
Energy spectra and passive tracer cascades in turbulent flows
M. S. Jolly, and D. Wirosoetisno

Citation: Journal of Mathematical Physics 59, 073104 (2018); doi: 10.1063/1.5046773
View online: https://doi.org/10.1063/1.5046773
View Table of Contents: http://aip.scitation.org/toc/jmp/59/7
Published by the American Institute of Physics

Articles you may be interested in
The dimensionless dissipation rate and the Kolmogorov (1941) hypothesis of local stationarity in
freely decaying isotropic turbulence
Journal of Mathematical Physics 59, 073103 (2018); 10.1063/1.5019925

An infinite dimensional KAM theorem with application to two dimensional completely resonant
beam equation
Journal of Mathematical Physics 59, 072702 (2018); 10.1063/1.5045780

Stability of non-constant equilibrium solutions for two-fluid non-isentropic Euler-Maxwell systems
arising in plasmas
Journal of Mathematical Physics 59, 073105 (2018); 10.1063/1.5047656

Coarse-grained entanglement classification through orthogonal arrays
Journal of Mathematical Physics 59, 072203 (2018); 10.1063/1.5006890

On exact discretization of cubic-quintic Duffing oscillator
Journal of Mathematical Physics 59, 072703 (2018); 10.1063/1.5034381

Application of renormalization group analysis to two-phase turbulent flows with solid dust particles
Journal of Mathematical Physics 59, 073101 (2018); 10.1063/1.4990493

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/99991698/x01/AIP/HA_AuthorServices_JMP_PDFCover/HA_AuthorServices_JMP_PDFCover.jpg/686254725256755a63754d4141593558?x
http://aip.scitation.org/author/Jolly%2C+M+S
http://aip.scitation.org/author/Wirosoetisno%2C+D
/loi/jmp
https://doi.org/10.1063/1.5046773
http://aip.scitation.org/toc/jmp/59/7
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.5019925
http://aip.scitation.org/doi/abs/10.1063/1.5019925
http://aip.scitation.org/doi/abs/10.1063/1.5045780
http://aip.scitation.org/doi/abs/10.1063/1.5045780
http://aip.scitation.org/doi/abs/10.1063/1.5047656
http://aip.scitation.org/doi/abs/10.1063/1.5047656
http://aip.scitation.org/doi/abs/10.1063/1.5006890
http://aip.scitation.org/doi/abs/10.1063/1.5034381
http://aip.scitation.org/doi/abs/10.1063/1.4990493


JOURNAL OF MATHEMATICAL PHYSICS 59, 073104 (2018)

Energy spectra and passive tracer cascades
in turbulent flows

M. S. Jolly1,a) and D. Wirosoetisno2,b)
1Department of Mathematics, Indiana University, Bloomington, Indiana 47405, USA
2Department of Mathematics Sciences, Durham University, Durham DH1 3LE, United Kingdom

(Received 1 March 2017; accepted 29 June 2018; published online 19 July 2018)

We study the influence of the energy spectrum on the extent of the cascade range
of a passive tracer in turbulent flows. The interesting cases are when there are two
different spectra over the potential range of the tracer cascade (in 2D when the tracer
source is in the inverse energy cascade range and in 3D when the Schmidt number
Sc is large). The extent of the tracer cascade range is then limited by the width of
the range for the shallower of the two energy spectra. Nevertheless, we show that
in dimension d = 2, 3, the tracer cascade range extends (up to a logarithm) to κ

p
dD,

where κd D is the wavenumber beyond which diffusion should dominate and p is
arbitrarily close to 1, provided Sc is larger than a certain power (depending on p) of
the Grashof number. We also derive estimates which suggest that in 2D, for Sc ∼ 1, a
wide tracer cascade can coexist with a significant inverse energy cascade at Grashof
numbers large enough to produce a turbulent flow. Published by AIP Publishing.
https://doi.org/10.1063/1.5046773

I. INTRODUCTION

Passive tracers play an important role in the study of fluid motion. On the one hand, the experi-
mental and observational studies of fluid flows rely heavily on passive tracers to deduce the advecting
velocity field. On the other hand, knowledge of the underlying fluid flows is essential to predict the
future dispersion of tracers (particularly, but not exclusively, harmful ones).

It is natural to believe that if the advecting fluid flow is turbulent (however this is defined),
the evolution of the tracer will be turbulent as well. Following the pioneering work by Kolmogorov,
Obukhov14 and Corrsin4 argued that if the energy spectrum of the fluid is E(κ)=K κ−n, a passive tracer
whose dissipation rate is χ should have the spectrum T(κ)∼ χK−1/2κ(n−5)/2 between the injection
and dissipation scales (see also Ref. 1). Thus, in the inertial range in 3D, both the energy and tracer
spectra scale as κ�5/3. Following Kraichnan,13 over the direct enstrophy cascade range in 2D, the
energy spectrum should scale as κ�3, giving a κ�1 tracer spectrum. Although these scaling arguments
were derived with little reference to the governing equations, they have been supported to a surprising
extent by experimental and numerical studies (cf. Refs. 7 and 17), primarily in 3D, slightly less so
for 2D and still less so for tracers.

In 3D and 2D, respectively, dissipative effects are expected to dominate beyond the Kolmogorov
and Kraichnan wavenumbers κε and κη . The corresponding scales for our tracer depend in addition on
the Schmidt number Sc, i.e., the ratio of the viscosity to the tracer dissipativity. Another lengthscale
of great importance is the Taylor microscale κ−1

τ . Initially (and to this day among experimentalists)
defined using the velocity correlation, mathematicians prefer to use an alternate definition for κτ
in terms of the energy and its dissipation rate (7); the two definitions can be shown to be nearly
(formally) equivalent under some assumptions (Ref. 7, 6.44b). Assuming that κτ is much greater
than the forcing scale, it has been proved rigorously that a direct energy cascade exists for solutions
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of 3D Navier-Stokes equations (NSE).9 Similarly, in 2D, one defines in terms of the enstrophy and
its dissipation rate a wavenumber κσ , which if sufficiently larger than the forcing scale rigorously
implies the existence of the direct enstrophy cascade.11 In Sec. IV B, we derive an analogous result
for tracers in terms of a corresponding wavenumber κθ .

While it is plausible that κτ , κσ , and κθ are large for turbulent solutions of the NSE and the
advected tracers, these remain unproved (directly from the NS and the tracer equations) to this day. If
one were to assume the expected spectra, namely, ε2/3κ�5/3 and η2/3κ�3, however, it has been shown
that κτ ∼ κ

2/3
ε κ1/3

0 in 3D6 and κσ ∼ κη up to a logarithm in 2D,5 where κ0 = 2π/L, in a periodic
domain of length L in each direction. Following this approach, we prove the tracer analogs in Secs. V
and VI. There are a number of qualitatively distinct cases here, depending on the viscosity ν and
tracer dissipativity µ, as well as on the injection scales of energy κf and of the tracer κg. When
ν � µ, it is possible for κθ to asymptotically approach (up to constants and logarithms) its largest
possible value, in that κθ ∼ κ1−r

dD κr
0 for any r < 1, both for d = 2 (Sec. V) and d = 3 (Sec. VI). When

ν ∼ µ, the situation is more complicated as discussed in detail below. In the case µ� ν, the velocity
stirring scale is smaller than the dissipativity scale, giving rise to non-turbulent dynamics; we believe
a different approach would be needed here.

The rest of this paper is structured as follows. After some mathematical setups in Sec. II, we
recall the heuristic argument for the tracer spectra in Sec. III. Earlier NSE estimates for the enstrophy
and energy transfer rates in terms of κσ and κτ in 2D and 3D are gathered in Sec. IV, along with
the implications that the expected energy spectra have on these wavenumbers, vis-à-vis κη , κε ,
respectively. An analogous estimate for the tracer transfer rate in terms of κθ is also derived in
Sec. IV. We treat 2D tracer flow in Sec. V and 3D tracer flow in Sec. VI.

II. PRELIMINARIES

We consider the evolution of a passive scalar θ under a prescribed velocity field u(x, t) and a
time-independent source g = g(x),

∂tθ − µ∆θ + u · ∇θ = g,∫
Ω

θ dx = 0,
∫
Ω

g dx = 0,
(1)

with periodic boundary conditions in Ω = [0, L]d for d = 2, 3. We focus on the case where u satisfies
the incompressible Navier-Stokes equations

∂tu − ν∆u + (u · ∇)u + ∇p=F,

∇ · u= 0,∫
Ω

u dx = 0,
∫
Ω

F dx = 0,

u(x, t0)= u0(x).

(2)

We write (2) as a differential equation in a certain Hilbert space H (see Refs. 2 and 16),

d
dt

u(t) + νAu(t) + B(u(t), u(t))= f ,

u(t) ∈H, t ≥ t0, and u(t0)= u0.

(3)

The phase space H is the closure in L2(Ω)d of all Rd-valued trigonometric polynomials u such that

∇ · u= 0 and
∫
Ω

u(x) dx = 0.

The bilinear operator B is defined as

B(u, v)=P((u · ∇)v),
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where P is the Helmholtz–Leray orthogonal projector of L2(Ω)d onto H and f =PF. The scalar
product in H is taken to be

(u, v)=
∫
Ω

u(x) · v(x) dx,

with the associated norm

|u| = (u, u)1/2 =
(∫
Ω

u(x) · u(x) dx
)1/2

.

The operator A = �∆ is self-adjoint with compact inverse and a complete set of eigenfunctions
associated with eigenvalues of the form

(2π/L)2k · k, where k ∈Zd \ {0}.

We denote these eigenvalues by

0 < λ0 = (2π/L)2 ≤ λ1 ≤ λ2 ≤ · · ·

arranged in non-decreasing order (counting multiplicities) and write w0, w1, w2, . . ., for the
corresponding normalized eigenvectors (i.e., |wj | = 1 and AwJ = λjwj for j = 0, 1, 2, . . .).

For α ∈R, the positive roots of A are defined by linearity from

Aαwj = λ
α
j wj, for j = 0, 1, 2, . . .

on the domain

D(Aα)=
{
u ∈H :

∞∑
j=0

λ2α
j (u, wj)

2 <∞
}
.

We take the natural norm on V = D(A1/2) to be

‖u‖ = |A1/2u| = *.
,

∫
Ω

d∑
j=1

∂

∂xj
u(x) ·

∂

∂xj
u(x) dx+/

-

1/2

=
*.
,

∞∑
j=0

λj(u, wj)
2+/
-

2

.

Since the boundary conditions are periodic, we may express an element in H as a Fourier series

u(x)=
∑
k∈Zd

ûkeiκ0k ·x, (4)

where

κ0 = λ
1/2
0 =

2π
L

, û0 = 0, û∗k = û−k ,

and due to incompressibility, k · ûk = 0. We associate to each term in (4) a wavenumber κ0|k|. Parseval’s
identity reads as

|u|2 =Ld
∑
k∈Zd

ûk · û−k =Ld
∑
k∈Zd

|ûk |
2.

Two important dimensionless parameters are the Grashof and Schmidt numbers,

GB
|f |

ν2κ3−d/2
0

and ScB
ν

µ
.

The former indicates the complexity of the (velocity) flow, and the latter indicates the importance of
(momentum) viscosity relative to tracer dissipativity.

Since the infinite time limit is not known to exist, for each solution u(t) of the 2D NSE (Leray–
Hopf weak solution in the 3D case), we work with the average

〈Φ〉= Lim
T→∞

1
T

∫ T

0
Φ(u(t)) dt for any Φ weakly continuous in H,

where Lim is a Hahn–Banach extension of the classical time limit. The average 〈·〉 is the mathematical
equivalent of the ensemble average in the statistical theory of turbulence; see Refs. 11 and 10 for
more details. Using this, we define the average energy, enstrophy, and tracer variance as
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e= 1

Ld
〈|u|2〉, E= 1

Ld
〈‖u‖2〉, and

1

Ld
〈|θ |2〉, (5)

as well as their dissipation (diffusion) rates

ε B
ν

Ld
〈‖u‖2〉, ηB

ν

Ld
〈|Au|2〉, and χB

µ

Ld
〈|∇θ |2〉. (6)

By classical dimensional arguments, the dissipation range is expected to start at

κε =
(
ε

ν3

)1/4
and κη =

(
η

ν3

)1/6

in 3D and 2D, respectively; these are sometimes known as the Kolmogorov and Kraichnan wavenum-
bers. Their analogs for the tracer cascade are more complicated and depend on the advecting velocity;
see κ2D and κ3D in Secs. V and VI below. Another set of important wavenumbers are

κ2
τ B
〈‖u‖2〉

〈|u|2〉
, κ2

σB
〈|∆u|2〉

〈‖u‖2〉
, and κ2

θ B
〈‖θ‖2〉

〈|θ |2〉
. (7)

In 3D turbulence, κτ is closely related to the Taylor wavenumber, the scale at which the velocity
correlation is lost; it has been shown that direct energy cascade takes place within the range (κ̄, κτ).
Its analogs in 2D and tracer turbulence are κσ and κθ , with corresponding results on enstrophy11 and
tracer [(25) below] cascades.

We make use of the following notation: a . b means a ≤ cb for a nondimensional universal
constant c, independent of G and Sc (as well as κ0, ν, and µ), under the condition that G ≥ G∗, where
G∗ may be different for each inequality and similarly for &. By a ∼ b, we mean that both a . b and
b . a hold. We write a� b if a/b < δ for some small δ ∈ (0, 1), and a/b is nondimensional provided
the ranges of a, b are a priori specified (e.g., for large values of a, b). The value of δ shall remain
unspecified and may vary from one statement involving� to the next.

III. INFLUENCE OF ENERGY SPECTRUM

A. Classical theory

We recall briefly from Ref. 17, Ch. 8 some elements of the Kolmogorov–Obukhov theory for 3D
turbulence in a form suitable for its extension to passive tracers. Suppose that a parcel (“eddy”) of
size 1/κ has velocity Uκ ∼ [κE(κ)]1/2. Assuming that such an eddy breaks up in the time τκ , it takes
to travel its own size, i.e.,

τκUκ = 1/κ so that τκ ∼ [κ3E(κ)]−1/2, (8)

and the resulting downscale energy transfer rate is

U2
κ

τκ
∼
κE(κ)
τκ

.

Assuming that this transfer rate is a constant ε for κ in the so-called inertial range and solving for E,
we arrive at the Kolmogorov spectrum

E3D(κ)∼ ε2/3κ−5/3.

The situation in 2D is more complicated in that, for scales smaller than the forcing, we expect the
enstrophy to undergo a direct cascade to smaller scales, while energy is mainly transferred to larger
scales in an inverse cascade for scales larger than the forcing. Yet a similar dimensional argument in
the enstrophy inertial range leads to the Kraichnan spectrum

E2D(κ)∼ η2/3κ−3.

An analogous cascade mechanism for the tracer suggests a connection between its spectrum
T(κ) and the energy spectrum. Taking the amount of tracer (variance) at wavenumber κ to be κT(κ),
assuming that it is transferred to wavenumber 2κ by the advecting velocity over a time τκ given by
(8), and setting the transfer rate to a constant χ, we find
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χ ∼
κT(κ)
τκ

. (9)

If we take E(κ)∼K κ−n in (8) and solve for T in (9), we have

T(κ)∼ χK−1/2κ(n−5)/2.

B. Mathematical formulation

These spectral relations can be reformulated in terms of partial sums

eκ,2κ B
1

Ld

∑
κ≤κ0 |k |<2κ

〈|ûk |
2〉 and ϑκ,2κ B

1

Ld

∑
κ≤κ0 |k |<2κ

〈|θ̂k |
2〉. (10)

As L increases (so κ0 decreases), each quantity in (10) can be viewed as a Riemann sum approximation
of the integral of the corresponding spectrum (this assumes smoothness of the summands, but below
we will use this approximation only for explicit functions of κ). For instance, for the energy in 3D,
we have ∫ 2κ

κ

E3D(κ̃) d κ̃ ∼
∫ 2κ

κ

ε2/3 κ̃−5/3 d κ̃ =
3
2
ε2/3 (1 − 2−2/3)κ−2/3 ∼ ε2/3κ−2/3.

In the inertial range, this leads to the energy power law

eκ,2κ ∼ ε
2/3κ−2/3 in 3D

and similarly
eκ,2κ ∼ η

2/3κ−2 in 2D.

We gather the expected spectra according to classical theory in Table I.
We conclude this section with a brief calculation regarding the summation of the tracer variance

over the relevant wavenumber range assuming that a certain power law holds. It will be used repeatedly.

Lemma 1. Suppose ϑκ ,2κ ∼ ακ
�p for κ1 ≤ κ ≤ κ2, with 4κ1 ≤ κ2 and p ≥ 0. Then

ϑκ1,κ2 ∼


α
(
κ
−p
1 − κ

−p
2

)
, if p > 0, (11a)

α ln(κ2/κ1), if p = 0. (11b)

Proof. As in Refs. 5 and 6, let J = blog2(κ2/κ1)c � 1. If p > 0, then

ϑκ1,κ2 ∼

J∑
κ=2 jκ1, j=0

ϑκ,2κ ∼
α

κ
p
1

J∑
j=0

(2p)−j =
α

κ
p
1

1
1 − 2−p

[
1 − (2−J )−p

]
,

∼
α

κ
p
1

[
1 −

(
κ1

κ2

)p]
.

If p = 0,

ϑκ1,κ2 ∼ α

J∑
j=0

1= α log2(κ2/κ1)∼ α ln(κ2/κ1).

◽

TABLE I. Spectra according to classical theory.

dir. d E(κ) eκ ,2κ T (κ) ϑκ ,2κ

fwd 3 ε2/3κ�5/3 ε2/3κ�2/3 χε�1/3κ�5/3 χε�1/3κ�2/3

fwd 2 η2/3κ�3 η2/3κ�2 χη�1/3κ�1 χη�1/3

bkwd 2 ε2/3κ�5/3 ε2/3κ�2/3 χε�1/3κ�5/3 χε�1/3κ�2/3
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IV. INDICATORS FOR CASCADES

Returning to the Navier–Stokes (3) and tracer equations (1), we henceforth assume that the
forcing F and source g are spectrally-bounded, i.e., there exist κ0 < κg <∞ and κ0 ≤ κ ≤ κ̄ <∞ such
that

g= gκ0,κg and f = fκ,κ̄ .

Given a fixed κ, we define

u<B uκ0,κ , u>B uκ,∞ and θ<B θκ0,κ , θ>B θκ,∞.

The notation here, unlike in (10), does not involve the average and factor of Ld , e.g.,

uκ1,κ2 =
∑

κ≤κ0 |k |<2κ

ûκeiκ0k ·x.

A. Navier–Stokes equations

We start by giving sufficient conditions for enstrophy and energy cascades. In terms of the
solution of the 2D NSE, the net rate of enstrophy transfer (flux) is given by Eκ =E

→
κ − E

←
κ , where

E→κ (u)=−
1

L2
(B(u<, u<), Au>) and E←κ (u)=−

1

L2
(B(u>, u>), Au<)

are the rates of enstrophy transfer (low to high) and (high to low), respectively. It was shown in
Ref. 11 that

1 −
( κ
κσ

)2
≤
〈Eκ〉

η
≤ 1 if κ̄ ≤ κ ≤ κσ . (12)

It follows that if
κσ� κ̄, (13)

then there exists an enstrophy cascade

〈Eκ〉 ≈ η for κ̄ ≤ κ� κσ .

Similarly, the transfer of energy eκ = e
→
κ − e

←
κ is shown in Refs. 11 and 9 to satisfy

1 −
( κ
κτ

)2
≤
〈eκ〉

ε
≤ 1 for κ̄ ≤ κ ≤ κτ , (14)

where

e→κ (u)=−
1

Ld
(B(u<, u<), u>) and e←κ (u)=−

1

Ld
(B(u>, u>), u<).

It is shown in Ref. 9 that (14) holds as well in 3D for sufficiently regular solutions and for weak
solutions with eκ replaced by

e∗κ = eκ − lim
κ→∞
〈eκ〉 (15)

to account for a possible loss of energy. Thus if

κτ� κ̄, (16)

there is a direct energy cascade
〈eκ〉 ≈ ε for κ̄ ≤ κ� κτ .

It is easy to show that κτ ≤ κσ , which is consistent with the expectation that for a 2D flow, a direct
enstrophy cascade be more pronounced than a direct energy cascade.

We note a couple of useful bounds for κη and κε . For the 2D NSE (regardless of whether the
flow is turbulent), it was shown in Ref. 8 that

G1/6 . κη/κ0 ≤G1/3. (17)

While for the 3D NSE, Ref. 6 showed that(
κ0/κ̄

)5/8G1/4 .
κε
κ0

. (18)
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If, however, one assumes the power spectrum (which a priori says nothing about energy transfer)
one does obtain lower bounds on κσ and κη , or equivalently by (13) and (16), one obtains sufficient
conditions for the enstrophy and energy cascades. In 2D, we have the following estimate from Ref. 5.

Theorem 1. If for the 2D NSE we have

eκ,2κ ∼ η
2/3κ−2 for κi ≤ κ ≤ κη , (19)

with 4κi ≤ κη and

〈‖uκ0,κi
‖2〉 . 〈‖uκi,∞‖

2〉,

then
κ2
σ ∼ κ

2
η/ ln(κη/κi). (20)

The wavenumber κi marks the start of the inertial range. Based on (12) and (14), we expect that
κi ∼ κ̄.

Thanks to (17), the dissipation wavenumber κη can be controlled by the Grashof number. Thus,
under (19), κσ can indeed be made large by increasing G. It is shown in Ref. 12 that if conversely
(20) holds, then one side of the power law holds (up to a log)

eκ,2κ . η
2/3κ−2 ln(κη/κi) for κi ≤ κ ≤ κη .

Moreover, under (20), it is shown in Ref. 5 that (17) is sharpened to(
κ0

κ̄

)1/4 G1/4

(ln G)1/4
.
κη

κ0
.

( κ̄
κ0

)1/4
G1/4(ln G)1/8. (21)

The following 3D analog of Theorem 1 is proved in Ref. 6.

Theorem 2. If for a Leray–Hopf solution to the 3D NSE we have

eκ,2κ ∼ ε
2/3κ−2/3 for κ̄ ≤ κ ≤ κε ,

with 4κ̄ ≤ κε and
〈|u|2〉 ∼ 〈|uκ̄,κε |

2〉,

then
κ3
τ ∼ κ

2
ε κ̄. (22)

Assuming (22), the bound (18) can be sharpened to(
κ0

κ̄

)11/16
G3/8 .

κε
κ0
.

(
κ0

κ̄

)1/8
G3/8 for all G &

( κ̄
κ0

)3/2
. (23)

The powers in (20) and (22) are suggestive of the extent to which the corresponding fluxes are
constant over a given range, or alternatively, the width of the inertial range in each case.

B. Passive tracer

A condition for a cascade of the tracer is derived just as those for the NSE. Let κ and κg be
fixed with κ > κg. Multiply (1) by θ> in L2 to get (the inequality is to account for possible lack of
regularity)

1
2

d
dt
|θ> |2 + µ|∇θ> |2 ≤ −(u · ∇θ<, θ>) + (g>, θ>)

=−(u< · ∇θ<, θ>) + (u> · ∇θ>, θ<) + (g>, θ>)

=Ld
Θκ + (g>, θ>),

where

Θκ B
1

Ld

[
−(u< · ∇θ<, θ>) + (u> · ∇θ>, θ<)

]
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is the downscale (i.e., toward larger |k|) flux of θ through wavenumber κ. Now g> = 0 since κ > κg,
so upon taking average, the time derivative disappears and we get

µ〈|∇θ> |2〉=Ld〈Θκ〉. (24)

If θ is not (known to be) sufficiently regular, we replace Θκ by

Θ
∗
κ BΘκ − lim

κ→∞
〈Θκ〉

in analogy with (15).
The tracer “energy” cascade mechanism requires that 〈Θκ〉 is (nearly) constant for κ ∈ [κ∗, κ∗]

⊂ [κ̄, κθ ]. Noting that

χ ≥ 〈Θκ〉=
µ

Ld
〈|∇θ> |2〉 =

µ

Ld
〈|∇θ |2〉 −

µ

Ld
〈|∇θ< |2〉

≥ χ − κ2 µ

Ld
〈|θ< |2〉 ≥ χ − κ2 µ

Ld
〈|θ |2〉

= χ −
κ2

κ2
θ

µ

Ld
〈|∇θ |2〉 = χ

[
1 −

( κ
κθ

)2]
,

we obtain the tracer analog of (12) and (14),

1 −
( κ
κθ

)2
≤
〈Θκ〉

χ
≤ 1 for κg ≤ κ ≤ κθ . (25)

The relations (12), (14), and (25) all imply cascades (more precisely, constancy of fluxes) provided
that the indicator wavenumbers κσ , κτ , and κθ are sufficiently large. Criteria on the forcing f and
source g that would give these conditions, directly from the NSE without further assumptions, so far
remain elusive.

V. 2D CASE EFFECT OF ENERGY SPECTRUM ON κθ

In this section, we prove tracer analogs of Theorem 1, relating the indicator wavenumber κθ to
κη . The interesting cases are where there are two spectra for the tracer, which in 2D is expected when
the injection wavenumbers for tracer are below those for the fluid.

A. Large Schmidt number

For large Schmidt number Sc = ν/µ, there is a range [κη , κ2D] where the tracer is advected by a
viscous fluid flow (Fig. 1). According to the classical theory (Ref. 17, pp. 367–369), here we expect
a κ�1 tracer spectrum over the full range [κ̄, κ2D]: First, the time scale for this range is determined by
substituting κη into (8), which gives

τκη = η
−1/3. (26)

One then sets τκη equal to the diffusive time scale (µκ2)−1 to find

κ2DB
(
η/µ3)1/6

=Sc1/2κη , (27)

so κ2D � κη . Using (26) in (9) and solving for T (κ) gives

T (κ)∼ χη−1/3κ−1 for κη ≤ κ ≤ κ2D. (28)

FIG. 1. Expected tracer spectra for the case of inverse cascade with a large Schmidt number.
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Note that in the enstrophy cascade range κ̄ ≤ κ . κη , we expect E(κ)∼ η2/3κ−3, giving rise to the same
tracer spectrum, so in fact, (28) should hold for the extended range κ̄ ≤ κ ≤ κ2D.

Assuming power laws corresponding to the tracer spectra, we relate κθ to κη and show that
asymptotically κθ ∼ κ2D for large Sc:

Theorem 3. Suppose that κg < κ holds along with

κ2
σ ∼ κ

2
η/ ln(κη/κ̄), (29)

〈|θ |2〉 ∼ 〈|θκg,κ |
2〉 + 〈|θκ̄,κ2D |

2〉, (30)

and

ϑκ,2κ ∼



χε−1/3κ−2/3 for κg ≤ κ ≤ κ, (31a)

χη−1/3 for κ̄ ≤ κ . κ2D . (31b)

We then have

κ2
θ ∼

1
a + b

,

where
a= κ−4/3

2D Sc−1/3 (κ−2/3
g − κ−2/3) ln(κη/κ̄)−1/3 and b= κ−2

2D ln(κ2D/κ̄).

If, moreover,
κg ∼ κ0 and κ ∼ κ̄ (32)

along with
κ̄/κ0 ≤ (G (ln G)1/2/e)1/5 (33)

and
Sc & (G ln G κ̄/κ0)(3r−4)/(12−6r), (34)

for some r ∈ [4/3, 2), we have

κr
2Dκ

2−r
0 / ln(κ2D/κ̄) . κ2

θ . κ
2
2D/ ln(κ2D/κ̄). (35)

Note that by Theorem 1, condition (29) could be replaced by the more natural (e.g., from the
computational point of view) but stronger assumptions

eκ,2κ ∼ η
2/3κ−2 for κ̄ ≤ κ . κη ,

〈‖uκ0,κ̄ ‖
2〉 . 〈‖uκ̄,∞‖

2〉,

4κ̄ ≤ κη ,

which are consistent with the discrete tracer spectrum (31b). Note also that if κg ∼ κ̄, one can neglect
the contribution of a so that

κ2
θ ∼ κ

2
2D/ ln(κ2D/κ̄).

Proof. First we estimate over the inverse cascade as follows:

ϑκg,κ ∼
χ

µ

( µ3

ε

)1/3 (
κ−2/3

g − κ−2/3) by (11a) and (27),

=
χ

µ
κ−2

2Dκ
2/3
σ

(
κ−2/3

g − κ−2/3) ,

∼
χ

µ
κ−2

2Dκ
2/3
η

(
κ−2/3

g − κ−2/3) ln(κη/κ̄)−1/3 by (29),

=
χ

µ
κ−4/3

2D Sc−1/3 (κ−2/3
g − κ−2/3) ln(κη/κ̄)−1/3 by (27).

Then, over the range beyond κ̄, we find

ϑκ̄,κ2D ∼
χ

µκ2
2D

ln(κ2D/κ̄). (36)
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It follows from (30) that

ϑκ0,∞ ∼ ϑκg,κ + ϑκ̄,κ2D ∼
χ

µ
(a + b)

and hence

κ2
θ =

(µ/L2) 〈|∇θ |2〉

(µ/L2) 〈|θ |2〉
=

χ

µϑκ0,∞
∼

1
a + b

.

For the second part of the theorem, we seek to majorise a as

a . κ−r
2Dκ

r−2
0 ln(κ2D/κ̄),

which, by (27), is equivalent to(
κ2D

κ0

)r−4/3 

(
κg

κ0

)−2/3

−

(
κ

κ0

)−2/3
. Sc1/3

(
ln
κη

κ̄

)1/3
ln

( κη
κ̄

Sc1/2
)
.

Since κ > κg and κg ∼ κ0 (but κg > κ0), we have by (32),

(κg/κ0)−2/3 − (κ/κ0)−2/3 ∼ (κg/κ0)−2/3 ∼ 1,

so the last inequality is in turn, by (27), equivalent to

(κη/κ0)r−4/3 . Sc1−r/2
(
ln
κη

κ̄

)1/3 (
ln
κη

κ̄
+ ln Sc

)
. (37)

From the upper bound in (21), we have, with ζ B κ̄/κ0,

κη/κ0 . (ζG)1/4(ln G)1/8.

Using this to bound the left-hand side of (37), we have

(κη/κ0)r−4/3 . (ζG)r/4−1/3(ln G)r/8−1/6. (38)

Now the lower bound in (21) implies

ζ−5/4(G/ ln G)1/4 . κη/κ̄,

which we then apply to the right-hand side of (37) to obtain(
ln
κη

κ̄

)1/3 (
ln
κη

κ̄
+ ln Sc

)
&

(
ln

G

ζ5 ln G

)1/3 [
ln

( G

ζ5 ln G

)
+ ln Sc

]

&
(
ln

G

ζ5 ln G

)4/3
.

Putting this together with (38), we find that (37) is implied by

(ζG (ln G)1/2)r/4−1/3 . Sc1−r/2
(
ln

G

ζ5 ln G

)4/3
. (39)

Now for G ≥ 1, we have (
G (ln G)1/2)1/2

≤G/ ln G,

so assuming this and writing γ B G (ln G)1/2, (39) is implied by

(ζγ)r/4−1/3 . Sc1−r/2 (ln ζ−5γ
)4/3.

Applying (33), we see that (34) implies (35). ◽

B. Moderate Schmidt number

For moderate Schmidt numbers, i.e., ν/µ ∼ 1, we have from (27) that κ2D ∼ κη (Fig. 2). In the
simplest case, where κg = κ̄, the tracer cascade occurs in the enstrophy cascade range, viz,

〈|θ |2〉 ∼ 〈|θκ̄,κη |
2〉, (40)

ϑκ,2κ ∼ χη
−1/3 for κ̄ ≤ κ . κη . (41)
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FIG. 2. Expected tracer spectra for the case of inverse cascade with a moderate Schmidt number.

We then have

ϑκ̄,κη ∼ χη
−1/3 ln(κη/κ̄) by (41) and (11b),

=
χ

µ

( µ3

η

)1/3
ln(κη/κ̄) ∼

χ

µκ2
η

ln(κη/κ̄),

which by (40) implies

ϑκ0,∞ ∼ ϑκg,κη ∼
χ

µκ2
η

ln(κη/κ̄).

Thus, κθ ∼ κη ∼ κ2D up to logarithm,

κ2
θ =
〈|∇θ |2〉

〈|θ |2〉
=

χ

µϑκ0,∞
∼ κ2

η/ ln(κη/κ̄)∼ κ2
2D/ ln(κ2D/κ̄).

If the energy injection scale is small compared to the tracer injection scale, i.e., κg� κ, we
again expect to have two tracer cascade ranges (both downscale). In the gap between κg and κ, the
energy spectrum is expected to take the form E(κ)∼ ε2/3κ−5/3 so that the tracer spectrum should be
T (κ)∼ χε−1/3κ−5/3. Recall that in the enstrophy cascade range κ̄ ≤ κ . κη , we expect E(κ)∼ η2/3κ−3

so that T (κ)∼ χη−1/3κ−1. This case is virtually identical to that treated in Theorem 3, except since
Sc = ν/µ ∼ 1, we have

κ2
θ . κ

4/3
2D κ

2/3
g

[
ln(κ2D/κ̄)

]−1/3.

Under the assumptions of Theorem 3, we have κθ . κ2D up to a logarithm. If those assumptions
are dropped, though it is not expected that κθ exceeds κ2D, one may ask if κθ ∼ κ2D implies ϑκ ,2κ ∼

χη1/3. The following is then a partial converse to Theorem 3.

Theorem 4. If κθ & κ2D, then ϑκ ,2κ . χη1/3.

Proof. We can rewrite the assumption as

κ2
θ =
〈|∇θ |2〉

〈|θ |2〉
&

(
η

µ3

)1/3

= κ2
2D

or as
µ

L2
〈|∇θ |2〉 &

η1/3

L2
〈|θ |2〉

so that

χη−1/3 &
1

L2
〈|θ |2〉 ≥

1

L2
〈|θκ,2κ |

2〉= ϑκ,2κ .

◽

Theorem 3 (with κ2D ∼ κη) imposes a restriction on the ranges of the forcing/source terms and
the Grashof number. The indicator κθ would achieve its maximum value, κη ∼ κ2D (up to a log),
if one could choose κg, κ, and κ̄ in such a way that a ∼ b. To investigate this, we seek an r such
that

a ≤ c0κ
−r
η κ

r−2
0 ln

κη

κ̄
, where

4
3
≤ r ≤ 2,

for some c0, which is equivalent to(
κη

κ0

)r−4/3 

(
κg

κ0

)−2/3

−

(
κ

κ0

)−2/3
≤ c0

(
ln
κη

κ̄

)4/3
. (42)
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FIG. 3. From bottom to top: ϕ1/6, ϕ1/9, and ϕ1/12.

We now derive a sufficient condition for (42). Rewriting the lower bound in (21) as

c1

( κ0

κ̄

)5/4 G1/4

(ln G)1/4
≤
κη

κ̄
(43)

and the upper bound in (21) as

κη

κ0
≤ c2

( κ̄
κ0

G (ln G)1/2
)1/4

, (44)

we use (43) on the right and (44) on the left in (42), and we obtain a sufficient condition for (42),
with pB (3r � 4)/12 ∈ [0, 1/6], ζ B κ̄/κ0, and c3 = c0c1/c

p
2,

[ζG(ln G)1/2]p (1 − ζ−2/3) ≤ c3 ln
(
ζ−5G/ ln G

)4/3

⇔
1
c3
≤

ln
(
ζ−5G/ ln G

)4/3

[ζG(ln G)1/2]p(1 − ζ−2/3)
. (45)

Putting G = eζ , this in turn is equivalent to

1
c3
≤

(ζ − 6 ln ζ)4/3

ζ3p/2epζ (1 − ζ−2/3)
=: ϕp(ζ). (46)

In Fig. 3, we plot ϕ1/6, ϕ1/9, and ϕ1/12 against ζ . It is clear that, at least for these values of p,
there is a range of ζ = κ̄/κ0 such that (46), and thus (42), is satisfied, provided that c3 is sufficiently
large. (Since we are seeking a sufficient condition for (42), we can take c3 smaller but not larger.)
While a good estimate for c3 is not known, this plot suggests that even in the presence of a significant
inverse cascade (10 . ζ . 20), a wide tracer cascade range can be achieved,

κ2
θ ∼ κ

r
2Dκ

2−r
0 / ln

(
κ2D/κ̄

)
, (47)

with r = 2, 16/9, and 5/3 for p = 1/6, 1/9, and 1/12 respectively, for large enough Grashof number (G
∼ eζ ) to sustain turbulent fluid flow.

C. Effect of log corrected energy spectrum

In order to enforce constant enstrophy flux, Kraichnan13 proposed a log correction to the energy
spectrum in the inertial range for 2D turbulence

E(κ)∼ η2/3κ−3(ln κ/κi)
−1/3,

which leads to a turnover time of

τκ ∼ η
−1/3(ln κ/κi)

−1/3. (48)
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FIG. 4. From bottom to top: ϕ̃1/9, ϕ̃1/12 and ϕ̃1/24.

This correction was shown in Ref. 15 to be consistent with an upper bound on the dimension of the
global attractor in Ref. 3.

If (48) is used in (9) and the lower end of the inertial range is κi = κ̄, the tracer spectrum takes
the form

T (κ)∼ χη−1/3κ−1(ln κ/κ̄)−1/3 for κ̄ ≤ κ ≤ κη

and

ϑκ,2κ ∼

∫ 2κ

κ

T(s) ds∼ χη−1/3
[
(ln 2κ/κ̄)2/3 − (ln κ/κ̄)2/3

]
.

Summing as in Lemma 1, the terms telescope so that

ϑκ̄,κη ∼
χ

µ

(
µ3

η

)1/3

(ln κη/κ̄)2/3 ∼
χ

µκ2
η

(ln κη/κ̄)2/3.

Using this instead of (36) in the proof of Theorem 3 yields

κ2
θ ∼

1
a + b′

, where b′ = κ−2
η (ln κη/κ̄)2/3.

We now seek r such that

a . κ−r
η κ

2−r
0 (ln

κη

κ̄
)2/3, where

4
3
≤ r ≤ 2,

which is equivalent to the analog of (42),(
κη

κ0

)r−4/3 

(
κg

κ0

)−2/3

−

(
κ

κ0

)−2/3
. ln

κη

κ̄
,

the only change being the power of the log on the right.
Proceeding as before, with ζ = κ̄/κ0 and p = (3r � 4)/12, and putting G = eζ , this is implied by

1
c4
≤

ζ − 6 ln ζ

ζ3p/2epζ (1 − ζ−2/3)
=: ϕ̃p(ζ). (49)

In Fig. 4, we plot ϕ̃1/9, ϕ̃1/12 and ϕ̃1/24 against ζ . Again, we need c4 sufficiently large for (49)
to hold.

D. Tracer injection scales below energy injection scales

In case the injection scales are reversed so that κ̄ < κg, then the analysis for both moderate and
large Schmidt number proceeds as before, except the term a is dropped in both cases, so the conclusion
is that κθ ∼ κ2D (up to a log).
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VI. 3D CASE

The large Schmidt number case is also interesting in 3D, as then we expect two ranges with
distinct tracer spectra (Ref. 17, p. 368): For κ ∈ (κ̄, κε ), we have the classical spectrum T(κ)∼ κ−5/3.
For κ beyond κε , substituting κ = κε in (8) gives a turnover time of

τκε = (ν/ε)1/2. (50)

Putting this equal to the diffusive time scale (µκ2)−1 then yields

κ3D =
( ε

νµ2

)1/4
=Sc1/2κε ,

the wavenumber where diffusion becomes important. Using (50) in (9) and solving for T (κ) gives

T(κ)∼ χ
(
ν

ε

)1/2
κ−1 for κε ≤ κ ≤ κ3D.

We have the following analog of Theorem 3:

Theorem 5. Suppose that (22) holds along with 4κg ≤ κε , Sc > 2,

〈|θ |2〉 ∼ 〈|θκg,κ3D |
2〉, (51)

and

ϑκ,2κ ∼



χε−1/3κ−2/3 for κg ≤ κ ≤ κε ,

χ(ν/ε)1/2 for κε ≤ κ . κ3D.

We then have

κ2
θ ∼

1
a + b

, (52)

where
a= κ−4/3

3D Sc−1/3 (κ−2/3
g − κ−2/3

ε

)
and b= κ−2

3D ln(Sc).

If, moreover, κg ∼ κ0 and κ ∼ κ̄, along with

Sc &G(3r−4)/(8−4r),

then
κ2
θ ∼ κ

r
3Dκ

2−r
0 / ln(κ3D/κε ) for 4/3 ≤ r < 2. (53)

Proof. As in the 2D case, we first compute

ϑκg,κε ∼
χ

µ

( µ3

ε

)1/3 (
κ−2/3

g − κ−2/3
ε

)
=
χ

µ
κ−4/3

3D Sc−1/3 (κ−2/3
g − κ−2/3

ε

)
,

ϑκε ,κ3D ∼
χ

µ

( νµ2

ε

)1/2
ln(κ3D/κε )∼

χ

µ
κ−2

3D ln(Sc).

By hypothesis, 〈|θ |2〉 ∼ ϑκg,κε + ϑκε ,κ2D , giving us (52),

κ2
θ =

χ

µϑκ0,∞
=

1
a + b

.

For the second part of the theorem, we note that

a . κ−r
2Dκ

r−2
0 ln(Sc)

is equivalent to

(κ3D/κ0)r−4/3 [(κ0/κg)2/3 − (κ0/κ̄)2/3] . Sc1/3 ln(Sc),

⇔ (κε/κ0)r−4/3 . Sc1−r/2 ln(Sc).

Arguing as in the 2D case, we bound the left-hand side by the upper bound in (23) and using
ln(Sc) > 1 on the right-hand side, this is implied by
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G(3r−4)/8 . Sc1−r/2,

which gives us (53). ◽

Remark 1. The decay rate of the energy spectrum in the (κg, κε )-inertial range is not crucial
here. It is the prefactor in the tracer spectrum that produces the helpful Schmidt number effect in
the estimate in Theorem 5. In fact, we would achieve the same estimate for κθ if we consider a
dimensionally correct energy spectrum with a different decay rate

E3D(κ)∼ ε2/3κ
p−5/3
0 κ−p for any p ∈ (1, 3).

Note that this would violate Kolmogorov’s assumption that E3D depend on only ε and κ, as it would
now also depend on L. Nevertheless, an energy spectrum of this form would result in a tracer spectrum
[Ref. 17 (8.94)],

T(κ)∼ χε−1/3κ
q
0κ

q′−1 with q= (p − 3)/2 and q′ = (5 − 3p)/6,

corresponding to a discrete dyadic tracer spectrum

ϑκ,2κ ∼ χε
−1/3κ

q′

0 κ
q for κg ≤ κ ≤ κε .

Assuming again, that κ0 ∼ κg � κε , we have

ϑκg,κε ∼ χε
−1/3κ

q′

0

(
κ

q
g − κ

q
ε

)
∼ χε−1/3κ−2/3

0 ,

=
χ

µ

( νµ2

ε

)1/3
(
µ

ν

)1/3
κ−2/3

0 ,

=
χ

µ
κ−4/3

3D Sc−1/3κ−2/3
0 .

The rest of the estimate for κθ follows as in the proof of Theorem 5.

A. Moderate Schmidt number case, 3D

If in 3D, Sc ∼ 1, we have just the single steeper tracer spectrum and κ2
θ ∼ 1/a with a as in

Theorem 5. This can be expressed as κθ ∼ κ
2/3
3D κ

1/3
0 , which gives the same fractional power for the

tracer cascade range width as for the energy cascade in Proposition 2.
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