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ON THE COMPLEXITY OF THE MODEL CHECKING PROBLEM∗

FLORENT R. MADELAINE† AND BARNABY D. MARTIN‡

Abstract. The complexity of the model checking problem for various fragments of first-order
logic (FO) has attracted much attention over the last two decades, in particular for the fragment
induced by ∃ and ∧ and that induced by ∀, ∃, and ∧, which are better known as the constraint
satisfaction problem and the quantified constraint satisfaction problem, respectively. The former was
conjectured to follow a dichotomy between P and NP-complete by Feder and Vardi [SIAM J. Com-
put., 28 (1998), pp. 57–104]. For the latter, there are several partial trichotomy results between P,
NP-complete, and Pspace-complete, and Chen [Meditations on quantified constraint satisfaction, in
Logic and Program Semantics, Springer, Heidelberg, 2012, pp. 35–49] ventured a conjecture regarding
Pspace-completeness vs. membership in NP in the presence of constants. We give a comprehensive
account of the whole field of the complexity of model checking similar syntactic fragments of FO.
The above two fragments are in fact the only ones for which there is currently no known complex-
ity classification. Indeed, we consider all other similar syntactic fragments of FO, induced by the
presence or absence of quantifiers and connectives, and fully classify the complexities of the param-
eterization of the model-checking problem by a finite model D, that is, the expression complexities
for certain finite D. Perhaps surprisingly, we show that for most of these fragments, “tractability”
is witnessed by a generic solving algorithm which uses quantifier relativization. Our classification
methodology relies on tailoring suitably the algebraic approach pioneered by Jeavons, Cohen, and
Gyssens [J. ACM, 44 (1997), pp. 527–548] for the constraint satisfaction problem and by Börner
et al. [Inform. and Comput., 207 (2009), pp. 923–944] for the quantified constraint satisfaction
problem. Most fragments under consideration can be relatively easily classified, either directly or
using Schaefer’s dichotomy theorems for SAT and QSAT, with the notable exception of the positive
equality-free fragment induced by ∃, ∀,∧, and ∨. This outstanding fragment can also be classified
and enjoys a tetrachotomy: according to the model, the corresponding model checking problem is
either tractable, NP-complete, co-NP-complete, or Pspace-complete.

Key words. Galois connection, quantified constraints, universal algebra, computational com-
plexity, logic in computer science
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1. Introduction. The model checking problem over a logic L takes as input or
parameter a structure D and a sentence ϕ of L and asks whether D |= ϕ. Vardi
studied its complexity mostly for logics which subsume first-order logic (FO) [34]. In
this paper, we will be interested in taking syntactic fragments L of FO, induced by
the presence or absence of quantifiers and connectives, and studying the complexities
of the parameterization of the model checking problem by the model D, that is, the
expression complexities for certain D. When L is the primitive positive fragment
of FO, {∃,∧}-FO, the model checking problem is equivalent to the much-studied
constraint satisfaction problem (CSP). The parameterization of this problem by the
model D is equivalent to what is sometimes described as the nonuniform constraint
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†Current addresses: LIMOS, Université Clermont-Auvergne, 63001 Clermont-Ferrand, France,
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770 FLORENT R. MADELAINE AND BARNABY D. MARTIN

satisfaction problem, CSP(D) [20]. It has been conjectured by Feder and Vardi [14]
that the class of CSPs exhibits dichotomy ; that is, CSP(D) is always either in P or
is NP-complete, depending on the model D. While in general this conjecture remains
open, it has been proved for substantial classes and various methods. Combinatorial
(graph-theoretic), logical, and universal-algebraic approaches have been brought to
bear on this classification project, with many remarkable consequences. Schaefer
founded this area and provided a dichotomy for Boolean structures using a logico-
combinatorial approach [33]. Further dichotomies were obtained, e.g., for structures
of size at most three [6], for undirected graphs [16], and for smooth digraphs [1]. A
conjectured delineation for the dichotomy was given in the algebraic language in [5].

When L is positive Horn, {∃,∀,∧}-FO, the model checking problem is equivalent
to the well-studied quantified constraint satisfaction problem (QCSP). No overarching
polychotomy has been conjectured for the nonuniform QCSP(D), although the only
known attainable complexities1 are P, NP-complete, and Pspace-complete. Schaefer
announced a dichotomy in the Boolean case [33] between P and Pspace-complete in the
presence of constants, a dichotomy which was proved to hold even when constants are
not present [13, 12]. Some partial classifications were obtained, algebraically [8, 9, 4]
or combinatorially [31, 30]. A conjecture delineating the border between NP and
Pspace-complete was ventured by Chen in the algebraic language for structures with
all constants [11].

Owing to the natural duality between ∃,∨ and ∀,∧, we also consider various
dual fragments. For example, the dual of {∃,∧}-FO is positive universal disjunctive
FO, {∀,∨}-FO. It is straightforward to see that this class of expression complexities
exhibits a dichotomy between P and co-NP-complete if and only if the class of CSPs
exhibits a dichotomy between P and NP-complete.

Table 1 summarizes the complexity of the model checking for syntactic fragments
of FO, up to this duality. With the exception of the complexity of fragments corre-
sponding to the CSP and QCSP, which are still open and active fields of research, we
prove in this paper all such polychotomies. We study the fragments along the follow-
ing four classes. Fragments of the first class exhibit a trivial complexity (in L) for any
model D, and the proof is simple. A fragment of the second class has trivial complex-
ity if all quantifiers can be relativized to the same constant and hard otherwise (e.g.,
NP-complete for existential fragments and Pspace-complete for fragments that allow
both quantifiers). The third class exhibits the most richness complexity-wise and
cannot be explained by relativization of quantifiers. The two polychotomies we estab-
lish for the third class are corollaries of Schaeffer’s dichotomy theorems. The fourth
class consists solely of positive equality-free first-order logic {∃,∀,∧,∨}-FO and is rich
complexity-wise, though we will see that a drop in complexity is always witnessed by
relativization of quantifiers. For this outstanding fragment, the corresponding model
checking problem can be seen as an extension of the QCSP in which disjunction is
returned to the mix.

We undertook studying the complexity of the model checking of {∃,∀,∧,∨}-FO
through the algebraic method that has been so fruitful in the study of the CSP
and QCSP [33, 19, 6, 4, 9]. To this end, we defined surjective hyper-endomorphisms
and used them to define a Galois connection that characterizes definability under
{∃,∀,∧,∨}-FO and prove that it suffices to study the complexity of problems associ-
ated with the closed sets of the associated lattice, the so-called down-closed monoids

1Some finer results are known within P for the CSP, but so far there has been no attempt to
systematically refine cases within P for the QCSP.
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ON THE COMPLEXITY OF THE MODEL CHECKING PROBLEM 771

Table 1
Complexity of the model checking according to the model for syntactic fragments of FO. L

stands for logarithmic space, P for polynomial time, NP for nondeterministic polynomial time,
co-NP for its dual, and Pspace for polynomial space.

Polychotomies for the expression complexity of the model checking problem

Fragment Dual Complexity Class

{∃,∨} {∀,∧}
Trivial (in L). first{∃,∨,=} {∀,∧, 6=}

{∃,∨, 6=} {∀,∧,=}
{∃,∧,∨} {∀,∧,∨} Trivial (in L) if the core of D has one element and

NP-complete otherwise. second{∃,∧,∨,=} {∀,∧,∨, 6=}
{∃,∧,∨, 6=} {∀,∧,∨,=} Trivial (in L) if |D| = 1 and NP-complete otherwise.

{∃,∧} {∀,∨}
CSP dichotomy conjecture: P or NP-complete.

third

{∃,∧,=} {∀,∨, 6=}

{∃,∧, 6=} {∀,∨,=} Trivial if |D| = 1; in P if |D| = 2 and D is affine or bijunctive;
and NP-complete otherwise.

{∃, ∀,∧} {∃, ∀,∨} Some QCSP trichotomy results between P,
NP-complete, or Pspace-complete.{∃, ∀,∧,=} {∃, ∀,∨, 6=}

{∃, ∀,∧, 6=} {∃, ∀,∨,=} Trivial if |D| = 1; in P if |D| = 2 and D is affine or bijunctive;
and Pspace-complete otherwise.

{∀,∃,∧,∨} Positive equality-free tetrachotomy: P, NP-complete,
co-NP-complete, or Pspace-complete

fourth

{¬, ∃, ∀,∧,∨} Trivial when D contains only trivial relations (empty or all
tuples), and Pspace-complete otherwise.

second{∀, ∃,∧,∨,=} {∀, ∃,∧,∨, 6=}
Trivial when |D| = 1, and Pspace-complete otherwise.{¬, ∃,∀,∧,∨,=}

of unary surjective hyper-operations [25]. Unlike the case of the CSP where the corre-
sponding lattice, the so-called clone lattice, is infinite and essentially uncharted when
the domain size exceeds two, our lattice is finite for any fixed domain. This has
meant that we were able to compute the lattice for modest domain sizes, or chart
parts relevant to our classification project, whether by hand for a domain of up to
three elements [23] or using a computer for up to four elements [32]. These papers
culminate in a full classification—a tetrachotomy—as D ranges over structures with
up to four element domains. Specifically, the problems {∃,∀,∧,∨}-FO(D) are either
in L, are NP-complete, are co-NP-complete, or are Pspace-complete. It is a pleasing
consequence of our algebraic approach that we can give a quite simple explanation to
the delineation of our subclasses. A “drop in complexity” arises precisely when we
may relativize w.l.o.g. all quantifiers of one type to a single domain element. More-
over, for membership of L, NP, and co-NP, it is proved in [25] that it is sufficient that
D has certain special surjective hyper-endomorphisms.

The converse, that it is necessary to have these special surjective hyper-
endomorphisms, is more subtle and was initially only an indirect consequence of our
exploration of the associated lattice. The main contribution of this paper is that we
settle this converse direction and the tetrachotomy for any domain size. A key step is
introducing the notion of a ∀U -∃X-core, which is the analogue for {∃,∀,∧,∨}-FO of
the core, so useful in the case of {∃,∧}-FO and the CSP. This novel notion is fairly
robust: one can relativize simultaneously quantifiers of any {∃,∀,∧,∨}-FO-sentence
to subsets of the domains U and X; and equivalently, there are certain special sur-
jective hyper-morphisms witnessing the special role of these subsets. The second key
step consists of a careful analysis of the down-closed monoid of a ∀U -∃X-core, where
we show that all surjective hyper-morphisms have a special form. Finally, we rely

D
ow

nl
oa

de
d 

07
/1

3/
18

 to
 1

29
.2

34
.3

9.
15

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

772 FLORENT R. MADELAINE AND BARNABY D. MARTIN

heavily on this special form to reduce the complexity analysis to a few generic cases
depending on the relationship and size of the sets U and X.

The paper is organized as follows. We recall basic definitions and state some
known results in section 2. In particular, we introduce hyper-morphisms in subsec-
tion 2.4 and the Galois connection suitable for {∃,∀,∧,∨}-FO in subsection 2.5. In
section 3, we settle the complexity for all fragments except for {∃,∀,∧,∨}-FO. In
section 4, we concentrate on key algebraic and logical properties of {∃,∀,∧,∨}-FO.
In subsection 4.1, we recast the methodology used to derive the Galois connection
for {∃,∀,∧,∨}-FO to provide an algebraic characterization of containment for this
fragment. In subsection 4.2, we refine this methodology to derive an algebraic charac-
terization of relativization for {∃,∀,∧,∨}-FO. In subsection 4.3, we introduce ∀U -∃X-
cores, and in subsection 4.4, we prove some important properties of some surjective
hyper-operations of the ∀U -∃X-core and derive its uniqueness up to isomorphism. In
section 5, we set the lower bounds and prove the tetrachotomy for {∃,∀,∧,∨}-FO.
In particular, a key point presented in subsection 5.1 consists in showing that all
surjective hyper-morphisms of the ∀U -∃X-core have a special form, which allows us
to prove hardness in a generic way in subsequent sections. Finally, in section 6, we
investigate the complexity of the meta-problem: given a finite structure D, what is the
complexity of evaluating positive equality-free sentences of FO over D? We establish
that the meta-problem is NP-hard, even for a fixed and finite signature.

2. Preliminaries.

2.1. Basic definitions. Unless otherwise stated, we shall work with finite rela-
tional structures that have at least one element and share the same finite relational
signature σ. Let D be such a structure. We will denote its domain by D. We denote
the size of such a set D by |D|. The complement D of a structure D consists of rela-
tions that are exactly the set-theoretic complements of those in D. In other words, for

an a-ary R, RD := Da \ RD. For graphs this leads to a slightly nonstandard notion
of complement, as it includes self-loops.

A homomorphism (resp., full homomorphism) from a structure D to a structure
E is a function h : D → E that preserves (resp., preserves fully) the relations of
D; i.e., for all ai-ary relations Ri, and for all x1, . . . , xai ∈ D, Ri(x1, . . . , xai) ∈ D
implies (resp., if and only if) Ri

(
h(x1), . . . , h(xai)

)
∈ E . D and E are homomorphically

equivalent if there are homomorphisms both from D to E and from E to D. Let L be
a fragment of FO. Let 〈D〉L be the set of relations that may be defined on D in L .

We say that D is L -contained in E if and only if, for any ϕ in L , D |= ϕ implies
E |= ϕ. We say that D and E are L -equivalent if and only if, for any ϕ in L ,
D |= ϕ ⇔ E |= ϕ. If E is a minimal structure w.r.t. domain size such that D and E
are L -equivalent, then we say that E is an L -core of D.

Remark 1. When L is {∃,∧}-FO, our definition coincides with the classical no-
tion of a core ofD, which is a minimal substructure that is homomorphically equivalent
to D.

Given a sentence ϕ in {∃,∧}-FO, we denote by Dϕ its canonical database, that is,
the structure with its domain being the variables of ϕ and whose tuples are precisely
those that are atoms of ϕ. In the other direction, given a finite structure A, we write
ϕA for the so-called canonical conjunctive query2 of A, the quantifier-free formula

2Most authors consider the canonical query to be the sentence which is the existential closure of
ϕA.
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that is the conjunction of the positive facts of A, where the variables v1, . . . , v|A|
correspond to the elements a1, . . . , a|A| of A.

2.2. Model checking fragments of FO. Let L be a fragment of FO. Let D
be a fixed structure. The decision problem L (D) takes as input a sentence ϕ of L
and accepts if and only if D |= ϕ. In this paper, we will be concerned with syntactic
fragments L of FO defined by allowing or disallowing symbols from {∃,∀,∧,∨, 6=,=
,¬}. Given any sentence ϕ in L , we may compute in logarithmic space an equivalent
sentence ϕ′ in prenex normal form, with negation pushed inwards to the atomic level.
Since we will not be concerned with complexities beneath L, we assume hereafter
that all inputs are in this form. In general, Pspace membership of FO(D) follows by a
simple evaluation procedure inward through the quantifiers. Similarly, the expression
complexity of the existential fragment {∃,∧,∨, 6=,=}-FO is at most NP, and that of
its dual fragment {∀,∨,∧,=, 6=}-FO is at most co-NP (in both cases, we may even
allow atomic negation) [34].

Let L be a syntactic fragment of FO defined by allowing or disallowing symbols
from {∃,∀,∧,∨, 6=,=}. We denote by L its dual fragment by de Morgan’s law: ∧ is
dual to ∨, ∃ to ∀, and = to 6=.

Proposition 2 (principle of duality). The problem L (D) belongs to a com-
plexity class C if and only if the problem L (D) belongs to the dual complexity class
co-C.

Proof. For any sentence ϕ in L , we may rewrite its negation ¬ϕ by pushing
the negation inwards until all atoms appear negatively, denoting the sentence hence
obtained by ψ (which is logically equivalent to ¬ϕ). Next, we replace every occurrence
of a negated relational symbol ¬R by R to obtain a sentence of L which we denote
by ϕ. The following chain of equivalences holds:

D |= ϕ ⇐⇒ D |= ¬(¬ϕ) ⇐⇒ D |= ¬(ψ) ⇐⇒ D 6|= ψ ⇐⇒ D 6|= ϕ.

Clearly, ϕ can be constructed in logspace from ϕ and the result follows.

2.3. Hintikka games. Let ϕ be a sentence of FO in prenex form. A strategy
for ∃ in the (Hintikka) (A, ϕ)-game is a set of mappings σ = {σx : “∃x” ∈ ϕ}
with one mapping σx for each existentially quantified variable x of ϕ. The mapping
σx ranges over the domain A of A, and its domain is the set of functions from Yx
to A, where Yx denotes the universally quantified variables of ϕ preceding x (σx is
nothing but a Skolem function associated with the existential variable x). We say
that {σx : “∃x” ∈ ϕ} is winning if for any assignment π of the universally quantified
variables of ϕ to A, when each existentially quantified variable x is set according to σx
applied to π|Yx

(the restriction of π to Yx), the quantifier-free part ψ of ϕ is satisfied.
We write σ.π for this map from the variables of the sentence to the domain of A
and refer to this assignment as the variable assignment. It follows directly from our
definitions that A |= ϕ if and only if the existential player has a winning strategy in
the (A, ϕ)-game. For further details, the reader may consult [18].

2.4. Hyper-morphisms. A hyper-operation f from a set A to a set B is a
function from A to the power set of B. For a subset S of A, we define its image f(S)
under the hyper-operation f as

⋃
s∈S f(s). When we wish to stress that an element

may be sent to ∅, we speak of a partial hyper-operation; otherwise we assume that
f is total, that is, for any a in A, f(a) 6= ∅. We say that f is surjective whenever
f(A) = B. To clarify the exposition and better convey our intuition, for elements a
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in A and b in B, we may write that a reaches b or that b is reached by a under f
whenever b ∈ f(a). The inverse of a (total) hyper-operation f from A to B, denoted
by f−1, is the partial hyper-operation from B to A defined for any b in B as f−1(b) :=
{a ∈ A | b ∈ f(a)}. We call an element of f−1(b) an antecedent of b under f . Let
f be a hyper-operation from A to B and g be a hyper-operation from B to C. The
hyper-operation g ◦ f is defined naturally as g ◦ f(x) := g

(
f(x)

)
(recall that f(x) is a

set).
When f is a (total) surjective hyper-operation from A to A, we say that f is a

shop of A. Note that the inverse of a shop is a shop and that the composition of
two shops is a also a shop. Observing further that shop composition is associative
and that the identity shop (which sends an element x of A to the singleton {x}) is
the identity w.r.t. composition, we may consider the monoid generated by a set of
shops. A shop f is a subshop of a shop g whenever, for every x in A, f(x) ⊆ g(x).
A down-shop-monoid (DSM) is a set of shops that contains the identity shop and
is closed under both composition and taking subshops.3 We denote by 〈F 〉DSM the
DSM generated by a set F of shops, that is, the smallest DSM containing F . Let
M and M′ be two DSMs. We say that M is a sub-DSM of M′ or that M′ is a
super-DSM of M whenever M is included in M′.

Let f be a shop of A. When for a subset U of A we have f(U) = A, we say that
f is U -surjective. Observing that the totality of f may be rephrased as f−1(A) = A,
we say more generally that f is X-total for a subset X of A whenever f−1(X) = A.
Note that for shops, U -surjectivity and X-totality are dual to one another; that is,
the inverse of a U -surjective shop is an X-total shop with X = U and vice versa. If f
is a U -surjective shop and U (resp., X-total and X) is a singleton, then we will write
that f is a singleton-surjective (resp., singleton-total) shop.4

Lemma 3. Let f and g be two shops:
(i) If f is a U -surjective shop, then g ◦ f is a U -surjective shop.
(ii) If g is an X-total shop, then g ◦ f is an X-total shop.
(iii) If f is a U -surjective shop and g is an X-total shop, then g ◦ f is a

U -surjective X-total shop.
(iv) If f and g are U -surjective X-total shops, then g ◦ f is a U -surjective

X-total shop.
(v) The iterate of a U -surjective X-total shop is a U -surjective X-total shop.

Proof. We prove (i). Since f(U) = A, we have g(f(U)) = g(A). By the surjec-
tivity of g, we know that g(A) = A. It follows that g(f(U)) = A, and we are done.
(ii) is dual to (i), and (iii) follows directly from (i) and (ii). (iv) is a restriction of (iii)
and is only stated here, as we shall use it often. (v) follows by induction on the order
of iteration using (iv).

A hyper-morphism (resp., full hyper-morphism) f from a structure A to a struc-
ture B is a hyper-operation from A to B such that R(a1, . . . , ai) ∈ A implies (resp.,
if and only if) R(b1, . . . , bi) ∈ B for all b1 ∈ f(a1), . . . , bi ∈ f(ai). When A and B are
the same structure, we speak of a hyper-endomorphism. Note that the inverse of a
full surjective hyper-morphism is also a full surjective hyper-morphism.

2.5. The Galois connection Inv − shE. Let shE(B) be the set of surjective
hyper-endomorphisms of B. For a set F of shops on the same finite domain B, let

3The “down” comes from down-closure, here under subshops; it is a nomenclature inherited
from [3].

4We wrote about A-shops and E-shops in [25].
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Inv(F ) be the set of relations on B of which each f in F is a hyper-endomorphism
(a relation R on B being viewed as the structure 〈B;R〉). Let 〈B〉{∃,∀,∧,∨}-FO be the
sets of relations that may be defined on B in {∃,∀,∧,∨}-FO.

Theorem 4 (see [25, 29]).
(i) For any structure B, 〈B〉{∃,∀,∧,∨}-FO = Inv(shE(B)).
(ii) For any set of shops F , 〈F 〉DSM = shE(Inv(F )).

Corollary 5. Let B and B′ be structures over the same domain B. If shE(B) ⊆
shE(B′), then {∃,∀,∧,∨}-FO(B′) ≤L {∃,∀,∧,∨}-FO(B).

2.6. Some complexity results. We start with two well-known theorems due
to Schaefer. For definitions and further details regarding their proofs, the reader may
consult the nice survey by Chen [10].

Theorem 6 (see [33]). Let D be a Boolean structure. Then CSP(D) (equiva-
lently, {∃,∧}-FO(D)) is in P if all relations of D are simultaneously 0-valid, 1-valid,
Horn, dual-Horn, bijunctive, or affine, and otherwise it is NP-complete.

A similar result holds when universal quantifiers are added to the mix.

Theorem 7 (sketched in the presence of constants [33] and then proved in the
absence of constants in [12, 13]). Let D be a Boolean structure. Then QCSP(D)
(equivalently, {∃,∀,∧}-FO(D)) is in P if all relations of D are simultaneously Horn,
dual-Horn, bijunctive, or affine, and otherwise it is Pspace-complete.

Example 8. The canonical example of a relation that does not fall in any of the
tractable cases is NAE := {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. Let Bnae be the Boolean
structure with this relation. It follows from the above theorems that CSP(Bnae) is
NP-complete and that QCSP(Bnae) is Pspace-complete.

Example 9. For larger domains, though the classification remains open, the canon-
ical hard problem is induced by the relation 6=. Let Kn denote the clique of size n
(we view an undirected graph as a structure with a single binary predicate E that is
symmetric). For n ≥ 3, CSP(Kn) is a reformulation of the n-colorability problem and
is NP-complete. It is also known that for n ≥ 3, QCSP(Kn) is Pspace-complete [4].

The lattice of Boolean DSMs is drawn in Figure 1. We write 0 01
1 1

for the

surjective hyper-operation that sends 0 to {0, 1} and 1 to {1}.

〈
0 01
1 01

〉
DSM

〈
0 1
1 0

〉
DSM

〈
0 0
1 01

〉
DSM

〈
0 01
1 1

〉
DSM

〈
0 0
1 1

〉
DSM

trivial (in L)

hard (Pspace-complete)

Fig. 1. The Boolean lattice of DSMs with their associated complexity ( L or Pspace-complete).
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Theorem 10 (see [25]). Let D be a Boolean structure. If either 0 01
1 1

or

0 0
1 01

is a surjective hyper-endomorphism of D, then {∃,∀,∧,∨}-FO(D) is in L.

Otherwise, {∃,∀,∧,∨}-FO(D) is Pspace-complete.

Example 11. {∃,∀,∧,∨}-FO(Kn) is Pspace-hard for all n ≥ 2. When n ≥ 3, it
follows from the hardness of the QCSP [4]. When n = 2, the QCSP is actually in P
by Theorem 7 since K2 is bijunctive. We appeal to the above to deduce the hardness

of {∃,∀,∧,∨}-FO(K2) from the fact that K2 has DSM shE(B) = 〈 0 1
1 0

〉.

3. Complexity classification of the model checking problem. We assume
at least one quantifier and one binary connective since weaker fragments are trivial
in our context, where we only consider sentences. By the duality principle, we may
consider only purely existential fragments or fragments with both quantifiers.

Regarding connectives, we have three possibilities: purely disjunctive fragments,
purely conjunctive fragments, and fragments with both connectives. Regarding equal-
ity and disequality, we should have the four possible subsets of {=, 6=}, but it will
become clear that cases with both follow the same complexity delineation as the case
with 6= only. Moreover, for fragments with both quantifiers, we may use the dual-
ity principle between {∃,∀,∧} and {∀,∃,∨} to simplify our task. This means that
we would need to consider 3 × 3 positive existential fragments and 2 × 3 positive
fragments with both quantifiers. Actually, we can decrease this last count by one,
due to the duality between {∃,∀,∧,∨, 6=}-FO and {∃,∀,∧,∨,=}-FO. Regarding frag-
ments with ¬, since we necessarily have both connectives and both quantifiers, we
only have to consider two fragments: FO and {∃,∀,∧,∨,¬}-FO. However, we shall
see that the complexity of FO agrees with that of {∃,∀,∧,∨, 6=}-FO (and its dual
{∃,∀,∧,∨,=}-FO).

We proceed through the relevant fragments of Table 1 according to their class.

3.1. First class.

Proposition 12.
(i) When D has a single element, the model checking problem for FO is in L.
(ii) The model checking problem {∃,∨, 6=,=}-FO is in L.

Proof. A Boolean sentence is an expression formed from propositional connec-
tives ∧,∨,¬, etc., from constants 1 and 0 (for true and false, respectively), and from
parentheses. The Boolean sentence value problem (BSVP) is the decision problem of,
given a Boolean sentence, determining whether the value of the sentence is 1 (i.e.,
true). It is known to be in L [22].

(i) In the case where |D| = 1, every relation is either empty or contains all
tuples (one tuple), and the quantifiers ∃ and ∀ are semantically equivalent. Hence,
the problem can be reduced in logspace to the BSVP (under the substitution of 0 and
1 for the empty and nonempty relations, respectively).

(ii) We may assume by the previous point that |D| > 1. We only need to
check whether one of the atoms that occurs as a disjunct in the input sentence holds
in D. Since |D| > 1, a sentence with an atom like x = y or x 6= y is always true in D.
For sentences of {∃,∨}-FO, the atoms may have implicit equality as in R(x, x, y) for
a ternary predicate R: in any case, each atom may be checked in constant time since
D is a fixed structure, resulting in overall logspace complexity.
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3.2. Second class.

Proposition 13. The class of problems {∃,∀,∧,∨, 6=}-FO(D) exhibits a dicho-
tomy: if |D| = 1, then the problem is in L; otherwise it is Pspace-complete. Conse-
quently, the fragment extended with = follows the same dichotomy.

Proof. When |D| ≥ 2, Pspace-hardness may be proved using no extensional re-
lation of D other than 6=. The formula ϕK|D|(x, y) := (x 6= y) simulates the edge
relation of the clique K|D|, and the problem {∃,∀,∧,∨}-FO(K|D|) is Pspace-complete
(see Example 11).

Note that we have not used = in our hardness proof, and, in the case |D| = 1, we
may allow = without affecting tractability (triviality). Thus, the fragment extended
with = follows the same delineation.

Fact 14. Any sentence of {∃,∀,∧,∨,¬}-FO is logically equivalent to false or to
a prenex sentence whose quantifier-free part is a disjunction of conjunction-of-atoms
ψi such that for each r-ary symbol R and each choice of r variables occurring in ψi
exactly one of R(v1, v2, . . . , vr) or ¬R(v1, v2, . . . , vr) is an atom of ψi.

Proof. First, push negations to the atomic level and write the quantifier-free part
ψ of ϕ in disjunctive normal form. If a disjunct ψi has contradictory positive and nega-
tive atoms (as in E(x, y)∧¬E(x, y)), then ψi is false. If this holds for all disjuncts, then
the original sentence is false, and otherwise we may discard such disjuncts and com-
plete the other disjuncts as follows. If neither R(v1, v2, . . . , vr) nor ¬R(v1, v2, . . . , vr)
occurs in ψi, then replace ψi by the logically equivalent

(
ψi∧R(v1, v2, . . . , vr)

)
∨
(
ψi∧

¬R(v1, v2, . . . , vr)
)
.

Lemma 15. Let A and B be two structures such that there is a full surjective
hyper-morphism from A to B. Then, for every sentence ϕ in {∃,∀,∧,∨,¬}-FO, if
A |= ϕ, then B |= ϕ.

Proof. Assume w.l.o.g. that ϕ is in the form of Fact 14. Every conjunction of
atoms ψi corresponds to a structure Dψi

induced naturally by the positive part of ψi.
Observe that, for any structure C, winning the (C, ϕ)-game is now equivalent to the
variable assignment being a full homomorphism from some Dψi

to C.
Let h be a full surjective hyper-morphism from A to B and ϕ be a sentence of

{∃,∀,∧,∨,¬}-FO such that A |= ϕ. We fix arbitrary linear orders over A and B and
denote the minimum of a set using a subscript as in minA.

Let {σx : “∃x” ∈ ϕ} be a winning strategy in the (A, ϕ)-game. We construct
a strategy {σ′x : “∃x” ∈ ϕ} in the (B, ϕ)-game as follows. Let πB : Yx → B be an
assignment to the universal variables Yx preceding an existential variable x in ϕ; then
we set σ′x(πB) := minB h(σx(πA)), where πA : Yx → A is the assignment such that
for any universal variable y preceding x, we have πA(y) := minA h

−1(πB(y)).
This strategy is well defined since h is surjective (which means that πA is well

defined) and total (which means that h(σx(πA)) 6= ∅). It remains to prove that
{σ′x : “∃x” ∈ ϕ} is winning.

Let wA be the full homomorphism from some Dψi
to A induced by the assignment

πA to the universal variables and the winning strategy {σx : “∃x” ∈ ϕ}. Viewing wA
as a full hyper-morphism with singleton range, let g := h ◦ wA. Note that g is a
full hyper-morphism from Dψi

to B. Note also that the map wB from the domain
of Dψi

to B induced by πB and the strategy {σ′x : “∃x” ∈ ϕ} is a range restriction
of this full hyper-morphism and is therefore a full homomorphism. This proves that
{σ′x : “∃x” ∈ ϕ} is indeed a winning strategy for ∃ in the (B, ϕ)-game.
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As a corollary, we note the fact that containment and equivalence coincide for
{∃,∀,∧,∨,¬}-FO since this logic is closed under negation. At the algebraic level,
this argument becomes that the inverse of a full surjective hyper-morphism is a full
surjective hyper-morphism.

For {∃,∀,∧,∨,¬}-FO, we define an equivalence relation ∼ over the structure
elements in the spirit of the Leibnitz rule for equality. For propositions P and Q, let
P ↔ Q be an abbreviation for (P ∧ Q) ∨ (¬P ∧ ¬Q). For each r-ary symbol R, let
ψR(x, y) stand for (

R(x, z1, z2, . . . , zr−1)↔ R(y, z1, z2, . . . , zr−1)
)

∧
(
R(z1, x, z2, . . . , zr−1)↔ R(z1, y, z2, . . . , zr−1)

)
∧ . . .
∧
(
R(z1, z2, . . . , zr−1, x)↔ R(z1, z2, . . . , zr−1, y)

)
.

Let ϕ∼(x, y) :=
∧
R∈σ ∀z1, z2, . . . , zr−1ψR(x, y). It is straightforward to verify that ϕ∼

induces an equivalence relation ∼ over the vertices. Let A/∼ be the quotient structure
defined in the natural way. Mapping an element to its equivalence class results in a full
surjective homomorphism from A to A/∼. Its inverse (viewing the homomorphism
as a hyper-morphism) is a full surjective hyper-morphism from A/∼ to A. Thus, it
follows from Lemma 15 that A and A/∼ are {∃,∀,∧,∨,¬}-FO-equivalent.

Proposition 16. The class of problems {∃,∀,∧,∨,¬}-FO(D) exhibits a dicho-
tomy: if all relations of D are trivial (either empty or contain all tuples), then the
problem is in L; otherwise it is Pspace-complete.

Proof. If all relations are trivial, then ∼ has a single equivalence class and D/∼
has a single element. It suffices to check whether an input ϕ in {∃,∀,∧,∨,¬}-FO
holds in this one element structure; hence the problem is in L.

Otherwise, the equivalence relation ∼ has at least n ≥ 2 equivalence classes
since D is nontrivial. We reduce from the Pspace-complete {∃,∀,∧,∨}-FO(Kn) (see
Example 11): the reduction consists in substituting every instance of E(x, y) by
ϕ∼(x, y).

In our preliminary work [28, 27], the proof of the following is combinatorial and
appeals to Hell and Nešetřil’s dichotomy theorem for undirected graphs [16]. An
alternative proof appeared later in [17, 2] when equality is present, and it uses the
Galois connection Inv − End due to Krasner [21]. We only sketch the proof in the
absence of equality (a full proof is available on the webpages of the authors).

Proposition 17. The class of problems {∃,∧,∨}-FO(D) exhibits a dichotomy: if
the core of D has one element, then the problem is in L; otherwise it is NP-complete.
As a corollary, the class of problems {∃,∧,∨,=}-FO(D) exhibits the same dichotomy.

Proof sketch. The first step consists in showing that the classical notion of a core
is also the correct notion of L -core when L is {∃,∧,∨}-FO or {∃,∧,∨,=}-FO.

For a structure B, let hE(B) be the set of hyper-endomorphisms of B. The next
step consists in proving a variant of Krasner’s Galois connection when equality is ab-
sent, namely the Galois connection Inv − hE. As a corollary, we obtain that when
B and B′ are two structures over the same domain B, if hE(B) ⊆ hE(B′), then
{∃,∧,∨}-FO(B′) ≤L {∃,∧,∨}-FO(B).

We assume w.l.o.g. that D is a core. This means that every hyper-endomorphism
of D is in fact an automorphism—we identify hyper-endomorphisms whose range
is a set of singletons with automorphisms—and thus hE(D) is a subset of Sn where
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n = |D|. If D has one element, then the problem is trivial. If D has two elements, then
hE(D) ⊆ hE(Bnae) = S2 and it follows that {∃,∧,∨}-FO(Bnae) ≤L {∃,∧,∨}-FO(D).
Since the former is a generalization of the NP-complete CSP(Bnae), the latter is NP-
complete. If D has n ≥ 2 elements, then we proceed similarly with Kn.

The same classification holds for the fragment with equality via the same argu-
ment as in the proof of Proposition 13.

The proof of the following is similar to that of Proposition 13.

Proposition 18. The class of problems {∃,∧,∨, 6=}-FO(D) exhibits a dichotomy:
if |D| = 1, then the problem is in L; otherwise it is NP-complete. Consequently, the
fragment extended with = follows the same dichotomy.

Remark 19. It is not very difficult to show that the notion of an L -core coincides
with the classical notion of a core for fragments with {∃,∧} and possibly ∨ or =. For
{∃,∀,∧,∨,¬}-FO, we get the quotient by ∼, and for any fragment L that contains
{∃,∧, 6=}-FO or its dual, every structure is its own L -core.

Thus, all fragments of the second class follow a natural dichotomy.

Corollary 20. For any syntactic fragment L of FO in the second class, the
model checking problem L (D) is trivial (in L) when the L -core of D has one element
and hard otherwise ( NP-complete for existential fragments and Pspace-complete for
fragments containing both quantifiers).

3.3. Third class.

Proposition 21. The problem {∃,∧, 6=}-FO(D) is in L if |D| = 1 and in P if
|D| = 2, and D is bijunctive or affine, and NP-complete otherwise. The fragment
extended with = follows the same dichotomy.

Proof. We classify first the fragment extended with =. When |D| ≥ 3, we may use
6= for a trivial reduction from CSP(K|D|), which is NP-complete. When |D| = 1, the
problem is trivially in L by Proposition 12. We are left with the Boolean case. Let D6=
denote the expansion of D with 6=D . Note that {∃,∧, 6=,=}-FO(D) coincides with
{∃,∧,=}-FO(D6=), which is the Boolean CSP(D6=). We apply Schaefer’s theorem.
The relation 6= is neither Horn, nor dual-Horn, nor 0-valid, nor 1-valid, as it is not
closed under any of the following Boolean operations: ∧, ∨, c0, or c1 (the constant
functions 0 and 1). The relation 6= is both bijunctive and affine, as it is closed under
both the Boolean majority and the minority operations (see Chen’s survey for the
definitions [10]). Consequently, {∃,∧, 6=,=}-FO(D) is in P if D is bijunctive or affine,
and NP-complete otherwise.

It remains to classify the fragment without =. Note that above we have not used
= in the hardness proof when |D| ≥ 3. When |D| = 2, we appealed to Schaefer’s
theorem (Theorem 6). We can propagate out = in polynomial time by renaming
variables. Thus, such cases remain hard also in the absence of =, and our claim
follows for the fragment {∃,∧, 6=}-FO.

Proposition 22. The problem {∃,∀,∧, 6=}-FO(D) is in L if |D| = 1 and in P if
|D| = 2, and D is bijunctive or affine, and Pspace-complete otherwise. The fragment
extended with = follows the same dichotomy.

Proof. We use the same notation as in the proof of Proposition 21 and proceed
similarly. When |D| ≥ 3, we may use 6= to trivially reduce the Pspace-complete
QCSP(K|D|) to {∃,∀,∧, 6=}-FO(D). In the Boolean case, we apply Theorem 7 to
{∃,∀,∧}-FO(D6=), and the result follows. Again, equality may be propagated out and
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hardness results extend to the fragment without =.

The cases of {∃,∧}-FO and {∃,∧,=}-FO almost coincide, as equality may be
propagated out by substitution, and every sentence of the latter is logically equiva-
lent to a sentence of the former, with the exception of sentences using only = as an
extensional predicate like ∃xx = x which are tautologies, as we only ever consider
structures with at least one element. In the case of {∃,∀,∧,=}-FO, some equalities
like ∃x∃y x = y and ∀x∃y x = y may also be propagated out by substitution. However,
equalities like ∃x∀y x = y and ∀x∀y x = y cannot, but they hold only in structures
with a single element. This technical issue does not really affect the complexity classi-
fication, and it would suffice to consider {∃,∧}-FO and {∃,∀,∧}-FO. The complexity
classifications for these two fragments remain open and correspond to the dichotomy
conjecture for the CSP and the classification program of the QCSP. In practice,
we like to pretend that equality is present, as it provides a better behaved algebraic
framework, without affecting complexity.

3.4. Fourth class. The following—left as a conjecture at the end of [25, 32]—is
the main contribution of this paper.

Theorem 23. Let D be any structure:
I. If D is preserved by both a singleton-surjective shop and a singleton-total

shop, then {∃,∀,∧,∨}-FO(D) is in L.
II. If D is preserved by a singleton-surjective shop but is not preserved by any

singleton-total shop, then {∃,∀,∧,∨}-FO(D) is NP-complete.
III. If D is preserved by a singleton-total shop but is not preserved by any

singleton-surjective shop, then {∃,∀,∧,∨}-FO(D) is co-NP-complete.
IV. If D is preserved neither by a singleton-surjective shop nor by a singleton-

total shop, then {∃,∀,∧,∨}-FO(D) is Pspace-complete.

The upper bounds (membership in L, NP, and co-NP) for Cases I, II, and III
were known from [25]. The lower bounds are proved in section 5.

4. Containment, relativization, and a core for {∃, ∀,∧,∨}-FO.

4.1. A theorem à la Chandra and Merlin for {∃, ∀,∧,∨}-FO. It is well
known that conjunctive query containment is characterized by the presence of homo-
morphism between the corresponding canonical databases.

Theorem 24 (see Chandra and Merlin [7]; see also [15, Chapter 6]). Let A and
B be two structures. The following are equivalent:

(i) For every sentence ϕ in {∃,∧}-FO, if A |= ϕ, then B |= ϕ.
(ii) There exists a homomorphism from A to B.

(iii) B |= ϕ
{∃,∧}-FO
A , where ϕ

{∃,∧}-FO
A := ∃v1∃v2 . . . v|A|ϕA.

Similarly, we characterize both algebraically and in terms of a canonical sentence
the containment for {∃,∀,∧,∨}-FO, a result that was not explicitly stated in [25] but
follows easily from the ingredients needed to establish the Galois connection Inv− shE
(see Theorem 4). It is crucial that we provide here some details, as we shall tweak
some of these proofs in the next section.

Fact 25. Any sentence of {∃,∀,∧,∨}-FO is logically equivalent to a prenex sen-
tence whose quantifier-free part is a disjunction of conjunction-of-positive-atoms ψi.

Winning the (A, ϕ)-game for a sentence ϕ may be recast as the existence of a
surjective hyper-endomorphism from the canonical database Dψi

of some disjunct ψi
to A. Thus we may prove in the same fashion the following analogue of Lemma 15.
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Lemma 26. Let A and B be two structures such that there is a surjective hyper-
morphism from A to B. Then, for every sentence ϕ in {∃,∀,∧,∨}-FO, if A |= ϕ,
then B |= ϕ.

We extend the notion of canonical conjunctive query of a structure A. Given a
tuple of (not necessarily distinct) elements r := (r1, . . . , rl) ∈ Al, define the quantifier-
free formula ϕA(r)(v1, . . . , vl) to be the conjunction of the positive facts of r, where
the variables v1, . . . , vl correspond to the elements r1, . . . , rl. That is, R(vλ1

, . . . , vλi
)

appears as an atom in ϕA(r) if and only if R(rλ1
, . . . , rλi

) holds in A. When r enumer-
ates the elements of the structure A, this definition coincides with the usual definition
of canonical conjunctive query. Note also that there is a full homomorphism from the
canonical database DϕA(r)

to A given by the map vλi 7→ ri. Below, we write A(r, t)
to stress that the tuple of elements of A consists of two subtuples r and t.

Definition 27 (see [25]). Let A be a structure, and let m > 0. Let r be an
enumeration of the elements of A:

θ
{∃,∀,∧,∨}-FO
A,m := ∃v1, . . . , v|A|ϕA(r)(v1, . . . , v|A|) ∧ ∀w1, . . . , wm

∨
t∈Am

ϕA(r,t)(v,w).

Observe that A |= θ
{∃,∀,∧,∨}-FO
A,m . Indeed, we may take as a witness for the variables

v the corresponding enumeration r of the elements of A, and, for any assignment
t ∈ Am to the universal variables w, it is clear that A |= ϕA(r,t)(r, t) holds.

Lemma 28. Let A and B be two structures. If B |= θ
{∃,∀,∧,∨}-FO
A,|B| , then there is a

surjective hyper-morphism from A to B.

Proof. Let b′ := b′1, . . . , b
′
|A| be witnesses for v1, . . . , v|A|. Assume that an enu-

meration b := b1, b2, . . . , b|B| of the elements of B is chosen for the universal variables
w1, . . . , w|B|. Let t ∈ Am such that B |= ϕA(r)(b

′) ∧ ϕA(r,t)(b
′,b).

Let f be the map from the domain of A to the power set of that of B which is the
union of the following two partial hyper-operations h and g (i.e., f(ai) := h(ai)∪g(ai)
for any element ai of A), which guarantee totality and surjectivity, respectively. Let
r be the enumeration a1, a2, . . . , a|A| of A. We set

• h(ai) := b′i (totality).
We set g to be the partial hyper-operation that is the smallest w.r.t. to inclusion (of
hyper-operations) such that

• bi ∈ g(ti) (surjectivity).
It remains to show that f is preserving. This follows from B |= ϕA(r,t)(b

′,b).
Let R be an r-ary relational symbol such that R(ai1 , . . . , air ) holds in A. Let

b′′i1 ∈ f(ai1), . . . , b′′ir ∈ f(ar). We will show that R(b′′i1 , . . . , b
′′
ir

) holds in B. Assume
for clarity of the exposition and w.l.o.g. that from i1 to ik the image is set according
to h and from ik+1 to ir according to g, i.e., for 1 ≤ j ≤ k, h(aij ) = b′ij = b′′ij , and

for k + 1 ≤ j ≤ r, there is some lj such that tlj = aij and b′′ij = blj ∈ g(tlj ). By the

definition of A(r, t), the atom R(vi1 , . . . , vik , wlk+1
, . . . , wr) appears in ϕA(r,t)(v,w).

It follows from B |= ϕA(r,t)(b
′,b) that R(b′′i1 , . . . , b

′′
ir

) holds in B.

Theorem 29. Let A and B be two structures. The following are equivalent:
(i) For every sentence ϕ in {∃,∀,∧,∨}-FO, if A |= ϕ, then B |= ϕ.
(ii) There exists a surjective hyper-morphism from A to B.

(iii) B |= θ
{∃,∀,∧,∨}-FO
A,|B| .
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Proof. By construction, A |= θ
{∃,∀,∧,∨}-FO
A,|B| , so (i) implies (iii). By Lemma 26, (ii)

implies (i). By Lemma 28, (iii) implies (ii).

4.2. Relativization. Let A be a finite structure over a set A, and let U,X be
two subsets of A. Given a formula ϕ, we denote by ϕ[∀u/∀u∈U,∃x/∃x∈X] the formula
obtained from ϕ by relativizing simultaneously every universal quantifier to U and
every existential quantifier to X. When we only relativize universal quantifiers to U ,
we write ϕ[∀u/∀u∈U ], and when we only relativize existential quantifiers to X, we write
ϕ[∃x/∃x∈X]. Formally, U should also be understood as denoting a new unary symbol,
not present in the signature of A, whose interpretation is the subset U of A. However,
for the sake of simplicity and readability, rather than writing 〈A, U〉 |= ϕ[∀u/∀u∈U ],
we will abuse this notation and write A |= ϕ[∀u/∀u∈U ] instead. We proceed similarly
with X.

Definition 30. Let A be a finite structure over a set A, and let U,X be two
subsets of A. We say that A has ∀U -∃X-relativization if, for all sentences ϕ in
{∃,∀,∧,∨}-FO, the following are equivalent:

(i) A |= ϕ.
(ii) A |= ϕ[∀u/∀u∈U ].

(iii) A |= ϕ[∃x/∃x∈X].

(iv) A |= ϕ[∀u/∀u∈U,∃x/∃x∈X].

Lemma 31. Let A be a finite structure over a set A, and let U,X be two subsets
of A. If A has a U -surjective X-total hyper-endomorphism, then A has ∀U -∃X-
relativization.

Proof. Note that in Definition 30, we have (iii) ⇒ (i) ⇒ (ii) and (iii) ⇒ (iv) ⇒
(ii) trivially. It suffices to prove that (ii) ⇒ (i) and (i) ⇒ (iii) to complete the proof.
To do so, we will consider the (A, ϕ)-game corresponding to case (i), called the unrel-
ativized game hereafter, and we will consider the relativized games corresponding to
the relativized formulae from cases (ii) and (iii). The relativized game is considered
to be clear from context: we consider either partial Skolem functions that need only
be defined when universal variables range over U or Skolem functions that must range
over X.

Let h be a U -surjective X-total hyper-endomorphism of A. We fix an arbitrary
linear order over A and denote the minimum by minA.

((ii) ⇒ (i)). Let {σx : “∃x” ∈ ϕ} be a winning strategy in the universally rel-
ativized game. We derive a winning strategy in the unrelativized game using h as
follows.

Let πA : Yx → A be an assignment to the universal variables Yx preceding an
existential variable x in ϕ, where πA ranges over both U and A\U . We set σ′x(πA) :=
minA h(σx(πU )), where πU : Yx → U is an assignment such that for any universal
variable y preceding x, we have πU (y) := minA(h−1(πA(y)) ∩ U). This is possible
since h is U -surjective (which means that πU is well defined) and A-total (which
means that h(σx(πU )) 6= ∅). This does provide us with a winning strategy since
h is a hyper-endomorphism of A and will preserve the winning condition from the
universally relativized game to the unrelativized game.

((i) ⇒ (iii)). This is dual to the above and relies on X-totality. For any π′A :
Yx → A, set σ′x(π′A) := minA(h(σx(πA)) ∩X), where πA(y) := minA(h−1(πA(y))).

Proposition 32. The following are equivalent:
(i) A has ∀U -∃X-relativization.
(ii) A has ∀X-∃U -relativization.
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Proof. It suffices to prove one implication. We prove that (ii) implies (i). Let
ϕ be a sentence of {∃,∀,∧,∨}-FO. We use the duality principle and prove that
A |= ϕ ⇐⇒ A |= ϕ[∀u/∀u∈U ]. The other cases are similar and are omitted.

We follow the same notation as in the proof of Proposition 2. By assumption, A 6|=
ϕ ⇐⇒ A 6|= ϕ[∃u/∃u∈U ]. Using the chain of equivalences from this proof backward
and propagating the relativization, we obtain the following chain of equivalences:

A 6|= ϕ[∃u/∃u∈U ] ⇐⇒ A 6|= ψ[∃u/∃u∈U ] ⇐⇒ A |= ¬(ψ[∃u/∃u∈U ])

⇐⇒ A |= ¬(¬ϕ[∀u/∀u∈U ]) ⇐⇒ A |= ϕ[∀u/∀u∈U ].

Lemma 33. Let A be a finite structure over a set A, and let U,X be two sub-
sets of A. If A has ∀U -∃X-relativization, then A has a U -surjective X-total hyper-
endomorphism.

Proof. Using the fact that the identity (defined as i(x) := {x} for every x inA) is a
surjective hyper-endomorphism of A and applying Theorem 29, we derive that A |= θ,

where θ is short for θ
{∃,∀,∧,∨}-FO
A,|A| . By assumption, we may equivalently relativize its

existential quantifiers to X (Definition 30 (i)⇒ (iii)) and A |= θ[∃x/∃x∈X]. Proceeding
as in the proof of Lemma 28 but over this relativized sentence, we derive the existence
of an X-total surjective hyper-operation g. Using Proposition 32 and working over
A, we derive similarly that A has a U -total surjective hyper-operation. Let f be the
inverse of this hyper-operation. Observe that it is a U -surjective hyper-operation.
By Lemma 3, the composition of these operations g ◦ f is an X-total U -surjective
hyper-endomorphism, as required.

Together, the two previous lemmata establish an algebraic characterization of
relativization.

Theorem 34. Let A be a finite structure over a set A, and let U,X be two subsets
of A. The following are equivalent:

(i) The structure A has ∀U -∃X-relativization.
(ii) The structure A has an X-total U -surjective hyper-endomorphism.

Corollary 35. Let A be a finite structure that has a U -surjective X-total hyper-
endomorphism. Let Ã be the substructure of A induced by U∪X. The following hold:

(i) A and Ã are {∃,∀,∧,∨}-FO-equivalent.

(ii) Ã has ∀U -∃X-relativization.

Proof. Let f be the U -surjective X-total hyper-endomorphism of A. Its range
restriction g to Ã = U ∪X is a surjective hyper-morphism from A to Ã. The inverse
g−1 of g is a surjective hyper-morphism from Ã to A by X-totality of f . Appealing
to Lemma 26 twice, once with g and once with g−1, we obtain (i).

The restriction of g to Ã is a U -surjective X-total hyper-endomorphism of Ã, and
(ii) follows from Lemma 31.

4.3. The ∀U-∃X-core. Unless otherwise stated, from now on minimality or
maximality of sets is w.r.t. inclusion. Given a structureD, we consider all minimal sub-
sets X of D such that there is an X-total surjective hyper-endomorphism g of D and
all minimal subsets U such that there is a U -surjective hyper-endomorphism f of D.
Such sets always exist, as totality and surjectivity of surjective hyper-endomorphisms
mean that in the worst case we may choose U = X = D. Recall that g ◦ f is an
X-total U -surjective hyper-endomorphisms of D by Lemma 3. Thus, we may further-
more require that among all minimal sets satisfying the above, we choose a set U and
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a set X in D with U ∩X maximal. Let D̃ be the substructure of D induced by U ∪X.
We call D̃ a ∀U -∃X-core of D.

Proposition 36. Given a structure D, minimal subsets X (resp., U) of D such
that there is an X-total (resp., U -surjective) surjective hyper-endomorphism g of D
all have the same size.

Proof. Assume that there is an X1-total shop h1 and an X2-total shop h2 that
preserve D such that |X1| > |X2|. We consider images of h1 ◦ h2. For each element
x2 in X2, pick a single element x′1 of X1 in h1(X2) such that x′1 ∈ h1(x2). Let X ′1
denote the set of picked elements. Since |X1| > |X2|, then h1 ◦ h2 is an X ′1-shop that
preserves D with |X ′1| ≤ |X2|. Diagrammatically, this can be written as

D
h2−→ X2

h1−→ X ′1 ⊆ h1(X2) ∩X1 ⊆ X1 ⊆ h1 ◦ h2(D).

This completes the proof.

Remark 37. This means that we may look for an X-total shop where the set X is
minimal w.r.t. inclusion, or equivalently for a set with minimal size |X|. So, in order
to find an X-total shop with a minimal set |X|, we may proceed greedily, removing
elements from D while we have an X-total shop until we obtain a set X such that
there is no X ′-shop for X ′ ( X. The dual argument applies to U -surjective shops
and consequently to U -surjective X-total shops.

This further explains why minimizing U and X, and then maximizing their in-
tersection, necessarily leads to a minimal D̃ := U ∪X also. This is because if there
were U ′ ∪X ′ of smaller size, we might look within U ′ and X ′ for potentially smaller
sets of cardinality |U | and |X|, thus contradicting minimality.

Note that the sets U and X are not necessarily unique. However, the ∀U -∃X-core
is unique up to isomorphism (see Theorem 45). Moreover, within D̃, the sets U and
X are uniquely determined (see Theorem 49).

4.4. Uniqueness of the ∀U-∃X-core. Throughout this section, let D be a
finite structure and M its associated DSM; i.e., M is the set of surjective hyper-
endomorphisms of D. Let U and X be subsets of D such that the substructure D̃ of
D induced by D̃ = U ∪ X is a ∀U -∃X-core of D. We will progress through various
lemmata and eventually derive the existence of a canonical ∀U -∃X-shop in M which
will be used to prove that the ∀U -∃X-core is unique up to isomorphism. Uniqueness
of the ∀U -∃X-core has no real bearing on our classification program, but the canonical
shop will allow us to characterize all other shops inM, which will be instrumental in
the hardness proofs for {∃,∀,∧,∨}-FO(D).

Lemma 38. Let f be a shop in M (note that f is an arbitrary shop). For any
element z in D, f(z) contains at most one element of the set U , that is, |f(z)∩U | ≤ 1.

Proof. Assume for contradiction that there are some z and some distinct elements
u1 and u2 of U such that f(z) ⊇ {u1, u2}. Let z3, z4, . . . be any choice of antecedents
under f of the remaining elements u3, u4, . . . of U (recall that f is surjective). By
assumption, the monoid M contains a U -surjective shop g. Hence, g ◦ f would be a
U ′-surjective shop with U ′ = {z, z3, z4, . . .} since f(U ′) ⊆ U and g(U) = D. We get a
contradiction, as |U ′| < |U |.

Lemma 39. Let f be a U -surjective shop in M. There exists a permutation α of
U such that for any u in U ,

(i) f(u) ∩ U = {α(u)} and
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(ii) f−1(u) ∩ U = {α−1(u)}.
Proof. It follows from Lemma 38 that for any u in U , |f(u) ∩ U | ≤ 1. Since f is

a U -surjective shop, every element in D has an antecedent in U under f , and thus
in particular for any u in U , |f−1(u) ∩ U | ≥ 1. Note that if some element of U had
no image in U , then as U is finite, we would have an element of U with two distinct
images in U . Hence, for any u in U , |f(u) ∩ U | = 1 and the result follows.

The dual statements concerning X and X-total shops hold.

Lemma 40. Let f be a shop in M (note that f is an arbitrary shop). For any
element z in D, f−1(z) contains at most one element of the set X, that is, |f−1(z)∩
X| ≤ 1.

Proof. This is by duality from Lemma 38.

Lemma 41. Let f be an X-total shop in M. There exists a permutation β of X
such that for any x in X,

(i) f(x) ∩X = {β(x)} and
(ii) f−1(x) ∩X = {β−1(x)}.

Proof. This is by duality from Lemma 39.

Lemma 42. If f is a U -surjective X-total shop in M, then f(X) ∩ (U \X) = ∅.
Proof. Assume for contradiction that for some x1 ∈ X and some u1 ∈ U \X, we

have u1 ∈ f(x1). Since f is an X-total shop, every element is an antecedent under
f of some element in X; in particular, every element x2, x3, . . . ∈ X (different from
x1) has a unique image x′2, x

′
3, . . . ∈ X (see Lemma 41). Some element of X, say xi,

does not occur in these images. Necessarily, x1 reaches xi. Note that xi cannot also
belong to U , as otherwise xi and u1, two distinct elements of U , would be reached
by x1, contradicting Lemma 38. Thus, we must have that xi belongs to X \ U . Let
U ′ := U and X ′ := X \ {xi} ∪ {u1}. Note that f2 := f ◦ f , the second iterate of f , is
a U ′-surjective X ′-total shop with |U ′| = |U |, |X ′| = |X|, and |U ′ ∩ X ′| > |U ∩ X|.
This contradicts our hypothesis on U and X.

Proposition 43. Let M be a DSM over a set D and U , and let X be minimal
subsets of D such that there is a U -surjective shop in M, there is an X-total shop in
M, and U ∪ X is minimal. Then there is a U -surjective X-total shop h in M that
has the following properties:

(i) for any z in X, h(z) ∩ (U ∪X) = {z};
(ii) for any u in U \X, h(u)∩ (U ∪X) = {u} ∪Xu, where Xu ⊆ X \U ; and
(iii) h(U \X) ∩X =

⋃
u∈U\X Xu = X \ U.

Proof. By assumption, M contains a U -surjective X-total shop f . Let α and β
be permutations of U and X, respectively, as in Lemmas 39 and 41. Let r be the least
common multiple of the order of the permutations β and α. We set h to be the rth
iterate of f , and we now know that z ∈ h(z) for any element z in U ∪X and that h is
a U -surjective X-total shop by Lemma 3. Letting y in U ∩X, we know that y ∈ h(y).
We cannot have another element from U ∪ X in h(y) by Lemmas 38 and 41. This
proves (i) in part; the other case follows. Letting x in X \U , we know that x ∈ h(x).
We cannot have an element from X distinct from x in h(x) by Lemma 41, and we
cannot have an element from U \X in h(x) by Lemma 42. This proves (i). Letting u
in U \X, we know that u ∈ h(u). We cannot have an element from U distinct from
u in h(u) by Lemma 39. We may have, however, some elements from X \ U in h(u).
Thus, there is a set ∅ ⊆ Xu ⊆ X \ U such that h(u) ∩ (U ∪ X) = {u} ∪ Xu. This
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proves (ii). By construction, h is a U -surjective shop and every element must have an
antecedent in U under h. Since by the first two points elements from X \U can only
be reached from elements of U that are in U \X, the last point (iii) follows.

Remark 44. Given h1 and h2 of the form in Proposition 43, h1 ◦ h2 is also of the
required form, and further satisfies h1◦h2(z) = h1(z)∪h2(z), for all z ∈ U \X. Hence,
in general, given suitable U and X and taking the composition of all such shops results
in a canonical shop h of this form with |h(z)| maximal for each z ∈ U \X.

Theorem 45. The ∀U -∃X-core is unique up to isomorphism.

Proof. Let h1 be a U1-X1-shop with minimal |U1|, |X1|, and |U1 ∪ X1|, and let
h2 be a U2-X2-shop with minimal |U2|, |X2|, and |U2 ∪ X2|. Hence, h1 ◦ h2 is an
h1(X2) ∩ X1-shop with |h1(X2)| ≤ |X1|. By minimality of X1, |h1(X2)| = |X1|,
and the restriction of h1 to domain X2 and codomain X1 induces a surjective homo-
morphism from the substructure induced by X2 to the substructure induced by X1.
Similarly, h2 induces a surjective homomorphism in the other direction. As we work
with finite structures, h1 induces an isomorphism i from the substructure induced by
X1 to the substructure induced by X2. By duality, we also get that h1 induces an
isomorphism i′ from the substructure induced by U1 to the substructure induced by
U2. By construction, i and i′ agree on U1∩X1 (necessarily to U2∩X2) and the result
follows.

5. Proving hardness to establish the tetrachotomy. Our aim is to derive
the lower bounds of Theorem 23 to conclude its proof. It follows from Proposition 43
and Corollary 35 that the complexity of a structure D is the same as the complexity
of its ∀U -∃X-core. Hence, in this section, we assume w.l.o.g. that U ∪ X = D. We
will say in this case that the DSM M is reduced.

The lower bounds can be rephrased as follows:
II. If U is of size one and X of size at least two, then {∃,∀,∧,∨}-FO(D) is

NP-hard.
III. If X is of size one and U of size at least two, then {∃,∀,∧,∨}-FO(D) is

co-NP-hard.
IV. If both U and X have at least two elements, then {∃,∀,∧,∨}-FO(D) is Pspace-

hard.
In subsection 5.1, we study extensively reduced monoids. Cases II and III are

proved in subsection 5.3. Finally, case IV is proved in subsection 5.4.
In the following, we will describe a DSMM as being (NP, co-NP, Pspace)-hard in

the case that {∃,∀,∧,∨}-FO(D) is hard for some structure D, with the same domain
asM and relations from Inv(M) (we shall write D ∈ Inv(M) to denote this hereafter).

In order to facilitate the hardness proof, we will show the hardness of a monoid
M̂ with a very simple structure of which M is in fact a sub-DSM (as in general

M̂ preserves fewer relations than M, the hardness of M would follow). We ensure

that the structure of M̂ is sufficiently simple to allow us to build canonically some
relatively simple gadgets for our hardness proof.

5.1. Characterizing reduced DSMs. Any U -surjective X-total shop in M
will be shown to be in the following special form, reminiscent of the form of the
canonical shop.

Definition 46. We say that a shop f is in the 3-permuted form if there are a
permutation ζ of X ∩ U , a permutation χ of X \ U , and a permutation υ of U \ X
such that f satisfies the following:
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• for any y in U ∩X, f(y) = {ζ(y)};
• for any x in X \ U , f(x) = {χ(x)}; and,
• for any u in U \X, f(u) = {υ(u)} ∪Xu, where Xu ⊆ X \ U .

Lemma 47. If a shop f satisfies f(X)∩ (U \X) = ∅, then f is in the 3-permuted
form (note that f is an arbitrary shop).

We have to be careful to prove the above, as we do not assume f to be a U -
surjective X-total shop: in particular, we may not use the “permutation Lemmata” 39
and 41. We have to use the weaker but more general Lemmas 38 and 40.

Proof. The hypothesis forces an element of X to reach an element of X, and
Lemma 40 forces two elements of X to have different images. Since X is finite, there
exists a permutation β of X such that for every x in X, f(x) = {β(x)}. Since
Lemma 38 forces in particular an element of U to have at most one element of U in
its image and since U is finite, it follows that there exists a permutation α of U such
that for every u in U , f(u) ∩ U = {α(U)} and f−1(u) ∩ U = {α−1(U)}.

It follows that there exists a permutation ζ of U ∩X such that for any y in U ∩X,
f(y) = {ζ(y)}.

The existence of a permutation χ of X \U such that β is the disjoint union of χ,
and ζ follows. Hence, for any x in X \ U , f(x) = {χ(x)}.

Similarly, there must also be a permutation υ of U \X such that α is the disjoint
union of υ and ζ. Hence, for any u in U \X, f(u) ∩ U = {υ(u)}. Elements of U \X
may, however, have some images in X \ U . So we get finally that for any u in U \X,
there is some ∅ ⊆ Xu ⊆ X \ U such that f(u) = {υ(u)} ∪Xu. This proves that f is
in the 3-permuted form, and we are done.

Theorem 48. Let M be a reduced DSM. Every shop in M is in the 3-permuted
form. Moreover, every U -surjective X-total shop in M follows the additional require-
ment that the elements of U \X cover the set X \ U , more formally that

f(U \X) ∩X =
⋃

u∈U\X

Xu = X \ U.

Proof. We can now deduce easily from Lemmas 42 and 47 that U -surjective X-
total shops inMmust take the 3-permuted form. It remains to prove that an arbitrary
shop f inM is in the 3-permuted form. Let h be the canonical shop ofM. It follows
from Lemma 3 that f ′ := h ◦ f ◦ h is a U -surjective X-total shop. Hence, f ′ is in the
3-permuted form. Let z in X and u in U \X. If u ∈ f(z), then u ∈ f ′(z) and f ′ would
not be in the 3-permuted form. It follows that f(X) ∩ (U \X) = ∅ and appealing to
Lemma 47 that f is in the 3-permuted form.

We do not need the following result in order to prove our main result. But
surprisingly in a reduced DSM, U and X are unique. This means that we may speak
of the canonical shop ofM instead of some canonical U -surjectiveX-total shop. It also
means that we can define the ∀U -∃X-core of a structure D without explicitly referring
to U or X as the minimal substructure of D which satisfies the same {∃,∀,∧,∨}-FO
sentences.

Theorem 49. Let D be a structure that is both a ∀U -∃X-core and a ∀U ′-∃X ′-
core; then it follows that U = U ′ and X = X ′.
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Proof. We prove this by contradiction. Let h and h′ be the canonical U -surjective
X-total shop and U ′-surjective X ′-total shop, respectively. Assume U ′ 6= U , and let
x in U ′ \ U . Note that since D = U ∪X, x does belong to X \ U . Thus, there exists
some u in U \X such that h(u) ⊇ {u, x} (and necessarily u 6= x).

By Theorem 48, h has to be in the 3-permuted form w.r.t. U ′ and X ′, which
means that h can send an element to at most one element of U ′. Since x belongs to
U ′, it follows that u belongs to D \U ′ = X ′ \U ′. But the 3-permuted form prohibits
an element of X ′ to reach an element of U ′, a contradiction.

The dual argument yields X = X ′.

Recall that the {∃,∀,∧,∨}-FO-core D′ of D is the smallest (w.r.t. domain size)
structure that is {∃,∀,∧,∨}-FO-equivalent to D.

Proposition 50. A structure is said to be a ∀U -∃X-core if and only if it is a
{∃,∀,∧,∨}-FO-core. Note also that the subsets U and X are uniquely determined in
a core.

Proof. Let D be a structure that is a ∀U -∃X-core with (unique) subsets U and
X. Let c be the canonical shop of D.

Let D′ be a {∃,∀,∧,∨}-FO-core of D, that is, a smallest (w.r.t. domain size)
structure that is {∃,∀,∧,∨}-FO-equivalent to D. Let U ′ and X ′ be subsets of D′

witnessing that D′ is a U ′-X ′ core. Note that U ′ ∪ X ′ = D′ by minimality of D′
(and, consequently, U ′ and X ′ are uniquely determined by Theorem 49). Let c′ be
the canonical shop of D′.

By Theorem 29, since D and D′ are {∃,∀,∧,∨}-FO-equivalent, there exist two
surjective hyper-morphisms g from D to D′ and f from D′ to D.

Let U ′′ be a minimal subset of (g)−1(U ′) such that g(U ′′) = U ′. Note that f ◦c′◦g
is a U ′′-surjective shop of D. By minimality of U , it follows that |U | ≤ |U ′′| ≤ |U ′|. A
similar argument over D′ gives |U ′| ≤ |U |, and, consequently, |U | = |U ′|. Moreover,
since c ◦ (f ◦ c′ ◦ g) is a U ′′-surjective X-total surjective hyperendomorphism of D, by
Theorem 49, it follows that U = U ′′.

This means that there is a bijection α′ from U ′ to U such that, for any u′ in U ′,
g−1(u′) = {α′(u′)}.

By duality, we obtain similarly that |X|=|X ′| and that there is a bijection β from
X to X ′ such that, for any x in X, g(x) = {β(x)}.

Thus, g acts necessarily as a bijection from U ∩X to U ′ ∩X ′.
The map g̃ from D to D′ defined for any u in U as g̃(u) := α′−1(u) and g̃(x) :=

β(x) is a homomorphism from D to D′ that is both injective and surjective.
A symmetric argument yields a map f̃ that is a bijective homomorphism from D′

to D. Isomorphism of D′ and D follows.

Remark 51. To simplify the presentation, we defined the L-core as a minimal
structure w.r.t. domain size. Considering minimal structures w.r.t. inclusion, we
would get the same notion for {∃,∀,∧,∨}-FO. This remains true for the CSP and
the similarly robust notion of a (classical) core, but it is not the case for the logic
{∃,∀,∧}-FO, which corresponds to the QCSP [26].

Lemma 52. Let M be a reduced DSM with associated sets U and X. One of the
following three cases holds:

1. U ∩X 6= ∅, U \X 6= ∅, and X \ U 6= ∅.
2. U = X.
3. U ∩X = ∅.
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Proof. We prove that U ( X is not possible. Otherwise, let x in X \ U , and let
h be the canonical shop. There exists some u in U ( X such that x ∈ h(u) by the
U -surjectivity of h. Since u does not occur in the image of any other element than u
under the canonical shop, this would mean that h is X \ {u}-total, contradicting the
minimality of X.

By duality, X ( U is not possible either and the result follows.

5.2. The hard DSM above M. Let M be a reduced DSM with associated
sets U and X. Define the completion M̂ ofM to be the DSM generated by all shops
in the 3-permuted form ofM. More precisely, the canonical shop of M̂ is the shop ĥ
where every set Xu is the whole set X \U , and, for every permutation ζ of X∩U , χ of
X \U , and υ of U \X, any shop in the 3-permuted form with these permutations is in

M̂. Note that by construction,M is a sub-DSM of M̂. Note also that the minimality
of U and X still holds in M̂. We will establish hardness for M̂, whereupon hardness
of M follows from Corollary 5.

5.3. Cases II and III: NP-hardness and co-NP-hardness. We begin with
case II. We note first that U = {u} and |X| ≥ 2 implies U ∩ X = ∅ by Lemma 52.
The structure K|X| ] K1, the disjoint union of a clique of size |X| with an isolated

vertex u, has associated DSM M̂. The problem {∃,∧,∨}-FO(K|X| ] K1) is NP-hard
by Proposition 17 since the (classical) core of K|X| ] K1 is K|X|.

For case III, we may assume similarly to above that X = {x}, |U | ≥ 2, and
U ∩X = ∅ by Lemma 52. We use the duality principle, which corresponds to taking
the inverse of shops. Since the inverse of an {x}-total U -surjective shop with U ≥ 2
is a {U}-total {x}-surjective shop, we may use the structure K|U | ] K1, which is

{∀,∨,∧}-FO-equivalent to K|U| (and {∀,∨,∧}-FO(K|U|) is co-NP-hard).

5.4. Case IV: Pspace-hardness. We assume that |U | ≥ 2 and |X| ≥ 2 and
consider the three possible cases given by Lemma 52.

Case 1: when U ∩ X 6= ∅, U \ X 6= ∅, and X \ U 6= ∅. We write U∆X as an
abbreviation for (X \U)∪ (U \X). We consider the DSMM′, which is generated by
a single shop g′ defined as follows:

• for every y in X ∩ U , g′(y) := X∆U , and
• for every z in X∆U , g′(z) := X ∩ U .

Note thatM is a sub-DSM ofM′ since any shop g inM is in the 3-permuted form and
is therefore a subshop of g′ ◦ g′. Note also that g′ is a shop of the complete bipartite
graph KX∆U,X∩U . Moreover, any surjective hyper-endomorphism of KX∆U,X∩U is
easily seen to be either a subshop of g′ or a subshop of g′ ◦ g′. So we have proved that
M′ is a super-DSM of M and that KX∆U,X∩U admits M′ as a DSM.

Observing that there is a full surjective homomorphism from KX∆U,X∩U to K2,
thus by Lemma 15 the two structures agree on all sentences of {∃,∀,∧,∨,¬}-FO
and so also on all sentences of {∃,∀,∧,∨}-FO. We know that {∃,∀,∧,∨}-FO(K2) is
Pspace-complete (see Example 11).

Case 2: when U = X. Clique K|U | has DSM M̂. We know {∃,∀,∧,∨}-FO(K|U |)
is Pspace-complete.

Case 3: when U ∩X = ∅. The remainder of this section is devoted to a generic
hardness proof. Assume that |U | = j ≥ 2 and |X| = k ≥ 2, and w.l.o.g. let U =
{1, 2, . . . , j} and X = {j + 1, j + 2, . . . , j + k}. Recalling that the symmetric group is

generated by a transposition and a cyclic permutation, the DSM M̂ can be generatedD
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3

4

1

2
UX

(a) G2,21,3

...
...

x u

U \ {u}X \ {x}

(b) G|U|,|X|u,x

Fig. 2. Main gadget.

as follows:

〈

1 2, j + 1, . . . , j + k
2 1, j + 1, . . . , j + k
3 3, j + 1, . . . , j + k
...

...
j j, j + 1, . . . , j + k

j + 1 j + 1
j + 2 j + 2
j + 3 j + 3

...
...

j + k j + k

,

1 2, j + 1, . . . , j + k
2 3, j + 1, . . . , j + k
3 4, j + 1, . . . , j + k
...

...
j 1, j + 1, . . . , j + k

j + 1 j + 1
j + 2 j + 2
j + 3 j + 3

...
...

j + k j + k

,

1 1, j + 1, . . . , j + k
2 2, j + 1, . . . , j + k
3 3, j + 1, . . . , j + k
...

...
j j, j + 1, . . . , j + k

j + 1 j + 2
j + 2 j + 1
j + 3 j + 3

...
...

j + k j + k

,

1 1, j + 1, . . . , j + k
2 2, j + 1, . . . , j + k
3 3, j + 1, . . . , j + k
...

...
j j, j + 1, . . . , j + k

j + 1 j + 2
j + 2 j + 3
j + 3 j + 4

...
...

j + k j + 1

〉.

We will give a structure D̂ such that shE(D̂) = M̂. First, though, given some

fixed u in U and x in X, let G|U |,|X|u,x be the symmetric graph with self-loops with
domain D = U ∪X such that the following hold:

• u and x are adjacent.
• The graph induced by X is a reflexive clique Kref

X .
• U \{u} and X\{x} are related via a complete bipartite graph K|X\{x}|,|U\{u}|.

The structure G|U |,|X|u,x and the more specific G2,2
1,3 are drawn in Figure 2. Denote by

E
|U |,|X|
u,x the binary relation of G|U |,|X|u,x , and let D̂ be the structure with a single 4-ary

relation RD̂ with domain D̂ = U ∪X specified as follows:

RD̂ :=
⋃
u∈U

(( ⋃
x∈X

(u, x) × E|U |,|X|u,x

)
∪
( ⋃
x1,x2,x3∈X

(x1, x2) × E|U |,|X|u,x3

))
.

Essentially, when the first argument in a quadruple is from U , the rest of the structure

allows for the unique recovery of some G|U |,|X|u,x , but if the first argument is from X,
then all possibilities from X for the remaining arguments are allowed. In particular,

we note from the last big union that (x1, x2, x3, x4) is a tuple of RD̂ for all quadruples
x1, x2, x3, x4 in X.

Lemma 53. shE(D̂) = M̂.

Proof. Recall that, according to Theorem 48 and our assumption on U , X, and
M̂, a maximal (w.r.t. subshop inclusion) shop f is of the following form:

• for any x in X \ U = X, f(x) = {χ(x)}; and
• for any u in U \X = U , f(u) = {υ(u)} ∪X,
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where χ and υ are permutations of X and U , respectively.
(Backwards; M̂ ⊆ shE(D̂).) It suffices to check that a maximal shop f in M̂

preserves D̂. This holds by construction and can be easily verified:

• We consider first tuples from (x1, x2)× E|U |,|X|u,x3 . Each such tuple is mapped

to possibly several tuples from
(
χ(x1), χ(x2)

)
× E|U |,|X|υ(u),χ(x3) under f .

• We consider now tuples from (u, x) × E
|U |,|X|
u,x . If the first coordinate u is

mapped to υ(u) ∈ U \X, then the tuple is mapped to possibly several tuples

from
(
υ(u), χ(x)

)
× E|U |,|X|υ(u),χ(x). Otherwise, the first coordinate u is mapped

to an element x1 from X, and the second coordinate to χ(x) ∈ X \U , where
χ(x) and x1 may be equal. In this case, a tuple is mapped to possibly several

tuples which appear in
(
x1, χ(x)

)
× E|U |,|X|υ(u),χ(x).

(Forwards; shE(D̂) ⊆ M̂.) We proceed by contraposition, demonstrating that RD̂

is violated by any f /∈ M̂. We consider the different ways that f might not be in M̂.
• If f is such that u ∈ f(x) for x ∈ X and u ∈ U , then we, e.g., take (u, x, x, x) ∈
RD̂ but (z, u, u, u) /∈ RD̂ (for any z ∈ f(u)), and we are done. It follows that
f(X) = X.

• Assume now that f is such that {x′1, x′2} ⊆ f(x) for x′1 6= x′2 and x, x′1, x
′
2 ∈

X. Let u, u′ ∈ U be such that u′ ∈ f(u). Take (u, x, u, x) ∈ RD̂ but

(u′, x′1, u
′, x′2) /∈ RD̂, and we are done. It follows that f is a permutation

χ on X.
• Assume now that f is such that {u′1, u′2} ⊆ f(u) for u′1 6= u′2 and u, u′1, u

′
2 ∈

U . Let x, x′ ∈ X be such that x′ ∈ f(x). Take (u, x, u, x) ∈ RD̂ but

(u′1, x
′, u′2, x

′) /∈ RD̂, and we are done. It follows that f restricted to U
is a permutation υ on U .

Hence, f is a subshop of a maximal shop f ′ from the DSM M̂, and f belongs to M̂
(recall that a DSM is closed under subshops). The result follows.

Proposition 54. {∃,∀,∧,∨}-FO(G|U |,|X|u,x ) is Pspace-complete.

Proof. This follows easily from the Pspace-completeness of {∃,∀,∧,∨}-FO(G2,2
1,3),

the simplest gadget which is depicted in Figure 2a. These gadgets G|U |,|X|u,x agree on
all equality-free sentences—even ones involving negation—by Lemma 15, as there is

a full surjective homomorphism from G|U |,|X|u,x to G2,2
1,3 .

We will prove that {∃,∀,∧,∨}-FO(G2,2
1,3) is Pspace-hard by reduction from the

Pspace-complete problem QCSP(Bnae). Recall that we may assume w.l.o.g. that
universal variables are relativized to U = {1, 2} and that existential variables are
relativized to X = {3, 4} by Theorem 34. Let ϕ be an instance of QCSP(Bnae) that
is a sentence in prenex form whose quantifier-free part is a conjunction of atoms of
the form R(α, β, γ), where α, β, and γ are (positive occurrences of) variables. We
reduce ϕ to a (relativized) instance ψ of {∃,∀,∧,∨}-FO(G2,2

1,3) as follows.
The first part of the prefix of ψ is obtained from the prefix of ϕ by replacing each

quantifier as follows:
• ∃x in the prefix of ϕ is replaced by ∃vx ∈ X in the prefix of ψ;
• ∀u in the prefix of ϕ is replaced by ∀u ∈ U ∃vu ∈ X in the prefix of ψ.

The second part of the prefix of ψ takes clauses into account. For every clause Ci :=
R(α, β, γ) in ϕ, we extend the prefix of ψ with ∀ci ∈ U .

The quantifier-free part is a conjunction of
• E(u, vu) for every universal variable u in ϕ and
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• E(ci, vα) ∨ E(ci, vβ) ∨ E(ci, vγ) for every clause Ci := R(α, β, γ) in ϕ.
We claim that there is a family of Skolem functions {σx : “∃x” ∈ ϕ} witnessing

that Bnae |= ϕ if and only if there is a family of Skolem functions {σ′vx : “∃vx” ∈ ψ}
in the relativized game witnessing that G2,2

1,3 |= ψ. We will establish this claim by
providing a tight correspondence between these families.

Note first that the edges present in G2,2
1,3 , the atoms of the type E(u, vu) for a

universal variable, and the prefix ∀u ∈ U ∃vu ∈ X mean that for ψ to hold, the
Skolem function σ′vu takes value 3 (resp., 4) whenever u takes value 1 (resp., 2).

We fix arbitrarily that 1 and 3 correspond to true and 2 and 4 to false. Given π as
a truth assignment of the universal variables of ϕ, we denote by π′ the corresponding
assignment to 1 and 2. The correspondence between the family of Skolem functions
is given by σx(π|Yx

) = true (resp., false) if and only if σ′vx(π′|Yvx
) = 3 (resp., 4).

By construction, the winning conditions agree for both families of Skolem func-
tions, because for each clause Ci := R(α, β, γ) in ϕ, the subsentence of ψ of the form
∃vα∃vβ∃vγ∀ciE(ci, vα) ∨ E(ci, vβ) ∨ E(ci, vγ) enforces that one of vα, vβ , vγ is equal
to 3 and one is equal to 4 (since we may select ci to be equal to either 1 or 2 after
the choice of values for vα, vβ , vγ).

Proposition 55. {∃,∀,∧,∨}-FO(D̂) is Pspace-complete.

Proof. As in the previous proposition, we reduce from QCSP(Bnae). We adapt
a little bit the previous reduction as follows. We substitute R(u0, x0, u, v) for each
instance of E(u, v) in the previous proof. We quantify outermost the formula so
produced with the prefix ∀u0 ∈ U ∃x0 ∈ X, obtaining a sentence ψ′.

The correctness of this new reduction is an easy consequence of the previous result
and the construction of D̂. Indeed, once u0 and x0 are chosen, everything proceeds

as above but in the “copy” G|U |,|X|u0,x0 , and the result follows.

6. The complexity of the meta-problem. The {∃,∀,∧,∨}-FO(σ) meta-
problem takes as input a finite σ-structure D and answers L, NP-complete, co-NP-
complete, or Pspace-complete, according to the complexity of {∃,∀,∧,∨}-FO(D). The
principle result of this section is that this problem is NP-hard even for some fixed and
finite signature σ0, which consists of two binary and three unary predicates (the unar-
ies are for convenience, but it is not clear whether a single binary suffices).

Note that one may determine whether a given shop f is a surjective hyper-
endomorphism of a structure D in, say, quadratic time in |D|. Since we are not
interested here in distinguishing levels within P, we will henceforth consider such a
test to be a basic operation. We begin with the most straightforward case.

Proposition 56. On input D, the question “ is {∃,∀,∧,∨}-FO-(D) in L?” is in
P.

Proof. By Theorem 23, we need to check whether there is both a singleton-
surjective shop and a singleton-total shop in shE(D). In this special case, it suffices
to test for each u, x in D if the following {u}-surjective {x}-total shop f preserves D:
f(u) := D and x ∈ f(z) for any element z in D (that is, such that f−1(x) := D).

Proposition 57. For some fixed and finite signature σ0, on input of a σ0-structure
D, the question “is {∃,∀,∧,∨}-FO(D) in NP (respectively, in NP-complete, in co-NP,
and in co-NP-complete)?” is NP-complete.

Proof. The four variants are each in NP. For the first, one guesses and verifies
that D has a singleton-surjective shop; for the second, one further checks that there is
no {u}-surjective {x}-total shop (see the proof of Proposition 56). Similarly, for the
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third, one guesses and verifies that D has a singleton-total shop; for the fourth, one
further checks that there is no {u}-surjective {x}-total shop. The result then follows
from Theorem 23.

For NP-hardness we will address the first problem only. The same proof will work
for the second (for the third and fourth, recall that a structure D has a singleton-
surjective shop if and only if its complement D has a singleton-total shop). We
reduce from graph 3-colorability. Let G be an undirected graph with vertices V :=
{v1, v2, . . . , vs}. We will build a structure SG over the domain D which consists of the
disjoint union of “three colors” {0, 1, 2}, u, and the vertices from V .

The key observation is that there is a structure GV whose class of surjective hyper-
endomorphisms shE(GV ) is generated by the following singleton-surjective shop:

fV :=

0 0
1 1
2 2
u 0, 1, 2, u, v1, . . . , vs
v1 0, 1, 2
v2 0, 1, 2
...

...
vs 0, 1, 2

The existence of such a GV is in fact guaranteed by the Galois connection, fully given
in [29], but that may require relations of unbounded arity, and we wish to establish our
result for a fixed signature. So we will appeal to Lemma 58, below, for a σV -structure
GV with the desired class of surjective hyper-endomorphisms, where the signature σV
consists of one binary relation and three monadic predicates. The signature σ0 is σV
together with a binary relational symbol E.

The structure SG is defined as in GV for symbols in σV , and for the additional
binary symbol E, as the edge relation of the instance G of 3-colorability together with
a clique K3 for the colors {0, 1, 2}. By construction, the following hold:

• Any surjective hyper-endomorphism g of SG will be a subshop of fV .
• Restricting such a shop g to V provides a set of mutually consistent 3-

colorings; i.e., we may pick arbitrarily a color from g(vi) to get a 3-coloring g̃.
If there is an edge between vi and vj in G, then E(vi, vj) holds in SG . Since
g is a shop, for any pair of colors ci, cj , where ci ∈ g(vi) and cj ∈ g(vj), we
must have that E(ci, cj) holds in SG . The relation E is defined as K3 over
the colors. Hence, ci 6= cj and we are done.

• Conversely, a 3-coloring g̃ induces a subshop g of fV : set g as fV over elements
from {0, 1, 2, u} and as g̃ over V . The detailed argument is similar to the
above.

This proves graph 3-colorability reduces to the meta-question “is {∃,∀,∧,∨}-FO(D)
in NP?”

Note that it follows from the given proof that the meta-problem itself is NP-hard.
To see this, we take the structure SG from the proof of Proposition 57 and ask to
which of the four classes L, NP-complete, co-NP-complete, or Pspace-complete the
corresponding problem belongs. If the answer is NP-complete, then G was 3-colorable;
otherwise the answer is Pspace-complete and G was not 3-colorable.

In the statement below, fV denotes the same shop as in the proof of Proposi-
tion 57, which this lemma completes.

Lemma 58. Let σV be a signature involving one binary relation E′ and three
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u

v c

(a) G′

...

u

v1

v2

vs

0

1

2

(b) G′′

Fig. 3. Building a structure with shE(GV ) = 〈fV 〉.

monadic predicates Zero,One, and Two. There is a σV -structure GV such that

shE(GV ) = 〈fV 〉.

Proof. We begin with the graph G′ on signature 〈E′〉, depicted in Figure 3a. Note
that

shE(G) :=

〈
c c
u c, u, v
v c

〉
.

We now replace c by {0, 1, 2} and v by V to obtain a graph G′′. Formally, this
graph is the unique graph G′′ with domain {0, 1, 2, u}∪V such that the mapping which
maps {0, 1, 2} to c, fixes u, and maps V to v is a strong surjective homomorphism.
By construction,

shE(G′′) := 〈

0 0, 1, 2
1 0, 1, 2
2 0, 1, 2
u 0, 1, 2, u, v1, . . . , vs
v1 0, 1, 2
...

...
vs 0, 1, 2

〉.

We now build GV as the structure with binary relation E′, which is the edge relation
from G′′, and by setting the unary predicates as follows: Zero holds only over 0,
One holds only over 1, and Two holds only over 2. This effectively fixes surjective
hyper-endomorphisms to act as the identity over the colors {0, 1, 2}, as required.

7. Conclusion. We have classified the complexity of the model checking problem
for all fragments of FO but those corresponding to the CSP and the QCSP. Our
results are summarized in Figure 4. The inclusion of fragments is denoted by dashed
edges, a larger fragment being above. Each fragment is classified in two fashions.
First, we have indicated in the figure the notion of core used to classify fragments
by regrouping them in the same box. Second, we have organized the fragments in
four classes according to the nature of the complexity classification they follow (as
outlined in the introduction of this paper).
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Moreover, we are able to give the delineation of our tetrachotomy by two equiv-
alent means. First, we do so by the presence or absence of singleton-surjective shops
and singleton-total shops. Second, we do so by the existence or not of trivial sets for
the relativization of universal and existential quantifiers (see Table 2).

Table 2
Reformulations of the tetrachotomy (U and X denote the subsets of the domain to which univer-

sal and existential variables relativize, respectively; the relativization into a weaker logical fragment
allows up to two constants).

Tetrachotomy for {∃,∀,∧,∨}-FO(D)

Case Complexity Singleton universal shop Singleton-total shop ∀U -∃X-core Relativizes into Dual
I L yes yes |U | = 1, |X| = 1 {∧,∨}-FO I
II NP-complete yes no |U | = 1, |X| ≥ 2 {∃,∧,∨}-FO III
III co-NP-complete no yes |U | ≥ 2, |X| = 1 {∀,∨,∧}-FO II
IV Pspace-complete no no |U | ≥ 2, |X| ≥ 2 {∃, ∀,∧,∨}-FO IV
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