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Abstract. Capturing nuclear dynamics through conical intersections is pivotal to understand the fate of
photoexcited molecules. The concept of a conical intersection, however, belongs to a specific definition of
the electronic states, within a Born-Huang representation of the molecular wavefunction. How would these
ultrafast funneling processes be translated if an exact factorization of the molecular wavefunction were
to be used? In this article, we build upon our recent analysis [J. Phys. Chem. Lett., 8, 831 (2017)] and
address this question in a broader perspective by studying the dynamics of a nuclear wavepacket through
two types of conical intersections, differing by the strength of their underlying diabatic coupling. Our results
generalize our previous findings by (i) showing that the time-dependent potential energy surface smoothly
varies, both in time and in position, between the corresponding diabatic and adiabatic potentials, with
sometimes more complex features if interferences are observed, (ii) highlighting the non-trivial behavior
of the time-dependent vector potential and the fact that it cannot be gauged away in general, and (iii)
justifying some approximations employed in the derivation of a mixed quantum/classical scheme based on
the exact factorization.

PACS. –

1 Introduction

Conical intersections (CIs) [1–8] are often invoked to in-
terpret relaxation processes undergone by photoexcited
molecules. CIs are prototypical examples of the break-
down of the Born-Oppenheimer (BO) approximation, as
they represent efficient funnels [9–11] for population trans-
fer between electronic states, mediated by nuclear mo-
tion. They are regions of configuration space where the
adiabatic potential energy surfaces (PESs) are degenerate
and exhibit, within the so-called branching place, a typi-
cal double-cone shape. These curious features of adiabatic
PESs have been widely studied in the chemical physics lit-
erature, not only for their role in nonadiabatic processes
but also for the effect that the related Berry phase (a topo-
logical phase) has on adiabatic phenomena, for instance
occurring purely in the electronic ground state [11–13,2,
14,3–5,15,6,16,17,8,7,18–20]. The concept of CI appears
as consequence of the particular choice in our descrip-
tion of the electronic system at a given nuclear config-
uration. In the diabatic basis, CIs and Berry-phase ef-
fects disappear. Unfortunately, the diabatic basis is not
rigorously defined as the set of eigenstates of an electronic
hermitian operator [21–23], meaning that sometimes more
chemical arguments are needed to define (quasi-)diabatic
states. Despite the obvious challenges, both fundamental
and numerical, encountered when dealing with CIs, the
adiabatic representation is commonly employed to per-

form trajectory-based on-the-fly nonadiabatic molecular
dynamics simulations of photoinduced phenomena (some-
times coupled with a local diabatization [24]). Perhaps,
this choice is related to the fact that an alternative to the
adiabatic framework, more rigorous than switching to the
diabatic representation, has not yet been exhaustively in-
vestigated. It is maybe important to realize at this stage
that the description of nonadiabatic processes proposed in
the previous paragraphs – and its corresponding vocabu-
lary – directly emanates from a Born-Huang representa-
tion of the molecular wavefunction. Such representation
offers the well-known picture of nuclear amplitudes evolv-
ing on coupled potential energy surfaces and transferring
from one electronic state to the other in coupling regions,
possibly at a conical intersection in the adiabatic repre-
sentation. Hence, instead of questioning the electronic rep-
resentation itself within this picture, one could prefer to
change the overall representation for the molecular wave-
function and see how the deactivation of an electronically-
excited molecule takes place. In the following, we will
make use of the Exact Factorization (EF) of the molecular
wavefunction [25,26], and this paper aims at discussing
such alternative theoretical framework in the context of
nonadiabatic phenomena through conical intersections.

Recently [27], we have employed the EF to analyze nu-
clear dynamics at a CI in a model potential for the photoi-
somerization of retinal. We have concluded that no pecu-
liar, i.e., singular, behavior that can be traced back to the
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CI arises either in the evolution of the nuclear wavepacket
or in the time-dependent potentials that drive its evolu-
tion. This study was the first detailed analysis in the time
domain of the properties of the EF in connection to CIs.
(The EF can also be performed in the time-independent
picture [28–35], and analyses of CI in this framework were
also proposed [36–39].)

In the framework of the EF, nuclear dynamics is gen-
erated by a Hamiltonian containing scalar and vector po-
tentials that are time-dependent, since they represent the
excited-state (dynamical) effect of the electrons. Formally,
this structure is equivalent to an adiabatic picture, where
the static adiabatic PES replaces the time-dependent scalar
potential, for instance the ground-state PES, and the time-
dependent vector potential reduces to the, once again static,
nonadiabatic coupling vectors. The relation is not only
formal, as in the limit of the electron-nuclear mass ratio
µ = m/M tending to zero [40–42], the adiabatic quanti-
ties are recovered from the exact-factorization properties.
However, it seems that degeneracies, conical shapes, or
singularities are not so easily encountered for finite val-
ues of the electron-nuclear mass ratio. Hence, is the EF
a particularly suitable framework to address “dynamics
at conical intersections”? To address this question, we are
going to analyze the dynamics around a CI using a model
system, and for different topologies of the PESs. We will
identify general features and similarities in the properties
of the time-dependent potentials, that we believe will rep-
resent essential points of reflection for future, and possibly
more practical, method developments.

In the following, we briefly introduce the EF in Sec-
tion 2.1, present the model object of our analysis in Sec-
tion 2.2, and provide computational details in Section 2.3.
The following Sections are devoted to the comparison,
based on the simulated dynamics, between the adiabatic
and diabatic framework, arising from the Born-Huang ex-
pansion of the molecular wavefunction, which is presented
in Section 3.1, and the EF framework, discussed in Sec-
tion 3.2. Conclusions are reported in Section 4.

2 Theoretical Background

2.1 Exact Factorization

We introduce here the basics of the exact factorization of
the electron-nuclear wavefunction [25,26]. In this frame-
work, we use a specific Ansatz for the molecular wave-
function that departs from the most commonly employed
Born-Huang representation, namely

Ψ(r,R, t) = ΦR(r, t)χ(R, t) . (1)

The molecular wavefunction, Ψ(r,R, t), is the solution of
the time-dependent Schrödinger equation with Hamilto-
nian Ĥ = T̂n + ĤBO. It contains the nuclear kinetic en-
ergy, T̂n, and the BO Hamiltonian, ĤBO, which is the sum
of the electronic kinetic energy and all interaction poten-
tials. The symbols r,R stand for electronic and nuclear
positions, respectively.

In the EF Ansatz, χ(R, t) is the nuclear wavefunc-
tion, whereas ΦR(r, t) is an electronic factor, that depends
parametrically on the nuclear positions and satisfies the
partial normalization condition (PNC)

〈ΦR(t)|ΦR(t)〉r = 1 ∀ R, t . (2)

The symbol 〈 · 〉r indicates an integration over electronic
coordinates only. The PNC is pivotal to interpret |χ(R, t)|2
as the marginal probability of finding the nuclear configu-
ration R at time t, and |ΦR(r, t)|2 as the conditional prob-
ability of finding the electronic configuration r at time t
for a given nuclear configuration R.

The existence of the wavefunctions in Eq. (1) has been
proved in Refs. [25,26], as well as their uniqueness up to
a (R, t)-dependent gauge transformation,

ΦR(r, t)→ Φ̃R(r, t) = e
i
h̄ θ(R,t)ΦR(r, t) (3)

χ(R, t)→ χ̃(R, t) = e−
i
h̄ θ(R,t)χ(R, t) , (4)

where θ(R, t) is some real function of the nuclear coordi-
nates and time.

Equations of motion for ΦR(r, t) and χ(R, t) result
from the stationary variations [43] of the quantum me-
chanical action and read(

ĤBO(r,R) + Û coupen [ΦR, χ]− ε(R, t)
)
ΦR(r, t)

= ih̄∂tΦR(r, t)
(5)

[
Nn∑
ν=1

[−ih̄∇ν + Aν(R, t)]
2

2Mν
+ ε(R, t)

]
χ(R, t)

= ih̄∂tχ(R, t). (6)

Importantly, the PNC was enforced by means of Lagrange
multipliers [44,45]. As discussed in the Introduction, the
nuclear equation (6) is clearly a time-dependent Schrödin-
ger equation that contains time-dependent vector Aν(R, t)
and scalar ε(R, t) potentials.

The term Û coupen [ΦR, χ] in Eq. (5) is coined electron-
nuclear coupling operator [46],

Û coupen [ΦR, χ] =

Nn∑
ν=1

1

Mν

[
[−ih̄∇ν −Aν(R, t)]

2

2

+

(
−ih̄∇νχ

χ
+ Aν(R, t)

)(
− ih̄∇ν −Aν(R, t)

)]
,

(7)

ε(R, t) is the time-dependent potential energy surface (TD-
PES) [47–52],

ε(R, t) = 〈ΦR(t)| ĤBO + Û coupen − ih̄∂t |ΦR(t)〉r , (8)

and Aν (R, t) the time-dependent vector potential (TDVP)-
[27],

Aν (R, t) = 〈ΦR(t)| − ih̄∇ν ΦR(t)〉r . (9)
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All these terms act as an exact coupling between the elec-
trons and the nuclei. The electron-nuclear coupling opera-
tor Û coupen [ΦR, χ] depends on the nuclear wavefunction and
acts on the parametric dependence of ΦR(r, t) as a dif-
ferential operator. Hence, this “pseudo-operator” includes
the coupling to the nuclear subsystem beyond the para-
metric dependence found in the BO Hamiltonian. χ(R, t)
is a genuine nuclear wavefunction since it leads to an
N -body nuclear density, and an N -body nuclear current-
density, which reproduce the true nuclear N -body density
and current-density [26]) obtained from the full wavefunc-
tion Ψ(r,R, t).

2.2 Models

The CI model employed in this work is based on the work
by Villani et al [53]. The 2-by-2 Hamiltonian is given in
the diabatic (D) basis,

Ĥ
D

mol(x, y) =− 1

2

(
∂2
x

Mx
+

∂2
y

My

)
12

+

(
H00(x, y) H01(x, y)
H10(x, y) H11(x, y)

)
, (10)

with “potential energy” terms

H00(x, y) =
1

2
Kx(x− x1)2 +

1

2
Kyy

2

H11(x, y) =
1

2
Kx(x− x2)2 +

1

2
Kyy

2 +∆

H01(x, y) = H10(x, y) = γy exp
(
−α(x− x3)2

)
exp

(
−βy2

)
(11)

and the following set of parameters: Mx = 20000.0, My =
6667.0, Kx = 0.02, Ky = 0.1, ∆ = 0.01, x1 = 4.0, x2 =
x3 = 3.0, α = 3.0, and β = 1.5. All quantities reported
in this work are given in atomic units. The coordinates
x and y identify the nuclear positions, R = (x, y). This
model describes the crossing of two similar parabola, one
being slightly displaced both in the x direction and in en-
ergy. Adiabatic potential energies are produced by diago-
nalizing the diabatic potential matrix, and will lead to the
appearance of a CI whose shape can be altered by mod-
ifying the off-diagonal elements H01(x, y) and H10(x, y).
The parameter γ, introduced in the definition of the off-
diagonal elements, can be used for this purpose by tun-
ing the strength of the diabatic coupling between the two
parabola. Two different regimes will be used in this work:
weak coupling with γ = 0.01 and strong coupling with
γ = 0.08.

In the weak regime, the diabatic states are only weakly
coupled and, upon diagonalization, give rise to a localized
conical intersection (Fig. 1, upper panel). On the other
hand, the intense interaction between the diabatic states
in the strong-coupling regime results in adiabatic PESs
differing importantly from the diabatic ones (Fig. 1, lower
panel), i.e., from the diagonal elements of the potential
energy matrix.

Fig. 1. Adiabatic potential energy surfaces, ε
(S0)
BO (R) and

ε
(S1)
BO (R), in the weak (upper panel) and strong (lower panel)

coupling regime around the conical intersection centered at
RCI = (3.0, 0.0).

A cut through the x coordinate at fixed y = 0.0 bohr
(upper panel of Fig. 2) reveals that, along this particular
axis, the strong and weak coupling lead to similar adia-
batic PESs. The picture dramatically changes by slightly
deviating from the axis of the conical intersection and per-
forming the cut at y = 0.333 bohr. In this second cut
(middle panel of Fig. 2), the adiabatic PESs around the
CI are only moderately altered as compared to the di-
abatic ones for the weak-coupling regime (dotted lines).
Conversely, the strong diabatic coupling leads to a signif-
icant change in the topology of the adiabatic PESs with
the formation of a barrier in S1 and a deep minimum in
S0 (dashed lines). Such a difference in the adiabatic PESs
resulting from the two different coupling regimes is fur-
ther visible by performing a cut through y, this time, for
a fixed value of x = 3.0 bohr (lower panel of Fig. 2).
Once more, the adiabatic surfaces in the weak-coupling
case only slightly deviate from the diabatic behavior (con-
tinuous lines), whereas a pronounced double minimum can
be observed for the adiabatic ground-state surface (dashed
lines) for the strong-coupling regime.

In the following, we will investigate the dynamics of
a nuclear wavepacket in both situations. Even if the nu-
clear wavepacket dynamics is initiated in the same way
for the two regimes (see Sections 2.3 and 3), the overall
dynamics will strongly differ as a result of the coupling
strength between the surfaces. These differences were ex-
tensively discussed in the context of the adiabatic and
diabatic representations [53,54], and we will here present
the viewpoint of the EF.
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Fig. 2. Cuts through the different PESs: adiabatic BO sur-

faces ε
(S0/S1)
BO (R) for both coupling regimes, and the diabatic

surfaces H00(R) and H11(R). Cuts through the x coordinate
for a fixed y = 0.0 bohr and y = 0.333 bohr are presented in
the upper and middle panel, respectively. Cut through the y
coordinate for x = 3.0 bohr is given in the lower panel.

2.3 Computational Details

The results presented in this article were obtained in a
two-step process. First, we solve the full time-dependent
Schrödinger equation numerically using a split-operator
formalism [55] in a diabatic basis and the 2-by-2 Hamilto-

nian described in Section 2.2. The initial (diabatic) nuclear
wavepacket is taken as Gaussian, with widths σx = 0.15
and σy = 0.197, and is centered at Rini = (xini, yini) =
(2.0, 0.0). The dynamics is initiated in the second adia-
batic state (S1). We then reconstruct the TDPES and
the TDVP from the time-dependent nuclear wavefunc-
tions χl(R, t), with l = 1, 2, using the relation

|χ(R, t)|2 = |χ1(R, t)|2 + |χ2(R, t)|2 . (12)

In other words, if the full wavefunction is expanded in
the diabatic basis, and considering the electronic states
being orthogonal and normalized, the nuclear densities is
simply reconstructed as the sum of “projected densities”
|χl(R, t)|2. In the following, we fix the gauge by imposing
that the phase of the nuclear wavefunction S(R, t) = 0,
i.e., the nuclear wavefunction given by

χ(R, t) = |χ(R, t)|eiS(R,t)/h̄ (13)

is real and non-negative in this gauge. The coefficients
of the electronic wavefunction in the diabatic basis are
then given as χl(R, t)/χ(R, t), by virtue of the EF Ansatz
Eq. (1).

The TDPES and the TDVP can be decomposed as
well in the diabatic basis. To this end, let us first give the
explicit expression of the TDPES, that follows from its
definition in Eq. (8), namely

ε(R, t) = 〈ΦR(t)| ĤBO |ΦR(t)〉r

+

Nn∑
ν=1

[
h̄2

2Mν
〈∇νΦR(t)| ∇νΦR(t)〉r −

A2
ν(R, t)

2Mν

]
+ 〈ΦR(t)| − ih̄∂t |ΦR(t)〉r . (14)

The gauge transformations (Eq. (3)) only affect the last
term on the right-hand side. Therefore, the TDPES can be
decomposed in three gauge-invariant (GI) contributions,
εGI(R, t) = εGI1(R, t) + εGI2(R, t) + εGI3(R, t), and one
gauge-dependent part (GD), εGD(R, t). We express them
in the diabatic basis for actual calculations, namely as if
the electronic time-dependent wavefunction is expanded
in the diabatic basis, as the property that nonadiabatic
coupling vectors are identically zero in the diabatic basis
avoids incurring in singularities at the CI when computing
the TDPES and the TDVP. We can write:

εGI1(R, t) =
∑
l,k

χ∗
k(R, t)χl(R, t)

|χ(R, t)|2
Hkl(R) (15)

εGI2(R, t) =
∑
ν

h̄2

2Mν

∑
l

∣∣∣∣∇ν χl(R, t)χ(R, t)

∣∣∣∣2 (16)

εGI3(R, t) = −
∑
ν

A2
ν(R, t)

2Mν
(17)

εGD(R, t) = −ih̄
∑
l

χ∗
l (R, t)

χ∗(R, t)
∂t
χl(R, t)

χ(R, t)
(18)

where the symbol Hkl(R) indicates the elements of the
electronic Hamiltonian (the potential matrix in Eq. (10))
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in the diabatic basis and l, k label the states (see Eq. (11)).
The vector potential is given by

Aν(R, t) = −ih̄
∑
l

χ∗
l (R, t)

χ∗(R, t)
∇ν

χl(R, t)

χ(R, t)
. (19)

While the TDPES and TDVP are expanded here in a di-
abatic basis, it is critical to note that they do not depend
on any particular choice of electronic representations.

3 Results and Discussion

In the first part of this Section, we discuss the nonadi-
abatic dynamics of the two models presented above in a
purely Born-Huang perspective, and we owe to translate
them in an EF picture in the second part.

3.1 Born-Huang picture

As described in Section 2.2, the initial total wavefunction
for both models is given by

Ψ(r,R, t0) = χH00(R, t0)Φ
(H00)
R (r) , (20)

with χH00(R, t0) a Gaussian wavepacket on the diabatic
surface H00 at R = (2.0, 0.0) with no initial momentum.
In an adiabatic picture, this initial wavefunction repre-
sents a nuclear wavepacket initiated on the excited adia-
batic state S1 (see Fig. 2, upper panel for the relation be-
tween adiabatic/diabatic states). The nuclear wavepacket
immediately starts moving towards the CI as a result of
the steep gradient in the x direction of the S1 PES in this
region (Fig. 2), both in the weak- and the strong-coupling
case. In the weak-coupling regime, where the CI is spa-
tially very localized, the wavepacket enters the nonadia-
batic region after 500 a.u., leading to a rapid transfer of
nearly 85% of the S1 population to S0 (Fig. 3, continuous
lines). In the strong-coupling case, the picture is slightly
different as the coupling region extends more around the
RCI = (3.0, 0.0) region. This results in an earlier trans-
fer of the population towards S0 that stabilizes at around
93% (Fig. 3, dashed lines).

Perhaps more interesting is the effect of the coupling
strength on the spatial extent of the nuclear wavepacket
over time, reflecting the shape of the adiabatic poten-
tial surfaces. In the weak-coupling regime (upper panel
of Fig. 4), the wavepacket extends on the x coordinate
and hits the CI (t = 1000 a.u.), transferring population
to the lower state (grey contour lines in Fig. 4), while a
small contribution stays on the S1 state (red contour lines
in Fig. 4). No important distortions of the wavepacket are
observed, besides a splitting between the S0 and S1 con-
tributions at later times (t = 2000 a.u.). After the passage
through the CI, the S1 contribution immediately enters a
repulsive part of the adiabatic PES, while the contribution
evolving on S0 further continues its relaxation towards the
S0 minimum (see the upper panel of Fig. 2). The picture

Fig. 3. Time trace of the adiabatic populations (green=S0,
palatinate=S1) during the nonadiabatic dynamics in the
two different regimes considered: plain lines=weak coupling,
dashed lines=strong coupling.

is vastly different for the strong-coupling regime. As ob-
served in the lower panel of Fig. 4, the wavepacket spreads
more towards the y direction as a result of the distortions
of the adiabatic PESs (Fig. 2), even before reaching the
exact location of the CI due to the early transfer of popu-
lation towards S0. Upon passage through the CI (t = 1000
a.u.), the amplitudes on the different states strongly in-
terfere, leading to a complex oscillatory structure of the
nuclear wavepacket at later times (t = 2000 a.u.). We no-
tice here that, as it is evident in Fig. 4 at t = 1000 a.u.
the nuclear density itself does not have a node at the CI.
Only its “projected” contribution onto S1 presents a node
at the CI, consequence of the fact that at the exact loca-
tion of the CI, population is funnelled from S1 to S0. In
this sense, nuclear dynamics does not reveal any signature
of the CI.

3.2 Exact-Factorization picture

In the following, we will study how the critical quantities
of the EF, namely the TDPES and the TDVP, portray
the nonadiabatic dynamics in the two coupling regimes.
Our analysis focuses on the two time snapshots, t = 1000
a.u. and t = 2000 a.u., highlighted in Section 3.1.

3.2.1 Time-Dependent Vector Potential – A(R, t)

Let us first observe how the TDVP, A(R, t) = A(x, y, t)
in the present case, behaves at the time of the passage
through the CI (t = 1000 a.u.). In the chosen gauge, this
2-dimensional vector field is

Aα(R, t) =
=〈Ψ(R, t)|∂α|Ψ(R, t)〉r

|χ(R, t)|2
, (21)

where α = x, y, and =〈Ψ(R, t)|∂α|Ψ(R, t)〉r (divided by
the nuclear mass) is the Cartesian α-component of the
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Fig. 4. Schematic representation of the nuclear wavepacket at
the beginning of the dynamics (t = 0 a.u.), during the passage
through the conical intersection (t = 1000 a.u.), and after the
nonadiabatic region (t = 2000 a.u.) for both the weak (upper
panel) and strong (lower panel) regime cases. The colormap
and the black contour lines shows |χ(R, t)|, whereas the red
contour lines represents |χS1(R, t)| and the grey contour lines
|χS0(R, t)|. A red filled circle locates the position of the CI.

nuclear velocity field. The additional term [25] found in
the definition of the TDVP and depending on the gradi-
ent of the nuclear phase S(R, t) is identically zero in the
chosen gauge.

In the weak-coupling regime (Fig. 5, upper panel), the
TDVP exhibits a simple behavior when the wavepacket
reaches the nonadiabatic region: it mainly points towards
larger x, with a strength increasing along x, since the nu-
clear wavepacket itself, after being initiated on S1, moves
rapidly towards the CI region without spreading signif-
icantly in the y-direction. We recall that in the chosen
gauge the vector potential is the nuclear velocity field,
thus it should not come as a surprise that it illustrates the
evolution of the nuclear wavepacket. The TDVP resulting
from the nonadiabatic dynamics in the strong-coupling
regime shows a very different behavior at t = 1000 a.u.,
and reflects the complex nuclear dynamics around the
nonadiabatic region. In contrast with the weak-coupling
case, the components of A(R, t = 1000) reflect the nuclear
extension in the y-direction (as described in Section 3.1)
and its strength anticipates the structure resulting from
wavepacket interferences.

Fig. 5. TDVP, A(R, t), at t = 1000 a.u. in the weak (upper
panel) and strong (lower panel) regime. A(R, t) is represented
by arrows, and the colormap represents its magnitude. The
black contour lines shows |χ(R, t)| and the red filled circle the
position of the conical intersection. The plot of A(R, t) is re-
stricted to the region of space where |χ(R, t)|2 > 10−10.

After the passage through the CI (t = 2000 a.u.), the
TDVP in the weak-coupling regime still mostly points
towards larger x (upper panel of Fig. 6), but now with
some variations in the region 3.5 < x < 4.5 bohr. Ad-
ditionally, in the region 4.0 < x < 4.5 bohr, the mag-
nitude of A(R, t) is lower than at larger values of x, re-
flecting the change in behavior of the nuclear wavepacket:
in the Born-Huang picture, we observed that the nuclear
wavepacket component on S0 overtakes the one on S1 at
t = 2000 a.u., which suffers the repulsive part of S1. There-
fore, the nuclear component evolving on S1, localized in
the region 4.0 < x < 4.5 bohr, moves slower than the one
on S0, that spreads along larger values of x. In the region
4.5 < x < 6.0 bohr, the magnitude of A(R, t) starts de-
creasing, reflecting how the wavepacket slows down when
it enters a more repulsive part of the potential energy
surface. An even more complex behavior is observed for
the TDVP in the strong-coupling regime (lower panel of
Fig. 6). The magnitude of A(R, t) rapidly varies and its di-
rection reflects the generation of the complex interference
structure in the nuclear wavepacket following the transi-
tion through the nonadiabatic region. Owing to its def-
inition (Eq. (21)), the TDVP is expected to diverge at
nodal points of the nuclear density. In our simulation we
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Fig. 6. TDVP, A(R, t), at t = 2000 a.u. in the weak (upper
panel) and strong (lower panel) regime. The components of the
figure are the same as those described in Fig. 5.

observe, in fact, that the modulus of the vector potential
increases in very localized regions, that are related to the
minima of the nuclear density contribution (almost fully)
propagating on S0. Such regions of low density arise from
the interfering portions of the S0 wavepacket, thus even-
tual singularities of the vector potential are, in this case,
clearly unrelated to the CI, which we recall is localized at
(3.0, 0.0), well outside the range of (x, y) values shown in
Fig. 6.

It is very important to stress that the EF does not
lead to an absence of geometric phases [38]. We can com-
pute the circulation of the vector potential as γ(t) =
1
h̄

∮
C
A(R, t) · dR, along a closed path C. According to

this expression, we observe that the value of γ(t), the geo-
metric phase, is in general non-zero, independently of the
fact that the closed path C encircles or not a CI. This ob-
servation is in agreement with the findings of Ref. [38] still
in the context of the EF but in the time-independent case.
More importantly, the value of γ(t) depends on the path,
and is not quantized, that is, γ(t) can have any value from
0 to 2π. Such an observation is critical for the EF as it
implies that A(R, t) cannot be gauged away. The TDVP
has, in general, a non-zero curl, meaning that it cannot be
written as the gradient of a scalar function.

3.2.2 Time-Dependent Potential Energy Surface – ε(R, t)

The TDPES is maybe one of the most exciting features
of the EF, as it allows to clearly interpret the behavior
of a nuclear wavepacket in nonadiabatic conditions. For
instance, different shapes of the TDPES connected by
“abrupt” changes (or steps) are symptoms of a spatial
splitting of the nuclear density; strong oscillations, on the
other hand, while difficult to clearly decompose, are a sig-
nature of interferences occurring between two or more por-
tions of the nuclear wavepacket interact in a nonadiabatic
region. The TDPES encodes signatures of the dynamics,
and helps us in identifying the type of nonadiabatic ef-
fects most strongly affecting the behavior of the nuclear
wavefunction.

In what follows, we first focus our attention on
εGI1(R, t), whose expression in the diabatic basis in given
in Eq. (15). We stress once again that the TDPES does
not depend on a particular representation for the elec-
tronic system, as further highlighted later, and its expres-
sion in the diabatic basis is only used here for numerical
convenience.

At t = 1000 a.u., in the weak-coupling regime, εGI1(R, t)
simply bridges the S1 adiabatic PES (for x < xCI) with
the S0 one (for x > xCI), as shown in Fig. 7 (upper panel).
In this sense, the first GI part of the TDPES exhibits a
diabatic behavior, connecting smoothly the two BO PESs
in the direction of the evolution of the nuclear wavepacket.
Furthermore, εGI1(R, t) does not have singularities or dis-
continuities in the region of the CI. The εGI1(R, t) compo-
nent of the TDPES obtained during the strong-coupling
dynamics highlights an important feature of the TDPES:
its behavior is not tied to a diabatic or an adiabatic pic-
ture, but can accommodate both worlds naturally. The
part of εGI1(R, t) close to the CI exhibits a similar diabatic
character as in the weak-coupling case, but this character
evolves to a more adiabatic one when we look at y values
away from the CI. In these regions, the strong diabatic
coupling results in important distortions of the adiabatic
PESs that now differ largely from their diabatic counter-
parts (see Fig. 2, lower panel). Hence, εGI1(R, t) exhibits
both a diabatic and a pronounced adiabatic character at
the same time. This is shown in Fig. 7 (lower panel), but
it appears more clearly in the cut along the y coordinate
in the axis of the CI, x = 3.0 bohr (Fig. 8, lower panel),
where εGI1(R, t) exhibits a mixed adiabatic/diabatic eti-
quette.

The relation between εGI1(R, t) and the location and
character associated to the nuclear wavepacket is explicit
in the cuts shown in Fig. 8. In some regions, the nuclear
wavefunction has a mixed character, namely the two pro-
jected contributions of the nuclear density on the adia-
batic states are non-zero in the same region. This situa-
tion occurs at t = 1000 a.u. in the weak-coupling regime,
as shown in Fig. 8 (upper panel). In such cases, εGI1 cor-

responds to a mean field potential, between ε
(S0)
BO (R) and

ε
(S1)
BO (R). In the more complex case of strong coupling, the

nuclear wavepacket near the CI has a mix electronic char-
acter, reflected in an average potential. Further away from
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Fig. 7. First GI term of the TDPES, εGI1(R, t), at t = 1000
a.u. (surface with dotted lines), superimposed with the adi-
abatic PESs for both the weak- (upper) and strong-coupling
regime (lower panel).

the CI, the nuclear density is dominated by the S0 contri-
bution, and the TDPES resembles now the ground-state
adiabatic PES.

In Fig. 8, both adiabatic contributions to the nuclear
density present a peculiar behavior at the CI, in the weak-
coupling and in the strong-coupling regime. The S1 part
has (what seems to be) a node, while the S0 part has a
sharp peak, but the two “singular” contributions cancel
each other perfectly, yielding a smooth total density [56].
At the CI, the S1 population is identically zero, due to the
infinitely large nonadiabatic coupling to S0.

Let us now focus on the remaining two GI terms of the
TDPES. We first recall the analytic expression,

εGI2(R, t) + εGI3(R, t) =

Nn∑
ν=1

[
h̄2

2Mν
〈∇νΦR(t)| ∇νΦR(t)〉r −

A2
ν(R, t)

2Mν

]
,

(22)

showing that εGI2(R, t) is non-negative, while εGI3(R, t)
is non-positive (it is defined as minus the squared value
of the vector potential). In a previous work [27] as well
as in the weak-coupling regime studied here, we observe
that the sum of these contributions is almost zero over the
whole range of x and y. This is shown in the cut along the y
coordinates in Fig. 8 (upper panel). In the strong-coupling
case, εGI2(R, t) and εGI3(R, t) do not seem to exactly can-
cel each other in the region around the CI (Fig. 8, lower
panel). Further studies that prove and justify analytically
this behavior are indeed necessary to predict a general

Fig. 8. Representation of all the components forming the TD-
PES (εGI1, εGI2, εGI3, and εGD) along a cut in the y direction
at x = 3 bohr for the weak- (upper panel) and strong-coupling
(lower panel) dynamics at t = 1000 a.u.. The total nuclear
probability density (|χ|2), adiabatic nuclear probability densi-

ties (|χ(S0)
BO |

2 and |χ(S1)
BO |

2), and adiabatic PESs (ε
(S0)
BO and ε

(S1)
BO )

are superimposed for comparison. Note that we report −εGI2

for a better comparison with εGI3.

trend. However, the numerical validation presented here
provides sufficient evidence to support some of the ap-
proximations introduced in the derivation of the coupled-
trajectory mixed quantum-classical (CT-MQC) algorithm
[57–60]. CT-MQC is a numerical scheme that solves within
a quantum-classical approximation the electronic and nu-
clear equations of the EF, Eqs. (5) and (6). In CT-MQC,
the TDPES has simply been approximated as εGI1(R, t)+
εGD(R, t), with the aim to avoid calculations of second-
order derivatives of the electronic wavefunction (present in
εGI2) while keeping the gauge invariance of the neglected
contributions to the TDPES (neglect of εGI3 in relation
to the neglect of εGI2). According to our numerical obser-
vations, the combined effect of εGI2(R, t) and εGI3(R, t)
does not have a strong R-dependence (in some cases it
even appears to be zero). Therefore, their effect on the
classical force computed from the gradient of the TDPES
can be considered, to a good approximation, negligible.
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As stated above, further studies are required to investi-
gate the properties of εGI2(R, t) and εGI3(R, t), and to
identify the consequences on nuclear observables, e.g., on
the nuclear kinetic energy [26]. This analysis further justi-
fies the focus on the behavior of εGI1(R, t), as it is clearly
the GI contribution to the TDPES that mostly affects the
dynamics.

Additionally, in our choice of gauge, the GD part of
the TDPES εGD(R, t) (see Eq. (18)) is mostly constant
for both coupling regimes and would lead to a rigid shift
of the GI parts of the TDPES, as it is shown in both panels
of Fig. 8 for a cut along the y axis for a fixed value of the
x coordinate.

Let us now add up all the GI contributions to the TD-
PES at t = 2000 a.u. (Fig. 9).1 As observed previously
in our analysis of the TDVP, the full TDPES exhibits
features that drive the complex dynamics of the nuclear
wavepacket. Hence, the pattern leading to a splitting of
the nuclear wavepacket in the weak-coupling regime – ex-
plained in a Born-Huang picture by the S1 nuclear compo-
nent separating from the S0 nuclear component – is clearly
visible from the TDPES (Fig. 9, upper panel). The TD-
PES is composed of two main regions (3.7 < x < 4.6 bohr
and 4.6 < x < 5.5 bohr), with a pronounced change of be-
havior at their interface. A sharp repulsive potential in the
x direction composes the first region, supplemented by a
central repulsive component at y = 0 bohr. Conversely, the
second region only shows a slowly increasing potential to-
wards larger x value. This strong variation of the TDPES
is responsible for the splitting of the nuclear wavepacket
into two components. Even though the dynamics is more
involved in the strong-coupling case, especially because of
interferences observed in the S0 wavepacket after the pas-
sage through the CI, the TDPES still clearly modulates
the shape of the nuclear density, as shown in Fig. 9 (lower
panel). Regions where the TDPES is large are associated
to regions where the nuclear density is small (tending to-
wards a node), whereas the series of minima observed in
the TDPES (at around x = 3.9 and for y varying between
-0.5 and 0.3) creates a multi-peaked nuclear density. The
oscillatory features of the TDPES in the strong-coupling
case can be interpreted as a two-dimensional generaliza-
tion of our previous analysis [51] on the effect of inter-
ferences on the TDPES. From Fig. 2 (middle panel) it
is evident that when the nuclear wavepacket moving on
S1 reaches the CI, it transfers population to S0. However,
due to the shape of the adiabatic PES, the incoming den-
sity is partially trapped in a potential well. The result is
that the wavepacket in S0 interferes with the wavepacket
still incoming from S1 and transfers some population back
to S1. This statement is also validated by the results pre-
sented in Fig. 3 (dashed lines), where we observe that after
1500 a.u. the population of S0 slightly decreases and the
population of S1 slightly increases. Interferences observed
at t = 2000 a.u. in the strong-coupling regime are there-
fore the effect of nonadiabatic interferences, propagated

1 We do not include εGD(R, t) in this sum as it only con-
tributes a nearly constant negative contribution to TDPES, as
discussed above in the context of Fig. 8.

Fig. 9. Sum of all the gauge-independent contributions to
the TDPES at t = 2000 a.u (colormap). The black contour
lines shows |χ(R, t)|, whereas the red contour lines represents
|χS1(R, t)| and the grey contour lines |χS0(R, t)|.

over time, that occur at the coupling region between the
S0 and the S1 wavepackets.

4 Conclusions

The theoretical framework of the exact factorization of the
electron-nuclear wavefunction has been employed to inves-
tigate the nuclear dynamics at conical intersections. The
time-dependent potential energy surface and the time-
dependent vector potential have been analyzed as indica-
tors of the nonadiabatic effects influencing nuclear relax-
ation through a region of strong coupling between elec-
tronic states. We have pointed out key and general fea-
tures of the time-dependent potentials in different cou-
pling regimes, proving the general validity of our previous
observations [27] based on the photoisomerization process
of a retinal model.

Despite the fact that the potentials of the exact fac-
torization are generalizations of the adiabatic potential
energy surfaces and of the nonadiabatic coupling vectors
(all static properties of the electronic system), they do not
show any singular behavior usually viewed as signature of
the presence of conical intersections.

The time-dependent potential energy surface presents
features that, somehow, adapt to the dynamics. Upon
comparison with diabatic and adiabatic potential energy
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surfaces, we observed that the time-dependent potential
energy surafce can show properties that connect in space
these two representations at a given time along the dy-
namics. But the TDPES can also develop properties that
switch from one representation to the other over time. The
nature of the time-dependent potential energy surface can,
however, be more involved, and in fact we observed mean-
field shapes, as well as strongly oscillatory features, symp-
toms of interferences between wavepackets associated to
different electronic states.

The time-dependent vector potential is smooth along
the whole studied dynamics, in particular in the region of
coupling when the population transfer takes place between
electronic states. In the chosen gauge, the vector poten-
tial equals the nuclear velocity field; thus even though it
is a gauge-dependent quantity, the time-dependent vector
potential has in our study an important physical interpre-
tation and indicates how the nuclear density evolves. The
vector potential is far from being a trivial property, in the
sense that, in general, it is not a curl-free vector field, and
it cannot be gauged away. This observation should not
come as a surprise, since there is no particular reason for
the nuclear velocity field to be irrotational over all con-
figuration space. Being not irrotational, the circulation of
the vector potential along a closed path in nuclear space
is, once again in general, non-zero: it yields a non-trivial,
path-dependent, and not quantized, geometric phase.

The exact factorization offers very rich information
about excited-state molecular processes, which departs
from the picture that most standard approaches provide.
Our studies have always as main target the development
of simpler and more efficient ways to perform simulations
of nonadiabatic phenomena. Several advances in this di-
rection have already been made. We mentioned for exam-
ple the development of a new quantum-classical approach
based on the exact-factorization equations that properly
captures quantum decoherence effects. Another interest-
ing development around the exact factorization is the re-
cent proposition [61] to treat the electronic problem within
a density-functional framework. Therefore, we strongly be-
lieve that future developments around the exact factoriza-
tion might lead to approaches where the difficulties related
to electronic-structure representations can be relieved, but
by still preserving a clear physical and chemical pictures
of the processes of interest.
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