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Abstract

The performance of a manufacturing system is measured by factors such as its productivity and energy 

efficiency. Current systems lack the required indices to measure its efficiency and highlight the areas of 

inefficiency in the system. The paper is aimed at improving the overall performance of manufacturing 

system by suggesting methods for integrated improvement in above two factors. This paper establishes 

performance indices for measuring energy efficiency and productivity of the system, which uses easily 

available sensor data from the production line. The energy structure and effects of downtime events on the 

production line has been analyzed to develop energy and productivity performance indicators. The indices 

are utilized to identify the machines which is most power inefficient and results in maximum production loss 

of the system. These indicators are utilized to illustrate our method for improving productivity and concepts 

of downtime-bottleneck and power-bottleneck. The methods proposed are verified by simulation studies.

Keywords: performance indicators, downtime, downtime-bottleneck, power-bottleneck, sustainable 

manufacturing

1. Introduction

The primary aim of any manufacturing system is reducing per unit production cost. This can be achieved 

by improving energy efficiency and productivity. Reducing energy waste has gained importance as 

sustainability and green methods became more prevalent. Recent studies show that the energy 

mailto:mkt09@hotmail.com
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consumption in the manufacturing sector has almost tripled in past 60 years to almost approximately 30 

quadrillions BTU in the United States (U.S. EIA, 2012). In the manufacturing system, the largest fraction of 

energy is consumed by production line, which accounts for almost 75% of total energy consumption by 

manufacturing system (U.S. EIA, 2012).

Manufacturing facilities lack the required performance indices to evaluate the energy efficiency of the 

system. Most facilities utilize energy consumed per part to evaluate machine performance, which when 

utilized alone reflects wrong results for energy efficiency of the machine(Boyd, 2011). The reason behind 

this is non-linearity of the manufacturing system. In this paper, the dynamic energy structure has been 

analyzed for developing performance indicators to better illustrate energy efficiencies. Understanding the 

dynamic energy leads to accurate identification of downtime-bottleneck and power-bottleneck. These 

bottlenecks can be used to accurately identify the source of energy inefficiencies in the manufacturing 

system and subsequently improve same.

To improve productivity, an integrated modeling method is required that captures dynamic nature of 

manufacturing system and evaluates its performance using real-time sensor data. Efforts have been made 

for productivity improvement, performance evaluation but they were based on the steady state of the system 

which can predict long-term steady state behaviors. These methods are not applicable to transient 

production lines. In our model, the performance of all working stations in a serial manufacturing system is 

assessed by utilizing real-time sensor data. A unified severity index has been defined, which ranks each 

station in terms of net production loss and help managers to properly allocate limited resources. In this 

paper, productivity and energy efficiency of the system has been integrated and a measure has been 

provided for improving its overall performance both in terms of productivity, and energy efficiency. 

The rest of the paper is presented as follows. We have provided literature review in section 2. In section 3, 

we have covered notations and assumptions followed in the paper. Section 4 presents the mathematical 

modeling of the paper. In Section 5, we have defined and elaborated downtime bottleneck and power 

bottleneck. Section 6 represents the simulation experiments. Finally, we summarize and plan future work 

in section 7.

2. Literature review
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Researchers have been ignoring energy management for a long time. Most of the previous studies were 

made on quality control and productivity gain without focusing on energy efficiency (Guerrero et al., 2011; 

Fang et al., 2011). In most of these research and studies, energy efficiency or consumption is treated as a 

by-product of the manufacturing process rather than one of the main parameters for decision-making 

process. Energy consumption is just another cost term in the objective function of the optimization problem. 

General Electric developed a method named energy treasure hunt method to determine energy inefficiency 

in their plant by arranging daily and weekend plans (U.S. EPA, 2009). This method is based on manual, 

recursive trial and error method which is dependent on the expertise of the inspector on finding ways to 

minimize energy waste in the plant.

Another method for evaluating energy consumption is trend decomposition (Tol and Weyant, 2006). This is 

a practical method used to determine decrease in energy efficiency. However, there is not any general or 

standard system for which this method is accepted to be best suited. Generally, there are four diverse ways 

which can be used on basis of different situations and constraints (Liu and Ang, 2007). For accurate results, 

while using this method it is essential to have knowledge about constraints to be employed for analysis. 

Limitation of this method is it cannot be used in real time to solve various problems that arise on a regular 

basis in the production line.

Research has been done in the field of lean manufacturing (Sahoo et al., 2008; Verrier et al., 2015) which 

reduced production cost and increases productivity of system but have a negligible effect on energy 

efficiency of manufacturing system. Other ways of reducing production cost include optimizing the lot size 

(Naeem et al., 2013),  minimizing loss (Batson and Shishoo, 2004), product recovery (Meng et al., 2017) 

but neither of them energy efficiency of the manufacturing system.

In Brundage et al., 2016, Brundage and Chang developed sustainable manufacturing performance indicator 

to evaluate the energy efficiency of system but they did not consider productivity of system while in Li et al., 

2014, the focus is on event-based modeling without taking energy efficiency into account. An analytic 

hierarchy process scoring methodology is used in Harik et al., 2015 to measure sustainability of 

manufacturing systems but doesn’t specifically focus on improving productivity and energy efficiency of the 

system. In Brundage et al., 2014b and Dababneh et al., 2016, HVAC system and production are coupled 
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to maximize cost savings but system output is sacrificed. Researchers have developed various ways like 

material, energy, waste process flow modelling (Smith and Ball, 2012), energy and utility management 

maturity model (Ngai et al., 2013) etc. to promote sustainable manufacturing but requires extensive 

guidance to implement them.

Extensive research has been done on modelling and analysis of manufacturing system  (Hopp and 

Spearman, 1996; Shi and Zhou, 2009; Jaber and Khan, 2010), scheduling and material and maintenance 

requirement planning (Shi, 2006; Xu et al., 2018; Sun et al., 2018), and material handling systems (Poon 

et al., 2011; Heragu et al., 2011; Shahbazi et al., 2016), lean manufacturing (Green et al., 2010; Sartal et 

al., 2018). Much of the previous works focus on performance metrics of isolated manufacturing system 

which is based on the nature of the methods used in the respective manufacturing processes. None of them 

integrates energy efficiency and productivity, and are only concerned with physical system without closely 

connecting with overall manufacturing system.     

It is clear from above illustrations that present literature fails to deliver enough insight into a system where 

both productivity and energy efficiency of the production line is integrated and improvised by use of real-

time sensor data. Such a system can respond quickly to day-to-day problems in the plant and enables quick 

and accurate evaluation of productivity and energy efficiency. Our paper focuses on the above area. To the 

best of our knowledge, there hasn’t been any work in the field mentioned above.

3. Notations and assumptions

In this paper, a continuous flow model has been adopted. In a continuous flow model, number of jobs in the 

buffer vary continuously opposed to integer steps from zero to capacity of the buffer. It was adopted to 

make mathematical calculations and analysis easier, as dynamics of the system can be easily be expressed 

in integral or differential forms. This assumption in the model does not affect the actual system dynamics 

(Tan and Gershwin, 2011; Gershwin, 1994). Fig. 1 describes a serial manufacturing system with N stations 

and N-1 buffers.
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Station SNB
N-1

                                                          Fig. 1. A serial manufacturing system.

Following notations are used throughout the paper:

                                                                Table 1 Notations

Bn Capacity of nth buffer where, 1 n ≤   ≤ 𝑁 ‒ 1

bn(t) Buffer level of Bn , n = 1,…,N-1, at time t

αj Ratio of power consumption of machine j in idle and working state

i𝑒 (Sm, Sn, ti, di), failure of Sm leads to Sn being non-operational for di duration, at time ti 

ej Efficiency of machine j

𝐸 [ 1 ,…, N ] denotes the order of disruption events for the system𝑒  𝑒

EIj(t) Instantaneous energy consumption of machine j at time t

EP Energy consumption per unit part of manufacturing system during time period [0,T)

EPd Energy consumption per unit part of manufacturing system during time period [0,T) as 

a result of disruption events

EPe Energy consumption per unit part of manufacturing system during time period [0,T) 

without disruption events

EP(t) Instantaneous energy consumption per unit part of production line at time t

j𝑓 [ i,1 ,…, i,Nj ], , i = 1,…,N, represents the order of disruption events for machine j𝑒  𝑒

Ln Production loss due to Sn , 1 n ≤   ≤ 𝑁

N* Slowest station on the line

Oj(t) j = 1,…,N-1, represents opportunity window of machine j at time t

Pid,j Rated power consumption of machine j while machine is idle

Pp,j Rated power consumption of machine j while machine produces parts

Tid,j Time during which machine j is idle

Tn Cycle time of station (machine) Sn , 1 n ≤   ≤ 𝑁

Station S2 B2Station S1 B1
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Tp,j Time during which machine j produces parts

TL( i)𝑒 Manufacturing time loss as a result of downtime event i 𝑒

Y(T) Number of parts produced by system during time period  [0,T)

Yn(T) Output of station Sn , 1 n , during time period of [0,T) ≤   ≤ 𝑁

DBN Downtime bottleneck

MTBF Mean time between failures

MTTR Mean time to repair

PBN Power Bottleneck

PI Performance indicator

                                                                     

Following assumptions have been made in the paper:

1. A machine is starved if it is operational and its upstream buffer is empty and vice versa.

2. Last machine is never blocked and first machine is never starved.

3. Each buffer has a finite capacity.

4. Mathematical modeling and system dynamics

First, the effect of downtime events on throughput of the production line needs to be understood. For the 

same, a system having more than one slowest stations is considered. Overall effect of downtime events on 

the stations needs to be evaluated, thus the last slowest station  in the line is chosen as the reference *S
N

station. It is required to understand that any downtime event may or may not result in permanent production 

loss depending on the duration of downtime event. There would not be a permanent production loss till the 

slowest machine is starved or blocked. For example, let’s suppose a machine m such that m < N*, slowest 

machine N* would not be starved till all the buffer between m and N* is depleted, resulting in production loss 

which can be recovered in the future.
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We are interested in finding out exact time for which slowest machine is blocked or starved due to an *S
N

interruption event i. Oi denotes the time after which station  starts to stave or block due to downtime 𝑒 *S
N

event i. The case where downtime, di > Oi is discussed, otherwise, production time loss would be zero.𝑒

Let’s consider an arbitrary downtime event i = ( , , , ). In case of m < N*, by principle of 𝑒 Sm Sn it id

conservation of flow to the machines between Sm and SN
* during [ , ], the following equation is it i it d

obtained.

                             

 
*

*

1
( , ) ( , ) ( , ) ( , ) 1

N

m i i i i k i i k iN
k m

Y t d E Y t d E b t d E b t E
 

       

                                         

Where represents the output of any station k during [ ,( , ) ( , ) ( , )k i i k i i k iY t d E Y t d E Y t E     it i it d

]. Since station Sm is down during [ , ], the term is zero. Thus,                                                                  it i it d ( , )m i iY t d E 

                                                         

*

*

1
( , ) ( , ) ( , ) (2)

N

i i k i i k iN
k m

Y t d E b t d E b t E
 

     

, all the buffers  between stations  and  are empty at , that isi id O  *1B ,...,Bm N Sm *S
N

t i id

. Thus, 
*

1
( , ) 0

N

k i i
k m

b t d E
 

 

                                                                                                                                  (3)

*

*

1
( , ) ( , )

N

i i k iN
k m

Y t d E b t E
 

   
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Above equations imply .  Buffers between  and 
*

*

1
inf{ 0O : . . ( , ) ( , )}

N

i i i k iN
k m

d s t Y t d E b t E
 

      Sm

 are empty, thus it takes for a job to go from  to . Thus,*S
N

* 1N

K
k m

T



 Sm *S

N

                                                                                                                                           (4)
*

1
TL( )

N

j i i K
k m

e d O T
 

   


Similarly, above parameters for the case n > N* could be found by using the principle of conservation of 

flow to the machines between  and  during [ , ]. In this scenario, all the buffers between Sn *S
N it i it d Sn

and  would become full to their respective capacities. Station Sn will resume production after time*S
N i it d

. All the stations between  and including them would receive jobs immediately from their respective Sn *S
N

upstream buffer. and  are therefore given by:Oi TL( )je


                                         *
* 1

inf{ 0 : . . ( , ) ( , )}O
n

i i i k k iN
k N

d s t Y t d E B b t E
 

     

                                                                                                                  (5)TL( )j i ie d O 


In the scenario where n = m = N* i.e. slowest is down, it would directly contribute to permanent production 

loss. Thus,

                                                                                                                                               (6)TL( )j ie d


The value of Oi can be easily determined by performing simple calculations on the data obtained from 

sensor information. The above analysis allows us to study the effect of each disruption event on overall 

production output of system quantitatively in terms of production time loss. Our model consists of multiple 

slowest stations which include special case consisting of single slowest station.

4.1 Unified Severity Index
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In this section, the total production loss is quantified using production time loss calculated in above section. 

A unified index which can be used to direct the flow of resources in an efficient and optimized way in the 

system would also be determined in this section.

Let’s consider an arbitrary downtime event i = ( , , , ). Let . If d 𝑒 Sm Sn it id * inf{ 0 : . .,TL( ) 0}jid d s t e  


> , is down, starved or blocked depending on location of downtime event between  and *
id *S

N
*

i it d

+ .  Whereas, if d < , downtime event would not result in stoppage of . Thus a set, *
i it d TL( )je


*
id *S

N

, is defined, consisting of intervals of time for which the station seize its operations as a *N
F *S

N

consequence of downtime events ; as follows:𝐸

                                                               (7)*
* *{[ , TL( )), 1,...,  . .,TL( ) 0}j ji i i iN

F t d t d e i n s t e     
 

can only stop as a result of downtime event , thus the last slowest station or reference station is *S
N

 𝐸

allowed to seize its operations only during time intervals which are present in the set . Thus total *N
F

stoppage time D of the slowest station during time interval [0, T) can be defined as*S
N

                                                                                                        (8)* *| [ , TL( )) |
s

ji i i i
i

D t d t d e


   




                         Where,  and { 1,..., , . .,TL( ) 0}s
ji n s t e   


* inf{ 0 : . .,TL( ) 0}jid d s t e  



Thus net production loss is equal to

                                                                      (9) 
*

* *
* *

( ) /

( ) / | [ , TL( ) | /
s

N

jN i i i i N
i

t D T

t D T t d t d e T




     

L

L




Let  denote the production loss caused due to the event . If a downtime event doesn’t overlap L( )ie


ie


ie


with any other downtime events, then   = | |/ . If overlaps with other L( )ie


* *[ , TL( ))ji i i it d t d e  


*N
T ie


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events then output loss is equally shared among the events. Let be the sequence of downtime ,1 ,,..., mn n ne e
 

events caused due to the station . Then the permanent production loss, , caused due to  isSn nL Sn

                                                                                                                                       (10),
1

L( )
nn

n in
i

L e


 


The impact of each station on the overall production output can be determined by utilizing permanent 

production loss as a unified ranking index. It provides real-time analysis and a natural severity ranking of 

each station which is extremely useful in prioritizing the limited resources.

4.2 Energy structure and performance index

The effects of downtime events on the system has been analyzed in previous sections. In this section, the 

impacts of downtime events on energy efficiency of the manufacturing system will be analyzed. The 

structure of energy can be analyzed using the data obtained from production line like power, throughput, 

buffer etc. For ease of mathematical calculation, a serial production line similar to that in previous section 

with N machines and a single slowest machine is considered. 

First let’s understand various components of operation for a machine during time period [0, T) 

                                                                                                               (11), , , ,p j id j off j warm jT T T T T   

Where  represents the time during which machine is not operating hence power consumed is zero. ,off jT

 represents the warm up time for machine j. Warm up period is assumed to be zero for ease of ,warm jT

calculations. Power consumed during idling as a percentage of power consumed during production of parts 

can be represented as

                                                          ,                                                              (12), ,id j j p jP P (0,1]j 

The energy consumed per unit part of the manufacturing system is dynamic in nature, where energy 

efficiency and productivity or production count are coupled into a single dynamic system. This energy 

dynamics can be represented by mathematical function consisting of individual machine's parameters such 
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as duration of down time, buffer levels, and rated power of machine etc. In our model, the interactions 

among production processes are equivalently compared to “internal forces,” while the downtime events are 

equivalently compared to “external forces” to analyze the dynamic energy structure. Thus, the energy 

dynamics can be represented by following space-time equation(Brundage et al., 2014a):

                                                                                                                     (13)          
[ ] ( , ( ), ( ))d EP f t EP t Z t
dt



Where Z(t) =  = [ 1 ,…, N ] denotes the sequence of downtime events during [0, T). To solve above 𝐸 𝑒  𝑒

equation, the following homogeneous and non-homogenous equations have been considered:

                                                                                                                              (14)
[ ] ( , ( ))d EP f t EP t
dt



                                                                                                                     (15)
[ ] ( , ( ), ( ))d EP f t EP t Z t
dt



First equation represents the virtual scenario with no downtime events on the production line. Since there 

are no downtime events each machine will operate at all time during [0, T).  Thus solution of homogenous 

equation can be represented by

                                                                                                                 (16)*

*

,
1

,
1/

N

p j N
j

e p jN
jN

P T
EP T P

T T




 




The non-homogenous equation represents the scenario with downtime events and can be represented as 

                                                                                                                                      (17)d eEP EP EP 

Production count(C) during the time period [0, T) is

                                                   
*

* *( [ , TL( )) |) /
s

i i i i i N
i

C T t d t d e T


    



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                                                                                                 (18)*
*( [ , ) |) /

s
i i i i N

i

C T t d t d T


    

                                                      Where * inf{ 0 : . .,TL( ) 0}jid d s t e  


In order to find out total energy consumed by of production line, energy consumed during the period [0, T) 

is required to be analyzed

                                                               , , , ,
1

N

p j p j id j id j
j

E P T P T


 

                                                                                                                         (20), , ,
1

 = ( )
N

p j p j j id j
j

P T T




                                                         Where,                                                         (21), , ,id j p j off jT T T T  

                                                                                                                             (22),
0

( '; ) '
T

p j j jT T Y t E dt 

                                                                                                                                           (23),
1

j

off j k
k

T d




 

                                                                                                    (24),
10

( '; ) '
jT

id j j j k
k

T T T Y t E dt d




    

Where  is total number of downtime events for machine j and  is number of effective downtime events j e
j

which leads to permanent production loss.

By using above equations, the general solutions for  and  are: EP dEP

                                                                                              (25)
, ,

1 1
[ ( (1 ) )]

jN

p j k j id j
j k

P T d T
EP

C




 

  


 
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                                                               (26)                                                               

*
, ,

1 1
[ ( [ , ) | (1 ) )]

j

s

N

p j i i i i k j id j
j ki

d

P t d t d d T
EP

C






 

    


 

Performance indicator cab be defined as:

                 
Energy consumption per unit part with no disruption events

Net energy consumption per unit part

                                                    
eEPPI

EP


                                                                                                    (27)

*
,

1

, ,
1 1

[ ( [ , ) |]
=

[ ( (1 ) )]

s

j

N

p j i i i i
j i

N

p j k j id j
j k

P T t d t d

P T d T






 

 

  

  



 



                                            Where, { 1,..., , . .,TL( ) 0}s
ji n s t e   



The PI accurately illustrates the performance of manufacturing system in contrast with portion of the energy 

consumption per part which is static with no disruption events. It illustrates the energy wastage due to 

downtime events. There are three cases which are given as follows:

1. Case 1: PI < 1 – This is the case when energy consumption per unit part for the manufacturing 

system is more than that in the scenario with no disruption events. It occurs due to permanent 

production loss due to effective downtime events.

2. Case 2: PI = 1 – This represents the situation when energy consumption per unit part for the 

manufacturing system is equal to the scenario with no disruption events. However, there could be 

more energy savings by turning off certain machines at certain intervals without affecting net 

production.

3. Case 3: PI > 1 – This represents the situation when manufacturing system is consuming less energy 

than the scenario without disruption events.
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5. Performance bottlenecks

Two bottlenecks are introduced in this section, downtime bottleneck (DBN) and power bottleneck (PBN). 

The DBN provides information for directing limited resources to the machine which would result in maximum 

increase in energy efficiency of the manufacturing system. The PBN delivers information for replacing an 

individual machine with a more power efficient machine which would lead to largest increase in energy 

efficiency of the production line. Both bottlenecks utilize sensor data.

Downtime bottleneck

A machine j is DBN if an infinitesimal reduction in its downtime results in largest increase in energy efficiency 

of the entire production line.

                                                                                                                              (28),
j i

EP EP i j
d d

 
  

 

In order to find above partial derivative, quotient rule for partial differential equations is used

                                                                                               (29)2

( )( ) ( )(( ))( )
j j

j j

E CE C E
d dEP C

d d C

 
  

 
 

Here E represents total energy consumption of production line and other symbols have their usual 

meanings.

                                                                                                 (30), ,
1 1
[ ( (1 ) )]

jN

p j k j id j
j k

E P T d T



 

    

                                                                                                          (40)
0

( ) ( )
lim

j

j j j

d
j j

E d d E dE
d d 

  


 

                                        Where  is total number of downtime events for machine jj
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                                                      (41), , ,
1 1

( ) [ ( (1 ) )] ( )( )
jN

j j p j k j id j j j p j
j k

E d d P T d T d P


 
 

        

It should be noted that a small change in doesn’t affect , due to the fact that it is impossible for jd ,id jT

machine to break when it is idle.

                                                                                                                                         (42),j p j
j

E P
d


 



                                                                                      (43)
0

( ) ( )
lim

j

j j j

d
j j j

PL d d PL dC PL
d d d 

   
  

  

Where PL is the loss in production which cannot be recovered.

It is fair to assume that there would be no conversion of non-effective downtime events (downtime events 

which do not cause permanent production loss) into effective downtime events (downtime events which 

cause permanent production loss), due to infinitesimal change in MTTR, since change is very small. It is 

known that production due to machine j when subjected to sequence of downtime events i = [ i,1 ,…, i,Nj ] 𝑓 𝑒  𝑒

is equivalent to summation of stoppage interval caused by machine j

                                                                                                                           (44) 
*

*

1( )

e
j

i i
j

j
N

d d
PL d

T






 



Where * inf{ 0 : . .,TL( ) 0}jid d s t e  


PL is simply summation of stoppage interval since there can’t be any overlapping of downtime events on a 

single machine and  is number of effective downtime events which leads to permanent production loss.e
j

                                                                                                         (45)
*

*

1( )

e
j

i j i
j

j j
N

d d d
PL d d

T





  
  


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                                                                                                                             (46)
* *

1
1

e
j

e
j j

j N N

C
d T T




   





                                                                                                                                 (47)j j

j

E C
d dEP

d E C

 
 

 


Thus a machine j is bottleneck if it satisfies the following

                                                                                                                       (48),j j i iH I H I i j    

                                                                                                (49),

, ,
1 1
[ ( (1 ) )]

i

k p k
k N

p i k i id i
i i

P
H

P T d T





 




   

                                                                                                               (50)*[ , ) |
s

e
k

k
k k k k

k

I
T t d t d








  

Power Bottleneck

The PBN provides a tool to replace a machine with a new machine in an optimal way. PBN represents the 

machine, which once swapped with a machine having greater power efficiency, results in maximum 

increase in energy efficiency. Thus a machine j is PBN if

                                                                                                                              (51),
j i

EP EP i j
P P

 
  

 

The above equation can be evaluated as follows                                                                                 
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                                                                                                                                           (52)
( )

j

j

EE
PC

P C


 




                             (53), , ,
1 1 1

( ) [ ( (1 ) )] ( (1 ) )
j jN

j j p j k j id j j k j id j
j k k

E P P P T d T P T d T
 

 
  

            

                                                                                                       (54),
1

( (1 ) )
j

k j id j
kj

E T d T
P







    

 

Putting the values found in above equations in  and simplifying it, the following ,
j i

EP EP i j
P P

 
  

 

inequality to identify PBN is obtained. 

                                                     (55), ,
1 1

( ) (1 ) ( ) (1 ) ,
j i

j k j p j i k i p i
k k

T d T T d T i j
 

   
 

         

In the next section, the results from simulation studies would be discussed.

6. Simulation studies

A simulation model built using Arena software is used to replicate data of a production line, which would be 

obtained using the dispersed sensor network of the respective manufacturing system in the practical 

scenario. The model is run for a time horizon of [0, T) with T = 8 hours which represents each shift. The 

values of various parameters used in simulation such as buffer capacity, MTTR etc. are shown in table 2. 

MTTR and MTBF follow an exponential distribution with means shown in table 2. Simulation was ran for 50 

replications and obtained permanent production loss due to each station as shown in table 2.

                                                     Table 2 Station parameters

Station Cycle time

(min)

MTBF

(min)

MTTR

(min)

Buffer 

Capacity

(parts)

Permanent 

Production 

Loss (units)
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1 2.5 40.00 13 - 8

2 1.5 56.67 13 35 7

3 1.0 190.00 13 40 0

4 2.0 90.00 13 37 4

5 3.0 56.67 13 45 5

6 2.5 40.00 13 41 14

7 2.0 990.00 13 40 0

Simulation provides severity ranking for stations in terms of permanent production loss due to each station, 

that is . Elaborated information for decision making involving budget allocation and 6 1 2 5 4S S S S S   

resource planning is provided by this analysis and integrated model. For example, the maintenance work 

can be prioritized based on station or event severity ranking.

An alternative method to increase productivity of system is discussed and experimentally proven. According 

to the method mentioned above, stations resulting in maximum permanent production loss of production 

line are selected and these stations are made to produce extra parts before production shifts. The number 

of extra parts produced should be equal to respective accumulated production loss. Two experiments have 

been performed to illustrate this method.

In first experiment, it is illustrated that stations with highest production loss per shift should be selected. 

Three policies are compared on the basis of increase in system productivity. In first policy, stations with 

highest production loss i.e. stations 1 and 6 are chosen. In second policy, station with minimum standalone 

output i.e. stations 5 and 6 are chosen. In third policy, stations with most accumulated downtime i.e. stations 

1 and 4 are chosen. In each policy selected stations are made to produce 10 extra parts each. The 

simulations are run for 50 replications and results are tabulated in table 3. Results prove that policy based 

on our method i.e. policy 1 leads to largest increase in system productivity.

The second experiment illustrates that the number of extra units produced should be equal to permanent 

production loss of each station. Eight experiments are conducted, in experiment i, station 1 produces 2+i 
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extra units while station 6 produces 2+2i extra units. The results of this experiment are depicted in figure 2. 

The results show that highest improvement in system output is in the sixth experiment where number of 

extra parts is equal to respective production loss, hence proving our method.

                                                   Table 3 Comparison of policy 1, 2 and 3

Policy/Improvement Minimum Improvement

(units)

Maximum Improvement 

(units)

Mean Improvement 

(units)

Policy1 10 15 13.20

Policy2 5 11 8.25

Policy3 4 8 6.5

                                                     

                     

                              Fig. 2. System output improvement of each numerical experiment

Comparison of DBN and PBN with general industry indicators

In this section, the results of simulation studies conducted to confirm the results of section 5 are illustrated. 

Our simulation study utilizes 100 dissimilar line combinations to examine the efficiency of DBN and PBN. 

These combinations represent the different possible layouts possible in the industry thus ensuring 

robustness of proposed concepts. To create different scenarios MTBF (min) is selected randomly from set 
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{40, 56.67, 90, 190, 990} and value of (kWh) is selected randomly from the set {80, 100, 120} and ,p jP

similarly cycle time (min) is randomly selected from the set {1, 1.5, 2, 2.5, 3}, while  is kept constant. j

Data used for simulation like cycle time, power consumption rate etc. are selected to represent the general 

industrial scenario for experimental testing. DBN helps in determining the direction of investment for 

reducing downtime or repair time of a particular machine. Reducing downtime does not require major 

resources and is done frequently in the industry. Therefore, to test performance of DBN, MTTR of respective 

machine determined by respective indicator, is reduced by 10% and the change in value of performance 

indicator (PI) is noted. PBN helps in determining direction of investment for replacement of an old machine 

with power efficient machine. Replacing machine is a resource intensive activity and cannot be done on a 

regular basis thus results of PBN are reported on a yearly scale.  of the respective machine is reduced ,p jP

by 30kW and change in PI is noted. Each combination is ran for a time duration of 8 hours and tested 

against baseline case. The parameters for baseline is shown in table 4 and the results of DBN and PBN 

comparisons are shown in table 5 and table 6 respectively.

                                                     Table 4 Baseline Parameters

Station Cycle time

(min)

MTBF

(min)

MTTR

(min)

Buffer 

Capacity

(parts)

,p jP

(kW)

,id jP

(kW)

1 2.5 40.00 10 - 120 90

2 1.5 56.67 10 328 100 75

3 1.0 190.00 10 328 100 75

4 2.0 90.00 10 352 120 90

5 3.0 56.67 10 377 80 60

6 2.5 40.00 10 423 80 60

7 2.0 990.00 10 425 100 75

Table 5 DBN vs general industrial indicators
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Indicator Total Energy 

Consumed(kWh)

Total parts 

produced(kWh)

Average 

energy 

consumed

Average parts 

produced

% Change PI

Baseline 486695 10233 4866 102 -

Max EPj 528097 11227 5281 112 1.42%

Min MTBF 505676 10638 5057 106 0.36%

Max ,p jP 497887 10447 4979 104 0.10%

Max EIj 519111 10987 5191 109 0.97%

DBN 550344 11888 5503 118 3.05%

Table 6 PBN vs general industrial indicators

Indicator Average yearly energy 

consumption(kWh)

% Change PI

Baseline 1776091 -

Max EPj 1739859 2.04%

Min MTBF 1741457 1.95%

Max ,p jP 1742345 1.90%

Max EIj 1738260 2.13%

PBN 1735063 2.31%

The results depict that DBN leads to more than double percentage increase in PI with respect to second 

best performer. Moreover, number of units produced in case of DBN are large compared to second best 

indicator. The performance of PBN is also better than rest of the indicators. Use of PBN leads to average 

savings of 41028 kWh and approximately 3000 kWh with respect to second best performer. Both PBN and 

DBN are ranked 1 in all the 100 scenarios. Both of these indicators are easy to use and results in better 

performance. While it is important to decrease the energy waste, it is also important to increase the 
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throughput of the system. In case of DBN, it is observed that it results in increased throughput with minimal 

rise in energy consumption.  To understand more about the benefits of DBN and PBN, monetary analysis 

is performed to estimate the monetary savings of the organization by decision making via DBN and PBN. 

                                     savings productivity gain energy consumption 

For experimental purposes, it is assumed that profit per unit part is 1000 INR. Based on the official 

government data (Open Government Data, 2018) electricity cost is 4.82 INR per kWh in India. Replacing a 

machine is a big investment thus PBN savings are calculated on a yearly scale. DBN involves reduction in 

repair time of the machine which is done more frequently in production line, thus DBN savings are calculated 

on a monthly scale. Table 7 shows the results of DBN, PBN savings versus monetary savings from other 

general industrial indicators.

Table 7 Monetary savings from DBN and PBN

Indicator PI(DBN) PI(PBN) Monthly 

Savings 

(DBN) (INR)

Yearly 

Savings 

(PBN) (INR)

Baseline 0.69 0.69 - -

Max EPj 0.70 0.70 238332.6 350591.8

Min MTBF 0.69 0.70 94052.37 171580.4

Max ,p jP 0.69 0.70 48015.72 112996.3

Max EIj 0.69 0.70 179326.1 280903.2

DBN or PBN 0.71 0.71 404463.1 555826.1

It is clear from the above results that DBN and PBN performs significantly better than general industrial 

indicators in every aspects. Performance Indicator value for both DBN and PBN are the best and both 
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results in almost double monetary savings compared to the second best performer. An interesting point to 

note about DBN is though it results in more energy consumption but it also increases the productivity of the 

system with minimal increase in energy consumption thus making it more efficient in terms of energy and 

monetary savings. On the other hand, PBN results in most energy savings and monetary savings compared 

to rest of the indicators. 

The indicators PI, DBN, PBN, and Unified Severity Index can be utilized in monitoring performance of the 

manufacturing system. A dashboard can be developed which uses real-time sensor data from the 

production line to calculate and display the values of above indicators. These indicators can be utilized by 

managers for decision making process for diverting the limited resources for maximum improvement. For 

example, if throughput of the line is less than expected, unified severity index can be used to identify the 

machine or station which is resulting in maximum production and resources can be diverted to that specific 

machine to improve productivity. Similarly PI can be utilized to monitor energy efficiency of the production 

line and DBN or PBN can be utilized to identify power inefficient machine. DBN can be utilized to identify 

the machine which requires most repairing resources while PBN can be used for decision-making process 

of machine replacement and which machine to be replaced, if replacing a machine.

7. Conclusion

In this paper, first production system’s dynamics with multiple slowest stations is studied. It is proven that 

only downtime events which cause blockage or starvation of slowest station, results in permanent 

production loss. Then a unified severity index is developed in terms of production loss. In the next section, 

dynamic structure of energy for serial production line is analyzed and the effect of downtime events on 

energy consumption in terms of energy consumed per part is studied. Performance indicators are 

developed to evaluate energy efficiency of the system. DBN and PBN are defined in section 5 and proven 

mathematically. The proposed indices, Unified Severity Index, PI, DBN, and PBN can be calculated using 

real-time sensor data obtained from the production line. These indices can be used by manager to take 

crucial decisions about limited resources. For example, unified severity index can be used to modify the 

buffer space arrangement of production line or PBN can be used to replace a power-hungry machine.      
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Future research will integrate opportunity windows and these bottleneck indicators (DBN, PBN) to further 

reduce the energy consumption. Furthermore, the relationship between two components will be explored 

in greater detail to improve responsiveness and overall efficiency. A user-friendly dashboard will be 

developed to help plant manager to take decisions using indices proposed in the paper.
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 Performance indices for measuring energy efficiency and productivity of a serial manufacturing 
system are developed

 Unified severity index is developed to quantify total production loss from each station
 Energy dynamics of the serial manufacturing system is studied and performance indicator is 

developed to measure energy efficiency of the system
 Performance bottlenecks (downtime bottleneck, power bottleneck) are established to optimize the 

distribution of the resources to machines 
 Simulation studies were performed to verify the proposed methods


