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ABSTRACT
We analyse the two-point and marked correlation functions (mCFs) of haloes and galaxies in
three variants of the chameleon f(R) gravity model using N-body simulations, and compare to
a fiducial � cold dark matter model based on general relativity (GR). Using a halo occupation
distribution (HOD) prescription, we populate dark matter haloes with galaxies, where the HOD
parameters have been tuned such that the galaxy number densities and the real-space galaxy
two-point correlation functions in the modified gravity models match those in GR to within
1–3 per cent. We test the idea that since the behaviour of gravity is dependent on environment,
mCFs may display a measurable difference between the models. For this we test marks based
on the density field and the Newtonian gravitational potential. We find that the galaxy mCF
shows significant differences measured in different models on scales smaller than r � 20 h−1

Mpc. Guided by simulations to identify a suitable mark, this approach could be used as a new
probe of the accelerated expansion of the Universe.

Key words: gravitation – methods: data analysis – methods: statistical – large-scale structure
of Universe – cosmology: theory.

1 IN T RO D U C T I O N

The � cold dark matter (�CDM) model is currently the most widely
accepted description of the Universe (e.g. see Ade et al. 2014). In
this model small ripples in the density of the Universe at early
times, seeded during a period of rapid expansion called inflation,
were boosted by gravity to form the cosmic web of voids, galax-
ies, and clusters of galaxies that we see today. The �CDM model
works remarkably well on large scales, with the highlight being the
prediction of the temperature fluctuations in the cosmic microwave
background (CMB) radiation (e.g. Ade et al. 2016). However, the
model arguably runs into difficulties on small scales, which could
be related to the nature of the dark matter particle or could be solved
by appealing to the physics of galaxy formation (for a review see
Weinberg et al. 2014).

Several large international survey projects are underway which
aim to determine what is behind the accelerating expansion of the
Universe, such as the Dark Energy Survey (DES) (Dark Energy
Survey Collaboration 2016), the Dark Energy Spectrographic In-
strument (DESI) survey (Aghamousa et al. 2016), and the Euro-
pean Space Agency’s Euclid mission (Laureijs et al. 2011). These
surveys aim to make ambitious measurements which, for the first
time, will be dominated by systematics rather than by the volume of
the Universe surveyed. Accurate theoretical predictions are urgently
required to compare with these expected measurements and to rule
out competing scenarios for the accelerating cosmic expansion.

� E-mail: cesar.hernandez-aguayo@durham.ac.uk

Theoretically, the �CDM model is somewhat unappealing due
to the presence of the cosmological constant, the agent behind the
accelerating cosmic expansion. The magnitude of the cosmological
constant is hard to motivate from a particle physics perspective.
There is also a ‘Why now?’ problem: a strong coincidence seems to
be required for us to be at the right point in cosmic history to expe-
rience comparable energy densities in matter and the cosmological
constant, with the latter dominating the current expansion. As a
result, alternatives to the cosmological constant have been studied
extensively in recent years: one possibility is adding more matter
species to the energy-momentum tensor (the so-called dark energy
models; see e.g. Copeland, Sami & Tsujikawa 2006); on the other
hand there are models that change the left-hand side of Einstein’s
equations (these models are called modified gravity models; for
reviews see Joyce et al. 2015; Koyama 2016).

Here, we focus our attention on a particular class of modified
gravity models – Hu & Sawicki (2007) chameleon f(R) gravity. This
model is obtained by adding a general function of the Ricci scalar,
f(R), to the Einstein–Hilbert action. This modification gives rise to
a new scalar degree of freedom in gravity (Carroll et al. 2004).
In order to recover general relativity (GR), the new scalar field
becomes massive in high-density regions (i.e. the Solar system) and
its interactions are suppressed by the so-called chameleon screening
mechanism (Khoury & Weltman 2004).

The standard tool to model the growth of large-scale structure into
the non-linear regime is N-body simulation. In order to robustly
test gravity on cosmological scales, reliable N-body simulations
of modified gravity models are essential. The non-linear nature
of the scalar field equation requires the implementation of novel
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numerical techniques, which is what makes N-body simulations of
modified gravity challenging (Barreira, Bose & Li 2015; Winther
et al. 2015; Bose et al. 2017). Once such simulations are ready, we
can use measurements of clustering statistics from surveys to test
and constrain cosmological models (see e.g. Reid et al. 2010).

Several recent works have studied clustering in f(R) gravity. For
example, Li et al. (2013) predicted the matter and velocity diver-
gence power spectra and their time evolution measured from several
large-volume N-body simulations with varying box sizes and reso-
lution. Jennings et al. (2012) predicted the clustering of dark matter
in redshift space, finding significant deviations from the clustering
signal in standard gravity, with an enhanced boost in power on large
scales, and stronger damping on small scales in the f(R) models
compared to GR at redshifts z < 1. More recently, Arnalte-Mur,
Hellwing & Norberg (2017) compared the time evolution of the
two-point correlation function of dark matter haloes in real and
redshift space in modified gravity and GR.

An approach related to the two-point correlation function has
been proposed to test modified gravity models, called the marked
correlation function (mCF) (Sheth, Connolly & Skibba 2005).
Marked statistics offer the possibility of testing how galaxy proper-
ties correlate with environment. Previous applications of the mCF
range from the analysis of the environmental dependence of bars
and bulges in disc galaxies (see e.g. Skibba et al. 2012) to break-
ing degeneracies in halo occupation distribution (HOD) modelling
(White & Padmanabhan 2009).

White (2016) proposed that marked statistics might provide a
means to distinguish between modified gravity models and GR,
due to the environmental dependence of the strength of gravity
(for earlier work on environmental dependence in modified gravity;
see e.g. Zhao, Li & Koyama 2011; Winther, Mota & Li 2012;
Lombriser, Simpson & Mead 2015; Shi, Li & Han 2017). Marks
can be designed which down-weight high-density regions, for which
modifications to gravity are screened, and up-weight low-density,
unscreened regions to maximize the differences in the clustering
signal. Valogiannis & Bean (2017) tested this idea by using the dark
matter particle distribution from N-body simulations of symmetron
and f(R) modified gravity models. In the case of f(R) gravity with
|fR0| = 10−4, they found a maximum difference of 37 per cent with
respect to GR. Armijo et al. (2018) studied the galaxy mCF by
up-weighting low and high-density regions using marks in function
of the galaxy density field and the host halo mass of galaxies,
they found significant differences between the f(R) and GR models.
Here, we focus our attention on the clustering of dark matter haloes
and HOD galaxies for f(R) gravity models to make a more direct
connection with observations.

This paper is organized as follows. In Section 2, we give a brief
review of the theoretical description of f(R) gravity and the physical
motivation behind this model. Section 3 explains the numerical
set-up of the simulations and the generation of halo and galaxy
catalogues. The main results are presented in Section 4. Finally, in
Section 5, we present a brief discussion and our general conclusions.

2 f (R) G R AV I T Y T H E O RY

A popular family of modified gravity models is obtained by re-
placing the Ricci scalar R in the usual Einstein–Hilbert Lagrangian
density by some function f(R) (see De Felice & Tsujikawa 2010;
Sotiriou & Faraoni 2010; for recent reviews). These models are of-
ten considered as an alternative solution for the accelerating cosmic
expansion. However, it should be noted that they are able to accel-
erate the expansion only because a cosmological constant is added

‘through the back door’ (Brax et al. 2008; Wang, Hui & Khoury
2012; Ceron-Hurtado, He & Li 2016), and so they do not offer a real
solution to the cosmological constant problem. Nevertheless, they
constitute a representative model with which to study cosmological
constraints on possible deviations from GR.

2.1 Theoretical framework

The action of f(R) theories is given by (Carroll et al. 2004)

S =
∫

d4x
√−g

1

16πG
(R + f (R)) + Sm(gμν, ψi) , (1)

where G is Newton’s constant, g is the determinant of the metric
gμν and Sm is the action of the matter fields ψ i (including the con-
tributions from cold dark matter, baryons, radiation, and neutrinos).

Varying the action given in equation (1), with respect to the
metric, gμν , one obtains the modified Einstein equations

Gμν + fRRμν − gμν

(
1

2
f (R) − �fR

)
− ∇μ∇νfR = 8πGT m

μν,

(2)

where Gμν = Rμν − 1
2 gμνR is the Einstein tensor, ∇μ is the co-

variant derivative, � = ∇μ∇μ the d’Alambertian, and T m
μν is the

energy–momentum tensor for matter. Here

fR ≡ df (R)

dR
, (3)

is the extra degree of freedom of this model, known as the scalaron
field.

Taking the trace of equation (2), we obtain the equation of motion
for the scalaron field,

�fR = 1

3
(R − fRR + 2f (R) + 8πGρm) , (4)

where ρm is the matter density of the Universe.
Since we are interested in the cosmological evolution of

the model, we derive the perturbation equations using the flat
Friedmann–Robertson–Walker (FRW) metric in the Newtonian
gauge

ds2 = (1 + 2�)dt2 − a2(t)(1 − 2	)γij dxidxj , (5)

where � and 	 are the gravitational potentials, t is the cosmic time,
xi represent the comoving coordinates, γ ij is the 3D metric, and a
is the scale factor, with a(t0) = a0 = 1 at the present time.

In the quasi-static and weak field limits (Bose, Hellwing & Li
2015), structure formation in this model is determined by the fol-
lowing equations:

∇2	 = 16πG

3
a2δρm + 1

6
a2δR , (6)

∇2fR = −a2

3
[δR + 8πGδρm] , (7)

in which ∇2 is the three-dimensional Laplacian operator, δρm =
ρm − ρ̄m and δR = R(fR) − R̄ are, respectively, the density and
Ricci scalar perturbations (overbars denote background cosmolog-
ical quantities).

2.2 The chameleon mechanism

In f(R) gravity the modifications to Newtonian gravity can be consid-
ered as a fifth force mediated by the scalaron field, fR. The chameleon
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mechanism (see e.g. Khoury & Weltman 2004; Mota & Shaw 2007)
was introduced to give scalar fields an environment-dependent ef-
fective mass allowing the scalar mediated force to be suppressed
under certain environmental conditions.

Because the scalaron field itself is massive, this fifth force is of
Yukawa type, i.e. decaying exponentially as exp (− meffr), where
meff is the scalaron mass

m2
eff ≡ d2Veff

df 2
R

, (8)

and the effective potential is related to the trace of the modified
Einstein equation (4)

dVeff

dfR

= 1

3
(R − fRR + 2f (R) + 8πGρm) . (9)

In f(R) gravity this fifth force enhances gravity in regions of weak
gravitational potential and on scales below the Compton wavelength
of the scalar field, λ = m−1

eff . While in high-density regions, meff is
heavy and the fifth force is more strongly suppressed and gravity
reverts to GR.

2.3 The Hu-Sawicki model

We consider the Hu & Sawicki model

f (R) = −m2 c1

c2

(−R/m2)n

(−R/m2)n + 1
, (10)

where m is a characteristic mass scale, defined by m2 =
8πGρ̄m0/3 = H 2

0 
m, 
m is the cosmological matter density pa-
rameter, H0 is the present-day value of the Hubble parameter, and
n, c1 and c2 are dimensionless parameters of the model. The scalaron
field, equation (3), takes the form

fR = − c1

c2
2

n(−R/m2)n−1

[(−R/m2)n + 1]2
. (11)

To match the background expansion to that in the �CDM model,
we set

c1

c2
= 6


�


m
, (12)

where 
� ≡ 1 − 
m.
The expression of the scalaron field, equation (11), simplifies

when the background value of the Ricci scalar satisfies |R̄| � m2.
From

− R̄ ≈ 8πGρ̄m − 2f (R̄) ≈ 3m2

[
a−3 + 2

3

c1

c2

]
, (13)

when 
� ≈ 0.7 and 
m ≈ 0.3, we find |R̄| ≈ 40m2 � m2. Thus

fR ≈ −n
c1

c2
2

(
m2

−R

)n+1

. (14)

The model then has two remaining free parameters, n and c1/c
2
2.

The latter is related to the present-day value of the background
scalaron, fR0,

c1

c2
2

= − 1

n

[
3

(
1 + 4


�


m

)]n+1

fR0 . (15)

Hence, the choice of fR0 and n fully specifies the model. Here we
focus on the case of n = 1, which is the most well-studied case in
the literature.

Table 1. Numerical parameters of the simulations used.

Labels GR, F6, F5, F4

Present value of the scalaron
field

|fR0| = 0, 10−6, 10−5, 10−4

Box size Lbox = 1024 h−1 Mpc
Number of DM particles Np = 10243

Mass of DM particle mp = 7.798 × 1010 h−1 M�
Initial redshift zin = 49
Final redshift zfi = 0
Realisations 5

Cosmological parameters:

Total matter density 
m = 0.281
1−
m 
� = 0.719
Baryonic matter density 
b = 0.046
Cold dark matter density 
cdm = 0.235
Dimensionless Hubble
parameter

h = 0.697

Primordial power spectral
index

ns = 0.971

rms linear density fluctuation σ 8 = 0.820

3 SI M U L AT I O N S A N D H A L O / G A L A X Y
C ATA L O G U E S

Here we present a description of the simulations used, the construc-
tion of halo catalogues, and the HOD prescription used to populate
dark matter haloes with galaxies.

3.1 Numerical simulations

As we are interested in the effects of f(R) gravity on large scales, we
choose three Hu-Sawicki models with n = 1 and |fR0| = 10−6, 10−5,
10−4 (which we hereafter refer to as F6, F5 and F4, respectively)
and the �CDM model which assumes GR. Despite the observational
tensions faced by f(R) models with |fR0| > 10−5 (see e.g. Lombriser
2014; Cataneo et al. 2015; Liu et al. 2016) it is interesting to consider
a wide range of f(R) models to study their impact on the halo/galaxy
clustering.

We use the ELEPHANT (Extended LEnsing PHysics using
ANalaytic ray Tracing) simulations executed using the code ECOS-
MOG (Li et al. 2012), which is based on the adaptive mesh refinement
(AMR) N-body code RAMSES (Teyssier 2002). Table 1 lists the prop-
erties of the simulations used in our analysis. The cosmological
parameters were adopted from the best-fitting values to the WMAP
9 yr CMB measurements (Hinshaw et al. 2013). All simulations use
Np = 10243 particles with a mass of mp = 7.798 × 1010 h−1 M�
to follow the evolution of the dark matter distribution in a volume
of Vbox = (1024 h−1 Mpc)3. The initial conditions were generated
at zini = 49 using the MPGRAFIC code (Prunet et al. 2008). All simu-
lations were run using the same initial conditions up to the present
time, zfi = 0, generating 37 + 1 snapshots. Here, we analyse the
outputs at z = 0.5.

3.2 Halo catalogues and mass function

Dark matter haloes are the building blocks of large-scale structure
and the hosts of galaxies. Therefore, the study of their statistical
properties, such as their abundance and clustering, is of great im-
portance in understanding the nature of gravity. The halo catalogues
were produced using the ROCKSTAR halo finder code (Behroozi,
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Wechsler & Wu 2013). ROCKSTAR calculates halo masses using the
spherical overdensity (SO) approach (Cole & Lacey 1996), includ-
ing all particles and substructures in the halo. We keep only the
‘parent’ halo, omitting other substructures from our analysis.

We define the mass of a halo as M200c, the mass within a sphere of
radius r200c, which is the radius within which the mean overdensity
is 200 times the critical density of the universe ρc,

M200c = 4π

3
200ρcr

3
200c . (16)

The dark matter halo mass function (HMF) quantifies the number
density of dark matter haloes as a function of their mass. The HMF
is sensitive to the cosmological parameters, 
m, 
�, and σ 8, and
to modifications to gravity. The �CDM model predicts an HMF in
which the number of haloes increases with decreasing halo mass.
f(R) models predict more haloes than the �CDM model at almost
all masses due to the enhancement of gravity. Theoretically, the
HMF is given by (Press & Schechter 1974)

dn

dM200c
= f (σ )

ρ̄m

M2
200c

∣∣∣∣ d ln σ−1

d ln M200c

∣∣∣∣ , (17)

where σ is the linear theory variance in the matter perturbation, ρ̄m

is the mean density of the Universe and f(σ ) is an analytical fitting
formula. The cumulative number density of haloes above the mass
M200c is

n(> M200c) =
∫ ∞

M200c

dn

d log10 M200c
d log10 M200c . (18)

We compare the fitting formula of Tinker et al. (2010; hereafter
Tinker10) to the simulation results. Tinker10 calibrated their fitting
formula using an SO algorithm to identify dark matter haloes in
numerical simulations which is consistent with the approach used
in ROCKSTAR. The analytical predictions were computed by using the
online tool HMFCALC1 (Murray, Power & Robotham 2013).

Fig. 1 shows the cumulative halo mass function (cHMF) mea-
sured from the simulations and the relative difference between the
f(R) models and GR at z = 0.5. As expected, the largest deviation
from GR is displayed by the F4 model (red line; Schmidt et al.
2009; Lombriser et al. 2013; Cataneo et al. 2016). The lower panel
of Fig. 1 shows that the cHMF in the F4 model reaches a difference
with respect to GR of >50 percent for haloes of mass M200c >

1014.3 h−1 M�. The maximum difference found between F5 (green
line) and GR reaches 25 percent for haloes with mass M200c ≈
1013.2 h−1 M�. On the other hand, for the F6 model (blue line) we
see that for very massive haloes, the HMF is the same as that in
GR. This is because the chameleon mechanism works efficiently for
such haloes to suppress the effects of the enhancement to gravity.
These differences are purely the result of the modified gravitational
force in f(R) models. The stronger deviation of F4 from GR is due
to the inefficient screening mechanism in this model compared to
the screening in the F6 model.

To make a direct comparison between the halo and galaxy clus-
tering we select a halo population from the simulations by fixing
the halo number density (in this case we take the number den-
sity of the BOSS-CMASS-DR9 sample at z = 0.5, nh = ng =
3.2 × 10−4 h3 Mpc−3; Anderson et al. 2012) and selecting haloes
above the mass threshold corresponding to that number density.
The horizontal dashed line in Fig. 1 corresponds to the halo number
density used to define our halo sample. The minimum mass that

1http://hmf.icrar.org/

Figure 1. The cHMF in the models at z = 0.5. Different colours represent
different models, as labelled. The values for each model correspond to the
average over the five realisations. The horizontal dashed line shows the num-
ber density we use to define our halo sample (nh = 3.2 × 10−4h3 Mpc−3).
The grey curve shows the Tinker10 cHMF for GR at z = 0.5. The lower
panel shows the relative difference with respect to the �CDM (GR) model.

defines the halo sample for each model is: 7.643 × 1012 h−1M�
(GR), 7.798 × 1012 h−1M� (F6), 9.124 × 1012 h−1M� (F5), and
8.734 × 1012 h−1M� (F4). The fact that F5 has a higher minimum
mass is because this model produces more haloes with mass M200c

∼ 1013 h−1 M� (as we can see from the lower panel of Fig. 1) than
F6 and F4. For F4, many of the medium-mass haloes have merged to
form more massive haloes, hence this model predicts fewer smaller
haloes than F5.

3.3 HOD prescription and galaxy catalogues

To compare the simulations with observations one has to populate
dark matter haloes with galaxies. This can be done using one of a
number of empirical techniques depending on the physical appli-
cation we are interested in, such as subhalo abundance matching
(Vale & Ostriker 2004; Conroy, Wechsler & Kravtsov 2006; Klypin
et al. 2013; Reddick et al. 2013), the conditional luminosity func-
tion (Yang, Mo & van den Bosch 2003; Cooray & Milosavljevic
2005), or the HOD (Berlind & Weinberg 2002; Kravtsov et al. 2004;
Zheng et al. 2005). These empirical descriptions of the galaxy-halo
connection have the flexibility to give accurate reproductions of ob-
servational estimates of galaxy clustering. A second, more expen-
sive but physically motivated method is hydrodynamical simulation
(Vogelsberger et al. 2014; Schaye et al. 2015). A third possibility,
which retains the physical basis of hydrodynamical simulation at a
fraction of the computational cost is semi-analytical modelling of
galaxy formation (Somerville & Primack 1999; Cole et al. 2000;
Baugh 2006; Benson 2010) in which an N-body dark matter-only
simulation is populated with galaxies after solving a set of coupled
differential equations. To date, little work has been done to study
galaxy formation and clustering in modified gravity models (see
Fontanot et al. 2013 for an example), so here we will resort to the
empirical approach of HOD modelling.
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We populate haloes using a functional form for the HOD (Peacock
& Smith 2000; Berlind & Weinberg 2002) with five parameters, as
used by Zheng, Coil & Zehavi (2007).

In this form, the mean number of galaxies in a halo of mass Mh

(in our case Mh = M200c) is the sum of the mean number of central
galaxies plus the mean number of satellite galaxies

〈N (Mh)〉 = 〈Nc(Mh)〉 + 〈Ns(Mh)〉 , (19)

〈Nc(Mh)〉 = 1

2

[
1 + erf

(
log10 Mh − log10 Mmin

σlog M

)]
, (20)

〈Ns(Mh)〉 = 〈Nc(Mh)〉
(

Mh − M0

M1

)α

, (21)

and 〈Ns(Mh)〉 = 0 if Mh < M0. 〈Nc/s(Mh)〉 is the average number
of central or satellite galaxies, respectively, in a halo of mass Mh.
The model depends on five parameters: Mmin, M0, M1, σ logM, and α.
From equations (20) and (21) we can see that Mmin and M0 represent
the halo mass threshold to host one central or one satellite galaxy,
respectively. Also, we assume that central galaxies are placed at the
centre of their host haloes and satellite galaxies are orbiting inside
haloes with Mh ≥ M0. The satellite galaxies are radially distributed,
between r = [0, r200c], following the Navarro–Frenk–White (NFW)
profiles of their host halo (Navarro, Frenk & White 1996, 1997).

We generate five galaxy catalogues (one for each independent
realisation of the density field) for every gravity model follow-
ing the prescription described above. The galaxy catalogues match
the galaxy number density of the BOSS-CMASS-DR9 sample at z

= 0.5 (ng = 3.2 × 10−4h3 Mpc−3; Anderson et al. 2012) and the
galaxy two-point correlation function across all gravity models
(more details are presented below). The BOSS-CMASS sample
is dominated by LRGs which are massive galaxies typically resid-
ing in haloes with Mh ∼ 1013 h−1 M� (Anderson et al. 2012).
Hence, given the mass resolution of the ELEPHANT simulations, these
runs are suitable to study the impact of f(R) gravity on galaxy
clustering.

The values of the HOD parameters used to populate the GR
simulations are those inferred from the abundance and clustering
measured for the BOSS-CMASS-DR9 galaxy sample (Manera et al.
2012)

log10(Mmin/[h−1M�]) = 13.09 ,

log10(M1/[h−1M�]) = 14.00 ,

log10(M0/[h−1M�]) = 13.077 ,

σlog M = 0.596 ,

α = 1.0127. (22)

To find the f(R) HOD parameters, we use the simplex algorithm
of Nelder & Mead (1965) to search through the five-dimensional
parameter space. We start the algorithm with an initial guess at the
values of the HOD parameters, then the code walks through the
five-dimensional HOD parameter space looking for the values that
minimize the root-mean-square difference (rms) of the two-point
correlation function between f(R) and GR models. We measure the
correlation function using 40 logarithmically spaced radial bins
between 1 and 80 h−1 Mpc. The fractional difference of the galaxy
number density is also included (with a weight of 8) in the rms
value calculated in order to ensure similar numbers of galaxies in
all catalogues. We stop the search when rms < 0.02 (this means
that the overall agreement is better than 2 per cent). For the F4
model, the minimum value of the rms we could obtain in practice
was ∼0.03.

Here, we are interested in the mCF, which was proposed to high-
light the environmental dependence in modified gravity models
(White 2016). Hence, the most natural choice is to make the un-
marked two-point correlation functions (2PCFs) of the different
models as close to each other as possible; otherwise when there is
a difference in their mCFs we cannot be sure how much of this is
due to the different 2PCFs.

The f(R) HOD parameters were tuned for each model and realisa-
tion to match the clustering displayed in the counterpart simulation
from the GR suite. The best-fitting values of the HOD parameters
for the different realisations are listed in Table 2. The variation
in the best-fitting parameter values is larger as the modification to
gravity increases. We note that, despite the differences between the
values of the best-fitting parameters between different models and
realisations, the resulting correlation functions and galaxy number
densities agree with the GR results to within our target accuracy.

Note that the HOD parameters are degenerate to some extent,
so that a comparison of the values of any single parameter across
realisations or models should not be overinterpreted. For instance,
consider the parameter α that governs the number of satellite galax-
ies in haloes of a given mass: in the case of the most extreme model,
F4, the variation between realisations is ∼3 per cent. This difference
is small compared with the 1σ scatter of HOD parameter fittings,
e.g. White et al. (2011).

The left-hand panel of Fig. 2 shows the HOD for CMASS galax-
ies at z = 0.5. The gradual transition from zero to one galaxy per
halo is determined by the values adopted for log Mmin and σ log M

for central galaxies (dashed lines). The appearance of satellites
in haloes (dotted lines) is dictated by the values of M1 and M0,
and the rapid increase in the satellite content of haloes with in-
creasing halo mass is governed by α. The HOD parameters are
adjusted in the f(R) models to approximately reproduce the abun-
dance and clustering of CMASS galaxies realised in GR. We note
that the resulting HODs are very similar between f(R) gravity
and GR.

The right-hand panel of Fig. 2 shows the distribution of the
number of galaxies as a function of the host halo mass (M200c).
We see that most galaxies are found in haloes with mass 1013 <

M200c/[h−1 M�] < 1014. We also note that the F5 and F4 models
produce more galaxies than GR and F6 in this mass range. This is
because the abundance of haloes in this mass range is boosted in F5
and F4, as we can see from the relative differences of the cHMFs
presented in the lower panel of Fig. 1. Analysing the distribution of
galaxies, we find good agreement between the five realisations.

From the distribution of galaxies as a function of host halo mass
plotted in Fig. 2, we note that ≈0.1 per cent galaxies reside in
poorly resolved haloes (M200c < 1012 h−1 M�). The inclusion of
these galaxies in the final catalogues does not affect the clustering
results.

4 R ESULTS

Upcoming galaxy surveys will allow us to measure the clustering
of galaxies to an unprecedented level of accuracy with the aim
of developing a better understanding of the nature of dark matter,
dark energy, and the evolution of galaxies through cosmic time. In
this section, we present the statistical tools which can be used to
characterize the halo and galaxy distributions in different gravity
models. This is the first time that the halo and galaxy clustering has
been studied to this level of detail in f(R) gravity models.
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Table 2. Values of the HOD parameters (columns 2–6) for f(R) models (F6, F5, F4) at z = 0.5 and different realisations (Box 1 – Box 5).

log10(Mmin/[h−1 M�]) log10(M1/[h−1 M�]) log10(M0/[h−1 M�]) σ log M α

F6 (Box 1) 13.092 14.004 13.082 0.538 1.0125
F6 (Box 2) 13.093 14.004 13.081 0.539 1.0128
F6 (Box 3) 13.092 14.006 13.083 0.554 1.0131
F6 (Box 4) 13.093 14.002 13.082 0.545 1.0132
F6 (Box 5) 13.094 14.008 13.078 0.547 1.0129

F5 (Box 1) 13.101 14.050 13.077 0.434 1.0643
F5 (Box 2) 13.100 14.045 13.078 0.449 1.0674
F5 (Box 3) 13.134 14.043 13.085 0.525 1.0982
F5 (Box 4) 13.110 14.041 13.078 0.470 1.0710
F5 (Box 5) 13.108 14.041 13.080 0.462 1.0440

F4 (Box 1) 13.084 14.092 13.076 0.394 1.0921
F4 (Box 2) 13.075 14.113 13.073 0.345 1.0804
F4 (Box 3) 13.063 14.113 13.072 0.333 1.0974
F4 (Box 4) 13.076 14.109 13.070 0.353 1.1110
F4 (Box 5) 13.053 14.105 13.075 0.290 1.1143

Figure 2. Left-hand panel: The mean number of central and satellite galaxies as a function of halo mass, 〈Nc/s(M200c)〉. Dashed lines show the HOD for central
galaxies and dotted lines show satellite galaxies while solid lines represent the total averaged number of galaxies, calculated from equations (19) – (21) with
parameters (22) for GR and the result of Box 1 listed in Table 2 for the f(R) models, as labelled. Right-hand panel: the number of galaxies in the simulation as
a function of the host halo mass, the same distribution at z = 0.5 for different realisations: Box 1 (solid lines), Box 2 (dashed lines), Box 3 (dotted lines), Box
4 (dashed–dotted lines), and Box 5 (thick-dashed lines).

4.1 Two-point correlation function

To characterize the clustering of dark matter haloes and galaxies,
we use the two-point correlation function, ξ (r). This is defined as
the excess probability, compared with that expected for a random
distribution, of finding two haloes (or galaxies) contained in volume
elements dV1 and dV2 at a separation r (Peebles 1980)

dP12(r) ≡ n̄2[1 + ξ (r)]dV1dV2 , (23)

where n̄ is the mean halo (galaxy) number density. The 2PCFs and
therefore the mCFs are measured within the range 1 − 80 h−1 Mpc
(for details see Section 3.3).

First we study the clustering of dark matter haloes, ξ h,
(left-hand panel of Fig. 3), for our halo samples with nh =
3.2 × 10−4 h3 Mpc−3. Although this statistic is not directly ob-

servable, it is instructive to study the properties of ξ h, since this is
a first step towards understanding differences in the clustering of
galaxies.

The first thing we notice is that the deviation from GR does not
show a monotonic dependence on |fR0|. More explicitly, F6 and F4
models have weaker clustering than GR, while F5 haloes are more
clustered than GR.

These perhaps counterintuitive results can be explained
by considering the following two effects of the enhanced
gravity.

Firstly, stronger gravity means a faster growth of initial density
peaks, and therefore more massive structures at late times. This
generally leads to a higher mean halo number density above a fixed
halo mass threshold. The enhancement of halo formation is not
uniform: when screening is efficient, it is stronger in low-density
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Figure 3. Two-point correlation function in real space measured for haloes (left-hand panel) with nh = 3.2 × 10−4 h3 Mpc−3 and HOD galaxies (right-hand
panel) in the four gravity models at z = 0.5. The plotted values correspond to the average of the five realisations for each model. Different colour lines
correspond to different gravity models as labelled. The lower subpanels show the relative difference between the results from the f(R) and �CDM (GR) models.
Error bars and shaded regions correspond to 1σ standard deviation over the five GR realisations.

regions than it is in high-density regions; when the screening is less
efficient, then the growth of haloes is boosted in all environments,
and those in dense regions can be boosted more because they have
more matter around them to accrete.

Secondly, enhanced gravity generally leads to a stronger clus-
tering of the structures that are formed from these initial density
peaks. However, stronger gravity also means that we can expect
more mergers in dense regions, reducing the number of haloes
there. The latter effect can be seen by comparing the cHMFs of F5
and F4 in Fig. 1.

As we choose the halo mass cut to ensure that we consider the
same number of haloes in each model any differences in ξ h come
from the different spatial distributions of haloes in the models. For
F6, the deviation from GR is weak and the fifth force is suppressed
in high-density regions. As a result small density peaks in low-
density regions grow faster than similar density peaks in high-
density regions, and more of them make it into the fixed number
density halo catalogue than in GR. This makes the haloes less
clustered and ξ h(r) smaller.

For F5, the enhancement of gravity is stronger and the screening is
weaker, so that haloes in all regions experience faster growth; those
in high-density environments have a larger supply of raw materials
for accretion and growth, so that they are more likely ending up
in the final halo catalogue, leading to a stronger clustering and
ξ h. For F4, the even stronger enhancement of gravity causes more
mergers of haloes in dense regions to form even larger haloes, and
to maintain the same n̄h more haloes in low-density regions have to
be included into the halo catalogue, leading to less clustering and
smaller ξ h.

In the case of the galaxy correlation function (right-hand panel
of Fig. 3), as we said before, the HOD catalogues for the f(R)
models were created by tuning the parameters (22; see Table 2) to
approximately match the two-point correlation function in GR (to
within 1−3 per cent).

4.2 Marked correlation function

In this subsection we consider the marked correlations, in which one
weights galaxies2 by some property or ‘mark’ when estimating clus-
tering statistics. Marked correlations are particularly well-suited to
quantifying how the properties of galaxies correlate with environ-
ment (Sheth et al. 2005; Skibba et al. 2006; Skibba et al. 2009, 2012;
White & Padmanabhan 2009). Here, we test the idea proposed by
White (2016) that mCFs may show a clearer signature of modified
gravity in the large-scale clustering of galaxies, by up-weighting
low-density regions, where screening is weak and deviations from
GR are strong.

The mCF is defined as (Sheth et al. 2005)

M(r) ≡ 1

n(r)m̄2

∑
ij

mimj = 1 + W (r)

1 + ξ (r)
, (24)

where the sum is overall pairs with a given separation, r, n(r) is the
number of such pairs and m̄ is the mean mark for the entire sample.
In the second equality ξ (r) is the two-point correlation function in
which all galaxies (or haloes) are weighted equally. W(r) is derived
from a similar sum over galaxy (halo) pairs separated by r, as used
to estimate ξ (r), but now each member of the pair is weighted by
the ratio of its mark to the mean mark of the full sample. The mCF,
M(r), can be estimated approximately using the simple pair count
ratio WW/DD (where DD is the count of data–data pairs and WW
represents the corresponding weighted counts). Hence, no random
catalogue is needed for its computation.

The choice of the mark is flexible and depends on the applica-
tion. Since we are interested in isolating the effects of the chameleon

2For simplicity, we talk about galaxies here, but the same calculation can
(and will) be applied to haloes.
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screening mechanism on structure formation, we study the cluster-
ing of HOD galaxies using two different definitions of environment:
(a) the number density field and (b) the Newtonian gravitational po-
tential (Shi et al. 2017).

4.2.1 Density

For this environment definition we use three marks with an ad-
justable dependence on density

m =
(

ρ∗ + 1

ρ∗ + ρR

)p

, (25)

m = log10(ρR + ρ∗) , (26)

m = 1√
2πσρR

exp

(
− (ρR − ρ∗)2

2σ 2
ρR

)
, (27)

where ρR is the galaxy number density in units of the mean galaxy
number density, ρ̄, and p, ρ∗ and σρR

are adjustable parameters.
A crucial step in the estimation of the mCF is the definition of

the density. We measure the galaxy number density using counts-
in-cells (see for e.g., Baugh, Gaztanaga & Efstathiou 1995). We
divide the simulation box into cells (or cubical boxes) of the same
size, and then count the number of galaxies inside each cell. Hence,
we can compute the overdensity, δ, as

1 + δ = N

N̄
≡ ρR , (28)

where N is the number of galaxies in each cell and N̄ is the mean
number of galaxies in cells of a given size over the simulation
volume. To compute the density we have used 603 cells of size
∼17 h−1 Mpc. Given the mean galaxy number density of CMASS
galaxies, ng = 3.2 × 10−4 h3 Mpc−3, we have a mean number of
galaxies in the cells of N̄ = 1.59. We checked that reducing the
number of cells to 303−403 does not affect our results significantly,
while further reducing the number of cells makes the signal weaker;
in the limit of 13 cell, W(r) becomes identical to ξ (r), as expected.

The first mark, equation (25), was proposed by White (2016)
(hereafter the White-mark), with the motivation being that by up-
weighting low-density regions (i.e. by choosing p > 0), one might be
able to find a signature of modified gravity, since previous studies
have shown that the properties of voids are different in modified
gravity theories than in GR (Clampitt, Cai & Li 2013; Cai, Padilla
& Li 2015; Zivick et al. 2015; Cautun et al. 2017). The log mark,
equation (26), allows us to up-weight regions with ρR > 1, i.e.
intermediate and high-density regions. Finally, using the Gaussian-
ρR mark, equation (27), we are able to control the regions we
want to up-weight. Previously, Llinares & McCullagh (2017) found
that by using a Gaussian transformation of the density field is it
possible to up-weight intermediate density regions and find bigger
differences between the clustering of objects in modified gravity
and GR models. Keeping this in mind, we use the Gaussian-ρR

mark to up-weight only intermediate density regions.
It is evident that by using equation (25) one can control the

up-weighting by varying the power p and the parameter ρ∗. For
simplicity we chose p = 1 and ρ∗ = 10−6. With the log-mark, a
natural choice of the parameter which controls the enhancement is
ρ∗ = 1, given m = 0 for voids (ρR = 0). The parameters we chose
for the Gaussian-ρR mark are: ρ∗ = 1.5 and σρR

= 0.2, which
ensures that we up-weight intermediate-density regions of interest.
The functional form of the marks, equations (25)–(27), is shown

in the left-hand panels of Fig. 4. We have tried using different
values of p, ρR, and ρ∗ but found that our results do not show
significant differences on varying these parameters. We refer to
low-, intermediate-, and high-density regions as those for which the
cells contain N = 1, 2−3, and >4 objects or, equivalently, to cells
with ρR = 0.62, 1.25−1.88, and >2.51, respectively (see equation
28).

Fig. 4 shows the mCFs at z = 0.5 measured from the halo (middle
panels) and the HOD (left-hand panels) catalogues in the f(R) and
GR models. In all cases the mCF goes to unity on large scales
as expected (see right-hand expression of equation 24). The first
row of plots in Fig. 4 shows the mCF using the mark defined by
equation (25), the White-mark, with p = 1 and ρ∗ = 10−6, the
second row shows the log-mark, equation (26) with ρ∗ = 1, and
the third row shows the Gaussian-ρR mark with ρ∗ = 1.5 and
σρR

= 0.2. We observe different behaviours: for the White-mark,
equation (25), the mCF is M(r) ≤ 1 at small separations, for the log-
mark, equation (26), we have M(r) ≥ 1, while for the Gaussian-ρR

we notice a transition from M(r) ≤ 1 to M(r) > 1 at intermediate
scales.

Analysing the behaviour of the halo mCFs (see middle panel of
Fig. 4) we find the following features:

(i) The clustering of F6 is almost indistinguishable from that of
GR for all three marks, because of the efficient screening.

(ii) For F5, the stronger growth (see Section 4.1) means more
clustering of haloes on small scales, which is why W(r) and therefore
the mCF is more affected at smaller r.

(iii) In the case of F4, the higher production rate of massive
haloes, driven by the more frequent mergers of lower mass haloes
(see Section 4.1), leads to the incorporation of haloes into the fixed
number density sample which correspond to low density peaks and
which are more likely to come from low-density regions. Hence, the
probability of finding a pair of tracers (haloes or galaxies) increases
at intermediate separation r due to presence of these low-mass
haloes.

The right columns of Fig. 4 show that galaxies qualitatively mimic
the marked clustering of haloes (at least for the White and log
marks). Hence, the behaviour of the galaxy mCFs can be understood
following the same explanation as presented above for haloes. It
is interesting to notice that even with the added complexity of
populating haloes with HOD galaxies, the qualitative behaviour
of the mCFs preserves, suggesting that a true physical feature is
being observed here.

For the Gaussian−ρR mark, equation (27), which enhances
intermediate-density regions (cells with 2 or 3 haloes/galaxies), we
found that the F4 galaxy mCF reaches a maximum of 20 per cent for
the lowest separation bin, while F6 predicts a difference of 5 per cent
and F5 keeps closer to GR with a difference of ∼3 per cent.

4.2.2 Gravitational potential

Our second definition of environment is based on the Newtonian
gravitational potential produced by dark matter haloes. The dark
matter haloes in our simulations are reasonably well described by a
NFW density profile (Navarro et al. 1996, 1997)

ρNFW = ρs

(r/rs)(1 + r/rs)2
, (29)

where rs is the scale radius where the profile has a slope of −2 and ρs

is the characteristic density. The Newtonian gravitational potential
is obtained by solving the Poisson equation, ∇2	N = 4πGρNFW,
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Figure 4. mCFs of haloes and CMASS galaxies at z = 0.5; mark in function of number density field. Left: functional form of the mark in function of
density field, middle: halo mCFs and right: galaxy mCFs. Plots from upper to bottom: White-mark (25), log-mark (26), and Gaussian-ρR mark (27). All lower
subpanels show the relative difference between f(R) models and GR. The plotted values correspond to the average over the five realisations. Errors correspond
to 1σ standard deviation over the five GR realisations.

for the NFW density profile equation (29) (Cole & Lacey 1996;
Navarro et al. 1997; Lokas & Mamon 2001)

	N = −GM200c

r200c

ln(1 + c)

ln(1 + c) − c/(1 + c)
, (30)

where G is Newton’s gravitational constant, M200c was defined in
equation (16) and c is the concentration parameter defined as c
≡ r200c/rs. Previous studies have used the Newtonian gravitational
potential in modified gravity to characterize local variations in the
strength of gravity (see e.g. Cabre et al. 2012; Stark et al. 2016; Shi
et al. 2017).

For this environment definition we define a Gaussian mark which
allows us to up-weight galaxies in some regions of interest,

m = 1√
2πσ	

exp

[
− (log10(|	N|) − 	∗)2

2σ 2
	

]
, (31)

where 	∗ and σ	 are free parameters of the mark which control the
amplitude and width of the regions highlighted. As we can see from
the distribution of galaxies as a function of host halo mass (right-
hand panel of Fig. 2), most galaxies live in haloes with masses
between 1013 < M200c/[h−1 M�] < 1014 (which correspond to the
mass range of groups of galaxies). Hence, we use the Gaussian-	N
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Figure 5. mCFs of haloes and CMASS galaxies at z = 0.5; mark in function of the Newtonian gravitational potential. Left-hand side panel shows the functional
form of the Gaussian-	N mark (31); the values of the parameters 	∗ and σ	 are shown in the legend. Middle and right-hand side plots show the mCF using
the mark given by equation (31) for haloes and galaxies, respectively. All lower subpanels for middle and right-hand side plots show the relative difference
between f(R) models and GR. The plotted values correspond to the average over the five realisations. Errors correspond to 1σ standard deviation over the five
GR realisations.

mark to up-weight galaxies contained in these haloes. In principle
we should be able to find a bigger difference in the clustering
between the GR and f(R) models using this mark, as suggested by
the cumulative HMF (lower panel of Fig. 1).

The value of the centre of the Gaussian is 	∗ = −5.295. This
value was found by computing the Newtonian gravitational potential
for each galaxy in Box 1 for GR, then we pick the maximum
value found for haloes with M200c = 1014 h−1 M� (	max) and
the minimum value for haloes with M200c = 1013 h−1 M� (	min),
finally we take 	∗ = (	max + 	min)/2. We tried different values
of the width, finding that σ	 = 0.1 best ensures that we only up-
weight galaxies in the haloes of interest. The functional form of the
Gaussian-	N mark, equation (31), is shown in the left-hand panel
of Fig. 5.

The halo and galaxy mCF is presented in the middle and right-
hand panels of Fig. 5, respectively. The results can be summarized
as follows:

(i) In the case of the halo/galaxy mCF (middle and right panels of
Fig. 5, respectively), the two-point correlation function (used as the
denominator of equation 24) is lower than the weighted correlation
function, leading to M(r) ≥ 1 for all gravity models, due to the
stronger clustering of the up-weighted haloes in the mass range
M200c/[h−1 M�] = [1013, 1014].

(ii) F6 predicts almost an identical halo/galaxy marked clustering
to that in GR, which is consistent to our understanding that the
screening mechanism in this model works efficiently in haloes of
the mass range up-weighted.

(iii) For F4 haloes, the mCF is higher than the 2PCF for the reason
given in the first bullet point above. However, in this model a larger
fraction of haloes in the mass range M200c/[h−1M�] ∈ [1013, 1014]
are formed from low initial density peaks (due to stronger gravity)
which are not very strongly clustered, such that the up-weighting
of them – while making M(r) ≥ 1 – does not lead to a M(r) as large
as in GR. This leads to �M(r)/MGR(r) < 0 for F4. For F5 haloes,
the fifth force is strong enough to enhance their clustering, but not
too strong to produce excessive merging, and so the up-weighting
using the Gaussian mark increases the mCF as significantly as in
GR.

(iv) For galaxies, a key difference from haloes is that a halo can
host several galaxies while some haloes do not host galaxies at all.
In F4 and F5, more relatively low initial density peaks have been
promoted to the halo mass range M200c/[h−1 M�] ∈ [1013, 1014]
due to the enhanced gravity, and at the same time some high density
peaks have grown out of this mass range. This means that if we
up-weight galaxies whose host haloes are in this mass range, we
end up with more central and fewer satellite galaxies, and more
of them are hosted by haloes from lower initial density peaks.
By the same reasoning as above, while we still have M(r) > 1
for these models, it is smaller than in GR and F6. In particular,
we have noticed that �M(r)/MGR(r) reaches 5–10 per cent for F5
and 20–30 per cent for F4 in r = 2–5 h−1 Mpc. These results are
very stable, and change very little across the different simulation
realisations.

Also we note that the differences between the f(R) and GR mod-
els are boosted when we use additional information to the den-
sity field. This can be seen by comparing the right-hand panels
of Fig. 4 with the right-hand panel of Fig. 5. The differences
get larger in such cases because the galaxy density field and
galaxy distribution have been tuned to match between the differ-
ent models (see Section 3.3). In all cases we observe that signals
above 20 h−1 Mpc become identical between models. This is be-
cause the mCF is the ratio of two correlation functions (see right-
hand expression of equation 24) and we have ξ (r) ∼ W(r) for
r > 20 h−1 Mpc.

From the observational point of view, we can measure the New-
tonian gravitational potential from the X-ray temperature of galaxy
clusters (see e.g. Allen et al. 2004, 2008; Li, He & Gao 2016),
the gas mass fractions of clusters and the escape velocity profile,
vesc(r) (Stark et al. 2016). Hence, if we reconstruct the gravitational
potential from the observations mentioned above and use a mark
that is a function of the potential, similar to equation (31), then we
can test this approach and potentially find a measurable signature
of modified gravity. One caveat is that the gravitational potential
constructed in this way is the dynamical potential, while in this
study we have used lensing potential of haloes (see e.g. He & Li
2016).
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5 D I S C U S S I O N A N D C O N C L U S I O N S

We study the clustering of haloes and galaxies in four different
cosmologies: a �CDM model which is based on GR and three Hu
& Sawicki f(R) chameleon models with fixed n = 1 and |fR0| =
10−6, 10−5, 10−4 (denoted F6, F5, and F4). We analyse the output
of dark matter-only N-body simulations related to these models at
z = 0.5.

First, we study the cHMF, finding that the F4 model predicts
more haloes than GR at all masses probed by our simulations,
with the maximum difference reaching an excess of more than
50 percent for haloes with mass M200c > 1014.3 h−1 M�. These
differences occur due to the enhancement of gravity in f(R) gravity,
which results in the production of more massive haloes in F4 than
GR through faster accretion and more frequent merging of small
haloes. The differences found in F5 reach 25 per cent for haloes
with masses 1013 h−1 M� < M200c < 1014 h−1 M� where the
screening mechanism at this mass scale is inefficient for this model.
F6 shows the smallest difference from GR because in this model
the chameleon screening is strong in haloes with mass M200c >

1013 h−1 M�, thereby suppressing the effects of the fifth force.
We populate dark matter haloes with galaxies using a HOD, using

a five-parameter model which treats separately central and satellite
galaxies, with the values of the parameters as used in Manera et al.
(2012) to reproduce the clustering of CMASS galaxies with a den-
sity number, ng = 3.2 × 10−4 h3 Mpc−3 (Anderson et al. 2012) for
our GR simulations. We tuned the parameters to match the galaxy
number density and two-point correlation function of GR to within
1−3 per cent for the f(R) models. The galaxy 2PCFs for the f(R) and
GR models are presented in the right plot of Fig. 3.

Then we study the two-point clustering of dark matter haloes.
We choose samples of haloes with fixed halo number density, nh =
ng, resulting to different mass cutoffs in our halo catalogues for all
gravity models: 7.643 × 1012 h−1M� (GR), 7.798 × 1012 h−1M�
(F6), 9.124 × 1012 (F5), and 8.734 × 1012 h−1 M� (F4). We find
significant differences in the clustering of dark matter haloes for f(R)
models with respect to the GR predictions. The maximum difference
between F4 and GR is ∼20 per cent, while for F5 and F6 it is less
than 5 per cent. Also we note that haloes in F5 are more clustered
than those haloes in the �CDM model, whereas for F6 and F4
haloes are less clustered than their GR counterparts. These results
are the effects of the enhancement of gravity which means a stronger
growth of density peaks and therefore more massive structures at
late times which gives a stronger clustering of the structures that
are formed from these density peaks.

To investigate whether or not these differences could be boosted
by using an alternative approach to measure galaxy clustering, we
used the mCF (Sheth et al. 2005; White 2016). For this purpose we
use two definitions for the environment of galaxies/haloes: (a) the
number density field and (b) the Newtonian gravitational potential
of the host halo. For the former we analyse three marks: (i) an inverse
power law which enhances low-density regions (see equation25),
(ii) a log-transform mark which up-weighs intermediate- and high-
density regions (see equation 26), and (iii) a Gaussian mark given
by equation (31) which allows us to up-weight only intermediate-
density regions, ρR = 1.25−1.88. For the latter we use a Gaussian
mark which allows us to up-weight haloes (and galaxies within
those haloes) with mass 1013 < M200c/[h−1 M�] < 1014.

We found that the halo and galaxy mCFs for F6 is indistin-
guishable from GR using all marks, except for the galaxy Gaussian
(ρR and 	N) mCFs which predict differences at most ∼5 per cent
from GR. For the F5 (F4) model, we notice that galaxies mimic

the marked clustering at least for the White and log density-
marks finding differences of 5 per cent (2.5 per cent) and 2.5 per cent
(2.5 per cent), respectively. On the other hand, we observe that with
the Gaussian marks (density field and gravitational potential) the
difference in the galaxy mCF is boosted, especially for F4, produc-
ing a difference of 20 per cent (using density field) and 30 per cent
(using gravitational potential) with respect GR.

The galaxy mCFs show smaller differences between the f(R) and
GR models for the density marks, equations (25)–(27), than in the
case when using the gravitational potential mark, equation (31), this
is because the galaxy density field has been tuned to match between
the different models. One caveat for our results is that there will be
systematics when estimating the mark for observational samples.

Another important feature we observe from mCFs is that the
signal above 20 h−1 Mpc does not distinguish between models
(see corresponding plots of Figs.4 and 5). Instead, the measur-
able differences are on small scales. To improve our predictions on
sub-Mpc scales we need to perform higher resolution simulations,
but we leave this for future work.

Valogiannis & Bean (2017) recently found that using the dark
matter distribution and the White-mark, equation (25) with ρ∗ = 4
and p = 10, the difference between F4 and GR mCFs can reach a
maximum of 37 per cent at r = 1.81 h−1 Mpc. These results cannot
readily be compared with ours, since we consider dark matter haloes
and galaxies rather than the dark matter itself. Furthermore, we
employ a different definition of density (counts-in-cells versus the
cloud-in-cell smoothing used by Valogiannis & Bean). Although
their simulations are similar resolution to the ones we use, the
volume of our boxes is ∼60 times larger, which allows more robust
clustering measurements.

If we consider the statistical errors presented in this paper, then the
differences between the f(R) signals with respect GR are significant.
It should be feasible to test the differentiating power of marked
clustering statistics using real data from current galaxy surveys. In
future work we need to improve the resolution of the simulations
and make more realistic mock galaxy catalogues to allow a fairer
comparison with upcoming observations.

Here we have demonstrated the potential of the mCF to differ-
entiate between gravity models. The next step is to extend these
calculations, which were presented for massive galaxies, to the
emission line galaxies that will be selected by the DESI and Euclid
redshift surveys.
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