the time-dependent vector potential reduces to the, once
again static, nonadiabatic coupling vectors. The relation
is not only formal, as in the limit of the electron-nuclear
mass ratio µ = m/M tending to zero [40–42], the adiabatic
quantities are recovered from the exact-factorization prop-
erties. However, it seems that degeneracies, conical shapes,
or singularities are not so easily encountered for finite val-
ues of the electron-nuclear mass ratio. Hence, is the EF
a particularly suitable framework to address “dynamics
at conical intersections”? To address this question, we are
going to analyze the dynamics around a CI using a model
system, and for different topologies of the PESs. We will
identify general features and similarities in the properties
of the time-dependent potentials, that we believe will rep-
resent essential points of reflection for future, and possibly
more practical, method developments.

In the following, we briefly introduce the EF in
Section 2.1, present the model object of our analysis
in Section 2.2, and provide computational details in
Section 2.3. The following Sections are devoted to the
comparison, based on the simulated dynamics, between
the adiabatic and diabatic framework, arising from the
Born–Huang expansion of the molecular wavefunction,
which is presented in Section 3.1, and the EF frame-
work, discussed in Section 3.2. Conclusions are reported
in Section 4.

2 Theoretical background

2.1 Exact factorization

We introduce here the basics of the exact factoriza-
tion of the electron-nuclear wavefunction [25,26]. In this
framework, we use a specific Ansatz for the molecu-
lar wavefunction that departs from the most commonly
employed Born–Huang representation, namely

Ψ(r,R, t) = ΦR(r, t)χ(R, t) . (1)

The molecular wavefunction, Ψ(r,R, t), is the solution
of the time-dependent Schrödinger equation with Hamil-
tonian Ĥ = T̂n + ĤBO. It contains the nuclear kinetic
energy, T̂n, and the BO Hamiltonian, ĤBO, which is the
sum of the electronic kinetic energy and all interaction

potentials. The symbols r,R stand for electronic and
nuclear positions, respectively.

In the EF Ansatz, χ(R, t) is the nuclear wavefunc-
tion, whereas ΦR(r, t) is an electronic factor, that depends
parametrically on the nuclear positions and satisfies the
partial normalization condition (PNC)

〈ΦR(t)|ΦR(t)〉r = 1 ∀ R, t . (2)

The symbol 〈 · 〉r indicates an integration over elec-
tronic coordinates only. The PNC is pivotal to interpret
|χ(R, t)|2 as the marginal probability of finding the
nuclear configuration R at time t, and |ΦR(r, t)|2 as
the conditional probability of finding the electronic con-
figuration r at time t for a given nuclear configuration
R.

The existence of the wavefunctions in equation (1) has
been proved in references [25,26], as well as their unique-
ness up to a (R, t)-dependent gauge transformation,

ΦR(r, t)→ Φ̃R(r, t) = e
i
~ θ(R,t)ΦR(r, t), (3)

χ(R, t)→ χ̃(R, t) = e−
i
~ θ(R,t)χ(R, t) , (4)

where θ(R, t) is some real function of the nuclear coordi-
nates and time.

Equations of motion for ΦR(r, t) and χ(R, t) result from
the stationary variations [43] of the quantum mechanical
action and read(

ĤBO(r,R) + Û coup
en [ΦR, χ]− ε(R, t)

)
ΦR(r, t)

= i~∂tΦR(r, t), (5)[
Nn∑
ν=1

[−i~∇ν + Aν(R, t)]
2

2Mν
+ ε(R, t)

]
χ(R, t)

= i~∂tχ(R, t). (6)

Importantly, the PNC was enforced by means of Lagrange
multipliers [44,45]. As discussed in the Introduction,
the nuclear equation (6) is clearly a time-dependent
Schrödinger equation that contains time-dependent vector
Aν(R, t) and scalar ε(R, t) potentials.

The term Û coup
en [ΦR, χ] in equation (5) is coined

electron-nuclear coupling operator [46],

Ûcoup
en [ΦR, χ] =

Nn∑
ν=1

1

Mν

[
[−i~∇ν −Aν(R, t)]2

2

+

(
−i~∇νχ

χ
+Aν(R, t)

)(
−i~∇ν−Aν(R, t)

)]
,

(7)

ε(R, t) is the time-dependent potential energy surface
(TDPES) [47–52],

ε(R, t) = 〈ΦR(t)| ĤBO + Û coup
en − i~∂t |ΦR(t)〉r , (8)

and Aν (R, t) the time-dependent vector potential
(TDVP) [27],

Aν (R, t) = 〈ΦR(t)| − i~∇ν ΦR(t)〉r . (9)
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All these terms act as an exact coupling between the
electrons and the nuclei. The electron-nuclear coupling
operator Û coup

en [ΦR, χ] depends on the nuclear wavefunc-
tion and acts on the parametric dependence of ΦR(r, t)
as a differential operator. Hence, this “pseudo-operator”
includes the coupling to the nuclear subsystem beyond
the parametric dependence found in the BO Hamiltonian.
χ(R, t) is a genuine nuclear wavefunction since it leads
to an N -body nuclear density, and an N -body nuclear
current-density, which reproduce the true nuclear N -body
density and current-density [26] obtained from the full
wavefunction Ψ(r,R, t).

2.2 Models

The CI model employed in this work is based on the work
by Villani et al [53]. The 2-by-2 Hamiltonian is given in
the diabatic (D) basis,

Ĥ
D

mol(x, y) =− 1

2

(
∂2x
Mx

+
∂2y
My

)
12

+

(
H00(x, y) H01(x, y)
H10(x, y) H11(x, y)

)
, (10)

with “potential energy” terms

H00(x, y) =
1

2
Kx(x− x1)2 +

1

2
Kyy

2,

H11(x, y) =
1

2
Kx(x− x2)2 +

1

2
Kyy

2 +∆,

H01(x, y) = H10(x, y)

= γy exp
(
−α(x− x3)2

)
exp

(
−βy2

)
, (11)

and the following set of parameters: Mx = 20 000.0,
My = 6667.0, Kx = 0.02, Ky = 0.1, ∆ = 0.01, x1 = 4.0,
x2 = x3 = 3.0, α = 3.0, and β = 1.5. All quantities
reported in this work are given in atomic units. The coor-
dinates x and y identify the nuclear positions, R = (x, y).
This model describes the crossing of two similar parabola,
one being slightly displaced both in the x direction and
in energy. Adiabatic potential energies are produced by
diagonalizing the diabatic potential matrix, and will lead
to the appearance of a CI whose shape can be altered
by modifying the off-diagonal elements H01(x, y) and
H10(x, y). The parameter γ, introduced in the definition of
the off-diagonal elements, can be used for this purpose by
tuning the strength of the diabatic coupling between the
two parabola. Two different regimes will be used in this
work: weak coupling with γ = 0.01 and strong coupling
with γ = 0.08.

In the weak regime, the diabatic states are only weakly
coupled and, upon diagonalization, give rise to a localized
conical intersection (Fig. 1, upper panel). On the other
hand, the intense interaction between the diabatic states
in the strong-coupling regime results in adiabatic PESs
differing importantly from the diabatic ones (Fig. 1, lower
panel), i.e., from the diagonal elements of the potential
energy matrix.

Fig. 1. Adiabatic potential energy surfaces, ε
(S0)
BO (R) and

ε
(S1)
BO (R), in the weak (upper panel) and strong (lower panel)

coupling regime around the conical intersection centered at
RCI = (3.0, 0.0).

A cut through the x coordinate at fixed y = 0.0 bohr
(upper panel of Fig. 2) reveals that, along this particular
axis, the strong and weak coupling lead to similar adia-
batic PESs. The picture dramatically changes by slightly
deviating from the axis of the conical intersection and
performing the cut at y = 0.333 bohr. In this second cut
(middle panel of Fig. 2), the adiabatic PESs around the
CI are only moderately altered as compared to the dia-
batic ones for the weak-coupling regime (dotted lines).
Conversely, the strong diabatic coupling leads to a signif-
icant change in the topology of the adiabatic PESs with
the formation of a barrier in S1 and a deep minimum in
S0 (dashed lines). Such a difference in the adiabatic PESs
resulting from the two different coupling regimes is fur-
ther visible by performing a cut through y, this time, for
a fixed value of x = 3.0 bohr (lower panel of Fig. 2). Once
more, the adiabatic surfaces in the weak-coupling case
only slightly deviate from the diabatic behavior (continu-
ous lines), whereas a pronounced double minimum can be
observed for the adiabatic ground-state surface (dashed
lines) for the strong-coupling regime.

In the following, we will investigate the dynamics of
a nuclear wavepacket in both situations. Even if the
nuclear wavepacket dynamics is initiated in the same way
for the two regimes (see Sects. 2.3 and 3), the overall
dynamics will strongly differ as a result of the coupling
strength between the surfaces. These differences were
extensively discussed in the context of the adiabatic and
diabatic representations [53,54], and we will here present
the viewpoint of the EF.
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Fig. 2. Cuts through the different PESs: adiabatic BO sur-

faces ε
(S0/S1)
BO (R) for both coupling regimes, and the diabatic

surfaces H00(R) and H11(R). Cuts through the x coordinate
for a fixed y = 0.0 bohr and y = 0.333 bohr are presented in
the upper and middle panel, respectively. Cut through the y
coordinate for x = 3.0 bohr is given in the lower panel.

2.3 Computational details

The results presented in this article were obtained
in a two-step process. First, we solve the full time-
dependent Schrödinger equation numerically using a split-
operator formalism [55] in a diabatic basis and the 2-by-2
Hamiltonian described in Section 2.2. The initial (dia-
batic) nuclear wavepacket is taken as Gaussian, with
widths σx = 0.15 and σy = 0.197, and is centered at
Rini = (xini, yini) = (2.0, 0.0). The dynamics is initiated
in the second adiabatic state (S1). We then reconstruct
the TDPES and the TDVP from the time-dependent
nuclear wavefunctions χl(R, t), with l = 1, 2, using the
relation

|χ(R, t)|2 = |χ1(R, t)|2 + |χ2(R, t)|2 . (12)

In other words, if the full wavefunction is expanded in
the diabatic basis, and considering the electronic states
being orthogonal and normalized, the nuclear densities is
simply reconstructed as the sum of “projected densities”
|χl(R, t)|2. In the following, we fix the gauge by imposing
that the phase of the nuclear wavefunction S(R, t) = 0,
i.e., the nuclear wavefunction given by

χ(R, t) = |χ(R, t)|eiS(R,t)/~, (13)

is real and non-negative in this gauge. The coefficients
of the electronic wavefunction in the diabatic basis are
then given as χl(R, t)/χ(R, t), by virtue of the EF Ansatz
equation (1).

The TDPES and the TDVP can be decomposed as well
in the diabatic basis. To this end, let us first give the
explicit expression of the TDPES, that follows from its
definition in equation (8), namely

ε(R, t) = 〈ΦR(t)| ĤBO |ΦR(t)〉r

+

Nn∑
ν=1

[
~2

2Mν
〈∇νΦR(t)| ∇νΦR(t)〉r −

A2
ν(R, t)

2Mν

]
+ 〈ΦR(t)| − i~∂t |ΦR(t)〉r . (14)

The gauge transformations (Eq. (3)) only affect the last
term on the right-hand side. Therefore, the TDPES can be
decomposed in three gauge-invariant (GI) contributions,
εGI(R, t) = εGI1(R, t) + εGI2(R, t) + εGI3(R, t), and one
gauge-dependent part (GD), εGD(R, t). We express them
in the diabatic basis for actual calculations, namely as if
the electronic time-dependent wavefunction is expanded
in the diabatic basis, as the property that nonadiabatic
coupling vectors are identically zero in the diabatic basis
avoids incurring in singularities at the CI when computing
the TDPES and the TDVP. We can write:

εGI1(R, t) =
∑
l,k

χ∗
k(R, t)χl(R, t)

|χ(R, t)|2
Hkl(R), (15)
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εGI2(R, t) =
∑
ν

~2

2Mν

∑
l

∣∣∣∣∇ν χl(R, t)χ(R, t)

∣∣∣∣2 , (16)

εGI3(R, t) = −
∑
ν

A2
ν(R, t)

2Mν
, (17)

εGD(R, t) = −i~
∑
l

χ∗
l (R, t)

χ∗(R, t)
∂t
χl(R, t)

χ(R, t)
, (18)

where the symbol Hkl(R) indicates the elements of the
electronic Hamiltonian (the potential matrix in Eq. (10))
in the diabatic basis and l, k label the states (see Eq. (11)).
The vector potential is given by

Aν(R, t) = −i~
∑
l

χ∗
l (R, t)

χ∗(R, t)
∇ν

χl(R, t)

χ(R, t)
. (19)

While the TDPES and TDVP are expanded here in a
diabatic basis, it is critical to note that they do not depend
on any particular choice of electronic representations.

3 Results and discussion

In the first part of this Section, we discuss the nonadia-
batic dynamics of the two models presented above in a
purely Born–Huang perspective, and we owe to translate
them in an EF picture in the second part.

3.1 Born–Huang picture

As described in Section 2.2, the initial total wavefunction
for both models is given by

Ψ(r,R, t0) = χH00
(R, t0)Φ

(H00)
R (r) , (20)

with χH00(R, t0) a Gaussian wavepacket on the diabatic
surface H00 at R = (2.0, 0.0) with no initial momen-
tum. In an adiabatic picture, this initial wavefunction
represents a nuclear wavepacket initiated on the excited
adiabatic state S1 (see Fig. 2, upper panel for the
relation between adiabatic/diabatic states). The nuclear
wavepacket immediately starts moving towards the CI as
a result of the steep gradient in the x direction of the S1

PES in this region (Fig. 2), both in the weak- and the
strong-coupling case. In the weak-coupling regime, where
the CI is spatially very localized, the wavepacket enters
the nonadiabatic region after 500 au, leading to a rapid
transfer of nearly 85% of the S1 population to S0 (Fig. 3,
continuous lines). In the strong-coupling case, the picture
is slightly different as the coupling region extends more
around the RCI = (3.0, 0.0) region. This results in an ear-
lier transfer of the population towards S0 that stabilizes
at around 93% (Fig. 3, dashed lines).

Perhaps more interesting is the effect of the coupling
strength on the spatial extent of the nuclear wavepacket
over time, reflecting the shape of the adiabatic poten-
tial surfaces. In the weak-coupling regime (upper panel of
Fig. 4), the wavepacket extends on the x coordinate and
hits the CI (t = 1000 au), transferring population to the

Fig. 3. Time trace of the adiabatic populations (green = S0,
palatinate = S1) during the nonadiabatic dynamics in the
two different regimes considered: plain lines = weak coupling,
dashed lines = strong coupling.

lower state (grey contour lines in Fig. 4), while a small con-
tribution stays on the S1 state (red contour lines in Fig. 4).
No important distortions of the wavepacket are observed,
besides a splitting between the S0 and S1 contributions
at later times (t = 2000 au). After the passage through
the CI, the S1 contribution immediately enters a repulsive
part of the adiabatic PES, while the contribution evolving
on S0 further continues its relaxation towards the S0 mini-
mum (see the upper panel of Fig. 2). The picture is vastly
different for the strong-coupling regime. As observed in
the lower panel of Figure 4, the wavepacket spreads more
towards the y direction as a result of the distortions of the
adiabatic PESs (Fig. 2), even before reaching the exact
location of the CI due to the early transfer of population
towards S0. Upon passage through the CI (t = 1000 au),
the amplitudes on the different states strongly interfere,
leading to a complex oscillatory structure of the nuclear
wavepacket at later times (t = 2000 au). We notice here
that, as it is evident in Figure 4 at t = 1000 au the nuclear
density itself does not have a node at the CI. Only its
“projected” contribution onto S1 presents a node at the
CI, consequence of the fact that at the exact location of
the CI, population is funnelled from S1 to S0. In this sense,
nuclear dynamics does not reveal any signature of the CI.

3.2 Exact-factorization picture

In the following, we will study how the critical quantities
of the EF, namely the TDPES and the TDVP, portray the
nonadiabatic dynamics in the two coupling regimes. Our
analysis focuses on the two time snapshots, t = 1000 au
and t = 2000 au, highlighted in Section 3.1.

3.2.1 Time-dependent vector potential – A(R, t)

Let us first observe how the TDVP, A(R, t) = A(x, y, t)
in the present case, behaves at the time of the passage

https://epjb.epj.org/
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Fig. 4. Schematic representation of the nuclear wavepacket at
the beginning of the dynamics (t = 0 au), during the passage
through the conical intersection (t = 1000 au), and after the
nonadiabatic region (t = 2000 au) for both the weak (upper
panel) and strong (lower panel) regime cases. The colormap
and the black contour lines shows |χ(R, t)|, whereas the red
contour lines represents |χS1(R, t)| and the grey contour lines
|χS0(R, t)|. A red filled circle locates the position of the CI.

through the CI (t = 1000 au). In the chosen gauge, this
2-dimensional vector field is

Aα(R, t) =
=〈Ψ(R, t)|∂α|Ψ(R, t)〉r

|χ(R, t)|2
, (21)

where α = x, y, and =〈Ψ(R, t)|∂α|Ψ(R, t)〉r (divided by
the nuclear mass) is the Cartesian α-component of the
nuclear velocity field. The additional term [25] found in
the definition of the TDVP and depending on the gradi-
ent of the nuclear phase S(R, t) is identically zero in the
chosen gauge.

In the weak-coupling regime (Fig. 5, upper panel), the
TDVP exhibits a simple behavior when the wavepacket
reaches the nonadiabatic region: it mainly points towards
larger x, with a strength increasing along x, since the
nuclear wavepacket itself, after being initiated on S1,
moves rapidly towards the CI region without spreading
significantly in the y-direction. We recall that in the cho-
sen gauge the vector potential is the nuclear velocity field,
thus it should not come as a surprise that it illustrates the
evolution of the nuclear wavepacket. The TDVP resulting

Fig. 5. TDVP, A(R, t), at t = 1000 au in the weak (upper
panel) and strong (lower panel) regime. A(R, t) is represented
by arrows, and the colormap represents its magnitude. The
black contour lines shows |χ(R, t)| and the red filled circle
the position of the conical intersection. The plot of A(R, t)
is restricted to the region of space where |χ(R, t)|2 > 10−10.

from the nonadiabatic dynamics in the strong-coupling
regime shows a very different behavior at t = 1000 au,
and reflects the complex nuclear dynamics around the
nonadiabatic region. In contrast with the weak-coupling
case, the components of A(R, t = 1000) reflect the nuclear
extension in the y-direction (as described in Sect. 3.1)
and its strength anticipates the structure resulting from
wavepacket interferences.

After the passage through the CI (t = 2000 au), the
TDVP in the weak-coupling regime still mostly points
towards larger x (upper panel of Fig. 6), but now with
some variations in the region 3.5 < x < 4.5 bohr. Addi-
tionally, in the region 4.0 < x < 4.5 bohr, the magnitude
of A(R, t) is lower than at larger values of x, reflecting the
change in behavior of the nuclear wavepacket: in the Born–
Huang picture, we observed that the nuclear wavepacket
component on S0 overtakes the one on S1 at t = 2000 au,
which suffers the repulsive part of S1. Therefore, the
nuclear component evolving on S1, localized in the region
4.0 < x < 4.5 bohr, moves slower than the one on S0,
that spreads along larger values of x. In the region 4.5 <
x < 6.0 bohr, the magnitude of A(R, t) starts decreasing,
reflecting how the wavepacket slows down when it enters
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Fig. 6. TDVP, A(R, t), at t = 2000 au in the weak (upper
panel) and strong (lower panel) regime. The components of
the figure are the same as those described in Figure 5.

a more repulsive part of the potential energy surface. An
even more complex behavior is observed for the TDVP
in the strong-coupling regime (lower panel of Fig. 6).
The magnitude of A(R, t) rapidly varies and its direction
reflects the generation of the complex interference struc-
ture in the nuclear wavepacket following the transition
through the nonadiabatic region. Owing to its definition
(Eq. (21)), the TDVP is expected to diverge at nodal
points of the nuclear density. In our simulation we observe,
in fact, that the modulus of the vector potential increases
in very localized regions, that are related to the minima
of the nuclear density contribution (almost fully) prop-
agating on S0. Such regions of low density arise from
the interfering portions of the S0 wavepacket, thus even-
tual singularities of the vector potential are, in this case,
clearly unrelated to the CI, which we recall is localized at
(3.0, 0.0), well outside the range of (x, y) values shown in
Figure 6.

It is very important to stress that the EF does
not lead to an absence of geometric phases [38]. We
can compute the circulation of the vector potential as
γ(t) = 1

~
∮
C
A(R, t) · dR, along a closed path C. Accord-

ing to this expression, we observe that the value of γ(t),
the geometric phase, is in general non-zero, independently
of the fact that the closed path C encircles or not a
CI. This observation is in agreement with the findings

of reference [38] still in the context of the EF but in
the time-independent case. More importantly, the value
of γ(t) depends on the path, and is not quantized, that is,
γ(t) can have any value from 0 to 2π. Such an observation
is critical for the EF as it implies that A(R, t) cannot be
gauged away. The TDVP has, in general, a non-zero curl,
meaning that it cannot be written as the gradient of a
scalar function.

3.2.2 Time-dependent potential energy surface – ε(R, t)

The TDPES is maybe one of the most exciting features
of the EF, as it allows to clearly interpret the behav-
ior of a nuclear wavepacket in nonadiabatic conditions.
For instance, different shapes of the TDPES connected
by “abrupt” changes (or steps) are symptoms of a spa-
tial splitting of the nuclear density; strong oscillations, on
the other hand, while difficult to clearly decompose, are a
signature of interferences occurring between two or more
portions of the nuclear wavepacket interacting in a nona-
diabatic region. The TDPES encodes signatures of the
dynamics, and helps us in identifying the type of nonadi-
abatic effects most strongly affecting the behavior of the
nuclear wavefunction.

In what follows, we first focus our attention on
εGI1(R, t), whose expression in the diabatic basis in given
in equation (15). We stress once again that the TDPES
does not depend on a particular representation for the
electronic system, as further highlighted later, and its
expression in the diabatic basis is only used here for
numerical convenience.

At t = 1000 au, in the weak-coupling regime, εGI1(R, t)
simply bridges the S1 adiabatic PES (for x < xCI) with
the S0 one (for x > xCI), as shown in Figure 7 (upper
panel). In this sense, the first GI part of the TDPES
exhibits a diabatic behavior, connecting smoothly the two
BO PESs in the direction of the evolution of the nuclear
wavepacket. Furthermore, εGI1(R, t) does not have sin-
gularities or discontinuities in the region of the CI. The
εGI1(R, t) component of the TDPES obtained during the
strong-coupling dynamics highlights an important feature
of the TDPES: its behavior is not tied to a diabatic or
an adiabatic picture, but can accommodate both worlds
naturally. The part of εGI1(R, t) close to the CI exhibits
a similar diabatic character as in the weak-coupling case,
but this character evolves to a more adiabatic one when
we look at y values away from the CI. In these regions, the
strong diabatic coupling results in important distortions
of the adiabatic PESs that now differ largely from their
diabatic counterparts (see Fig. 2, lower panel). Hence,
εGI1(R, t) exhibits both a diabatic and a pronounced adia-
batic character at the same time. This is shown in Figure 7
(lower panel), but it appears more clearly in the cut
along the y coordinate in the axis of the CI, x = 3.0 bohr
(Fig. 8, lower panel), where εGI1(R, t) exhibits a mixed
adiabatic/diabatic etiquette.

The relation between εGI1(R, t) and the location and
character associated to the nuclear wavepacket is explicit
in the cuts shown in Figure 8. In some regions, the
nuclear wavefunction has a mixed character, namely the
two projected contributions of the nuclear density on the
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Fig. 7. First GI term of the TDPES, εGI1(R, t), at t = 1000 au
(surface with dotted lines), superimposed with the adiabatic
PESs for both the weak- (upper) and strong-coupling regime
(lower panel).

adiabatic states are non-zero in the same region. This sit-
uation occurs at t = 1000 au in the weak-coupling regime,
as shown in Figure 8 (upper panel). In such cases, εGI1 cor-

responds to a mean field potential, between ε
(S0)
BO (R) and

ε
(S1)
BO (R). In the more complex case of strong coupling, the

nuclear wavepacket near the CI has a mix electronic char-
acter, reflected in an average potential. Further away from
the CI, the nuclear density is dominated by the S0 contri-
bution, and the TDPES resembles now the ground-state
adiabatic PES.

In Figure 8, both adiabatic contributions to the nuclear
density present a peculiar behavior at the CI, in the weak-
coupling and in the strong-coupling regime. The S1 part
has (what seems to be) a node, while the S0 part has a
sharp peak, but the two “singular” contributions cancel
each other perfectly, yielding a smooth total density [56].
At the CI, the S1 population is identically zero, due to the
infinitely large nonadiabatic coupling to S0.

Let us now focus on the remaining two GI terms of the
TDPES. We first recall the analytic expression,

εGI2(R, t)+εGI3(R, t)=

Nn∑
ν=1

[
~2

2Mν
〈∇νΦR(t)| ∇νΦR(t)〉r

−A2
ν(R, t)

2Mν

]
, (22)

showing that εGI2(R, t) is non-negative, while εGI3(R, t)
is non-positive (it is defined as minus the squared value
of the vector potential). In a previous work [27] as well

Fig. 8. Representation of all the components forming the
TDPES (εGI1, εGI2, εGI3, and εGD) along a cut in the y
direction at x = 3 bohr for the weak- (upper panel) and strong-
coupling (lower panel) dynamics at t = 1000 au. The total
nuclear probability density (|χ|2), adiabatic nuclear probability

densities (|χ(S0)
BO |

2 and |χ(S1)
BO |

2), and adiabatic PESs (ε
(S0)
BO and

ε
(S1)
BO ) are superimposed for comparison. Note that we report
−εGI2 for a better comparison with εGI3.

as in the weak-coupling regime studied here, we observe
that the sum of these contributions is almost zero over
the whole range of x and y. This is shown in the cut
along the y coordinates in Figure 8 (upper panel). In
the strong-coupling case, εGI2(R, t) and εGI3(R, t) do not
seem to exactly cancel each other in the region around
the CI (Fig. 8, lower panel). Further studies that prove
and justify analytically this behavior are indeed necessary
to predict a general trend. However, the numerical valida-
tion presented here provides sufficient evidence to support
some of the approximations introduced in the deriva-
tion of the coupled-trajectory mixed quantum-classical
(CT-MQC) algorithm [57–60]. CT-MQC is a numerical
scheme that solves within a quantum-classical approxi-
mation the electronic and nuclear equations of the EF,
equations (5) and (6). In CT-MQC, the TDPES has sim-
ply been approximated as εGI1(R, t)+ εGD(R, t), with the
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aim to avoid calculations of second-order derivatives of
the electronic wavefunction (present in εGI2) while keep-
ing the gauge invariance of the neglected contributions to
the TDPES (neglect of εGI3 in relation to the neglect of
εGI2). According to our numerical observations, the com-
bined effect of εGI2(R, t) and εGI3(R, t) does not have
a strong R-dependence (in some cases it even appears
to be zero). Therefore, their effect on the classical force
computed from the gradient of the TDPES can be consid-
ered, to a good approximation, negligible. As stated above,
further studies are required to investigate the properties
of εGI2(R, t) and εGI3(R, t), and to identify the conse-
quences on nuclear observables, e.g., on the nuclear kinetic
energy [26]. This analysis further justifies the focus on the
behavior of εGI1(R, t), as it is clearly the GI contribution
to the TDPES that mostly affects the dynamics.

Additionally, in our choice of gauge, the GD part of the
TDPES εGD(R, t) (see Eq. (18)) is mostly constant for
both coupling regimes and would lead to a rigid shift of
the GI parts of the TDPES, as it is shown in both panels
of Figure 8 for a cut along the y axis for a fixed value of
the x coordinate.

Let us now add up all the GI contributions to the
TDPES at t = 2000 au (Fig. 9).1 As observed previ-
ously in our analysis of the TDVP, the full TDPES
exhibits features that drive the complex dynamics of
the nuclear wavepacket. Hence, the pattern leading to a
splitting of the nuclear wavepacket in the weak-coupling
regime – explained in a Born–Huang picture by the S1

nuclear component separating from the S0 nuclear com-
ponent – is clearly visible from the TDPES (Fig. 9, upper
panel). The TDPES is composed of two main regions
(3.7 < x < 4.6 bohr and 4.6 < x < 5.5 bohr), with a pro-
nounced change of behavior at their interface. A sharp
repulsive potential in the x direction composes the first
region, supplemented by a central repulsive component at
y = 0 bohr. Conversely, the second region only shows a
slowly increasing potential towards larger x value. This
strong variation of the TDPES is responsible for the
splitting of the nuclear wavepacket into two components.
Even though the dynamics is more involved in the strong-
coupling case, especially because of interferences observed
in the S0 wavepacket after the passage through the CI, the
TDPES still clearly modulates the shape of the nuclear
density, as shown in Figure 9 (lower panel). Regions
where the TDPES is large are associated to regions where
the nuclear density is small (tending towards a node),
whereas the series of minima observed in the TDPES
(at around x = 3.9 and for y varying between –0.5 and
0.3) creates a multi-peaked nuclear density. The oscilla-
tory features of the TDPES in the strong-coupling case
can be interpreted as a two-dimensional generalization of
our previous analysis [51] on the effect of interferences on
the TDPES. From Figure 2 (middle panel) it is evident
that when the nuclear wavepacket moving on S1 reaches
the CI, it transfers population to S0. However, due to
the shape of the adiabatic PES, the incoming density is

1 We do not include εGD(R, t) in this sum as it only contributes a
nearly constant negative contribution to TDPES, as discussed above
in the context of Figure 8.

Fig. 9. Sum of all the gauge-independent contributions to
the TDPES at t = 2000 au (colormap). The black contour
lines shows |χ(R, t)|, whereas the red contour lines represents
|χS1(R, t)| and the grey contour lines |χS0(R, t)|.

partially trapped in a potential well. The result is that
the wavepacket in S0 interferes with the wavepacket still
incoming from S1 and transfers some population back
to S1. This statement is also validated by the results
presented in Figure 3 (dashed lines), where we observe
that after 1500 au the population of S0 slightly decreases
and the population of S1 slightly increases. Interferences
observed at t = 2000 au in the strong-coupling regime are
therefore the effect of nonadiabatic interferences, propa-
gated over time, that occur at the coupling region between
the S0 and the S1 wavepackets.

4 Conclusions

The theoretical framework of the exact factorization
of the electron-nuclear wavefunction has been employed
to investigate the nuclear dynamics at conical inter-
sections. The time-dependent potential energy surface
and the time-dependent vector potential have been ana-
lyzed as indicators of the nonadiabatic effects influenc-
ing nuclear relaxation through a region of strong cou-
pling between electronic states. We have pointed out
key and general features of the time-dependent poten-
tials in different coupling regimes, proving the general
validity of our previous observations [27] based on the
photoisomerization process of a retinal model.
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Despite the fact that the potentials of the exact fac-
torization are generalizations of the adiabatic potential
energy surfaces and of the nonadiabatic coupling vectors
(all static properties of the electronic system), they do not
show any singular behavior usually viewed as signature of
the presence of conical intersections.

The time-dependent potential energy surface presents
features that, somehow, adapt to the dynamics. Upon
comparison with diabatic and adiabatic potential energy
surfaces, we observed that the time-dependent poten-
tial energy surafce can show properties that connect in
space these two representations at a given time along
the dynamics. But the TDPES can also develop proper-
ties that switch from one representation to the other over
time. The nature of the time-dependent potential energy
surface can, however, be more involved, and in fact we
observed mean-field shapes, as well as strongly oscillatory
features, symptoms of interferences between wavepackets
associated to different electronic states.

The time-dependent vector potential is smooth along
the whole studied dynamics, in particular in the region of
coupling when the population transfer takes place between
electronic states. In the chosen gauge, the vector poten-
tial equals the nuclear velocity field; thus even though it
is a gauge-dependent quantity, the time-dependent vector
potential has in our study an important physical inter-
pretation and indicates how the nuclear density evolves.
The vector potential is far from being a trivial property,
in the sense that, in general, it is not a curl-free vector
field, and it cannot be gauged away. This observation
should not come as a surprise, since there is no partic-
ular reason for the nuclear velocity field to be irrotational
over all configuration space. Being not irrotational, the
circulation of the vector potential along a closed path in
nuclear space is, once again in general, non-zero: it yields a
non-trivial, path-dependent, and not quantized, geometric
phase.

The exact factorization offers very rich information
about excited-state molecular processes, which departs
from the picture that most standard approaches provide.
Our studies have always as main target the development
of simpler and more efficient ways to perform simula-
tions of nonadiabatic phenomena. Several advances in
this direction have already been made. We mentioned
for example the development of a new quantum-classical
approach based on the exact-factorization equations that
properly captures quantum decoherence effects. Another
interesting development around the exact factorization is
the recent proposition [61] to treat the electronic prob-
lem within a density-functional framework. Therefore,
we strongly believe that future developments around the
exact factorization might lead to approaches where the
difficulties related to electronic-structure representations
can be relieved, but by still preserving a clear physical and
chemical pictures of the processes of interest.

We are grateful to Hardy Gross for stimulating our interest in
dynamics at conical intersections and for giving us the opportu-
nity to learn from him how to look at this problem with a fresh
perspective. We hope this contribution will answer some of the
questions raised in the past few years of our collaboration.
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7367 (1988)
23. T. Pacher, L. Cederbaum, H. Köppel, Adv. Chem. Phys.
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