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Abstract
Experiments are conducted to study the transition from episodic avalanching (slumping) to continuous flow (rolling) in drums
half full of granular material. The width and radius of the drum is varied and different granular materials are used, ranging
from glass spheres with different radii to irregularly shaped sand. Image processing is performed in real time to extract
relatively long time series of the surface slope derived from a linear fit to the granular surface. For the drums with glass
spheres, the transition mostly takes the form of a blend of the characteristics of episodic avalanching and continuous flow, that
gradually switches from slumping to rolling as the rotation rate increases. For sand, a hysteretic transition can be observed
in which one observes prolonged episodic avalanching or continuous flow at the same rotation rate, spanning a window of
rotation speeds. For drumswith the smallest spheres (1mm diameter), the transition takes the form of noise-driven intermittent
switching between clearly identifiable phases of episodic avalanching or continuous flow. This style of transition is also found
for the sand in either the largest or smallest drum (by volume). We formulate dimensionless groupings of the experimental
parameters to locate the transition and characterize the mean surface slope and its fluctuations. We extract statistics for
episodic avalanching, including angle distributions for avalanche initiation and cessation, the correlations between successive
collapses, mean avalanche profiles and durations, and characteristic frequencies and spectra.

Keywords Granular media · Rotating drum · Granular avalanche

1 Introduction

The flow of grains in a horizontally rotating drum is one of
the simplest experiments to perform, yet exemplifies most
of the key features that complicate the dynamics of a granu-
lar medium [4,27]: as the drum rotates, phases of solid-like
behavior can co-exist with liquid-like or gas-like phases or
be transformed into them. Even when the mean flow field
is steady, particles can traverse yield surfaces to become
entrained into flow or deposited into a solid bed. Finally, flow
can abruptly halt or begin to furnish extensive intermittent
motion. Thus, the rotating drum is perhaps the archetypal
granular experiment. However, despite decades of study,
most aspects of drum flow cannot be explained by any one
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model. For example, continuum models based on empiri-
cal friction laws [13] or kinetic theory [18] chiefly apply to
steady or rapid flow conditions and have had some success in
applications to rotating drums (e.g. [15,20,29,30]). Neverthe-
less, the models do not describe all the dynamics when there
are unsteady transitions from solid-like to fluid-like behavior.
Worse, the literature on drum dynamics contains a number of
overly simplistic or inaccurate theories and a variety of con-
flicting observations and interpretations, painting a poorly
quantified picture of one of the more fundamental granular
flow configurations. A first step to remedy this situation is to
obtain reliable, reproducible and accurate experimental data,
exploiting the continuous operation and image processing
ability of modern cameras and computers to generate long
stationary time series and high-quality statistics, which is
one of our current goals.

For a roughened cylinder, for which the granular mate-
rial is unable to slide freely over the container, the low-
speed flows are popularly classified as either “slumping” or
“rolling” [16,27]. The former consists of intervals of solid-
body rotation that are interrupted by episodic avalanches and
arises at the lowest rotation rates. The continuous steady flow
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of the rolling state emerges at higher rotation speeds. For both
slumping and rolling, the granular surface often remains rel-
atively flat and is well characterized by a “dynamic friction
angle”; there is only ever a shallow superficial flowing layer,
bordered from the rigidly rotating grains belowby a yield sur-
face. At yet higher rotation rates, the surface profile becomes
nonlinear, with a characteristic S-shape; eventually, rapid,
gas-like flow emerges associated with significant centrifug-
ing.

The transition between episodic avalanching and continu-
ous flowhas been documented to depend on particle diameter
(relative to drum diameter) and shape, the aspect ratio and
fill fraction of the drum, effective gravity and degree of
cohesion [3,8,16,24,25,36]. Several studies have attempted
to qualitatively describe the transition in terms of the match-
ing of twodistinct timescales. For example, it has been argued
[17,27] that the transition occurs when the typical duration
of an avalanche matches the time taken for the same amount
of material to rotate rigidly through a comparable angular
change. This criterion has some empirical support, as do
some other qualitative criteria [8,23,32,34]. However, none
of these conditions emerge as the prediction of a dynamical
theoretical model, nor do these studies address the precise
form of the transition as a bifurcation in dynamical behav-
ior. Indeed, experimental studies often report a “transitional
regime,” with mixed characteristics of both slumping and
rolling, but offer no quantitative details (e.g. [3,7,16]).

By contrast, it has also been stated that the transition has
a hysteretic form [32]: as one increases the drum rotation
rate, episodic avalanching persists up to a threshold, before
switching abruptly to continuous flow. If one then lowers the
rotation rate, the continuous flow regime only becomes inter-
rupted by episodic avalanching at a second, somewhat lower
threshold. Both flow states are possible over the window of
rotation rates sandwiched between the two thresholds. This
description is rather different from a dynamical melange of
slumping and rolling.

A third perspective suggests that the transition is noise-
driven, and detailed experimental observations indicate a
“bifurcation by intermittency” [12]. In this scenario, there
are again two co-existing states, but noise disrupts episodic
avalanching at the higher rotation rates and terminates contin-
uous flow at low speeds. Over the window of the transition,
the two states remain distinct and clearly identifiable, but
stochastic fluctuations prompt intermittent switches between
them. It is not clear whether the mix of behavior reported
in other studies corresponds to this intermittent switch-
ing, or whether the system dynamics was rougher, with no
clear division into recognizable prolonged states of episodic
avalanching or continuous flow.

A complementary theoretical approach is based on mod-
eling the avalanching granular medium as a fluid-like con-
tinuum accelerating under gravity but retarded by solid-like

friction [4,33]. The crudest models describe the dynamics
in terms of a single evolution equation for the surface angle
θ(t), allowing for switches inflow in themanner of a granular
stick-slip friction law [28].When static friction is higher than
dynamic friction at the initiation of flow, and if the latter then
increases with flow rate (as in traditional Bagnold-type fric-
tion laws), the models predict two possible flow states at low
rotation rates: a periodic stick-slip-type motion reproducing
the episodic avalanching state, and a steady state represent-
ing continuous flow. As one increases the rotation rate, the
periodic stick-slip solution eventually disappears in a deter-
ministic bifurcation, with the system then converging to the
rolling state. The critical rotation rate at which the periodic
oscillations disappear offers a rationalization of the transi-
tion from slumping to rolling. Moreover, the presence of
two co-existing states at lower rotation speeds implies pro-
nounced hysteresis.However, the continuous flow state exists
for arbitrarily low rotation rates and there is no transition from
rolling to slumping. This can be remedied by destabilizing
the steady state in another deterministic bifurcation at low
rotation rates by forcing the friction to start decreasing with
flow speed [4,33]. Alternatively, noise can be added to the
model to account for fluctuations due to the finite-size, gran-
ular nature of the medium. The continuous flow state is then
disrupted at lower rotation rate and episodic avalanching at
higher rotation rates without passing through any determin-
istic bifurcations, and the system can progress from one with
pronounced hysteresis to one having an intermittent transi-
tion by raising the noise level [12].

In the current paper, we provide an experimental explo-
ration of slumping and rolling and the transition between
the two, examining in detail the effect of drum and parti-
cle geometry. We summarize the details of the experiment
in Sect. 2, and then describe our results for glass spheres
(Sect. 3) and sand (Sect. 4). Appendices contain some fur-
ther technical details of the experiments, and a collection of
additional results that back up our conclusions or provide
extra information, but which we omit to streamline the main
body of the paper.

2 The experiment

2.1 Apparatus

Our experiments were conducted using drums made from
two acrylic cylinders fitted with a transparent front plate
and a paper-covered back wall. For each, the position of the
back wall could be adjusted to vary the drum widthW (axial
length), and the inner cylindrical surface was covered with
(60 grit) sandpaper to reduce any slip of the granular mate-
rials. Most of the experiments were conducted in the larger
of the cylinders, with a diameter D = 287mm, which was
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Table 1 Dimensions of the
drums, their ranges of rotation
rate, and the particle diameters
and characteristic angles of the
granular materials

Drum diameter (inner), D (mm) 287, 190, 152, 100 137

Drum widths, W (mm) 17, 31, 56, 110, 205 17, 31, 56, 86

Rotation rates, Ω rad s−1 0.004–1 0.01–1

Nominal particle diameter (mm) Range (μm) θ1 〈θstart〉 ± σstart 〈θstop〉 ± σstop

Glass spheres

1 783–1132 21.3 21.7 ± 0.1 20.9 ± 0.1

1.5 994–1483 24.7 25.4 ± 0.3 24.3 ± 0.2

2 1800–2200 25.4 26.1 ± 0.3 24.9 ± 0.2

3 2800–3200 26.5 27.6 ± 0.4 25.8 ± 0.3

5 4800–5200 28.0 29.8 ± 0.7 26.9 ± 0.5

10 9800–10300 30.5 33.7 ± 1.4 28.3 ± 1.2

16 15600–16500 33.4 37.7 ± 2.0 30.1 ± 1.6

Sand

1 624–1335 36 38.7 ± 0.3 34.8 ± 0.4

The spheres with d ≤ 5mm are produced by Potters Industries in a range of diameters and no further sieving
was performed. The two larger spheres (d = 10 and 16mm) were commercial glass marbles for which we
measured the diameter of spheres in representative samples directly with a caliper. Diameters less than 2mm
were measured in a Beckman Coulter LS13320 Laser Diffraction Particle Size Analyzer, which precisely
measures the distribution. The size range is given by d10–d90 (the 10 and 90% percentiles, weighted by
volume) for d < 2mm and d > 5mm; for d = 2–5mm, we list the manufacturer’s quoted size range. The
characteristic angles are estimated using the largest drum (D = 287mm) with a width of W = 110mm; θ1 is
the surface angle at the commencement of continuous flow (Sect. 3.4); 〈θstart〉 ± σstart and 〈θstop〉 ± σstop are
the mean starting and stopping angles during episodic avalanching, plus or minus their standard deviations
(Sect. 3.5)

rotated relatively precisely at a prescribed rate using friction
rollers driven by a computer-controlled motor (see Appendix
A). The front plate was made from glass. Cylindrical inserts
with centering spacers were fabricated so that the diameter
could be changed whilst using the same driving apparatus
and data acquisition system. The smaller cylinder, with a
diameter of about 137mm, had an acrylic front face and was
mounted co-axially on a shaft driven directly by a geared-
down motor. This second cylinder was used for a smaller
number of more detailed measurements of the avalanching
granular surface. The dimensions of the drums are provided
in Table 1.

To eliminate one of the experimental parameters, in all
experiments the drumwas half filled with the granular media
(the “fill fraction” was 0.5). We used glass spheres for the
most part, with the range of diameters listed in Table 1.
We also used a poly-disperse sand with a mean diameter
of about a millimeter. Table 1 reports some characteristic
friction angles for these materials. It is conventional to deter-
mine such angles by building sandpiles or tilting a plane
layer. However, the statistics for surface slopes are far better
measured in the rotating drum. For example, in the episodic
avalanching regime at low rotation speed, we can extract sat-
isfying statistics for the angles at which avalanching begins
(θstart) and ends (θstop). These quantities are random-looking
variables with well-defined distributions; our measurements
determine the mean values far more precisely than a sandpile

experiment. One awkward issue is that the angles depend on
drumwidthW and diameter D in our experiments (Sects. 3.4,
3.5); Table 1 quotes results for a relatively large drum with
D = 287mm andW = 110mm, for which at least the effect
of the side walls is minimized. Mean angles of this type are
also sensitive to ambient noise, dust and humidity. Indeed, a
disturbing feature documented presently (Sect. 2.3) is a per-
sistent ageing effect that leads to secular drifts of these angles
as the drums rotate over long periods. Overall, despite their
simple appeal, mean angle measurements of this sort are not
robust measures of granular dynamics. We did not attempt
to calibrate an empirical friction law like “μ(I )” using sheet
flow down an inclined plane [14] (see also Appendix B).

The experiments were conducted in air-conditioned lab-
oratories; the humidity was monitored to be 50 ± 10% over
their duration. Although the humidity was not precisely con-
trolled, once the granular materials were loaded inside the
drums, the arrangement was well sealed and so humidity was
unlikely to vary during each suite of experiments (i.e. the up-
down sweeps described in Sect. 2.3). Nevertheless, humidity
effects may have influenced the dynamics of some of smaller
particles we used (1mm glass spheres and the sand). The big
drum was fixed to an optical table set on a workbench and
included vibration shielding. The smaller drumwasmounted
on a heavy wooden board. No further effort was made to
reduce ambient noise, with other devices in the laboratory in
operation during the experiments.
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2.2 Data analysis

For each rotation rate, we used a machine vision camera,
directly connected to a computer, to observe images of the
granular medium through the front face of the drum. With
a sampling rate of twenty or fewer frames per second, the
images could be processed in real time, thereby avoiding
the post-processing of excessive amounts of stored data. In
particular, we used the contrast between the relatively bright
particles and the back (matt black paper covered) wall to
extract the location of the granular surface (defined by the
upper edges of the top layer of grains) near the front glass
face over a central section of the drum spanning about nine
tenths of the total surface. The time series of the dynamical
friction angle, θ(t), was then recorded exploiting a linear fit
to the surface profile. Further details of the fitting process
are summarized in Appendix A. For the 137mm drum, we
recordedmovies of shorter duration and extracted the surface
profile as a function of space and time.

In addition to the mean surface angle 〈θ〉 (angular brack-
ets denoting the time average), we also examine a number
of other statistical measures extracted from the time series
of θ(t), including the standard deviation, σ , and the distance
skewness of its rate of change, Dskew (see Appendix A). The
standard deviation highlights the strength of slumping, but
also measures the unsteadiness of the flow during rolling.
The distance skewness detects chiefly episodic avalanching:
in this regime the time series of θ(t) contains rising por-
tions at fixed rate punctuated by falling sections with variable
rate, which translates to a highly skewed signal that registers
strongly in the Dskew measurement.

For episodic avalanching, we record the starting and stop-
ping angles of each collapse, θstart and θstop, and the avalanche
“amplitude” Δθ = θstart − θstop. Practically, the angles are
determined by detecting all the local extrema in the time
series that are separated in time and amplitude by preset
thresholds. The thresholding artificially deletes some of the
smaller avalanches from the record; we chose the thresholds
to be as small as possible to avoid such deletions but avoid
the false detection of events due to noise in the signal (cf.
Appendix A). The procedure records data during the rolling
regime,which do not correspond to “starting” and “stopping”
angles. These measurements can still be useful as they pro-
vide another diagnostic of the fluctuations during continuous
flow. In fact, for all our experiments, 〈Δθ〉was closely related
to σ .

2.3 Burn-in

To explore the transition from episodic avalanching to
continuous flow, we performed sequences of experiments
corresponding to sweeps of rotation rate Ω , holding fixed
the other experimental parameters. For each sweep, Ω was

incrementally raised and then lowered, waiting at each rota-
tion rate for well over a hundred episodic avalanches or
particle circulations during continuous flow. At all but the
very lowest speeds the drummade at least one complete rota-
tion. Short sections at the beginning of each time series were
deleted to remove transient adjustments occurring after the
rotation rate was stepped up or down.

At the outset of our exploration, a pronounced ageing
effect became evident that made the sweeps problematic to
conduct. The ageing corresponded to a gradual systematic
drift in the mean surface angle, 〈θ〉, that we attribute to a
combination of accrued damage to the surfaces of the par-
ticles and the associated generation of fine dust (secular
drifts of surface slope have also been observed to occur due
to the cohesive action of humidity, but typically for smaller
particles than those used here [1]). For the bigger particles,
the surface damage and dust were visible to the eye (for
d = 16mm, the damage was substantial, leading us to limit
our use of this material); for the smaller particles, the damage
was much less noticeable, even under a microscope. Sam-
ple secular changes during repeated up-down sweeps with
d = 3mm glass spheres are shown in Fig. 1. Progressing
from sweep to sweep, the mean angles drift to higher values;
the net change is dramatic, exceeding a degree.

For the larger glass spheres and sand, even though the
mean angle drifted during the repeated sweeps, the other sta-
tistical measures of the signal, σ , 〈Δθ〉 = 〈θstart − θstop〉
and Dskew, showed little or no such trend; see Fig. 1b–d.
Thus, despite the drift, other key features of the drum dynam-
ics were robust, including the rotation rates characterizing
the transition between slumping and rolling. The transition,
occurring for rotation rates nearΩ ≈ 2×10−4 rad s−1 in the
figure, is detected by the sharp change the diagnostics plot-
ted in panels b–d. By contrast, for the smaller spheres with
d ≤ 1.5mm, the mean angle drifted to smaller values as the
material aged and all the statistical measures also changed,
with the rotation ratesmarking the transition shifting to lower
values as the sweeps progressed. Most disconcertingly, after
two up-down sweeps, the transition had migrated to such
low rotation rate that episodic avalanching could barely be
observed (see Fig. 30 in the Appendix; hereon, we cite such
figures using the superscript notation “�30”).

The drift of the mean angle could also be observed if the
drumwas rotated steadily at relatively high speed (0.4 rad/s).
In such experiments, the drift largely subsided after a charac-
teristic “burn-in” time for all the particles�31. This feature
provided a convenient protocol for maturing particles to
remove the problematic drift: starting with a fresh sample
of particles, we first rotated the drum at constant, relatively
high speed (Ω = 0.4 rad s−1), monitoring the mean angle.
Once any drift had subsided (which usually required many
hours), we terminated this preliminary “burn-in” experiment
and then conducted the up-down sweep in rotation rate. This
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Fig. 1 Repeated sweeps with a fresh sample of 3mm spheres in a drum
with (D,W ) = (287, 110) mm, showing a the secular increase of the
mean surface angle 〈θ〉, b the standard deviation σ of the surface angle
time series, c themean avalanche amplitude 〈Δθ〉 = 〈θstart−θstop〉, and
(d) Dskew , the optimised distance skewness of θ̇ (t). For the sweeps, the

rotation rate is first stepped up (dots/solid line) and then stepped back
down (dashed line); the up-down sequence is then repeated (dotted and
solid lines). The circles and crosses show up-down sweeps for spheres
aged according to our burn-in protocol

ensured that there was minimal secular change between the
rising and falling parts of the sweep, enabling us to look
unambiguously for any other forms of hysteresis. Results
from two sweeps with different batches of matured 3mm
spheres are included in Fig. 1; the elimination of the secu-
lar drift leaves discrepancies of order 0.1 degrees between
the two batches that we attribute to basic experimental error
(slight differences in the fill fraction of the drum, the fit of
the surface slope, camera or drum positioning and so forth).

The pervasive effect on the surface angle associated with
surface damage does not appear to have been reported in
detail previously in the literature on rotating drums, although
it is clearly connected to the industrial process of polishing.
As ourmain effort was to explore the transition from episodic
avalanching to continuous flow, we ignored the phenomenon
once eliminated by the burn-in. However, although the proto-
col successfully yielded repeatable, consistent results for the
larger spheres with d > 1.5mm and the sand, problems still
remained for the smaller spheres. For d = 1.5mm spheres
it turned out that one could remove the particles from the
drum after the first burn, wash and dry them, and then re-
mature them in a second burn-in,�31 to obtain reproducible
sweeps. For d ≤ 1mm, a similar maturation process still did
not furnish adequately repeatable sweeps�30, leading us to
report results chiefly for spheres with d ≥ 1.5mm.

To avoid repeating excessively long burn-in runs, we also
recycled matured particles. In particular, we first matured
particles in the drum with (D,W ) = (287, 110)mm, and
then used the matured batches for all the subsequent sweeps

in drums with different width and radius. The recycled mate-
rial still required some degree of burn-in (due perhaps to the
loss of dust during removal and refilling of the drum), but
typically less than half the time. The sandpaper lining the
drums was also worn down by conducting repeated sweeps;
we replaced the lining whenever wear became noticeable.
No appreciable wear of the glass face of the big drum was
discernible (the smaller drumwas not used for sufficient time
to wear the acrylic face.)

3 The results for glass spheres

3.1 Phenomenology

We first discuss the basic avalanche dynamics of the glass
spheres. Figure 2 displays sample time traces of the sur-
face angle θ(t) for d = 2mm and varying rotation rate in
the drum with (D,W ) = (287, 31)mm. At the larger rota-
tions rates, the motion takes the form of unsteady continuous
flow with angle fluctuations of order a tenth of a degree.
AsΩ decreases, sporadic larger-amplitude fluctuations arise,
which are the signature of incipient episodic avalanches. At
first, these fluctuations correspond to unsteady flow, with
material never coming to rest. Lowering the rotation speed
further, however, leads to the momentary arrest of flow and
the emergence of genuine episodic avalanches. These events
become more frequent and well developed as one lowers Ω

still further, until they dominate the time series. At no stage is
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Fig. 2 Sample time series of
surface angle θ(t) for 2mm
spheres in the larger
(D = 287mm) drum, with
W = 31mm. Six time traces are
shown (vertically offset), for the
rotation rates indicated

4000 t (secs)

0°

2°

Ω=0.0172 rad/sec

0.014

0.0128

0.0112

0.01

0.0088

0.0064

Fig. 3 The intermittent
transition for 1mm spheres in
the drum with
(D,W ) = (289, 110) mm

4000 t (secs)

0°

2°

Ω=0.02 rad/sec

0.0164

0.0144

0.0120

0.008

there an obvious alternation between prolonged, clear phases
of either continuous flow or episodic avalanching. Hence
there is a gradual transition from continuous flow to episodic
avalanching, with no sign of any hysteresis if the rotation
rate is varied up or down. This dynamics characterized all the
spheres we used for the sweeps (d ≥ 1.5mm); the melange
of behavior is likely responsible for the loose descriptions of
the transition appearing in existing literature.

The transition for the smallest particles (d = 1mm) took
a clearer form, with intermittent switching between clearly
identifiable periods of episodic avalanching and continuous
flow; see Fig. 3. As the rotation rate increased through the
transition, the typical residence time in episodic avalanching
gradually dwindled until that state was replaced by uninter-
rupted continuous flow. Thus, for d = 1mm the transition
has a clear intermittent character [12],with the residence time
in the two phases providing a diagnostic of the transition.
For the rest of the spheres, the dynamics more effectively
blended the features of the two states, rendering a residence
time diagnostic difficult to extract.

Figure 4 displays sample space-time plots of the surface
position for d = 2mm spheres during both continuous flow
and episodic avalanching. The time-averaged surface angle is
subtracted off to emphasize the variations about that mean.

For the continuous flow (panel a), some residual coherent
variations are still evident that are of low level and matched
with fluctuations in the instantaneous surface slope (panel
c). For the episodic avalanches (panel b), the space-time plot
reveals the surface collapses and the intervals of rigid-body
rotation. From such plots it is difficult to isolate any particu-
lar position at which an avalanche usually begins or ends: in
some cases, the avalanche starts at one end of the surface; on
others, collapse occurs first at drum center, or entire sections
of the surface appear to mobilize simultaneously. Data col-
lected from many avalanches suggested a weak bias of the
starting position towards the top corner of the surface and the
stopping position to the lower corner�32.

3.2 Sweeps

Up-down sweeps of the glass spheres for different particle
radius and drum geometry are shown in Fig. 5; the grad-
ual transition between episodic avalanching and continuous
flow leads to a smooth connection between Ω−independent
statistics for low rotations rates to more systematic varia-
tions at higher speeds. Figure 5a shows data for the drum
with (D,W ) = (287, 110)mm, and varying particle diame-
ter d. Fig. 5b, c show data for 3mm spheres in drums with
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Fig. 4 Two experiments in the smaller drum (D = 137mm, W =
31mm, d = 2mm) for a Ω = 0.079 rad s−1 and b Ω = 0.019 rad s−1.
a, b Surface position (in mm) as a density on the space-time plane, after
rotation by the mean angle (with the position on the y-axis beginning

at the top of the granular surface and lighter shading indicating higher
relative elevations of the surface). c show the corresponding time series
of surface angle θ(t)

different diameter D and width W , respectively. The figures
illustrate how the rotation rates for transition vary signifi-
cantly with D and d, but not with W . Both the mean angle
and its variability depend significantly on all of D, W and
d. In this figure, and in subsequent figures, each data point
is an average over all experiments with the same parameters
(Ω, d, D,W ).

As illustrated in Fig. 5c, the mean angles and standard
deviations become independent of W once the drum is suf-
ficiently wide. Such width-independent behavior appears
roughly for W > 1

3D, independently of particle diameter
and shape (being similar for all the glass spheres and sand),
and in agreement with previously presented data [5]. Many
of the experimental drums used in previous studies are rel-
atively narrow according to this criterion, with mean angles
that are controlled by the side walls [3,10,30]. Despite this,
the apparent independence of the flowing layer depth on W
as observed through the side wall is sometimes taken as evi-
dence for width-independent dynamics. Although we did not
directly measure this depth, it was apparent from our image
statistics (specifically, the mean difference between consec-
utive images, which highlights flowing rather than rigidly
rotating particles) that the flowing layer also did not vary
significantly withW at the front face of our drums. The situ-
ation is presumably similar to heap flows in a slot, for which
it is argued that sidewall friction always controls the flowing
layer depth and increaseswithW until the slotwidth becomes
comparable to the length of the apparatus [19]. Thus, obser-

vations through the sidewall must be biased, with the flowing
layer being much deeper than can be seen, as has been veri-
fied in NMR experiments [26].

Measuring mean angles through the front face of the drum
can also be problematic, as surface slopes vary with axial
position. For glass spheres, it has been reported that the sur-
face angle changes by as much as 4◦, with material piled up
higher against the front and backwalls [9]. By itself, this vari-
ation is not sufficient to explain the differences inmean angle
for different W observed for our drums (Fig. 5c). The char-
acteristic range of the boundary effect is reported to be of the
order of 0.14D, provided the particles are not too large. This
suggests that the front and back wall are effectively isolated
from one another when W > 0.28D, in agreement with our
rough criterion W > 1

3D. However, we made no attempt to
quantify the axial variation of the surface slope in our drums.

3.3 Locating the transition

To locate the slumping-to-rolling transition, we use the diag-
nostics, Dskew and σ . These quantities are collected together
for all the sweeps with glass spheres in Figs. 6 and 7.

The Dskew values in Fig. 6 can be used to locate the
upper edge of the transition: we set Dskew < Dcrit , with
Dcrit = O(10−2), to indicate uninterrupted continuous flow.
The upper edge of the transition, Dskew = Dcrit , then iden-
tifies a critical rotation rate Ωc for each drum geometry and
particle diameter. As shown by Fig. 6a, with Dcrit = 0.02,
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Fig. 5 Mean surface angles 〈θ〉 and standard deviation σ , against
rotation rate Ω for glass spheres. a Sweeps with the particle diam-
eters indicated in the drum with diameter D = 289mm and width
W = 56mm. b Sweeps for d = 3mm in drums with W = 56mm and

the diameters D indicated. c Sweeps for d = 3mm in the drums with
D = 287mm and the widthsW indicated. In each panel, the mean start-
ing and stopping angles for one of the sweeps is also shown, and each
data point is averaged over all experiments with the same (Ω, d, D,W )

the critical rotation rates Ωc spread over an order of magni-
tude and vary significantly with the ratio d/D of particle to
drum diameter, but only very slightly with drum width. As
shown in Fig. 6b, the spread in Ωc can be largely suppressed
by formulating the scaled Froude number,

Fr∗ = Fr

1 + βd/W

(
D

d

)α

, Fr = Ω

√
D

g
, (1)

with α ≈ 1.1 and β = 1.5. The removal of drum-width
dependence using the combination βd/W is similar to previ-
ous adjustments of surface slope measurements (e.g. [6,14]),
and is a device we exploit again below. With that factor
in hand, the choice of α was then determined by a least
squares fit. However, neither the inclusion of the factor
(1+1.5d/W )−1 nor the difference of α from unity are espe-
cially significant.
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tions for particle diameter d indicated. The data are plotted against a
Ω (in rad/s) and b Ω/Ωc, where Ωc is the critical rotation rate where
Dskew = Dcrit for each sweep; here Dcrit = 0.02 (dotted lines). The
inset of a showsΩc (in rad/s) against d/D. In the inset of b, the critical

rotation rates are scaled as Fr∗ in (1) with α = 1.1 and β = 1.5 (the
dashed line shows Fr∗ = 1

2 ). Symbols are color coded from red to blue
according to the value of d/D, as indicated in the inset (color figure
online)
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Fig. 7 Standard deviation σ for sweeps with spheres, with the symbol conventions for d indicated. a σ is plotted against Ω (in rad/s). b The data
over the slumping regime is collapsed as indicated. Symbols are color coded according to the value of d/D, as in Fig. 6 (color figure online)

We conclude that the upper edge of the transition is
roughly given by Fr = Frupper , with

Frupper

1 + βd/W

(
D

d

)α

≈ 1

2
. (2)

Note that the alignment of the transition by plotting Dskew

against Ω/Ωc in Fig. 6b does not collapse the entire set of
sweep data onto a single curve: this diagnostic rises with
rotation period forΩ < Ωc but spreads out due to an intrinsic
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Fig. 8 a Mean angles in continuous flow (Dskew < 0.01) for 3mm
glass spheres in the drum with (D,W ) = (287, 110)mm, plotting
tan〈θ〉−tan θ1 against Fr = Ω

√
D/g, where tan θ1 is the intercept of the

linear fit (4) (dotted lines) for four different up-down sweeps. b Mean
angles for all the glass sphere data, plotting (tan〈θ〉− tan θ1)/C against
Fr, where C is the slope of the linear fits, using the symbol conventions

of Fig. 6. The fitting parameters C and tan θ1 are plotted in gray in c
and d. For each, the additional fits in (5) are used to suppress the depen-
dence on drum width; the adjusted values (C, tan θ1) − (βC , β1)d/W
are plotted as the dark (blue) points. The parameters β1 are plotted later
in Fig. 10. In d, the solid line shows the fit of 1

2 (tan θ∞
start + tan θ∞

stop)

from Fig. 10 (color figure online)

dependence on drum width�33, reflective of how episodic
avalanching depends on W (see Sect. 3.5).

The lower edge of the transition is better highlighted by
the standard deviation σ : this statistic becomes largely inde-
pendent of rotation rate within the slumping regime; see
Fig. 7a. The data for episodic avalanching can be roughly
collapsed by plotting (σ −bd/W )(D/d)c against (D/d)aFr,
with a ≈ 1.1, c ≈ 0.9 and b = 4.5. Thus, the lower
edge of the transition can be conveniently located by setting
Fr = Frlower with

(
D

d

)a

Frlower = 0.3. (3)

Both (2) and (3) indicate that the transition migrates to
zero rotation rate and disappears in the continuum limit
d/D → 0 (i.e. for increasingly small particles or big drums;
for example, for a 1m diameter drum filled with millimeter-
size particles, rotation periods of hours would be needed
to observe episodic avalanches). Neither transition criterion
is completely consistent with estimates given in previous
literature [17,24,27]. Since the exponents α and a are not sig-
nificantly different from unity, the estimates of Liu et al. [24]

show the same dependence on drum and particle diameter.
These authors, however, also express the transition criteria
in terms of the starting and stopping angles θstart and θstop,
which they take to be material constants. In fact, these quan-
tities depend on drum and particle geometry, as described
in Sect. 3.5 and already documented in the literature (e.g.
[6,14]).

3.4 Continuous flow

Mean surface slopes, tan〈θ〉, during continuous flow are plot-
ted in Fig. 8, first for d = 3mm spheres in the drum with
(D,W ) = (287, 110)mm, and then for the whole data set.
This figure illustrates that over the range of our experiments,
the mean angle is well reproduced by the linear fit,

tan〈θ〉 ≈ tan θ1 + CFr (4)

(our attempts to collapse the data for the standard deviation σ

over the rolling regimewere less successful�34). For the d =
3mmspheres, themean slope tan〈θ〉 is plotted against Froude
number, subtracting off the zero-Froude number limit, tan θ1;
a further scaling by the slope of the linear fit, C , is used
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Fig. 9 Histograms of the starting and stopping angles (top row), and the
avalanche amplitude (bottom row) for d = 3mm glass spheres in the
drum with D = 287mm in the episodic regime (Ω < 0.0092 rad s−1),

for the widths indicated. In the last panels forW = 110mm, the dashed
line shows the results for W = 205mm

in the plot for the entire data set. Here, the continuous flow
regime is defined as Dskew < Dcrit = 0.01, which is slightly
smaller than in Fig. 6, but helps to ensure that all the data are
above the transition; the choice leads to aminor improvement
in fits to the data but is otherwise inconsequential. Only at
low rotation rates is there any discernible departure from
(4), where the impending transition to episodic avalanching
prompts the data to flatten out. Other than this feature, the
mean slope data offer little warning of the transition. Indeed,
the flattening of the mean slopes is consistent with the noise-
driven emergence of incipient episodic avalanching which
raises slope angles (see Fig. 2); if one were to delete any such
events from the time series of θ(t), the mean surface slopes
maywell continue the linear trend to even lower rotation rate.

The intercepts, tan θ1, and slopes,C , of the fits show some
dependence on the drum diameter and width. We quote the
values of θ1 for (D,W ) = (287, 110)mm in Table 1. As
shown in the lower panels of Fig. 8, much of the dependence
on drum width can be suppressed by using additional fits of
the form,

C = C∞ + βCd

W
and tan θ1 = tan θ∞

1 + β1d

W
, (5)

with parameters (C∞, θ∞
1 , βC , β1). The adjusted mean

slopes, tan θ1 − β1d/W , vary in a clearer fashion with the
ratio of particle to drumdiameter,d/D (Fig. 8c). The adjusted
parameters,C−βcd/W , do not vary significantly with d/D;
the remaining scatter in Fig. 8d more likely represents dif-
ferences in surface properties or dispersivity between the
different spheres.

3.5 Slumping statistics

Statistics of episodic avalanching for the spheres are col-
lected together in Figs. 9, 10, 11. The first picture displays
histograms of the starting and stopping angles, and the

avalanche amplitudes, Δθ = θstart − θstop, for d = 3mm
in the drum with D = 287mm and varying width. Such
angle histograms are largely independent of rotation rate,�35

allowing the combination of all the data in the slumping
regime. The histograms of θstart and θstop appear Gaussian
(cf. [11]), although there are hints of skewness. Aside from a
change in mean, the θstop−distribution appears to be inde-

pendent of drum width.�36(d) In the widest drums, the
θstart−distribution is similar to that for θstop, but widens

significantly as the drum narrows.�36(c) The starting and
stopping angle distributions also do not remain separated
but overlap in the wider drums, leading to an avalanche
amplitude distribution that falls linearly to zero amplitude
for Δθ → 0,�36 allowing for the persistence of arbitrarily
small avalanches.

The wider spread in the starting angle distribution in the
narrower drums reflects higher variability in the strength of
the spheres due to confinement and, as we show later, is much
less prominent for sand. One interpretation of the variability
in the bridging effect is that force chains appear for some
packings and not others, and more often for spheres than for
sand. Moreover, isolated stress-supporting structures of this
kind are more likely to inhibit the onset of flow rather than
interrupt it, thus not impacting the stopping angle.

Figure 10 displays the median starting and stopping
angles, averaged across the episodic regime (Fr(D/d)α <

0.3 with α = 1.1). To less than one percent, the mean slope
angle is equal to the average of the starting and stopping
angles. The width dependence can again be suppressed using
fits of the form,

tan θstart,stop = tan θ∞
start,stop + βstart,stop

d

W
. (6)

The limiting angles θ∞
start,stop depend on particle and drum

diameter; fits to an exponential dependence on d/D are
included in Fig. 10a, b. The parameters, βstart,stop, are plotted
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Fig. 10 The median a starting and b stopping angles for glass
spheres, averaged over the episodic regime (Fr(D/d)a < 0.3) and
plotted in gray against d/D. For each d and D, the angles are
fitted by tan θstart,stop = tan θ∞

start,stop + βstart,stopd/W ; the extrap-
olations to infinite width, tan θstart,stop − βstart,stopd/W , are then
plotted in blue. The dashed line shows a + bstart,stop(e−γ d/D − 1)

where the parameters (a, bstart, γ ) are chosen by a least-squares
fit to the extrapolated starting angle data, and bstop using a fit
to the extrapolated stopping angle data. Panel c plots βstart,stop
against d/D (blue pentagrams and red hexagrams); the gray
dots are the fitting parameters β1 from Fig. 8 (color figure
online)
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Fig. 11 Scatter plots of starting and stopping angles for d = 3mm
spheres in drumswith D = 287mmand thewidths indicated, taken over
the entire episodic avalanching regimewithΩ < 0.005 rad s−1. In each
case, three sets of data are shown: A plots θstart − 〈θstop〉 on the x-axis
against the subsequent θstop−〈θstop〉 on the y-axis; B plots θstart−〈θstop〉

(x-axis) against the ensuing avalanche amplitudeΔθ = θstart −θstop (y-
axis);C plots θstart−〈θstop〉 (x-axis) against the preceding θstop−〈θstop〉
(y-axis). The dashed lines show least-squares linear fits to A andC , and
the solid line is the diagonal

in Fig. 10c and are consistent with the fitting parameters β1

used for the continuous flow data in Fig. 8 (which are also
plotted), and values reported previously [6,14].

Figure 11 presents “scatter” plots of the starting and stop-
ping angles and the avalanche amplitude. The clearest feature
of these plots is the tight connection between θstart and the
ensuing amplitude Δθ = θstart − θstop (data labeled B); i.e.
for a given avalanche, the higher starting angle, the larger the
avalanche (cf. Caponeri et al. [4]). As pointed out by Fischer
et al. [11], the data also suggest a weak negative correlation
between θstart and the subsequent θstop (data labeled A); the
higher the start, the lower the stop. The weakness of this cor-
relation implies that intrinsic noise and dissipation during

flow are sufficient to wipe out much of the memory of the
initiation of the avalanche.

Despite what is commonly assumed in the literature (e.g.
[33]), the plots also suggest a comparable correlation of θstart
against the previous θstop. Indeed, as shown in Fig. 12, the
magnitude of the average correlation of θstart with either the
subsequent or previous θstop is about 0.25 over the episodic
range for the narrowest drums (the correlations are again
largely independent of Ω in this regime�37). The correla-
tions become stronger as the drum is widened, before falling
off somewhat for the widest drums, perhaps because of the
axial decorrelation of successive avalanches.
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A correlation between θstart and the preceding θstop is pos-
sible when the packing of material at the termination of an
avalanche, reflecting to some degree the θstop, affects subse-
quent failure, i.e. θstart. However, each avalanche uncovers
fresh material in the upper parts of the drum, with a packing
set by amuch earlier collapse. Nevertheless, for spheres, fail-
ure does not always occur first at the top of the slope but can
be elsewhere along the surface (Sect. 3.1), where the packing
may have been set by the previous avalanche.

3.6 Mean avalanche durations and profiles

Figure 13 displays the mean avalanche duration, tA, for glass
spheres, defined as the average interval between the starting
and stopping angles. This figure illustrates the curious result
that the avalanche duration grows logarithmically as the rota-
tion rate is decreased. There is also a modest but systematic
dependence of tA on drumwidth, consistent with the idea that
sidewall friction slows and thereby prolongs avalanching.

The logarithmic growth of tA disagrees with earlier work
[4,11,12]which reports avalanche durations that are indepen-
dent of rotation rate. In agreement with this work, however,
the scaled duration tA

√
D/g does not vary strongly with

drum or particle diameter. Caponeri et al. [4] base their esti-
mate of avalanche duration on the extrema of time series of
the lower edge of the granular surface; given the nearly linear
slope of the surface, this is similar to our measurement tA.
Fischer et al. [11] estimate durations using a Gaussian fit to
the profile of individual avalanches.

To understand this blend of agreement and disagreement,
we examine the avalanche structure in more detail. Figure 14
shows the mean scaled avalanche profile, obtained by aver-
aging, over all avalanches during a particular experiment, the
time series of

Φ(τ) = Φ(t − tm) = θ(t) − θstop

θstart − θstop
, (7)

where θ(tm) = 1
2 (θstart + θstop). This procedure suppresses

the differences between avalanches, furnishing a smooth
curve characteristic of the dynamics (cf. [11]). As shown
in Fig. 14, the core of the profile remains largely unchanged
as the rotation rate decreases. More significant is the change
in the profile’s maxima and minima, which become very flat
and broad for low Ω . Avalanches therefore last longer for
higher rotation period because they take more time to begin
and end, not from any change in the time required for the
surface angle to fall once motion is underway. The latter can
be quantified by measuring t1/2, the time required for Φ(t)
to decrease from 3/4 to 1/4, which is more comparable to
the characteristic avalanche duration defined by Fischer et
al. Figure 14d plots both t1/2 and tA against Fr; t1/2 does
indeed become constant within the slumping regime. Note
that, at the higher rotation rates, the mean avalanche profiles
also display the preceding and ensuing avalanches, a feature
resulting from a well-defined mean avalanche spacing (see
below).
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Fig. 14 Avalanche structure for (D,W ) = (287, 110)mm and 3mm
spheres. a Time traces of surface angle at Ω = 0.004 rad s−1, with
the identified start and stop angles shown; the small avalanche near
t = 3s is not identified due to the clipping tolerances in the extremum
search. b The mean scaled avalanche profile, obtained by averaging
Φ(τ = t − tm) in (7). Also shown are six sample avalanches (red) and

the mean plus or minus the standard deviation (shaded region). c Nine
mean avalanche profiles forW = 110mm at the rotation rates indicated
in d; the maxima and minima are indicated. d The avalanche duration
defined as the time between the maximum and minimum of the mean
scaled avalanche profiles. The characteristic time t1/2 is also shown, as
well as direct measurements of tA (gray crosses) (color figure online)

3.7 Spectra

In Fig. 15, we show power spectra for 3mm spheres in the
drum with (D,W ) = (287, 110)mm. At the lowest rotation
rates (the top curves), there is a broad peak at an angular
frequency ω that is a few hundred times Ω . The spectra
level out at lower frequency, and then fall off algebraically at
higher frequency, first with a dependence ω−2, then steepen-
ing up toω−4 and finally flattening off likeω−1-noise. As one
approaches the slumping-to-rolling transition, the dominant
peak sharpens and its harmonic becomes visible. The peak
almost disappears in the continuous flow regime, leaving a
flat red spectrum. The frequency of the dominant peak of the
power spectrum is plotted against rotation rate in Fig. 16 for
(d, D) = (3, 287)mm and varying width.

The spectra are contaminated by additional peaks at the
characteristic frequency ωm of the stepper motor and some
of its harmonics. These become visible at high rotation rate,
occasionally taking over the dominant frequency. Further
high-frequency peaks at ωs = 8000ωm and its harmonics

correspond to the steps of the motor. Although the extra-
neous peaks appear in the spectra, they have a clear origin
and there is no suggestion that they influence the granular
dynamics in general.

Over the episodic avalanching regime, most features of
the power spectrum can be reproduced by a relatively simple
stochasticmodel (AppendixC). In brief, one assumes that the
starting and stopping angles and the avalanche duration tA are
independent random variables (i.e. ignoring the correlations
exposed in Sect. 3.5), and that the signal for the surface angle
is composed of two linear pieces: a rise at rateΩ during solid-
body rotation between θstop and θstart, then a linear collapse
of duration tA between θstart and the next θstop. The spectrum
of this signal features a dominant frequency of

ω∗ = 2πΩ

〈Δθ + ΩtA〉 (8)

(cf. [7]). This prediction is included in Fig. 16, using the
linear fits of tA with log Fr taken from Fig. 13.
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Fig. 15 Power spectra for 3mm spheres in the drum with (D,W ) =
(287, 110)mm, plotted against ω/Ω for the rotation rates indicated,
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spectra are offset for clarity and the dominant peak is identified. The ver-

tical dashed lines show the additional frequencies ωm , ωs = 8000ωm
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Fig. 16 The frequency of the dominant peak in the power spectra for
d = 3mm spheres in the big drum with the widths indicated, plot-
ting ω/Ω against logΩ . The blue (red) symbols indicate episodic
avalanching (continuous flow). The dashed lines are the fits in (8) for
W ≤ 110mm (color figure online)

In addition to the main peak, the spectrum of the synthetic
signal is flat at low frequency where avalanches look like a
random succession of impulses (cf. [4]). For ω∗ � ω �
〈tA〉−1, the solid-body rise of the signal becomes resolved,
but not the relatively rapid avalanches, so the signal resem-
bles a sawtooth with the spectrum falling like ω−2. Finally,
for ω 
 t−1

A , the continuity of the signal over the avalanches
is resolved and the spectrum then falls like ω−4. With an
avalanche duration of a few seconds (Fig. 13), the cross-over
in the tail of the spectrum occurs for ω ∼ t−1

A ∼ 1 rad/s, in
rough agreement with the switch in scalings of the top curves
in Fig. 15.

4 Sand

4.1 Avalanche phenomenology for sand

To explore how the dynamics changes when we switch to
aspherical particles, we performed up-down sweeps with
sand. Sample time series of the surface angle for different
rotation rate are shown in Fig. 17. There is a much sharper
switch in behavior at the slumping-to-rolling transition than
for spheres, and the episodic avalanching is much more reg-
ular, producing an almost periodic signal.

The space-timeplots inFig. 18 illustrate how the avalanche
dynamics in sand is also quite different from the glass
spheres: recognizable fronts arise that control the avalanches,
as noted previously [34]. A first front appears near the top end
of the pile and propagates down to the lower end, activating
the collapse. Once the advancing front reaches the bottom
of the free surface, it triggers a retreating front which propa-
gates back up the surface to the upper end, switching off the
flow. The starting and stopping positions of the avalanches
are consequently always near the top corner of the granular
surface�32. Neither front features in the dynamics of the
spheres (cf. [11]).

4.2 Sweeps, intermittency and hysteresis

For both the biggest and smallest drums with (D,W ) =
(287, 110) and (100, 31)mm a smooth transition with clear
intermittent switching between phases of slumping and
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Fig. 17 Sample time traces of θ(t) for the sand in the drum with (D,W ) = (287, 110)mm at the rotation rates indicated. The two time traces in
the lower panel show intermittent behavior over the transition

Fig. 18 A similar picture to that in Fig. 4, but for the sand (D,W ) = (137, 86)mm with a Ω = 0.27 rad s−1 and b Ω = 0.06 rad s−1

rolling is again evident (see the lower traces in Fig. 17 and the
sweep data in Fig. 19b). However, for all the other drums the
transition was different, occurring via a sudden jump from
rolling to slumping or vice versa. Moreover, the jump from
slumping to rolling occurred at higher rotation rates than the

jump from rolling to slumping, leading to hysteresis in the
sweep data; see Fig. 19a. Note that multiple sweeps focusing
on the transition are included in this figure; these demon-
strate how the transitions between the two states do not occur
at a single rotation rate but at seemingly random values of
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showing angle data and standard deviation plotted against Ω for the
widths indicated. The sweeps include multiple repeated runs focusing
around the transition; in a the switches between slumping to rolling
arise for several rotation rates, as indicated by the vertical red dashed
and solid lines (marking the switch to slumping or rolling, respectively).

The data vary more strongly with Ω within the slumping regime than
for spheres, at least for Ω > 0.01 rad s−1, reflecting how the episodic
avalanching occurs at higher rotation rates where drum speeds are no
longer much smaller than flow speeds during an avalanche (color figure
online)
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bd/W ), against D2W/d3, for α = 1.1 and b = 1.5 (see Fig. 6).
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(color figure online)

Ω spread over ranges that are narrower than the window of
hysteresis.

A summary of the transitional Froude numbers for sand (as
defined by Dskew = 0.02) is provided in Fig. 20, which plots
the data against the volume ratio D2W/d3 and scales Fr as
for the glass spheres in Fig. 6. The transition evidently occurs
at rather higher rotation rates than predicted by (2). The scal-
ing of the Froude number is also unable to align the data for
either the intermittent drums or the two transitions bordering
the region of hysteresis. Thus, the scalings observed for glass
spheres do not work for sand. Partly responsible for this dis-
crepancy is that the transition in sand depends significantly
on drum width, unlike for spheres. This result is made more
surprising by the fact that the statistics of rolling and slump-
ing do not appear to depend significantly on the drum width
(see below), again in contrast to spheres.

It is also not clear why the window of hysteresis opens
in between our largest and smallest drums. Conceivably,

enhanced fluctuations with fewer particles might wash out
a hysteretic transition in the smallest drum; perhaps the
opportunity for spatial decorrelation triggers additional per-
turbations to rationalize why the biggest drum shows an
intermittent transition. Either way, the window of hystere-
sis likely closes at the two extremes due to an increase in the
effective system noise.

Curiously, the mean angles for continuous flow in sand
show amuchmore prominent upturn as one approaches tran-
sition. This is illustrated in Fig. 21, which plots the mean
surface angles offset by the minimum slope and plotted
against Froude number scaled by the value Frmin where the
minimum is attained. This way of plotting the data removes
much of the variation between the different drum geome-
tries; the minimum slope depends on drum diameter but
not obviously on its width, whereas Frmin depends on both
(see Fig. 21b, c). In the simple model of [4] an upturn in
the continuous flow solution arises from the non-monotonic
dependence of the friction law, and destabilizes that equilib-
rium to trigger the switch to slumping. No such instability
is manifest in the experiments, with the upturn of the mean
angle occupying a significant range of rotation rates charac-
terized by robust continuous flow. This feature may explain
earlier observations [32] that the mean angle increases like
the square of the rotation rate, which is otherwise not sup-
ported by the data.

4.3 Avalanche statistics and profiles for sand

Figure 22 shows slumping statistics for sand; the correspond-
ing starting-stopping-angle correlations are compared with
results for glass spheres earlier in Fig. 12. Figure 22 illus-
trates how the dependence of the starting angle distribution
on drum width is much less marked for sand. Moreover, in
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Fig. 22 Avalanche statistics for sand in the drum with D = 287mm
and the widths indicated, averaged over the episodic regime (Ω <

0.01 rad s−1). Top row: scatter plot of θstart − 〈θstop〉 (x-axis) against
(on the y-axis) the following θstop−〈θstop〉 (A; blue dots), the avalanche

amplitude θstart − θstop (B; red dots), and the preceding θstop − 〈θstop〉
(C ; green dots). The dashed lines show least-squares linear fits to A
and C , and the solid line is the diagonal. Lower row: histograms of the
starting and stopping angles (color figure online)

thewider drums, the starting and stopping angles remainwell
separated, furnishing a more Gaussian-like amplitude distri-
bution that favors regular avalanching rather than collapses
of arbitrarily low amplitude. The sand amplitude distribution
is consequently sensitive to drum diameter but has no clear
dependence on width�38,39, unlike that for spheres.

The correlations between the starting and stopping angles
are also different for sand (Fig. 12b). In the narrow drums,
θstart is poorly correlated with the previous θstop, consistent
with the observation that the avalanches begin at the top of
the drum, where fresh material has been exposed by the pre-
vious avalanche and the packing is relic from the distant past.
The starting angle, however, is strongly negatively correlated
with the subsequent stopping angle, and so dissipation and
dynamical noise during flow cannot erase the memory of
avalanche initiation. Widening the drum strengthens the cor-

relation of θstart with the preceding θstop whilst reducing its
correlation with the subsequent θstop. In the widest drums,
θstart is roughly equally correlated with both (coefficients
of about ± 0.5). Evidently, the wider drum features greater
dynamical noise that suppresses the memory of initiation;
the correlation with the previous start is less straightforward
to understand.

Sample avalanche profiles for sand are shown in Fig. 23.
Once again tA increases logarithmically with rotation period
due to the increasing time taken to initiate and terminate
each avalanche. For wider drums, the time needed to start the
avalanche dominates, whereas the time taken to end the event
is more critical in narrower drums. The avalanche profiles
contain more structure than their relatives for spheres (cf.
Fig. 14). Most noticeable is the kink near the midpoint of the
profile, which is caused by the two fronts that switch flow
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Fig. 23 a Time series of surface angle for sand in the D = 287mm
drum with W = 110mm (solid) and 17mm (dotted). b Mean scaled
avalanche profile for the wider drum, plus or minus the standard devi-
ation and six sample avalanches. c Profiles for W = 110mm at the
six Froude numbers shown in panel d, which plots the avalanche dura-

tion (time from maximum to minimum of the avalanche profile) and
the characteristic time t1/2. Blue (red) data represent the drum with
W = 287mm (17mm), and the gray crosses (circles) show correspond-
ing direct measurements of tA. e Mean scaled avalanche profiles at the
six Froude numbers for W = 17mm (color figure online)

on and off: the kink occurs when the advancing front that
mobilizes flow reaches the bottom of the sand surface and
reflects into the retreating front that arrests motion.

The preceding observations suggest a physical picture
of sand avalanche dynamics: in the wider drums, the two
fronts fully traverse the granular surface. The triggering front
takes time to start at the lower rotation rates, increasing
the avalanche time and reducing the memory on the start-
ing angle. When the arresting front returns to the top of the
drum to switch off the avalanche, it partially sets the packing
there, dictating when the next avalanche begins and corre-
lating θstop with the following θstart. In the narrower drums,
sidewall friction slows and weakens the arresting front so
that the avalanche takes longer to terminate and the packing
at the top of the drum is set by an earlier collapse, decorre-
lating θstop and the next θstart.

4.4 Sand spectra

Aselection of power spectra for the sand are shown inFig. 24;
the frequency of the dominant peak is plotted against rotation
rate in Fig. 25. Below transition, the enhanced periodicity
of episodic avalanching is highlighted by the sharpness of

the main spectral peak and the multiplicity of its harmonics.
Above the transition to continuous flow, the spectra become
broadly peaked and red. Strong additional peaks also appear
at low frequency at the higher rotation speeds which are not
connected to the motor contaminations. Direct observations
of the drum indicate that these peaks correspond to coherent
oscillations of the granular surface, in the manner of some
sort of sloshingmode of the flowing layer. For example, at the
higher speed in Fig. 24, Ω = 0.4 rad s−1, a sloshing mode
arises with a frequency of about 2.7Ω .

Figure 25 illustrates the clear switch in the dominant spec-
tral peak when the transition is hysteretic (compare the blue
and red points). For the continuous flow data plotted in this
figure sloshingmodes haveyet to appear and the spectral peak
characterizes noisy flow fluctuations. The resulting charac-
teristic frequency is clearly distinct from that for episodic
avalanching, which once more reflects the typical avalanche
spacing (fits of the form (8) again furnish a fair representa-
tion of the data; see Fig. 25). Evidently, the transition arises
when the slumping and rolling frequencies are well matched,
much as suggested previously in some qualitative prescrip-
tions (e.g. [17,27]).
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Fig. 25 The frequency of the dominant peak in the power spectra for
sand in the big drumwith the widths indicated. Blue (red) symbols indi-
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5 Conclusions

In this paper we have reported an experimental survey of
episodic avalanching and continuous flow in a granular drum.
This device is a classical arrangement to study granular
dynamics, yet a detailed investigation of the two regimes
and the transition between them has not previously been pre-
sented. We considered a variety of different granular media
(glass spheres with a range of diameters and a sand) and
drumswith different diameters andwidths.Ourmain advance
was to catalog the dynamics over lengthy sweeps in rota-
tion rate, afforded by an efficient data acquisition system.

Sweeps could be conducted for days or even weeks, allowing
us to collect relatively clean statistics of episodic avalanch-
ing or the vagaries of continuous flow. From the experiments
we have characterized the properties of the two regimes and
the intervening transition, which sets the stage for modeling
efforts to match the observations and test theories.

For most of our spheres and drums, the transition from
episodic avalanching to continuous flow takes the form of
a gradual switch in dynamical behavior wherein the two
phases are blended in varying degrees. As the particle radius
becomes small, the blend becomes refined into an alterna-
tion between clearly defined phases of continuous flow or
episodic avalanching (cf. [12]). For sand, the transition is
again intermittent in either the biggest or smallest drums, but
in all others a hysteretic transition takes place [32]. Over-
all, the different forms of the transition are suggestive of a
system in which there are two possible states and which is
perturbed by differing degrees of noise. The transition is a
smooth blend in behavior for higher noise levels, hysteretic
for weak noise, and intermittent in between. There is little
sign that the continuous flow state disappears in some kind
of a deterministic bifurcation at low rotation rates, or that
episodic avalanching terminates at higher rotation rates in
another bifurcation. In other words, the transition explored
here is noisier, but follows the general scenario outlined in
[12].

The results for glass spheres suggest that the transition is
largely independent of drum width and arises roughly for
0.3 < Fr(D/d) < 0.5, in terms of the Froude number,
Fr = Ω

√
D/g. This criterion is consistent with previously
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reported results for spheres [3,12], but does not work for sand
which displays a more complicated dependence on the drum
geometry. The criterion is different to a number of existing
predictors of transition based mostly on heuristic arguments,
although it is similar to one proposed by Liu et al. [24] for
angular particles such as sand, but not glass spheres. In any
event it is hard to see how to reconcile the heuristic arguments
underlying these other predictors with the nature of the tran-
sition as they take no explicit account of effect of dynamical
noise. We also find little support for a suggestion [19] that
the transition is connected to the flow-depth-surface-angle
relation for sheet flow to cease on an inclined plane (see
Appendix B).

Although we have resisted providing any detailed the-
oretical models to complement our experiments, these are
certainly possible. Indeed,we conducted simulationswith the
Discrete Element Method in tandem with the experiments,
and which helped guide some of our scalings and fits of the
data. A brief discussion of a model for a relatively narrow
drum based on the mu(I ) law is provided in Appendix B.
One can also build cruder ODE models (e.g. [4]). To capture
the experimental observations, stochastic forcing is essential
in these models. Moreover, two types of noise are needed:
fluctuations in packing are required to furnish a random start-
ing angle for an avalanche, and dynamical noise during flow
is needed to recover a random stopping angle. With both
types of noise suitably incorporated, models can be designed
that show some qualitative agreement with the observations.
However, many of the finer details (such as the distributions
and correlations of the starting and stopping angles) are likely
to be awry without additional empirical input.

A persistent ageing effect plagued our efforts to generate
reproducible results. We eliminated this feature by suit-
ably maturing particles in high-speed burn-in experiments,
and by restricting our use of glass spheres with smaller
diameters. Polydispersivity may constitute another intrin-
sic problem, with segregation potentially also leading to
long-time evolution. Overall, the surface angle during both
episodic avalanching or continuous flow is sensitive to age-
ing effects and drum or particle geometry, and is likely to
be significantly affected by external noise in less controlled
situations. One should exercise caution in using such a statis-
tic to characterize granular dynamics (cf. [21]); other, more
robust measures offer greater diagnostic value.

Beyond the rotating drum, one may wonder what kinds
of intermittent motions occur in other flow configurations.
Episodic avalanches also arise in heapflows and sandpiles fed
at low flux (e.g. [2,19,22]), and similar intermittent motions
occur underneath plates dragged over granular layers [28].
In sheet flow down an incline (e.g. [13]) or for bulldozed
sandpiles [35], however, episodic avalanching does not occur
at low flow rates. For the inclined plane, fluctuations during
continuous flow trigger the arrest of flow, but once grains stop

noise cannot drive the system back into motion, precluding
any recurring slumping state. For the bulldozer, there is again
a continuous flow state, but the driving appears to preclude
any locked-up arrangement like rigid rotation. Stochastic
fluctuations can then only agitate the system about the con-
tinuous flow state.
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Appendix

A Experimental details

A.1 Themotor for the bigger drum

The larger cylinder was driven by a high performance stepper
motor (a Parker Compumotor iBE342H), which could rotate
stably very low speeds. Given that episodic avalanching
could be sensitive to variations in motor speed we estimated
the precision of this device by monitoring time series of the
angular position of the shaft. In its velocity-controlled mode,
the motor has settings to improve speed stability; using suit-
able choices for these (in the Parker nomenclature, we used
KI= 0, KP= 10 and KD= 1000, for the integral, propor-
tionality and damping constants, respectively), the angular
position error was always less than 0.06 degrees over the
duration of each experiment. However, velocity fluctuations
do occur during each run as the motor adjusts to maintain
the angular position. The inertia and compliance of the drum
apparatus likely lessen these variations, but our best esti-
mates suggested that rotation rate errors of order 5 × 10−5

rad/s could occur over intervals of several seconds. These
errors are somewhat lower than the smallest rotation rates
used, but the associated accelerations may contribute to the
ambient agitation of the apparatus and trigger avalanches.

A.2 Image processing

The camera was orientated so that the granular surface was
roughly horizontal, with vertical plumb lines included in the
field of view to determine the precise orientation. Images
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Fig. 26 An image taken of the 2mm spheres in the 137mm diameter
drum (W = 17mm), together with the extraction of the surface profile
and its linear fit

were processed in real time, mostly at 20Hz, with the left
and right edges of the drum image clipped by 2cm to assist
with the fitting of the slope of the granular surface. The sur-
face was first identified by finding the highest pixel in each
vertical raster of the image in which the intensity exceeded
a threshold set to be halfway between the raster’s minimum
and maximum. The best fit straight line to the identified pix-
els was found and all points lying at least ten pixels from
the fit marked as outliers and discarded. The line was fit a
second time and any new outliers again discarded. Repeat-
ing the procedure one more time furnished the slope angle
θ(t); an example is shown in Fig. 26. The procedure does
not therefore fit the entire surface profile, and is misleading
when the drum is rotating relatively quickly and the char-
acteristic S-shape develops. As diagnostics of the goodness
of fit, we recorded the mean squared error and the fraction
of discarded points (which was typically less than 5%). We
also constructed average images and the differences between
successive images in order to furnish mean surface profiles
and examine the apparent flowing layer depth.

Although the surface is relativelyflat formost of our exper-
iments, the profile becomes nonlinear as the drum is rotated
more quickly and its width is reduced. Figure 27 displays
mean surface profiles for the fastest drums. The characteristic
S-shape develops at these speeds, becoming most prominent

for the biggest diameter, narrowest drums and the smallest
particles. Note that the surface profiles in the two widest
drums (W = 110 and 205mm) are practically identical, indi-
cating that the dynamics is insensitive to the width for these
cases, yet the S-shape still develops.

For each time series of θ(t), the initial 10 s were clipped to
remove transients. A median filter over a width of 5 samples
was then applied to reduce noise. The starting and stopping
angles, θstart and θstop, were identified by first calculating the
standard deviation σ of θ(t). For a time series with a peri-
odic triangular waveform of peak-to-peak amplitudeΔθ , the
distribution of θ is uniform and σ = Δθ/

√
12. We therefore

chose an angle threshold δθ = 1
5Θ/

√
12 designed to detect

avalanches of amplitude down to about 1/5 of the average.
If the avalanche time is much less that the time for solid-
body rotation, this corresponds to a time interval between
avalanches of δt = δθ/ω. The moving maximum over θ cor-
responding to this time interval is then found and the start
of each avalanche identified as the times where θ equals this
maximum. We then find all the minimum values between
each pair of maxima to locate the end of each avalanche.
Finally the candidate list of avalanches is searched and any
that are smaller than δθ are removed. The procedure is robust
and copes well with noise, but clips the smallest avalanches.

Given the time series θ(ti ) = θi (ti being the i th sampling
time), we define the distance skewness of the rate of change
θ̇i = (θi+k − θi )/(ti+k − ti ), by

Dskew(tk) = 1 −
∑

i, j |θ̇i − θ̇ j |∑
i, j |θ̇i + θ̇ j |

,

for a prescribed delay time tk . For each time series we opti-
mised the choice for tk by increasing k until Dskew reached
a maximum, and then adopted the maximal value.

Fig. 27 a Surface profiles for
the drum with D = 289mm and
varying width, filled with 2mm
(red, vertically offset) and 3mm
(blue) spheres. The insets show
the same data, but for the drum
with D = 137mm. b Surface
profiles for particles with
diameter d = 1, 2 and 3mm, in
the drum with
(D,W ) = (287, 110)mm, for
Ω = 0.44, 0.66 and 0.88 rad s−1

(color figure online)
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B Amu(I) interlude

A different representation of the continuous flow data for the
narrower drums (3W < D) is shown in Fig. 28, which plots
mean surface slopes against Fr J FP = ΩdD2/W 5/2√g. This
unobvious scaling of Froude number is guided by a simple
model based on the mu(I) law [19], in which a shallow flow-
ing layer of depth δ � R is inclined at angle 〈θ〉with respect
to gravity and confined within a narrow slot. As shown by

Jop et al., one can compute the flow depth and flux if

μ(I ) = I0μ1 + Iμ2

I0 + I
(9)

where μ1, μ2 and I0 are material parameters. The flowing
layer depth is

δ = W

μw

(tan〈θ〉 − μ1), (10)
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Fig. 30 Repeated sweeps conducted with a fresh sample of 1mm
spheres in a drumwith (D,W ) = (287, 110)mm, showing a the secular
decrease of the mean surface angle 〈θ(t)〉, b the standard deviation σ ,
and c the distance skewness Dskew . The repeated sweeps are shown by
lines (in the up/down repeated sequence dots/solid, solid, dots/dashed,
dashed, dots/dotted, dotted); the angle change is over twice that for
d = 3mm shown in Fig. 1 of the main text. The circles and crosses

show two up-down sweeps for spheres that were matured as follows:
the spheres were aged in a first burn-in run, then removed from the
drum and washed, and finally aged in a burn-in run (see Fig. 31). The
slumping-to-rolling transition then becomes more robust but the results
are still not especially reproducible, with significant discrepancies aris-
ing between the two batches of similarly prepared particles

Fig. 31 Burn-in runs, showing the drift of the surface angle at fixed
speed (0.4 rad/s) for the glass spheres indicated in the (D,W ) =
(287, 110)mm drum. The upward shift of the mean angle is evident
for the spheres with diameter d > 2mm. For d = 2mm, there is barely
any drift; the 1.5 and 1mm particles both drift downward. For 1.5 and

1mm spheres, the material is washed after the first burn, and then aged
a second time. For the 1.5mm, the washing of the particles reverses the
sense of the drift during the second burn-in, with the mean angle then
increasing. To display the data without any overlap, some of the time
traces are shifted horizontally

where μw is the coefficient of sliding friction over the walls,
and the net flux is

q = 2I0

√
g cos〈θ〉
5d

[
W

(μ2 − μ1)

μw

]5/2
F

(
δμwW−1

μ2 − μ1

)
,

(11)

F(X) = 5(1 − X)
[√

1 − X sin−1
√
X − √

X
]

+5

3
X3/2 − X5/2. (12)

For the drum, q = 1
8ΩD2, and so (11) furnishes an algebraic

equation for θ . The full algebraic form of (12) is a little
unwieldy and its value is not so different from the small-
X approximation, F ≈ 2

7 X
7/2. If we adopt the latter as an

approximation, we find

tan θ = μ1 +
(μw

W

)5/7 [
35dR2Ω(μ2 − μ1)

8I0
√
g cos〈θ〉

]2/7
. (13)

This relates tan〈θ〉−μ1 to FrJ FP , as plotted in Fig. 28, and is
equivalent to the scaling of heap-flowdata by Jop et al. For the

123



From episodic avalanching to continuous flow in a granular drum Page 25 of 29  52 

0

10

20
d=2mm, ,W=86mm

0

10

20 d=2mm, W=17mm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60 Sand, W=86mm

Relative position down surface

Start
Stop

(b)

(c)

(a)

Fig. 32 Histograms of the relative starting and stopping positions of
avalanches down the granular surface (defined so that 0 refers to the top
of the inclined surface and 1 to the bottom in the image taken by the
video camera) for d = 2mm glass spheres and sand in the drum with

D = 137mm and the widths indicated. The position is determined by
locating the pixels of the first or last coherent motions away from rigid
rotation (discarding individual grain motion), or by taking the average
of such positions if multiple locations are indistinguishable
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Fig. 33 Dskew plotted against Ω/Ωc for a d = 3mm and b d = 2mm
spheres from the larger drum (D = 289mm), with the different symbols
corresponding to thewidths indicated.As inFig. 6,Ωc is the interpolated
rotation rate for which Dskew = Dcrit = 0.02 (this threshold is also
indicated). The diagnostic increasesmore sharply in the narrower drums

than the wider ones as episodic avalanching commences; the dashed
lines show the fits, Dskew ∝ (1−Ω/Ωc) and Dskew ∝ (1−Ω/Ωc)

3/2.
Note that the observed Dskew do not abruptly reduce to zero but trail
off gradually as one passes through Ω = Ωc, much as in an imperfect
bifurcation
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Fig. 34 Collapse of the standard deviation data in the rolling regime
(Dskew < 0.01) against Froude number, both scaled as indicated, for
d = 3 sand5mm.Forσ scaled by (D/d)3/2/(1+3d/2W ) )i.e. b = 1.5),
there is a fair degree of collapse for these two sphere diameters. How-
ever, the scaling does not collapse the two sets of data, and works less

well for other values of d. The figure serves mainly to illustrate how the
fluctuations in the rolling regime sharply increase as Ω → 0, suggest-
ing that the continuous flow state inevitably becomes disrupted at low
flow rates by noise, triggering the transition to episodic avalanching
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Fig. 35 Histograms of θstart and θstop for d = 3mm spheres in the drum with D = 287mm and the widths and rotation rates (in rad/s) indicated.
The final panel compares the distributions for (D,W ) = (287, 110)mm; the dots show the average over the slumping regime
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Fig. 36 aAvalanche amplitude distributions for (d, D) = (3, 287)mm
and W = 17, 31, 56, 110 amd 205mm (as shown in Fig. 9). b The
mean and standard deviation of the distribution as a function of d/D;
gray points show the raw data, the darker (red and blue) points after the
drumwidth dependence is removed using a linear fit with d/W . c, d The

standard deviation of the θstart and θstop distributions. Std(θstop) shows
no significant dependence on drum width; the drum width dependence
of Std(Δθ) therefore originates purely from that of θstart (color figure
online)

lower rotation rates, the data bend away from the prediction,
reflecting the impending transition to episodic avalanching.
At the higher rotation speeds, the data again bend away from
the data, possibly due to inertia (the approximation of F(X)

is not responsible). The limiting friction μ1 and the factor
μ
5/7
w [35(μ2 − μ1)/8I0

√
cos〈θ〉]2/7 provide interpretations

of the intercept tan θ1 and slope C of the fits in Fig. 28.
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Fig. 37 Correlation coefficients between θstart and the following θstop
(blue) and the previous θstop (red) plotted against Ω (in rad/s) for a
3mm spheres and b sand in the big drum. Each data point is averaged
over all experiments at the same rotation rate; for the hysteretic sand
data, the averages are taken only over experiments with the same phase.

The symbols refer to drum width, as indicated. The panels on the left
show averages for Ω < 0.01 rad s−1, plotted against W , in a, the
vertical dotted and dashed lines indicate the upper and lower edges of
the transition region, ignoring the weak width-dependence (color figure
online)
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Fig. 38 a Dskew andbσ for sand, scaled as indicated andplotted against
Fr(D/d), which collapses the data close to a common curve. Each data
point is an average over all experiments with the same (Ω, D,W ) and
phase (episodic avalanching or continuous flow), and the points are
color coded according to drum diameter (red for D = 100mm and blue

for D = 287mm). The plot conveys the impression that statistics of
episodic avalanching are largely independent ofW , but the transition to
continuous flow takes place at a width-dependent Froude number (color
figure online)

Jop et al. suggest that episodic avalanching begins when
the flow-depth-flux relation intersects the hstop(〈θ〉) curve
for sheet flow down an inclined plane (i.e. the depth-
angle relation holding when flow ceases on reducing the
incline). Because we have not measured hstop-curves for
our spheres, we cannot directly examine this supposition.
However, near the onset of flow, previous results suggest
that hstop ∝ d(tan〈θ〉 − μ1)

−m , with m ≈ 1 [31]. Thus,

setting δ ∼ d/(tan〈θ〉−μ1)
m , or δ ∼ W (d/W )1/(m+1), sug-

gests that the critical Froude number for transition scales as

Fr ∼ (Wd)
1
2 (5−2m)/(m+1)

/D3/2, in disagreement with (2).
For the wider drum, no equivalent theory exists to predict

the depth of the flowing layer or flux from mu(I ). Neverthe-
less, assuming that the inertia number plays a key role, we
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Fig. 39 a Avalanche amplitude distributions for sand in the drum with varying D and W = 110mm. The mean and standard deviation of these
distributions are plotted in b and c, respectively. The distributions, means and standard deviations show no clear trend with drum width, unlike the
glass spheres (cf. Fig. 36)

may dimensionally estimate an average,

I ∼ qd

δ2
√
gδ

≡ dD2Ω

8δ2
√
gδ

, or
δ

d
∼

(
Fr

I

)2/5 (
D

d

)3/5

.

(14)

If the average I is roughly constant, this estimate is not far
from the previously reported scaling (δ/d) ∼ √

Fr(D/d)3/4

[14]. The fit of 〈θ〉 in (4) suggests that C depends weakly
on particle radius in relatively wide drums. In this case, Jop
et al.’s strategy for locating transition furnishes a scaling,
Fr ∼ (d/D)3/(2+5m), which again compares poorly with (2)
for α ≈ 1.1 and βd/W → 0.

We conclude that the mean angle scalings suggested by
the thin-slot mu(I ) model are consistent with the drum data
to a similar degree that Jop et al. account for their heap flow
results (although, as emphasized by Fig. 8, our data is largely
only linear over the experimental range). Our observed tran-
sition, however, does not appear to coincide with a criterion
based on hstop(〈θ〉).

C Synthetic avalanche spectra

We construct synthetic time series of the surface angle as
illustrated in Fig. 29a: we randomly choose a sequence of
values for the starting and stopping angles and the avalanche
durations fromGaussian distributions. The signal is then built
by adopting a linear rise at the rotation rate between a given
stopping angle and the following starting angle, then inserting
a linear collapse of duration tA to the next stopping angle.
The time series for a realization of N avalanches can be
used to compute spectra, as illustrated in Fig. 29b, either by
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Fig. 40 Median avalanche times, scaled by
√
g/D, against Froude

number for sand. The dashed line is the linear fit to the (D,W ) =
(287, 110)mm data used in Fig. 25

exploiting a fast Fourier transform or by explicitly evaluating
the coefficients of its Fourier series.

The mean and standard deviation of the signal of θ(t)
can be computed analytically in terms of the statistics of
the random variables, after evaluating the time integrals and
replacing the sum over avalanches by expectations. One finds

〈θ(t)〉 = 1

2
〈θstart + θstop〉

×
[
1 + σ 2

start − σ 2
stop

〈θstart + θstop〉〈θstart − θstop + ΩtA〉

]

(15)

and

σ 2 = 1

12
〈θstart − θstop〉2 − (σ 2

start − σ 2
stop)

2

4〈θstart − θstop + ΩtA〉2
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+1

2
(σ 2

start + σ 2
stop)

〈θstart − θstop + 2
3ΩtA〉

〈θstart − θstop + ΩtA〉 . (16)

The model therefore rationalizes the relation between the
standard deviation of the surface angle and the avalanche
amplitude: σ 2 ≈ 1

12 〈θstart − θstop〉2 + 1
2 (σ

2
start + σ 2

stop) when

the avalanche duration is relatively small and σ 2
start −σ 2

stop �
〈Δθ〉2, where σstart and σstop are the standard deviations of
the starting and stopping angles (See Figs. 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40).
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