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Abstract Hard processes in diffractive deep-inelastic scat-
tering can be described by a factorisation into parton-level
subprocesses and diffractive parton distributions. In this
framework, cross sections for inclusive dijet production in
diffractive deep-inelastic electron–proton scattering (DIS)
are computed to next-to-next-to-leading order (NNLO) QCD
accuracy and compared to a comprehensive selection of data.
Predictions for the total cross sections, 40 single-differential
and four double-differential distributions for six measure-
ments at HERA by the H1 and ZEUS collaborations are
calculated. In the studied kinematical range, the NNLO cor-
rections are found to be sizeable and positive. The NNLO
predictions typically exceed the data, while the kinematical
shape of the data is described better at NNLO than at next-
to-leading order (NLO). A significant reduction of the scale
uncertainty is achieved in comparison to NLO predictions.
Our results use the currently available NLO diffractive parton
distributions, and the discrepancy in normalisation highlights
the need for a consistent determination of these distributions
at NNLO accuracy.

1 Introduction

Diffractive processes in deep-inelastic scattering, ep →
eXY , where the final state systems X and Y are separated
in rapidity, have been studied extensively at the electron–
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proton collider HERA [1]. The forward system Y consists
of the leading proton, which stays intact after the collisions,
but may also contain its low mass dissociation. Between the
systems X and Y a depleted region without any hadronic
activity is observed, the so-called large rapidity gap (LRG).
This is a consequence of the vacuum quantum numbers of the
diffractive exchange which is often referred to as a pomeron
(IP). Experimentally, the diffractive events can be selected
either by requiring a rapidity region in the direction of the
proton beam without any hadronic activity (LRG method)
or by direct detection of the leading proton using dedicated
spectrometers. In the second case, the system Y is free of any
diffractive dissociation.

Predictions for diffractive processes in DIS can be
obtained in the framework of perturbative QCD (pQCD).
According to the factorisation theorem for diffractive DIS
(DDIS) [2], if the process is sufficiently hard, the calculation
can be subdivided into two components: the hard partonic
cross sections, dσ̂n , are calculable within pQCD in powers
of αs(μR), which need to be convoluted with soft diffractive
parton distribution functions (DPDFs, f Da ) that specify the
contributing parton a inside the incoming hadron. DPDFs are
universal for all diffractive deep-inelastic processes [2], with
the hardness of the process being ensured by the virtuality
Q2 of the exchanged photon.

Up to now, predictions for diffractive processes, and in
particular for diffractive dijet production, were performed
only in next-to-leading order QCD (NLO). These predictions
were able to describe the measured cross sections satisfac-
torily, both in shape and normalisation (for a review see e.g.
Ref. [1]). However, due to their large theoretical uncertain-
ties they did not achieve the precision of the data and thus
did not allow for more stringent conclusions, i.e. about the
underlying fundamental concepts of the diffractive exchange.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-5981-z&domain=pdf
mailto:britzger@physi.uni-heidelberg.de
mailto:james.currie@durham.ac.uk
mailto:thomas.gehrmann@uzh.ch
mailto:alexander.huss@cern.ch
mailto:jan.m.niehues@durham.ac.uk
mailto:radek.zlebcik@desy.de


538 Page 2 of 20 Eur. Phys. J. C (2018) 78 :538

Furthermore, the NLO predictions for dijet production were
about two times higher than the leading-order (LO) predic-
tions. This raised the natural question concerning the size of
contributions from even higher orders for such processes at
the comparably low scales of the HERA data.

Here, we present the next-to-next-to-leading (NNLO) per-
turbative QCD calculations for dijet production in diffrac-
tive DIS. These calculations are performed for the first time
and constitute the first NNLO predictions for a diffractive
process. We compare our predictions with several single-,
double-differential and total cross sections from six distinct
measurements published by the H1 or ZEUS collaboration. A
quantitative comparison of NLO and NNLO predictions with
the data is presented. We further study the scale dependence
of the NNLO predictions. Different DPDF parameterisations
are studied and we provide additional studies about the sen-
sitivity of the dijet data for future DPDF determinations.

2 NNLO predictions for dijet production in DDIS

Relevant kinematical variables to describe fully inclusive
neutral current (NC) DIS can be inferred from the momenta
of the incoming particles and the outgoing lepton:

l(k) + p(P) → l ′(k′) + X (pX ),

such that the momentum transferred to the proton is given
by the momentum q = k − k′ of the virtual gauge boson γ ∗.
The kinematics of each event is then completely determined
by the following variables

s = (k + p)2 , Q2 = −q2 , y = q · p
k · p , (1)

where y is referred to as the inelasticity of the scattering.
Neglecting the proton mass, the γ ∗ p invariant squared mass
is given by W 2 = sy − Q2, and is thus directly proportional
to y in the case Q2 � sy. The variable s represents centre-
of-mass energy squared of the ep collisions.

The leading order Feynman diagram for dijet production
in diffractive DIS is displayed in Fig. 1.

In this case, a dijet system is characterised by at least
two outgoing jets within a given pseudorapidity range (η∗

jet

or η
jet
lab) with sufficiently high transverse momenta p∗,jet

T in
the γ ∗ p rest frame.1 At HERA, particles are commonly
clustered into jets using the kt cluster algorithm [4]. The
jet with the highest (second highest) p∗,jet

T is denoted as
‘leading jet’ (‘subleading jet’) and their average transverse
momentum and invariant mass is calculated as 〈pT〉 =
(p∗,jet1

T + p∗,jet2
T )/2 and denoted by M12, respectively.

1 Here, observables in the γ ∗ p (laboratory) frame are conventionally
denoted with an asterisk ‘∗’ (superscript ‘lab’).
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Fig. 1 The leading order Feynman diagram for dijet production in
diffractive DIS via boson-gluon fusion (taken from Ref. [3]). The vari-
ables are described in the text

For the description of the diffractive kinematics additional
invariants have to be introduced and are in terms of the
momentum assignments from Fig. 1 given by

zobs
IP = M2

12 + Q2

M2
X + Q2

, xIP = (p − p′) · q
p · q ,

and t = (p − p′)2 . (2)

The observable zobs
IP is calculated from M12 and the invari-

ant mass of the hadronic system X , MX, and it characterises
the parton momentum fraction of the diffractive exchange
entering the partonic sub-process.2 The denominator in the
definition of zobs

IP can equivalently be written as xIP ys, i.e. in
terms of kinematic variables related to the scattered electron
and the leading proton. The observable xIP is interpreted as
the relative energy loss of the leading proton and is given
by xIP = 1 − Ep′/Ep. For measurements at HERA, xIP is
typically of O(0.01). The variable t is related to the trans-
verse momentum of the diffractive proton (t � −p2

T,p′ ) with

absolute value ∼0.1 GeV2 at HERA. The mass of the system
Y , which is formed by either a leading proton or its low mass
dissociative state, is denoted as MY.

QCD predictions for sufficiently hard processes in diffrac-
tive DIS are obtained by subdividing the calculation into two
parts in accordance with the factorisation theorem [2]: The
calculation of the hard partonic scattering coefficients, dσ̂i ,
that are calculable within pQCD and come with the i th power
of αs(μR), and the convolution of the dσ̂i with appropriate
DPDFs that capture the properties of the soft physics, denoted
by f Da for incoming parton of type a. The full cross section
up to power n in αs(μR) can then be written as a sum over
the relevant hard coefficients and partonic channels,

2 In inclusive DDIS the invariant β = Q2/2q · (p − p′) has a similar
interpretation, which can also be calculated as β = xBj/xIP , with xBj =
Q2/2p · q.
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σn =
∑

a=g,q,q̄

n∑

i=1

σa,i . (3)

In the above, the function σa,i is calculated as a convolution
of the DPDFs with the hard coefficients:

σa,i =
∫

dt
∫

dxIP

∫
dzIP dσ̂

ea→2jets
i (ŝ, μR, μF)

× f Da (zIP , μF, xIP , t). (4)

Physically, the variable xIP represents the longitudinal pro-
ton momentum fraction which contributes to the interaction
or, alternatively, the momentum fraction the proton is loosing
in the diffractive exchange. The variable zIP is then the frac-
tion of the diffractive exchange momentum which enters the
hard subprocess, where it should be noted that the variable
zIP equals zobs

IP only at leading order. The variable ŝ denotes
the centre-of-mass energy squared of the underlying parton–
electron interaction and can be expressed as ŝ = xIP zIPs.

The DPDFs have many properties similar to the non-
diffractive PDFs, in particular they obey the DGLAP evo-
lution equation [2,5–7], however, DPDFs are constrained by
the presence of the leading proton in the final state. In param-
eterised DPDFs the t-dependence of the cross section is inte-
grated out and in the considered measurements is restricted
either by |t | < 1 GeV2 or |t | < 0.6 GeV2.

In this paper, the parton-level jet-production cross sec-
tions in DDIS are calculated up to NNLO. These calcu-
lations are identical to the NNLO calculations in the non-
diffractive case [8,9]. The NNLO correction involves three
types of scattering amplitudes: the two-loop amplitudes for
two-parton final states [10–13], the one-loop amplitudes for
three-parton final states [14–17] and the tree-level amplitudes
for four-parton final states [18–20]. These contributions con-
tain implicit infrared divergences from soft and/or collinear
real-emission corrections as well as explicit divergences of
both infrared and ultraviolet origin from the virtual loop
corrections. When calculating predictions for an infrared-
safe final state definition, these singularities cancel when
the different parton multiplicities are combined [21]. The
calculation employs the antenna subtraction method [22–
25]: For real-radiation processes, the subtraction terms are
constructed out of antenna functions, which encapsulate
all color-ordered unresolved parton emission in-between
pairs of hard radiator partons. To constitute a subtraction
term, the antenna functions are then multiplied with reduced
matrix elements of lower partonic multiplicity. By making
the infrared pole structure explicit, the integrated subtraction
terms can be combined with the virtual corrections in order
to obtain a finite result. Relevant tree-level and one-loop
matrix elements were verified against Sherpa [26–28] and
nlojet++ [29–31]. Our computation is performed within the
parton-level event generator NNLOJET [32], which imple-

ments the antenna subtraction formalism and further pro-
vides a validation framework to ensure the correctness of
the results. These tests comprise the analytic cancellation of
all infrared poles and a numerical check of the behaviour of
the subtraction terms to mimic the real-emission matrix ele-
ments in all unresolved limits [33,34]. All calculations are
performed using the MS renormalisation scheme and for five
massless quark flavors. The strong coupling constant is set
to αs(MZ) = 0.118 [35].

The calculation of NNLO partonic cross sections [8,9]
has recently been applied successfully to describe inclusive
jet and dijet cross section data in non-diffractive DIS [8,9,
36,37]. Here, however, the hard coefficients are now convo-
luted with DPDFs for the first time and we present the first
calculation of a diffractive jet production process to NNLO
in αs(μR). For this reason our predictions are limited by the
available DPDFs which have only been determined up to
NLO so far.

For the convolutions with the DPDFs, the phase space
integration of the matrix element squared has to be adopted
for the integrations over the additional diffractive variables
t and xIP . This has been reported, for instance, for imple-
mentations in the programs DISENT [38,39], JetViP [40–42]
and nlojet++ [29,30,43]. While these previous calculations
commonly used the computationally very expensive Monte
Carlo or the slicing method [43], here an improved convolu-
tion formalism is used. Our calculation thereby employs the
fastNLO formalism [3,44,45] which has the advantage that
the matrix elements have to be calculated only once and can
then be used repeatedly for integrations of the DPDFs. The
formalism will be briefly explained in the following.

The matrix elements dσ̂
ea→2jets
n have their xIP and zIP

dependence given through ŝ = xs, where s is the centre-of-
mass energy squared of the ep collision and the momentum
fraction x is given by

x = xIP zIP . (5)

In the fastNLO approach for non-diffractive DIS the x-
dependence of the matrix elements is frozen on a grid,

∫
dx dσ̂a,n(x) f (x) �

∑

i

σ̃
(a,n)
i f (xi ), (6)

where the nodes lie at set values of xi . With an increas-
ing number of nodes the approximation improves until both
expressions in Eq. (6) become numerically identical. The
coefficients σ̃i are calculated from contributing matrix ele-
ments for a given measurement function, which expresses
the given observable, phase space and jet definition. While
this calculation is computationally very expensive, it has to
be performed only once, since these coefficients are indepen-
dent of PDF values (DPDFs) and scales.

123



538 Page 4 of 20 Eur. Phys. J. C (2018) 78 :538

Using Eq. (6) the partonic cross section in DDIS Eq. (4)
is then calculated as

σa,n =
∫

dt
∫

dxIP
xIP

xi<xIP∑

i

σ̃
(a,n)
i f Da (xIP , zIP = xi/xIP , t) .

(7)

By interpreting the factor 1/xIP as the flux factor of the
diffractive exchange, then according to a center-of-mass
reweighting of the incoming hadron, the calculation can be
made equivalent to the slicing method. Our calculations have
been validated in NLO accuracy against calculations using
nlojet++ [30,31] with the slicing method.

The fastNLO based approach has advantages of a higher
numerical accuracy of the xIP integration, and, more impor-
tantly still, a significantly higher numerical accuracy is
achieved in the calculation of the hard matrix elements for
a given amount of computing time. This is of great impor-
tance for the calculation of the double-real and real-virtual
NNLO amplitudes, which are calculated here using several
100,000 hours of CPU time using state-of-the-art CPUs. The
numerical accuracy of the fastNLO interpolation technique
is typically smaller than the numerical precision of the tabu-
lated DPDFs, and thus can be neglected.

In order to avoid regions of the phase space where the
predictions exhibit an enhanced infrared sensitivity [41,46],
the phase space definitions of all analyses have asymmetric
cuts on the transverse momenta of the two leading jets. It
was tested that the difference of ∼ 1 GeV between the cuts
on the leading and sub-leading jet is sufficient to remove this
region.

For the nominal calculations the renormalisation (μR) and
factorisation scale (μF) are set to

μ2
R = μ2

F = Q2 + 〈pT〉2 , (8)

while also different choices are studied. The ‘scale’ uncer-
tainty of the prediction is obtained by varying μR and μF by
the conventional factors of 0.5 and 2.

Diffractive parton distributions are determined 3 by inter-
preting data for different final states in DDIS in a parton
model framework [48]. Already the first inclusive DDIS
data from HERA [49] indicated the presence of a very large
gluon content in the diffractive exchange [50]. The knowl-
edge of the DPDFs is at a lower precision than that of non-
diffractive PDFs. This is due to the uncertainties of the DDIS
measurements, but also because available data sets are not

3 Although, the commonly employed approach for the determination
of the DPDFs is a global fit to experimental data, the DPDFs can alter-
natively be defined through light-cone matrix elements, and in this
framework certain aspects of their behaviour at the starting scale of
the evolution can be computed [47].

always compatible [51]. In addition, different assumptions
imposed for their determination result in substantial differ-
ences of individual DPDFs. Therefore, different DPDF sets
may result in sizeable differences for certain processes and
kinematic regions. Currently, all DPDFs available have been
obtained using data together with corresponding NLO QCD
predictions only. Given the typical scales of the HERA mea-
surements, higher order QCD effects are sizable and NNLO
DPDFs are expected to differ significantly from their NLO
variants. Nonetheless, due to the absence of NNLO DPDFs
we have to use NLO DPDFs and the following sets are stud-
ied:

– H1FitB [52] is the most widely used DPDF. It was
determined from an NLO DGLAP QCD fit to reduced
inclusive DDIS cross sections. The diffractive data was
selected using the LRG method and, therefore, the DPDF
includes proton dissociation into a low-mass hadronic
state (MY < 1.6 GeV). The phase space of the selected
data was restricted to β < 0.8 and Q2 > 8.5 GeV2.
The gluon DPDF at the starting scale of the evolution,
μ2

0 = 1.75 GeV2, was assumed to be a constant, i.e. inde-
pendent of the value of zIP .

– H1FitA [52] is a variant of the H1FitB DPDF, which
uses a more flexible parameterisation of the gluon dis-
tribution at the starting scale of the evolution. In com-
parison to the H1FitB DPDF, a significantly larger gluon
DPDF is found although both, the H1FitA and the H1FitB
DPDF, describe the shape of the data equally well, as
inclusive DDIS cross sections are only weakly sensitive
to the gluon DPDF. A detailed analysis of dijet data sug-
gests [43] that the gluon component in the H1FitA DPDF
is overestimated.

– H1FitJets [43] is the first DPDF fitted based on the combi-
nation of inclusive and dijet data, using the same inclusive
data sample as for H1FitB and H1FitA. The inclusion of
dijet data, which is more sensitive to the gluon content,
led to a slightly smaller gluon distribution compared to
the H1FitB DPDF.

– ZEUSSJ [53] is determined by a combined fit of inclu-
sive and dijet data by the ZEUS collaboration. Compared
to H1 fits, the proton dissociation has been subtracted
using Monte Carlo (MC) estimates such that this DPDF
is defined for elastic scattering (MY = mP ).

– The MRW DPDF [54] is based on the same data as the
H1FitB DPDF. In contrast, however, Regge factorisation
is only assumed at the starting scale and the evolution
is performed using inhomogeneous evolution equations
accounting for pomeron-to-parton splittings.

The DPDF uncertainty in our calculations is obtained from
the error sets provided together with the H1FitB DPDF. The
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very recent GKG18 DPDF [55], which is also in NLO, is not
considered in this analysis.

Similarly as in the definitions for DPDF fits, also the var-
ious measurements impose different definitions of MY. The
LRG measurements by H1 are defined for MY < 1.6 GeV,
whereas ZEUS extrapolated its LRG measurement to MY =
mP . Two of the H1 measurements are based on proton spec-
trometers (FPS, VFPS), and thus these data do not contain
any proton dissociation (MY = mP ).

In order to provide predictions for all of the measured cross
section data with any of the available DPDF sets, correction
factors for proton dissociation have to be applied wherever
applicable. The latest value of the proton dissociation fraction
for the phase space imposed by H1 was estimated to be [56]

σ(MY < 1.6 GeV)

σ (MY = mP )
= 1.20 ± 0.11(exp.) . (9)

This value was obtained as a combination of the previously
measured value of 1.23 ± 0.16 [57] and a newly measured
value of 1.18 ± 0.12 . It is consistent with the prediction of
1.15 obtained with the DIFFVM generator [58].

In order to compare the data with fixed-order predictions,
correction factors accounting for hadronisation effects are
applied. These are estimated using MC simulations and cor-
responding correction factors are provided together with the
respective data as discussed in the next section.

3 Data sets and observables

The NNLO cross sections are computed for six measure-
ments taken at HERA by the H1 or ZEUS collaborations.
We will refer to them as

– H1 FPS (HERA II) [59],
– H1 VFPS (HERA II) [60],
– H1 LRG (HERA II) [3],
– H1 LRG (HERA I) [43],
– H1 LRG (300 GeV) [61], and
– ZEUS LRG (HERA I) [62].

Five of those are performed at a centre-of-mass energy of√
s = 319 GeV, and one at

√
s = 300 GeV [61], depending

on the proton beam energy of 920 or 820 GeV, respectively,
while the electron or positron beam energy was always equal
to 27.6 GeV. In two cases the leading proton is identified by
the forward proton spectrometer (FPS) [59] or very forward
proton spectrometer (VFPS) [60], otherwise the diffractive
events are selected using the LRG method. Jets were identi-
fied using the kT jet algorithm in the γ ∗ p frame with cone
parameter R = 1, and at least two jets are required in each
event. The phase space definitions of the measurements are
summarised in Table 1. The hadronisation corrections are

provided together with the data [3,43,59–61], or in case of
Ref. [62], are displayed in Ref. [63]. Dijet cross sections are
studied differentially in several kinematic variables, which
also constrain the phase space of the measurements, and their
meanings are described in Fig. 1.

Measurements were performed as functions of:

– The DIS kinematic variables: Q2, y and W ;
– The jet transverse momentum observables: p∗,jet1

T , p∗,jet2
T ,

〈pT〉 and p∗,jet
T . Here p∗,jet

T refers to the pT of the leading
and subleading jet;

– The jet pseudorapidity observables: 〈ηjet
lab〉, η∗

jet, �η
jet
lab,

and �η∗. Here 〈ηjet
lab〉 denotes the average pseudorapidity

η∗
jet of the two leading jets and �η

jet
lab and �η∗ denote

their separation in pseudorapidity;
– Observables of the diffractive final state: xIP , zobs

IP and
MX;

– Double-differential measurements as functions of zobs
IP or

p∗,jet1
T for Q2 intervals, and as a function of zobs

IP for p∗,jet1
T

intervals.

In the fastNLO approach, the σ̃
(a,n)
i coefficients are cal-

culated prior to the convolution with the DPDFs. In this
first step, however, only observables that are accessible from
information on the final state kinematics of the hard matrix
element can be evaluated directly. An example for such
variables are the DIS kinematic variables or jet momenta.
In contrast, the kinematics of the hard matrix elements do
not depend explicitly on the outgoing proton momentum.
Observables depending on the diffractive final state have
therefore to be derived in additional steps when the xIP and
|t | integration is performed (c.f. Eq. (7)). In such cases (for
instance for the xIP and |t | observables), differential predic-
tions are obtained from σ̃

(a,n)
i coefficients representing the

total hard cross section. Similarly, predictions as a function
of zobs

IP are calculated using the relation zobs
IP = ξ/xIP and

are obtained from σ̃
(a,n)
i coefficients for a highly resolved

distribution in ξ , which denotes the proton momentum frac-
tion carried by the incoming parton at leading order and is
calculated as ξ = xBj(1 + M2

12/Q
2) [9]. Predictions as a

function of MX are obtained using the σ̃
(a,n)
i coefficients for

a highly resolved distributions in y and Q2, in combination
with MX = √

ysxIP − Q2.

4 Results

4.1 Total dijet production cross section

The NNLO predictions for the total dijet cross sections of
the six different experimental measurements are presented
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Table 1 Summary of the dijet data sets. The first column represents the
data set label and the second shows the integrated luminosity and the
number of events of the given data set. The other columns summarise
the definition of the phase space of the given data. In cases, where the

DIS phase space is defined in terms of W , the corresponding range in
y = W 2/s is shown. All measurements have in common a requirement
of njets ≥ 2 in the given dijet range, which is applied after identifying
the two leading jets

Data set L DIS range Dijet range Diffractive range

H1 FPS (HERA II) [59] 156.6 pb−1 4 < Q2 < 110 GeV2 p∗,jet1
T > 5 GeV xIP < 0.1

(581ev) 0.05 < y < 0.7 p∗,jet2
T > 4.0 GeV |t | < 1 GeV2

−1 < η
jet
lab < 2.5 MY = mP

H1 VFPS (HERA II) [60] 50 pb−1 4 < Q2 < 80 GeV2 p∗,jet1
T > 5.5 GeV 0.010 < xIP < 0.024

(550ev) 0.2 < y < 0.7 p∗,jet2
T > 4.0 GeV |t | < 0.6 GeV2

−1 < η
jet
lab < 2.5 MY = mP

H1 LRG (HERA II) [3] 290 pb−1 4 < Q2 < 100 GeV2 p∗,jet1
T > 5.5 GeV xIP < 0.03

(∼15000ev) 0.1 < y < 0.7 p∗,jet2
T > 4.0 GeV |t | < 1 GeV2

−1 < η
jet
lab < 2 MY < 1.6 GeV

H1 LRG (HERA I) [43] 51.5 pb−1 4 < Q2 < 80 GeV2 p∗,jet1
T > 5.5 GeV xIP < 0.03

(2723ev) 0.1 < y < 0.7 p∗,jet2
T > 4.0 GeV |t | < 1 GeV2

−3 < η∗jet < 0 MY < 1.6 GeV

H1 LRG (300 GeV) [61] 18 pb−1 4 < Q2 < 80 GeV2 p∗,jet1
T > 5 GeV xIP < 0.03

(322ev) 165 < W < 242 GeV p∗,jet2
T > 4.0 GeV |t | < 1 GeV2

(0.30 < y < 0.65) −1 < η
jet
lab < 2 MY < 1.6 GeV

−3 < η∗jet < 0

ZEUS LRG (HERA I) [62] 61 pb−1 5 < Q2 < 100 GeV2 p∗,jet1
T > 5 GeV xIP < 0.03

(5539ev) 100 < W < 250 GeV p∗,jet2
T > 4.0 GeV |t | < 1 GeV2

(0.10 < y < 0.62) −3.5 < η∗jet < 0 MY = mP

in Table 2 and are graphically displayed in Fig. 2. In both,
results for the corresponding measured cross sections as well
as for the NLO predictions are also included.

The NNLO predictions compared to the NLO predictions
are higher by about 20–40 %. Since the kinematic ranges
of different measurements are rather similar (Table 1), also
the NNLO corrections are of similar size for the individual
measurements. As found previously [3,43,59–61], the NLO
predictions provide a good description for all of the data. In
contrast, the NNLO predictions typically overshoot the data.
This tension between NNLO and data may be attributed to
inappropriate DPDFs, where we use the H1FitB DPDF set,
which has been determined using NLO predictions. In partic-
ular, the gluon component in this DPDF appears to be too high
for the usage with NNLO QCD coefficients, as this DPDF
has been determined from inclusive DDIS cross section data
using the respective NLO predictions only.

When compared to our common predictions, all measure-
ments appear to be consistent with each other, although they
use different techniques for the identification of the diffrac-
tive final states.

4.2 NNLO scale uncertainty and scale choice

The scale uncertainties, which are obtained by a simultaneous
variation of μR and μF by factors of 0.5 and 2, are found to be
reduced significantly for NNLO predictions in comparison
to NLO predictions (see also Table 2 and Fig. 2). The typical
size of the scale uncertainty of the total dijet cross sections
at NNLO is about 15 %, whereas it is about 35 % in NLO. In
case of the H1 LRG (HERA II) total cross section for instance,
the upward (downward) scale uncertainty is reduced from
39 % (23 %) at NLO to 13 % (16 %) at NNLO. This makes
these uncertainties competitive with the data uncertainty (∼
10%). For all total cross section measurements, however, the
differences between data and NNLO predictions are larger
than respective theoretical scale uncertainties.

A detailed investigation of the scale dependence of the
LO, NLO and NNLO predictions is displayed in Fig. 3 for the
H1 LRG (HERA II) phase space. While the NLO scale depen-
dence is of similar size as for LO predictions, the scale depen-
dence of the NNLO predictions is significantly reduced. The
μR dependence is significantly larger than the μF depen-
dence, which is also found for non-diffractive jet produc-
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Table 2 Comparison of the measured and predicted total dijet cross sec-
tions for the six measurements. Listed are the data cross section, σData,
the NLO and the NNLO predictions, σNLO and σNNLO, respectively. For
σData the uncertainties denote the statistical and the systematic uncer-
tainty. In case of H1 LRG (300 GeV), the total cross section is calculated
by us from the single-differential distributions. The uncertainty of the

NLO or NNLO predictions denote the scale uncertainty obtained from
a simultaneous variation of μR and μF by factors of 0.5 and 2. The last
two columns show the DPDF uncertainty obtained from H1FitB for the
NLO or NNLO predictions. In terms of a relative uncertainty, the DPDF
uncertainty is almost identical for NLO and NNLO predictions

Data set σData σNLO σNNLO �NLO
DPDF �NNLO

DPDF
[pb] [pb] [pb] [pb] [pb]

H1 FPS (HERA II) 254 ± 20 ± 27 296+92
−57 366+27

−41
+29
−46

+36
−57

H1 VFPS (HERA II) 30.5 ± 1.6 ± 2.8 29.3+11.2
−6.7 38.3+5.1

−5.8
+3.2
−4.2

+4.4
−5.6

H1 LRG (HERA II) 73 ± 2 ± 7 75.7+29.4
−17.7 98.6+13.2

−15.4
+8.5
−10.9

+11.7
−14.7

H1 LRG (HERA I) 51 ± 1+7
−5 63.4+25.2

−15.1 85.3+14.3
−14.3

+7.1
−9.2

+10.1
−12.7

H1 LRG (300 Gev) 28.7 ± 1.8 ± 3.0 32.5+13.7
−7.9 46.4+9.9

−8.5
+3.5
−4.6

+5.3
−6.7

ZEUS LRG (HERA I) 89.7 ± 1.2+6.0
−6.4 95.5+31.5

−20.0 114.9+7.1
−13.8

+10.5
−13.4

+13.5
−16.7
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Fig. 2 The comparison of the QCD predictions at NLO and NNLO for
the total dijet cross sections with the measurements. The inner data error
bars represent statistical uncertainties and other error bars are statistical
and systematic errors added in quadrature. The theoretical predictions
using H1FitB are displayed together with their scale uncertainties (NLO
and NNLO) and with scale and DPDF uncertainties added in quadrature
(only NNLO). The lower panel displays the ratio to the NLO predictions

tion [37]. The K-factor of the NNLO correction (defined as
σNNLO/σNLO) is found to be significantly smaller than the
K-factor of the NLO corrections (σNLO/σLO), thus indicat-
ing convergence of the perturbative series. In comparison to
data, the NNLO predictions exceed the H1 LRG (HERA II)

data for a wide range of scale factors.
The NNLO calculations are repeated for alternative

choices for μ2
R and μ2

F using Q2

4 + 〈pT〉2, 〈pT〉2 and Q2,
and results are displayed in Fig. 4 (left). Numerical val-
ues for the phase space of the H1 LRG (HERA II) analy-

sis are listed in Table 3. The cross sections obtained with
scale choices involving 〈pT〉2 in their definitions differ only
moderately among each other. In contrast, a scale choice of
μ2 = Q2 changes the predictions significantly compared
to the aforementioned scale choices. In this case, the dif-
ferences are of similar size to the scale uncertainties. This
can be traced back to kinematic regions where Q2 is small
compared to 〈pT〉2, and a choice of Q2 can be considered as
inappropriate.

4.3 DPDF choice and uncertainties

In Fig. 4 (right), we study the dependence of the total
cross sections on the choice of DPDFs, using H1FitA [52],
H1FitB [52], H1FitJets [43], MRW [54] and ZEUSSJ [53]
DPDFs. Numerical values for the H1 LRG (HERA II) phase
space are provided in Table 4. The NNLO predictions over-
shoot the data for any choice of DPDFs. However, it is
observed that DPDFs that also consider dijet data in their
determination [43,53] (using dijet NLO predictions) give
smaller predictions than DPDFs that depend on inclusive
DDIS data only [52]. The differences between the predictions
are mostly covered by the DPDF uncertainties of H1FitB.
The DPDF H1FitA [52] predicts a much larger cross sec-
tion and thus appears to overestimate the gluon compo-
nent significantly. It must be noted again that due to the
absence of suitable DPDFs to NNLO accuracy, only DPDFs
which have been determined to NLO accuracy could be
used for our predictions. A consistent treatment of higher
order contributions to the hard matrix elements for all pro-
cesses entering the fits of DPDFs will enable their consistent
determination to NNLO. It is considered to be of crucial
importance for future improvements for predictions of DDIS
processes.
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Fig. 3 The dependence of the
total dijet cross section of the
H1 LRG (HERA II) analysis on
the renormalisation (left) and
factorisation (right) scale. The
left (right) panel displays a
variation of μR (μF) by factors
between 0.1 and 10 and the
effect of the variation of μF
(μR) with factors of 0.5 and 2 is
displayed by the shaded areas.
The calculated cross sections are
shown at LO, NLO and NNLO
accuracy. The measured data
cross section with its total
uncertainty is displayed as a
black line and hatched area
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Fig. 4 The comparison of the NNLO predictions for the total dijet
cross sections with the measurements and NLO predictions. The dark
shaded bands display the scale (left) and DPDF uncertainties (right), and
the light shaded bands display these uncertainties added in quadrature.

The left panel displays NNLO predictions for different scale definitions.
The right panel displays NNLO predictions for different DPDF choices.
The lower panels display the ratio to NLO predictions

Table 3 NNLO predictions for H1 LRG (HERA II) using different choices for μ2
R and μ2

F. The uncertainties denote the scale uncertainty from
simultaneously varying μR and μF by factors of 0.5 or 2

Data set σData Q2 + 〈pT〉2 Q2 〈pT〉2 Q2

4 + 〈pT〉2
√
Q4 + 〈pT〉4

[pb] [pb] [pb] [pb] [pb] [pb]

H1 LRG (HERA II) 73 ± 7exp 98.6+13.2
−15.4 111.7−43.4

−11.5 102.1+8.4
−15.2 101.1+10.6

−15.4 101.0+11.2
−15.5

Table 4 NNLO predictions for H1 LRG (HERA II) using different DPDFs. Mind, all DPDFs have been determined only in NLO accuracy. The
uncertainties denote the DPDF uncertainty as provided by the respective DPDF sets

Data set σData σH1FitA σH1FitB σH1FitJets σMRW σZEUSSJ

[pb] [pb] [pb] [pb] [pb] [pb]

H1 LRG (HERA II) 73 ± 7exp 129.3+16.8
−20.4 98.6+11.7

−14.7 83.1 101.8 78.0
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Table 5 Overview of the
measured single- and
double-differential distributions

Histogram H1 FPS H1 VFPS H1 LRG H1 LRG H1 LRG ZEUS LRG
(HERA II) (HERA II) (HERA II) (HERA I) (300 GeV) (HERA I)

Q2 � � � � �
y [W ]∗ � � � � ∗ ∗
p∗,jet1

T [p∗,jet
T ]∗ � � � � � ∗

〈pT〉 �
p∗,jet2

T �
〈ηjet

lab〉 [η∗
jet]∗ � � ∗

�η
jet
lab [�η∗]∗ ∗ � ∗ ∗ ∗

MX � �
xIP � � � � � �
zobs
IP � � � � �

(Q2; p∗,jet1
T ) �

(Q2; zobs
IP ) � �

(p∗,jet1
T ; zobs

IP ) �
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Fig. 5 The differential cross sections as a function of y or, equivalently,
W . In the upper panel, some of the distributions are scaled by a con-
stant factor for better visibility. Displayed are the NNLO predictions in
comparison to data and NLO predictions. The lower panel displays the

ratio to NLO predictions. The shaded (hatched) area indicates the scale
uncertainty of the NNLO (NLO) predictions. The bright shaded area
around the NNLO predictions displays the scale and DPDF uncertainty
added in quadrature

4.4 Differential distributions

In total we computed 40 single-differential distributions and
four double-differential distributions for available measure-
ments, which are summarised in Table 5.

The NNLO predictions and their ratio to NLO predic-
tions as a function of the inelasticity y are displayed together
with their experimental data in Fig. 5. The inelasticity y is
related to the γ ∗ p centre-of-mass energy by W � √

ys. The
NNLO predictions provide an improved description of the
shape of the data compared to respective NLO predictions,

while being too high in their normalisation. The NNLO scale
uncertainty is significantly reduced in comparison to the NLO
scale uncertainty, which is most distinct at lower values of y.

The NNLO predictions as a function of Q2, |�η∗| (or
|�η|), p∗,jet1

T (or p∗,jet
T ), 〈pT〉, p∗,jet2

T , MX, 〈ηjet
lab〉 (or η∗

jet),

xIP4 and zobs
IP are presented in Figs. 6, 7, 8, 9, 10, 11 and

12, respectively, and compared to data. Double-differential
predictions as functions of zobs

IP and p∗,jet1
T for Q2 intervals,

4 The numerical values of the xIP distribution of the ZEUS LRG
(HERA I) measurement were provided to us by the ZEUS physics office
[64].
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Fig. 6 The differential cross sections as a function of Q2. In case where the panel is empty, the respective analysis did not provide a measurement
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Fig. 7 The differential cross sections as a function of |�η∗| or |�η|. Other details as in Fig. 5

and as a function of zobs
IP for p∗,jet1

T intervals are presented
in Figs. 13, 14, 15 and 16. Similar conclusions as for the
y distribution can be drawn from these comparisons. Some
variants of selected distributions are discussed in more detail
in the following.

While y is an inclusive observable, the rapidity separation
of the two leading jets, |�η∗|, is directly sensitive to effects
emerging from higher order radiative corrections. Also for
this observable, the NNLO predictions provide an improved
description of the shape for measured distributions, as can be
seen in Fig. 7. Similar observations are made for all remain-
ing distributions. This in particular for distributions in Q2,
〈η〉 and zobs

IP (see Figs. 6, 10, 12).

NNLO predictions as a function of Q2 obtained with dif-
ferent scale definitions are displayed in Fig. 17. For this
study we set μ := μF = μR . The studied scale definitions
μ2 = Q2/4 + 〈pT〉2 and μ2 = 〈pT〉2 provide similar results
as the nominal scale definition of μ2 = Q2 +〈pT〉2, whereas
the scale choice μ2 = Q2 results in higher cross sections and
a steeper Q2 spectrum. The studied scale choices are covered
by the scale uncertainties.

NNLO predictions for zobs
IP distributions obtained using

different DPDFs are displayed in Fig. 18. For this observable,
NNLO predictions using the H1FitB and MRW DPDFs give
quite similar results and lie above most of the data. Results
obtained with the H1FitA DPDF significantly overestimate
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in H1 VFPS (HERA II) and ZEUS LRG (HERA I) (right). Other details as in Fig. 5

the measurements in particular for higher values of zobs
IP . Pre-

dictions obtained with ZEUSSJ and H1FitJets give lower
cross sections, but the application of the H1FitJets DPDF
also results in a considerably different shape of the distribu-
tion. In general, the latter two DPDFs, including dijet data
in their determination, give an improved description of the
data compared to the first two DPDFs. It should be noted
however, that differences arising from applications of differ-
ent DPDFs are not covered by the uncertainties taken from
the H1FitB DPDF. This feature is most prominent at higher
values of zobs

IP .
In summary, NNLO predictions using the stated DPDFs

provide an overall satisfactorily description of the data. How-

ever, none of the studied DPDFs is able to describe the shapes
of the distributions of all of the p∗,jet1

T (or p∗,jet
T ) measure-

ments equally well, as can be seen from their comparisons
to predictions displayed in Fig. 19.

The studied DPDFs mainly differ in their gluon compo-
nent [65]. This explains the observed differences between
results obtained with different DPDFs as the gluon is the
most important parton inside the DPDFs. It is therefore
crucial to determine the gluonic component of the DPDFs
more accurately, and once this is achieved, theoretical predic-
tions are expected to provide an improved description of the
data.
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Fig. 11 The differential cross sections as a function of xIP . Other details as in Fig. 5

Despite the fact that the H1 and ZEUS experimental
devices have a similar resolution and comparable accep-
tances, it is observed that predictions for the ZEUS LRG
(HERA I) phase space often yield smaller scale uncertainties
as those for the comparable H1 LRG (HERA II) phase space.
This is mainly due to the restriction on η

jet
lab imposed by H1,

whereas the ZEUS phase space is restricted only in η∗
jet,

even though an equivalent requirement on η
jet
lab is imposed

for ZEUS LRG (HERA I) measurement on detector level [62].
In Fig. 20 a study is presented, where an additional η

jet
lab cut

of −1 < η
jet
lab < 2.5 on the NNLO and LO predictions for

the ZEUS LRG (HERA I) phase space is shown.5 In particular
at lower values of |η∗

jet| and at higher values of W , this cut
would significantly reduce the cross section.

Once the additional cut on η
jet
lab is imposed, the relative

NNLO scale uncertainty increases significantly, i.e. up to a
factor of two in some parts of the phase space. This becomes
in particular distinct at high values of W , as displayed in
Fig. 20 (right). In conclusion, it is observed that the phase
space definition of ZEUS LRG (HERA I) results in more sta-

5 The ZEUS LRG (HERA I) analysis required two jets to be within −2 <

η
jet
lab < 2 [62]. For better comparability and also due to technical reasons,

we study an additional cut of −1 < η
jet
lab < 2.5 in analogy to the H1

FPS (HERA II) and H1 VFPS (HERA II) measurements.
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IP . Other details as in Fig. 5

5

10

15

20]2
 [p

b/
G

eV
2

Q
ob

s
IP

/d
z

σ2 d

2 < 10 GeV24 < Q

obs
IPz

0.5

1

1.5

2

N
LO

σ/σ

0 0.2 0.4 0.6 0.8

2 < 20 GeV210 < Q
x 3

obs
IPz

0.2 0.4 0.6 0.8

2 < 40 GeV220 < Q

x 6

)ΙΙH1 LRG (HERA 
NLO (H1 Fit B)
scale unc.

obs
IPz

0.2 0.4 0.6 0.8

2 < 100 GeV240 < Q

x 24

NNLO (H1 Fit B)
scale unc.
scale+DPDF unc.

obs
IPz

0.2 0.4 0.6 0.8 1

NNLOJET

Fig. 13 The double-differential cross sections as functions of zobs
IP and Q2 as measured in H1 LRG (HERA II). Other details as in Fig. 5

ble pQCD predictions, i.e. lower scale uncertainties, while
important regions of the phase space were not accessible by
the experimental device and the extrapolation factors were
obtained by MC simulations. Similar considerations also
apply to the H1 LRG (HERA I) measurement.

4.5 The gluon induced fraction

In order to further elucidate the dependence of the NNLO pre-
dictions on the individual parton flavors inside the DPDFs,
the decomposition of the total H1 LRG (HERA II) cross

section into gluon-induced and quark-induced channels is
shown for LO , NLO and NNLO predictions in Fig. 21.
It is apparent that the rise of the cross section at higher
orders is predominantly driven by the gluon-induced chan-
nels.

The fractions of gluon- and quark-induced contributions
to the cross sections as a function of zobs

IP are displayed in
Fig. 22. While the fraction of the gluon-induced contribution
remains unchanged for different orders in αs at low values of
zobs
IP , there is a strong increase of the gluon-induced fraction

at higher values of zobs
IP for higher orders in αs . Hence it
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Fig. 14 The double-differential cross sections as functions of zobs
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Fig. 15 The double-differential cross sections as functions of p∗,jet1
T and Q2 as measured in H1 LRG (HERA II). Other details as in Fig. 5

can be deduced that future NNLO DPDFs are required to
have a significantly reduced gluon component as compared
to currently available NLO DPDFs.

4.6 The sensitivity to DPDFs

A detailed study on the dependence of the cross section on
the DPDF is presented for the 〈pT〉 distribution of the H1
LRG (HERA II) measurement. The contributions to the cross
section in each bin as a function of the DPDF parameters xIP
and zIP is displayed in Fig. 23. At highest values of 〈pT〉,
only partons with comparably high values of xIP and zIP are

contributing to the cross section, whereas the cross section
at medium values of 〈pT〉 is dominated by low xIP and zIP
partons. All three bins have recognisable contributions from
high values of zobs

IP which is a distinct feature for predictions
obtained with the H1FitB DPDF.

4.7 Quantitative comparison

The agreement of NLO and NNLO predictions with data is
quantified in terms of a χ2 test. The χ2 function is defined

123



Eur. Phys. J. C (2018) 78 :538 Page 15 of 20 538

50

100

150

 [p
b/

G
eV

]
*je

t1

T
dp

ob
s

IP
/d

z
σ2 d

 < 6.5 GeV*jet1

T
5 < p

obs
IPz

1

2

N
LO

σ/ σ

0 0.2 0.4 0.6 0.8

 < 8 GeV*jet1

T
6.5 < p

x 2

ZEUS LRG
NLO (H1 Fit B)
scale unc.

obs
IPz

0.2 0.4 0.6 0.8

 < 16 GeV*jet1

T
8 < p

x 24

NNLO (H1 Fit B)
scale unc.
scale+DPDF unc.

obs
IPz

0.2 0.4 0.6 0.8 1

NNLOJET

Fig. 16 The double-differential cross sections as functions of zobs
IP and p∗,jet1

T as measured in ZEUS LRG (HERA I). Other details as in Fig. 5

1−10

1

10

210]2
 [p

b/
G

eV
2

/d
Q

σd

)ΙΙH1 FPS (HERA 
x 0.3

]2 [GeV2Q

0.5

1

1.5

2

N
LO

σ /σ

5 10 20

)ΙΙH1 VFPS (HERA 
x 2

]2 [GeV2Q
5 6 10 20 30

)ΙΙH1 LRG (HERA 
Data

)2
T

+p2=Q2μNLO (

]2 [GeV2Q
5 10 20 30

)ΙH1 LRG (HERA 
)2

T
+p2=Q2μNNLO (

scale unc.
scale+DPDF unc.

)2
T

+p4
2Q=2μNNLO (
)2

T
=p2μNNLO (

)2=Q2μNNLO (

H1 LRG (300 GeV)

]2 [GeV2Q
5 6 10 20 30

)ΙZEUS LRG (HERA 

]2 [GeV2Q
6 10 20 30 210

NNLOJET

Fig. 17 The differential cross sections as a function of Q2. Displayed are NNLO predictions for different scale definitions. Further details are
given in Fig. 5

as [66]

χ2 =
∑

i, j

log
σData
i

σ
(N)NLO
i

(V−1)i j log
σData
j

σ
(N)NLO
j

, (10)

where the predictions σ
(N)NLO
i, j and data σ data

i, j for all points
(i or j) of a differential distribution are considered and V
denotes the covariance matrix calculated from the relative
experimental uncertainties. We consider systematic uncer-
tainties as fully correlated, if not stated differently in the
original publication. In order to quantify only the agreement

in shape, we consider the normalisation as a free param-
eter and minimise χ2 with respect to it. We calculate χ2

for all analysed single-differential distributions. Results for
χ2/ndof are displayed in Fig. 24. For most of the distributions
the χ2/ndof values are smaller when using NNLO rather than
NLO predictions.

The calculations are repeated for different DPDFs and
different scale functional forms and also in these cases, it is
observed that NNLO predictions mostly give lower χ2/ndof

values than NLO predictions (not shown). In an approxima-
tion, the normalisation of the predictions is proportional to
the gluon content of the DPDFs, whereas the shapes of the
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Fig. 19 The differential cross sections as a function of p∗,jet1
T or p∗,jet

T obtained for different DPDFs. Other details as in Fig. 5

differential distributions are related more closely to the hard
matrix elements. Therefore, these results indicate that NNLO
predictions provide a better description of the data than NLO
predictions, and we believe that future DPDFs determined to
NNLO QCD will be able to provide an improved description
of the dijet data, this also with respect to the normalisation.

From the double-differential distributions, we select the
dσ/dQ2dp∗,jet1

T measurement of the H1 LRG (HERA II) anal-
ysis, and data are compared to the NNLO and NLO pre-
dictions in Fig. 15. For the χ2 evaluation, we minimise
χ2 as a function of αs(MZ), which is an equivalent proce-
dure to the αs(MZ) determination presented previously by

H1 [3]. The calculation using NLO predictions results in
χ2/ndof = 16/14. The calculation using NNLO predictions
results in a value of χ2/ndof = 13/14, thus indicating also
in this case an improved description of the data. We esti-
mate a scale uncertainty on the best fit value of αs(MZ) with
additional calculations using scale factors of 0.5 and 2 6. The
scale uncertainty of αs(MZ) is found to be 11 % for the NLO
predictions, and for the NNLO predictions it is reduced to

6 The H1 collaboration estimated an uncertainty for μR and μF sepa-
rately and considered the resulting uncertainties on the cross sections
as half correlated and half uncorrelated.
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Fig. 21 The decomposition of the H1 LRG (HERA II) total dijet cross
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shown at LO, NLO and NNLO

4 %. This reduction quantifies the significant improvement
of the NNLO predictions as compared to NLO predictions.
The NNLO scale uncertainty is of similar size as the experi-
mental one or the DPDF uncertainties on αs(MZ), where H1
reported 4 % for both [3]. This study demonstrates that the
NNLO calculations are suitable for further phenomenologi-

cal analyses, such as αs(MZ) or DPDF fits, and the NNLO
scale uncertainties are of equal size as experimental uncer-
tainties.

5 Discussion and summary

We present the first NNLO QCD predictions for jet produc-
tion in diffractive scattering. Predictions for six measure-
ments of dijet production in diffractive deep-inelastic scat-
tering from the H1 and ZEUS collaborations were calculated
and compared to data. We observe that the NNLO cross sec-
tions are significantly higher than the data and are higher than
NLO calculations by about 20–40 % in the studied kinemat-
ical range.

Since no DPDFs in NNLO accuracy are available so
far, only NLO DPDFs could be employed for our calcula-
tions. The discrepancy of the NNLO predictions and data
is believed to be due to an overestimated gluon component
of these DPDFs. Alternative DPDFs, which also considered
dijet data in their determination, already result in typically
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lower NNLO predictions, but these still overshoot the data.
Ignoring the issue of normalisation, the shapes of differential
distributions are better described by NNLO than NLO pre-
dictions. This is quantified by evaluating χ2 values for the
examined experimental distributions. The large amount of
studied observables, which have so far not even been studied
in non-diffractive DIS, prove that NNLO predictions provide
an improved description in shape of the data throughout.

We believe that the normalisation difference between data
and NNLO predictions can be resolved by employing DPDFs
determined to NNLO accuracy and by including dijet data for
their determinations. This in particular as the gluon compo-
nent is most important and is only weakly constrained by the
inclusive data. The NNLO dijet calculations presented here
are already in a numerical format, which is suitable for such
future analyses.

The comprehensive selection of all available dijet data rep-
resents the first comparison, where all these measurements
are compared to predictions obtained in an identical frame-
work. Data taken with different experimental devices, at dif-
ferent center-of-mass energies, and using either proton spec-
trometers or the LRG method for the identification of the
diffractive final state are investigated. All measurements are
found to be mutually consistent when compared to respective
predictions.

The presented NNLO predictions provide the most precise
predictions for dijet production in diffractive DIS to date, and
the dominant theoretical uncertainty is reduced substantially
with respect to predictions in NLO. The NNLO coefficients
exhibit a precision in terms of scale uncertainties, which is
of a comparable size as that of presently available DPDFs,
and of comparable size as that of the HERA dijet data. It is
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observed, that for the given kinematical range of the HERA
data, higher-order corrections are of crucial importance.
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