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We study the influence of the energy spectrum on the extent of the cascade range of a passive
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p
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where κdD is the wavenumber beyond which diffusion should dominate and p is arbitrarily close to 1,
provided Sc is larger than a certain power (depending on p) of the Grashof number. We also derive
estimates which suggest that in 2D, for Sc ∼ 1 a wide tracer cascade can coexist with a significant
inverse energy cascade at Grashof numbers large enough to produce a turbulent flow.
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I. INTRODUCTION

Passive tracers play an important role in the study of fluid motion. On the one hand, experimental and observational
studies of fluid flows rely heavily on passive tracers to deduce the advecting velocity field. On the other hand,
knowledge of the underlying fluid flows is essential to predict the future dispersion of tracers (particularly, but not
exclusively, harmful ones).
It is natural to believe that if the advecting fluid flow is turbulent (however this is defined), the evolution of the

tracer will be turbulent as well. Following the pioneering work by Kolmogorov, Obukhov [14] and Corrsin [4] argued
that if the energy spectrum of the fluid is E(κ) = Kκ−n, a passive tracer whose dissipation rate is χ should have the
spectrum T (κ) ∼ χK−1/2κ(n−5)/2 between the injection and dissipation scales. Thus, in the inertial range in 3D,
both the energy and tracer spectra scale as κ−5/3. Following Kraichnan [13], over the direct enstrophy cascade range
in 2D, the energy spectrum should scale as κ−3, giving a κ−1 tracer spectrum. Although these scaling arguments
were derived with little reference to the governing equations, they have been supported to a surprising extent by
experimental and numerical works (cf. [7, 17]), primarily in 3D, slightly less so for 2D and still less so for tracers.
In 3D and 2D, respectively, dissipative effects are expected to dominate beyond the Kolmogorov and Kraichnan

wavenumbers κǫ and κη. The corresponding scales for our tracer depend in addition on the Schmidt number Sc, i.e.
the ratio of the viscosity to the tracer dissipativity. Another lengthscale of great importance is the Taylor microscale
κ−1τ . Initially (and to this day among experimentalists) defined using the velocity correlation, mathematicians prefer
to use an alternate definition for κτ in terms of the energy and its dissipation rate (7); the two definitions can be
shown to be nearly (formally) equivalent under some assumptions [7, (6.44b)]. Assuming that κτ is much greater
than the forcing scale, it has been proved rigorously that a direct energy cascade exists for solutions of 3D NSE [11].
Similarly, in 2D one defines in terms of the enstrophy and its dissipation rate a wavenumber κσ, which if sufficiently
larger than the forcing scale rigorously implies the existence of direct enstrophy cascade [9]. In section IVB, we derive
an analogous result for tracers in terms of a corresponding wavenumber κθ.

While it is plausible that κτ , κσ and κθ are large for turbulent solutions of the NSE and the advected tracers, these
remain unproved (directly from the NS and the tracer equations) to this day. If one were to assume the expected

spectra, namely ǫ2/3κ−5/3 and η2/3κ−3, however, it has been shown that κτ ∼ κ
2/3
ǫ κ

1/3
0 in 3D [6] and κσ ∼ κη up to a

logarithm in 2D [5], where κ0 = 2π/L, in a periodic domain of length L in each direction. Following this approach, we
prove the tracer analogues in sections V and VI. There are a number of qualitatively distinct cases here, depending
on the viscosity ν and tracer dissipativity µ, as well as on the injection scales of energy κf and of the tracer κg. When
ν ≫ µ, it is possible for κθ to asymptotically approach (up to constants and logarithms) its largest possible value, in
that κθ ∼ κ1−r

dD κr
0 for any r < 1, both for d = 2 (§V) and d = 3 (§VI). When ν ∼ µ, the situation is more complicated

as discussed in detail below. In the case µ ≫ ν, the velocity stirring scale is smaller than the dissipativity scale, giving
rise to non-turbulent dynamics; we believe a different approach would be needed here.
The rest of this paper is structured as follows. After some mathematical setups in Section II, we recall the heuristic

argument for the tracer spectra in Section III. Earlier NSE estimates for the enstrophy and energy transfer rates in
terms of κσ and κτ in 2D and 3D are gathered in Section IV, along with the implications that the expected energy
spectra have on these wavenumbers, vis-à-vis κη, κǫ, respectively. An analogous estimate for the tracer transfer rate
in terms of κθ is also derived in Section IV. We treat 2D tracer flow in Section V and 3D tracer flow in Section VI.

II. PRELIMINARIES

We consider the evolution of a passive scalar θ under a prescribed velocity field u(x, t) and a time-independent
source g = g(x),

∂tθ − µ∆θ + u · ∇θ = g
∫

Ω

θ dx = 0 ,

∫

Ω

g dx = 0 ,
(1)

with periodic boundary conditions in Ω = [0, L]d for d = 2, 3. We focus on the case where u satisfies the incompressible
Navier-Stokes equations

∂tu− ν∆u+ (u · ∇)u+∇p = F,

∇ · u = 0
∫

Ω

u dx = 0 ,

∫

Ω

F dx = 0

u(x, t0) = u0(x) .

(2)
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We write (2) as a differential equation in a certain Hilbert space H (see [2, 16]),

d

dt
u(t) + νAu(t) +B(u(t), u(t)) = f,

u(t) ∈ H, t ≥ t0 and u(t0) = u0 .
(3)

The phase space H is the closure in L2(Ω)d of all Rd-valued trigonometric polynomials u such that

∇ · u = 0 and

∫

Ω

u(x) dx = 0.

The bilinear operator B is defined as

B(u, v) = P ((u · ∇)v) ,

where P is the Helmholtz–Leray orthogonal projector of L2(Ω)d onto H and f = PF . The scalar product in H is
taken to be

(u, v) =

∫

Ω

u(x) · v(x) dx,

with the associated norm

|u| = (u, u)1/2 =
(

∫

Ω

u(x) · u(x) dx
)1/2

.

The operator A = −∆ is self-adjoint with compact inverse and a complete set of eigenfunctions associated with
eigenvalues of the form

(2π/L)2k · k where k ∈ Z
d \ {0}.

We denote these eigenvalues by

0 < λ0 = (2π/L)
2
≤ λ1 ≤ λ2 ≤ · · · ,

arranged in non-decreasing order (counting multiplicities) and write w0, w1, w2, · · · , for the corresponding normalized
eigenvectors (i.e. |wj | = 1 and Awj = λjwj for j = 0, 1, 2, · · · ).
For α ∈ R, the positive roots of A are defined by linearity from

Aαwj = λα
j wj , for j = 0, 1, 2, · · ·

on the domain

D(Aα) =
{

u ∈ H :
∞
∑

j=0

λ2α
j (u,wj)

2 < ∞
}

.

We take the natural norm on V = D(A1/2) to be

‖u‖ = |A1/2u| =





∫

Ω

d
∑

j=1

∂

∂xj
u(x) ·

∂

∂xj
u(x) dx





1/2

=





∞
∑

j=0

λj(u,wj)
2





2

.

Since the boundary conditions are periodic, we may express an element in H as a Fourier series

u(x) =
∑

k∈Zd

ûke
iκ0k·x , (4)

where

κ0 = λ
1/2
0 =

2π

L
, û0 = 0, û∗k = û−k
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and due to incompressibility, k · ûk = 0. We associate to each term in (4) a wavenumber κ0|k|. Parseval’s identity
reads as

|u|2 = Ld
∑

k∈Zd

ûk · û−k = Ld
∑

k∈Zd

|ûk|
2.

Two important dimensionless parameters are the Grashof and Schmidt numbers,

G :=
|f |

ν2κ
3−d/2
0

and Sc :=
ν

µ
.

The former indicates the complexity of the (velocity) flow, and the latter the importance of (momentum) viscosity
relative to tracer dissipativity.
Since the infinite time limit is not known to exist, for each solution u(t) of the 2D NSE (Leray–Hopf weak solution

in the 3D case) we work with the average

〈Φ〉 = Lim
T→∞

1

T

∫ T

0

Φ(u(t)) dt for any Φ weakly continuous in H,

where Lim is a Hahn–Banach extension of the classical time limit. The average 〈·〉 is the mathematical equivalent
of the ensemble average in the statistical theory of turbulence; see [9, 10] for more details. Using this, we define the
average energy , enstrophy and tracer variance

e =
1

Ld
〈|u|2〉 , E =

1

Ld
〈‖u‖2〉 and

1

Ld
〈|θ|2〉, (5)

as well as their dissipation (diffusion) rates

ǫ :=
ν

Ld
〈‖u‖2〉 , η :=

ν

Ld
〈|Au|2〉 and χ :=

µ

Ld
〈|∇θ|2〉. (6)

By classical dimensional arguments, the dissipation range is expected to start at

κǫ =
( ǫ

ν3

)1/4

and κη =
( η

ν3

)1/6

,

in 3D and 2D respectively; these are sometimes known as the Kolmogorov and Kraichnan wavenumbers. Their
analogues for the tracer cascade are more complicated and depend on the advecting velocity; see κ2D and κ3D in
§V–§VI below. Another set of important wavenumbers are

κ2
τ :=

〈‖u‖2〉

〈|u|2〉
, κ2

σ :=
〈|∆u|2〉

〈‖u‖2〉
and κ2

θ :=
〈‖θ‖2〉

〈|θ|2〉
. (7)

In 3D turbulence, κτ is closely related to the Taylor wavenumber, the scale at which the velocity correlation is lost;
it has been shown that direct energy cascade takes place within the range (κ̄, κτ ). Its analogues in 2D and tracer
turbulence are κσ and κθ, with corresponding results on enstrophy [9] and tracer [(25) below] cascades.

We make use of the following notation: a . b means a ≤ c b for a nondimensional universal constant c, independent
of G and Sc (as well as κ0, ν and µ), under the condition that G ≥ G∗ where G∗ may be different for each inequality,
and similarly for & . By a ∼ b we mean that both a . b and b . a hold. We write a ≪ b if a/b < δ for some small
δ ∈ (0, 1), and a/b is nondimensional provided the ranges of a, b are a priori specified (e.g., for large values of a, b).
The value of δ shall remain unspecified, and may vary from one statement involving ≪ to the next.

III. INFLUENCE OF ENERGY SPECTRUM

A. Classical theory

We recall briefly from [17, Ch. 8] some elements of the Kolmogorov–Obukhov theory for 3D turbulence in a form
suitable for its extension to passive tracers. Suppose that a parcel (“eddy”) of size 1/κ has velocity Uκ ∼ [κE(κ)]1/2.
Assuming that such an eddy breaks up in the time τκ it takes to travel its own size, i.e.

τκUκ = 1/κ so that τκ ∼ [κ3E(κ)]−1/2, (8)
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the resulting downscale energy transfer rate is

U2
κ

τκ
∼

κE(κ)

τκ
.

Assuming that this transfer rate is a constant ǫ for κ in the so-called inertial range and solving for E , we arrive at the
Kolmogorov spectrum,

E3D(κ) ∼ ǫ2/3κ−5/3.

The situation in 2D is more complicated in that, for scales smaller than the forcing, we expect the enstrophy to
undergo a direct cascade to smaller scales, while energy is mainly transferred to larger scales in an inverse cascade
for scales larger than the forcing. Yet a similar dimensional argument in the enstrophy inertial range leads to the
Kraichnan spectrum

E2D(κ) ∼ η2/3κ−3 .

An analogous cascade mechanism for the tracer suggests a connection between its spectrum T (κ) and the energy
spectrum. Taking the amount of tracer (variance) at wavenumber κ to be κT (κ), assuming that it is transferred to
wavenumber 2κ by the advecting velocity over a time τκ given by (8), and setting the transfer rate to a constant χ,
we find

χ ∼
κT (κ)

τκ
. (9)

If we take E(κ) ∼ Kκ−n in (8) and solve for T in (9), we have

T (κ) ∼ χK−1/2κ(n−5)/2.

B. Mathematical formulation

These spectral relations can be reformulated in terms of partial sums

eκ,2κ :=
1

Ld

∑

κ≤κ0|k|<2κ

〈|ûk|
2〉 and ϑκ,2κ :=

1

Ld

∑

κ≤κ0|k|<2κ

〈|θ̂k|
2〉. (10)

As L increases (so κ0 decreases), each quantity in (10) can be viewed as a Riemann sum approximation of the integral
of the corresponding spectrum (this assumes smoothness of the summands, but below we will use this approximation
only for explicit functions of κ). For instance, for the energy in 3D, we have

∫ 2κ

κ

E3D(κ̃) dκ̃ ∼

∫ 2κ

κ

ǫ2/3κ̃−5/3 dκ̃ =
3

2
ǫ2/3

(

1− 2−2/3
)

κ−2/3 ∼ ǫ2/3κ−2/3.

In the inertial range this leads to the energy power law

eκ,2κ ∼ ǫ2/3κ−2/3 in 3D

and similarly

eκ,2κ ∼ η2/3κ−2 in 2D.

We gather the expected spectra according to classical theory in Table I.
We conclude this section with a brief calculation regarding the summation of the tracer variance over the relevant

wavenumber range assuming that a certain power law holds. It will be used repeatedly.

Lemma 1 Suppose ϑκ,2κ ∼ ακ−p for κ1 ≤ κ ≤ κ2, with 4κ1 ≤ κ2 and p ≥ 0. Then

ϑκ1,κ2 ∼

{

α
(

κ−p1 − κ−p2

)

if p > 0, (11a)

α ln(κ2/κ1) if p = 0. (11b)
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dir. d E(κ) eκ,2κ T (κ) ϑκ,2κ

fwd 3 ǫ2/3κ−5/3 ǫ2/3κ−2/3 χǫ−1/3κ−5/3 χǫ−1/3κ−2/3

fwd 2 η2/3κ−3 η2/3κ−2 χη−1/3κ−1 χη−1/3

bkwd 2 ǫ2/3κ−5/3 ǫ2/3κ−2/3 χǫ−1/3κ−5/3 χǫ−1/3κ−2/3

TABLE I. Spectra according to classical theory

Proof. As in [5, 6], let J = ⌊log2(κ2/κ1)⌋ − 1. If p > 0, then

ϑκ1,κ2
∼

J
∑

κ=2jκ1, j=0

ϑκ,2κ ∼
α

κp
1

J
∑

j=0

(2p)−j =
α

κp
1

1

1− 2−p
[

1− (2−J )−p
]

∼
α

κp
1

[

1−

(

κ1

κ2

)p]

.

If p = 0,

ϑκ1,κ2 ∼ α
J
∑

j=0

1 = α log2(κ2/κ1) ∼ α ln(κ2/κ1).

✷

IV. INDICATORS FOR CASCADES

Returning to the Navier–Stokes (3) and tracer equations (1), we henceforth assume that the forcing F and source
g are spectrally-bounded, i.e. there exist κ0 < κg < ∞ and κ0 ≤ κ

¯
≤ κ̄ < ∞ such that

g = gκ0,κg
and f = fκ

¯
,κ̄.

Given a fixed κ, we define

u< := uκ0,κ , u> := uκ,∞ and θ< := θκ0,κ , θ> := θκ,∞.

The notation here, unlike in (10), does not involve the average and factor of Ld, e.g.,

uκ1,κ2
=

∑

κ≤κ0|k|<2κ

ûκe
iκ0k·x .

A. Navier–Stokes equations

We start by giving sufficient conditions for enstrophy and energy cascades. In terms of the solution of the 2D NSE,
the net rate of enstrophy transfer (flux) is given by Eκ = E

→
κ − E

←
κ where

E
→
κ (u) = −

1

L2
(B(u<, u<), Au>) and E

←
κ (u) = −

1

L2
(B(u>, u>), Au<).

are the rates of enstrophy transfer (low to high) and (high to low), respectively. It was shown in [9] that

1−
( κ

κσ

)2

≤
〈Eκ〉

η
≤ 1 if κ̄ ≤ κ ≤ κσ. (12)

It follows that if

κσ ≫ κ̄, (13)
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then there exists an enstrophy cascade:

〈Eκ〉 ≈ η for κ̄ ≤ κ ≪ κσ .

Similarly, the transfer of energy eκ = e
→
κ − e

←
κ is shown in [9, 11] to satisfy

1−
( κ

κτ

)2

≤
〈eκ〉

ǫ
≤ 1 for κ̄ ≤ κ ≤ κτ , (14)

where

e
→
κ (u) = −

1

Ld
(B(u<, u<), u>) and e

←
κ (u) = −

1

Ld
(B(u>, u>), u<).

It is shown in [11] that (14) holds as well in 3D for sufficiently regular solutions, and for weak solutions with eκ

replaced by

e
∗
κ = eκ − lim

κ→∞
〈eκ〉 (15)

to account for a possible loss of energy. Thus if

κτ ≫ κ̄ (16)

there is a direct energy cascade:

〈eκ〉 ≈ ǫ for κ̄ ≤ κ ≪ κτ .

It is easy to show that κτ ≤ κσ, which is consistent with the expectation that for a 2D flow a direct enstrophy cascade
be more pronounced than a direct energy cascade.
We note a couple of useful bounds for κη and κǫ. For the 2D NSE (regardless of whether the flow is turbulent), it

was shown in [12] that

G1/6 . κη/κ0 ≤ G1/3. (17)

While for the 3D NSE, [6] showed that

(

κ0/κ̄
)5/8

G1/4 .
κǫ

κ0
. (18)

If one assumes the power spectrum (which a priori says nothing about energy transfer rates), however, one does
obtain lower bounds on κσ and κη, or equivalently by (13) and (16), sufficient conditions for the enstrophy and energy
cascades. In 2D we have the following estimate from [5].

Theorem 1 If for the 2D NSE we have

eκ,2κ ∼ η2/3κ−2 for κ
¯i

≤ κ ≤ κη (19)

with 4κ
¯i

≤ κη and

〈‖uκ0,κ
¯i
‖2〉 . 〈‖uκ

¯i
,∞‖2〉 ,

then

κ2
σ ∼ κ2

η/ ln(κη/κ
¯i
). (20)

The wavenumber κ
¯i

marks the start of the inertial range. Based on (12) and (14), we expect that κ
¯i

∼ κ̄.

Thanks to (17), the dissipation wavenumber κη can be controlled by the Grashof number. Thus, under (19), κσ

can indeed be made large by increasing G. It is shown in [8] that if conversely (20) holds, then one side of the power
law holds (up to a log)

eκ,2κ . η2/3κ−2 ln(κη/κ
¯i
) for κ

¯i
≤ κ ≤ κη .

Moreover, under (20) it is shown in [5] that (17) is sharpened to

(κ0

κ̄

)1/4 G1/4

(lnG)1/4
.

κη

κ0
.

( κ̄

κ0

)1/4

G1/4(lnG)1/8. (21)

The following 3D analogue of Theorem 1 is proved in [6].
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Theorem 2 If for a Leray–Hopf solution to the 3D NSE, we have

eκ,2κ ∼ ǫ2/3κ−2/3 for κ̄ ≤ κ ≤ κǫ

with 4κ̄ ≤ κǫ and

〈|u|2〉 ∼ 〈|uκ̄,κǫ
|2〉 ,

then

κ3
τ ∼ κ2

ǫ κ̄ . (22)

Assuming (22), the bound (18) can be sharpened to

(κ0

κ̄

)11/16

G3/8 .
κǫ

κ0
.

(κ0

κ̄

)1/8

G3/8 for all G &
( κ̄

κ0

)3/2

. (23)

The powers in (20) and (22) are suggestive of the extent to which the corresponding fluxes are constant over a given
range, or alternatively, the width of the inertial range in each case.

B. Passive tracer

A condition for a cascade of the tracer is derived just as those for the NSE. Let κ and κg be fixed with κ > κg.
Multiply (1) by θ> in L2 to get (the inequality is to account for possible lack of regularity)

1

2

d

dt
|θ>|2 + µ|∇θ>|2 ≤ −(u · ∇θ<, θ>) + (g>, θ>)

= −(u< · ∇θ<, θ>) + (u> · ∇θ>, θ<) + (g>, θ>)

= LdΘκ + (g>, θ>)

where

Θκ :=
1

Ld

[

−(u< · ∇θ<, θ>) + (u> · ∇θ>, θ<)
]

is the downscale (i.e. towards larger |k|) flux of θ through wavenumber κ. Now g> = 0 since κ > κg, so upon taking
average, the time derivative disappears and we get

µ〈|∇θ>|2〉 = Ld〈Θκ〉. (24)

If θ is not (known to be) sufficiently regular, we replace Θκ by

Θ∗κ := Θκ − lim
κ→∞

〈Θκ〉

in analogy with (15).
The tracer “energy” cascade mechanism requires that 〈Θκ〉 is (nearly) constant for κ ∈ [κ∗, κ

∗] ⊂ [κ̄, κθ]. Noting
that

χ ≥ 〈Θκ〉 =
µ

Ld
〈|∇θ>|2〉 =

µ

Ld
〈|∇θ|2〉 −

µ

Ld
〈|∇θ<|2〉

≥ χ− κ2 µ

Ld
〈|θ<|2〉 ≥ χ− κ2 µ

Ld
〈|θ|2〉

= χ−
κ2

κ2
θ

µ

Ld
〈|∇θ|2〉 = χ

[

1−
( κ

κθ

)2]

,

we obtain the tracer analogue of (12) and (14),

1−
( κ

κθ

)2

≤
〈Θκ〉

χ
≤ 1 for κg ≤ κ ≤ κθ. (25)

The relations (12), (14) and (25) all imply cascades (more precisely, constancy of fluxes) provided that the indicator
wavenumbers κσ, κτ and κθ are sufficiently large. Criteria on the forcing f and source g that would give these
conditions, directly from the NSE without further assumptions, so far remain elusive.
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V. 2D CASE, EFFECT OF ENERGY SPECTRUM ON κθ

In this section, we prove tracer analogues of Theorem 1, relating the indicator wavenumber κθ to κη. The interesting
cases are where there are two spectra for the tracer, which in 2D is expected when the injection wavenumbers for
tracer are below those for the fluid.

A. Large Schmidt number

κ0

κ−1

κ−5/3

κη κ2Dκg κ
¯

κ̄

FIG. 1. Expected tracer spectra for the case of inverse cascade with large Schmidt number.

For large Schmidt number µ/ν, there is a range [κη, κ2D] where the tracer is advected by a viscous fluid flow.
According to the classical theory [17, pp. 367–9], here we expect a κ−1 tracer spectrum over the full range [κ̄, κ2D]:
First, the time scale for this range is determined by substituting κη into (8), which gives

τκη
= η−1/3 . (26)

One then sets τκη
equal to the diffusive time scale (µκ2)−1 to find

κ2D :=
(

η/µ3
)1/6

= Sc1/2κη , (27)

so κ2D ≫ κη. Using (26) in (9), and solving for T (κ) gives

T (κ) ∼ χη−1/3κ−1 for κη ≤ κ ≤ κ2D . (28)

Note that in the enstrophy cascade range κ̄ ≤ κ . κη, we expect E(κ) ∼ η2/3κ−3, giving rise to the same tracer
spectrum, so in fact (28) should hold for the extended range κ̄ ≤ κ ≤ κ2D.
Assuming power laws corresponding to the tracer spectra, we relate κθ to κη and show that asymptotically κθ ∼ κ2D

for large Sc:

Theorem 3 Suppose that κg < κ
¯
holds along with

κ2
σ ∼ κ2

η/ ln(κη/κ̄) , (29)

〈|θ|2〉 ∼ 〈|θκg,κ
¯
|2〉+ 〈|θκ̄,κ2D

|2〉 (30)

and

ϑκ,2κ ∼

{

χǫ−1/3κ−2/3 for κg ≤ κ ≤ κ
¯

(31a)

χη−1/3 for κ̄ ≤ κ . κ2D . (31b)

We then have

κ2
θ ∼

1

a+ b
,

where

a = κ
−4/3
2D

Sc−1/3
(

κ−2/3g − κ
¯
−2/3

)

ln(κη/κ̄)
−1/3 and b = κ−2

2D
ln(κ2D/κ̄).
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If, moreover,

κg ∼ κ0 and κ
¯
∼ κ̄ (32)

along with

κ̄/κ0 ≤ (G (lnG)1/2/e)1/5, (33)

and

Sc & (G lnG κ̄/κ0)
(3r−4)/(12−6r) , (34)

for some r ∈ [4/3, 2), we have

κr
2D

κ2−r
0 / ln(κ2D/κ̄) . κ2

θ . κ2
2D

/ ln(κ2D/κ̄). (35)

Note that by Theorem 1 the condition (29) could be replaced by the more natural (e.g., from the computational
point of view), but stronger assumptions

eκ,2κ ∼ η2/3κ−2 for κ̄ ≤ κ . κη,

〈‖uκ0,κ̄‖
2〉 . 〈‖uκ̄,∞‖2〉,

4κ̄ ≤ κη,

which are consistent with the discrete tracer spectrum (31b). Note also that if κg ∼ κ̄, one can neglect the contribution
of a so that

κ2
θ ∼ κ2

2D/ ln(κ2D/κ̄).

Proof. First we estimate over the inverse cascade as follows

ϑκg,κ
¯
∼

χ

µ

(µ3

ǫ

)1/3
(

κ−2/3g − κ
¯
−2/3

)

by (11a) and (27)

=
χ

µ
κ−22Dκ

2/3
σ

(

κ−2/3g − κ
¯
−2/3

)

∼
χ

µ
κ−22Dκ

2/3
η

(

κ−2/3g − κ
¯
−2/3

)

ln(κη/κ̄)
−1/3 by (29)

=
χ

µ
κ
−4/3
2D Sc−1/3

(

κ−2/3g − κ
¯
−2/3

)

ln(κη/κ̄)
−1/3 by (27).

Then, over the range beyond κ̄, we find

ϑκ̄,κ2D
∼

χ

µκ2
2D

ln(κ2D/κ̄). (36)

It follows from (30) that

ϑκ0,∞ ∼ ϑκg,κ
¯
+ ϑκ̄,κ2D

∼
χ

µ
(a+ b)

and hence

κ2
θ =

(µ/L2) 〈|∇θ|2〉

(µ/L2) 〈|θ|2〉
=

χ

µϑκ0,∞
∼

1

a+ b
.

For the second part of the theorem, we seek to majorise a as

a . κ−r2Dκ
r−2
0 ln(κ2D/κ̄),

which, by (27), is equivalent to

(

κ2D

κ0

)r−4/3
[

(

κg

κ0

)−2/3

−

(

κ
¯
κ0

)−2/3
]

. Sc1/3
(

ln
κη

κ̄

)1/3

ln
(κη

κ̄
Sc1/2

)

.
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Since κ
¯
> κg and κg ∼ κ0 (but κg > κ0), we have by (32)

(κg/κ0)
−2/3 − (κ

¯
/κ0)

−2/3 ∼ (κg/κ0)
−2/3 ∼ 1,

so the last inequality is in turn, by (27), equivalent to

(κη/κ0)
r−4/3 . Sc1−r/2

(

ln
κη

κ̄

)1/3(

ln
κη

κ̄
+ ln Sc

)

. (37)

From the upper bound in (21) we have, with ζ := κ̄/κ0,

κη/κ0 . (ζG)1/4(lnG)1/8.

Using this to bound the left-hand side of (37), we have

(κη/κ0)
r−4/3 . (ζG)r/4−1/3(lnG)r/8−1/6. (38)

Now the lower bound in (21) implies

ζ−5/4(G/ lnG)1/4 . κη/κ̄,

which we then apply to the right-hand side of (37) to obtain

(

ln
κη

κ̄

)1/3(

ln
κη

κ̄
+ ln Sc

)

&
(

ln
G

ζ5 lnG

)1/3[

ln
( G

ζ5 lnG

)

+ ln Sc
]

&
(

ln
G

ζ5 lnG

)4/3

.

Putting this together with (38), we find that (37) is implied by

(ζG (lnG)1/2)r/4−1/3 . Sc1−r/2
(

ln
G

ζ5 lnG

)4/3

. (39)

Now for G ≥ 1 we have

(

G (lnG)1/2
)1/2

≤ G/ lnG,

so assuming this and writing γ := G (lnG)1/2, (39) is implied by

(ζγ)r/4−1/3 . Sc1−r/2
(

ln ζ−5γ
)4/3

.

Applying (33), we see that (34) implies (35). ✷

B. Moderate Schmidt number

For moderate Schmidt numbers, i.e. ν/µ ∼ 1, we have from (27) that κ2D ∼ κη. In the simplest case, where κg = κ̄,
the tracer cascade occurs in the enstrophy cascade range, viz.

〈|θ|2〉 ∼ 〈|θκ̄,κη
|2〉, (40)

ϑκ,2κ ∼ χη−1/3 for κ̄ ≤ κ . κη. (41)

We then have

ϑκ̄,κη
∼ χη−1/3 ln(κη/κ̄) by (41) and (11b)

=
χ

µ

(µ3

η

)1/3

ln(κη/κ̄) ∼
χ

µκ2
η

ln(κη/κ̄),

which by (40) implies

ϑκ0,∞ ∼ ϑκg,κη
∼

χ

µκ2
η

ln(κη/κ̄).
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Thus, κθ ∼ κη ∼ κ2D up to logarithm,

κ2
θ =

〈|∇θ|2〉

〈|θ|2〉
=

χ

µϑκ0,∞
∼ κ2

η/ ln(κη/κ̄) ∼ κ2
2D/ ln(κ2D/κ̄).

If the energy injection scale is small compared to the tracer injection scale, i.e. κg ≪ κ
¯
, we again expect to have

two tracer cascade ranges (both downscale). In the gap between κg and κ
¯
, the energy spectrum is expected to take

the form E(κ) ∼ ǫ2/3κ−5/3, so that the tracer spectrum should be T (κ) ∼ χǫ−1/3κ−5/3. Recall that in the enstrophy
cascade range κ̄ ≤ κ . κη, we expect E(κ) ∼ η2/3κ−3, so that T (κ) ∼ χη−1/3κ−1. This case is virtually identical to
that treated in Theorem 3, except since Sc = ν/µ ∼ 1, we have

κ2
θ . κ

4/3
2D κ2/3

g

[

ln(κ2D/κ̄)
]−1/3

.

κ0

κ−1

κ−5/3

κη ∼ κ2Dκg κ
¯

κ̄

FIG. 2. Expected tracer spectra for case of inverse cascade with moderate Schmidt number.

Under the assumptions of Theorem 3, we have κθ . κ2D up to a logarithm. If those assumptions are dropped,
though it is not expected that κθ exceeds κ2D, one may ask if κθ ∼ κ2D implies ϑκ,2κ ∼ χη1/3. The following is then
a partial converse to Theorem 3.

Theorem 4 If κθ & κ2D, then ϑκ,2κ . χη1/3 .

Proof. We can rewrite the assumption as

κ2
θ =

〈|∇θ|2〉

〈|θ|2〉
&

(

η

µ3

)1/3

= κ2
2D ,

or as

µ

L2
〈|∇θ|2〉 &

η1/3

L2
〈|θ|2〉,

so that

χη−1/3 &
1

L2
〈|θ|2〉 ≥

1

L2
〈|θκ,2κ|

2〉 = ϑκ,2κ .

✷

Theorem 3 (with κ2D ∼ κη) imposes a restriction on the ranges of the forcing/source terms and the Grashof number.
The indicator κθ would achieve its maximum value, κη ∼ κ2D (up to a log), if one could choose κg, κ

¯
, and κ̄ in such

a way that a ∼ b. To investigate this, we seek an r such that

a ≤ c0κ
−r
η κr−2

0 ln
κη

κ̄
where

4

3
≤ r ≤ 2,

for some c0, which is equivalent to

(

κη

κ0

)r−4/3
[

(

κg

κ0

)−2/3

−

(

κ
¯
κ0

)−2/3
]

≤ c0

(

ln
κη

κ̄

)4/3

. (42)

We now derive a sufficient condition for (42). Rewriting the lower bound in (21) as

c1

(κ0

κ̄

)5/4 G1/4

(lnG)1/4
≤

κη

κ̄
, (43)
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and the upper bound in (21) as

κη

κ0
≤ c2

( κ̄

κ0
G (lnG)1/2

)1/4

, (44)

we use (43) on the right and (44) on the left in (42), we obtain a sufficient condition for (42), with p := (3r− 4)/12 ∈
[0, 1/6], ζ := κ̄/κ0 and c3 = c0c1/c

p
2,

[ζG(lnG)1/2]p
(

1− ζ−2/3
)

≤ c3 ln
(

ζ−5G/ lnG
)4/3

⇔
1

c3
≤

ln
(

ζ−5G/ lnG
)4/3

[ζG(lnG)1/2]p(1− ζ−2/3)
. (45)

Putting G = eζ , this in turn is equivalent to

1

c3
≤

(ζ − 6 ln ζ)4/3

ζ3p/2epζ(1− ζ−2/3)
=: ϕp(ζ). (46)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10  20  30  40  50  60  70  80 ζ

FIG. 3. From bottom to top: ϕ1/6, ϕ1/9 and ϕ1/12.

In Figure 3 we plot ϕ1/6, ϕ1/9 and ϕ1/12 against ζ. It is clear that, at least for these values of p, there is a range
of ζ = κ̄/κ0 such that (46), and thus (42), is satisfied, provided that c3 is sufficiently large. (Since we are seeking a
sufficient condition for (42), we can take c3 smaller but not larger.) While a good estimate for c3 is not known, this
plot suggests that even in the presence of a significant inverse cascade (10 . ζ . 20) a wide tracer cascade range can
be achieved,

κ2
θ ∼ κr

2Dκ
2−r
0 / ln

(

κ2D/κ̄
)

(47)

with r = 2, 16/9 and 5/3 for p = 1/6, 1/9 and 1/12 respectively, for large enough Grashof number (G ∼ eζ) to sustain
turbulent fluid flow.

C. Effect of log corrected energy spectrum

In order to enforce constant enstrophy flux Kraichnan [13] proposed a log correction to the energy spectrum in the
inertial range for 2D turbulence

E(κ) ∼ η2/3κ−3(lnκ/κ
¯i
)−1/3 ,

which leads to a turnover time of

τκ ∼ η−1/3(lnκ/κ
¯i
)−1/3 . (48)

This correction was shown in [15] to be consistent with an upper bound on the dimension of the global attractor in
[3].
If (48) is used in (9), and the lower end of the inertial range is κ

¯i
= κ̄, the tracer spectrum takes the form

T (κ) ∼ χη−1/3κ−1(lnκ/κ̄)−1/3 for κ̄ ≤ κ ≤ κη
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and

ϑκ,2κ ∼

∫ 2κ

κ

T (s) ds ∼ χη−1/3
[

(ln 2κ/κ̄)2/3 − (lnκ/κ̄)2/3
]

.

Summing as in Lemma 1, the terms telescope, so that

ϑκ̄,κη
∼

χ

µ

(

µ3

η

)1/3

(lnκη/κ̄)
2/3 ∼

χ

µκ2
η

(lnκη/κ̄)
2/3 .

Using this instead of (36) in the proof of Theorem 3 yields

κ2
θ ∼

1

a+ b′
where b′ = κ−2η (lnκη/κ̄)

2/3.

We now seek r such that

a . κ−rη κ2−r
0 (ln

κη

κ̄
)2/3 , where

4

3
≤ r ≤ 2 ,

which is equivalent to the analog of (42)

(

κη

κ0

)r−4/3
[

(

κg

κ0

)−2/3

−

(

κ
¯
κ0

)−2/3
]

. ln
κη

κ̄
,

the only change being the power of the log on the right.
Proceeding as before, with ζ = κ̄/κ0 and p = (3r − 4)/12, and putting G = eζ , this is implied by

1

c4
≤

ζ − 6 ln ζ

ζ3p/2epζ(1− ζ−2/3)
=: ϕ̃p(ζ). (49)

-�

-�

-�

 0

 1

 2

 3

 10  20  30  40  50  60  70  80 ζ

FIG. 4. From bottom to top: ϕ̃1/9, ϕ̃1/12 and ϕ̃1/24.

In Figure 4 we plot ϕ̃1/9, ϕ̃1/12 and ϕ̃1/24 against ζ. Again, we need c4 sufficiently large for (49) to hold.

D. Tracer injection scales below energy injection scales

In case the injection scales are reversed, so that κ̄ < κg, then the analysis for both moderate and large Schmidt
number proceeds as before, except the term a is dropped in both cases, so the conclusion is that κθ ∼ κ2D (up to a
log).

VI. 3D CASE

The large Schmidt number case is also interesting in 3D, as then we expect two ranges with distinct tracer spectra
[17, p. 368]: For κ ∈ (κ̄, κǫ), we have the classical spectrum T (κ) ∼ κ−5/3. For κ beyond κǫ, substituting κ = κǫ in
(8) gives a turnover time of

τκǫ
= (ν/ǫ)1/2 . (50)
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Putting this equal to the diffusive time scale (µκ2)−1 then yields

κ3D =
( ǫ

νµ2

)1/4

= Sc1/2κǫ ,

the wavenumber where diffusion becomes important. Using (50) in (9), and solving for T (κ) gives

T (κ) ∼ χ
(ν

ǫ

)1/2

κ−1 for κǫ ≤ κ ≤ κ3D.

We have the following analogue of Theorem 3:

Theorem 5 Suppose that (22) holds along with 4κg ≤ κǫ, Sc > 2,

〈|θ|2〉 ∼ 〈|θκg,κ3D
|2〉, (51)

and

ϑκ,2κ ∼

{

χǫ−1/3κ−2/3 for κg ≤ κ ≤ κǫ

χ(ν/ǫ)1/2 for κǫ ≤ κ . κ3D .

We then have

κ2
θ ∼

1

a+ b
(52)

where

a = κ
−4/3
3D

Sc−1/3
(

κ−2/3g − κ−2/3ǫ

)

and b = κ−2
3D

ln(Sc).

If, moreover, κg ∼ κ0 and κ
¯
∼ κ̄, along with

Sc & G(3r−4)/(8−4r),

then

κ2
θ ∼ κr

3D
κ2−r
0 / ln(κ3D/κǫ) for 4/3 ≤ r < 2. (53)

Proof. As in the 2D case, we first compute

ϑκg,κǫ
∼

χ

µ

(µ3

ǫ

)1/3
(

κ−2/3g − κ−2/3ǫ

)

=
χ

µ
κ
−4/3
3D Sc−1/3

(

κ−2/3g − κ−2/3ǫ

)

ϑκǫ,κ3D
∼

χ

µ

(νµ2

ǫ

)1/2

ln(κ3D/κǫ) ∼
χ

µ
κ−23D ln(Sc).

By hypothesis, 〈|θ|2〉 ∼ ϑκg,κǫ
+ ϑκǫ,κ2D

, giving us (52)

κ2
θ =

χ

µϑκ0,∞
=

1

a+ b
.

For the second part of the theorem, we note that

a . κ−r2Dκ
r−2
0 ln(Sc)

is equivalent to

(κ3D/κ0)
r−4/3

[

(κ0/κg)
2/3 − (κ0/κ̄)

2/3
]

. Sc1/3 ln(Sc)

⇔ (κǫ/κ0)
r−4/3 . Sc1−r/2 ln(Sc).

Arguing as in the 2D case, we bound the left-hand side by the upper bound in (23) and using ln(Sc) > 1 on the
right-hand side, this is implied by

G(3r−4)/8 . Sc1−r/2,

which gives us (53). ✷
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Remark 1 The decay rate of the energy spectrum in the (κg, κǫ)-inertial range is not crucial here. It is the prefactor
in the tracer spectrum that produces the helpful Schmidt number effect in the estimate in Theorem 5. In fact, we
would achieve the same estimate for κθ if we consider a dimensionally correct energy spectrum with a different decay
rate

E3D(κ) ∼ ǫ2/3κ
p−5/3
0 κ−p for any p ∈ (1, 3).

Note that this would violate Kolmogorov’s assumption that E3D depend on only ǫ and κ, as it would now also depend
on L. Nevertheless, an energy spectrum of this form would result in a tracer spectrum [17, (8.94)]

T (κ) ∼ χǫ−1/3κq
0κ

q′−1 with q = (p− 3)/2 and q′ = (5− 3p)/6,

corresponding to a discrete dyadic tracer spectrum

ϑκ,2κ ∼ χǫ−1/3κq′

0 κ
q for κg ≤ κ ≤ κǫ.

Assuming again, that κ0 ∼ κg ≪ κǫ, we have

ϑκg,κǫ
∼ χǫ−1/3κq′

0

(

κq
g − κq

ǫ

)

∼ χǫ−1/3κ
−2/3
0

=
χ

µ

(νµ2

ǫ

)1/3 (µ

ν

)1/3

κ
−2/3
0

=
χ

µ
κ
−4/3
3D Sc−1/3κ

−2/3
0 .

The rest of the estimate for κθ follows as in the proof of Theorem 5.

A. Moderate Schmidt number case, 3D

If in 3D, Sc ∼ 1, we have just the single, steeper tracer spectrum, and κ2
θ ∼ 1/a with a as in Theorem 5. This can

be expressed as κθ ∼ κ
2/3
3D κ

1/3
0 , which gives the same fractional power for the tracer cascade range width as for the

energy cascade in Proposition 2.
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