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Abstract. A fundamental weakness of density functional theory (DFT) is the difficulty in making sys-
tematic improvements to approximations for the exchange and correlation functionals. In this paper, we
follow a wave-function-based approach [N.I. Gidopoulos, Phys. Rev. A 83, 040502 (2011)] to develop per-
turbative expansions of the Kohn–Sham (KS) potential. Our method is not impeded by the problem of
variational collapse of the second-order correlation energy functional. Arguing physically that a small mag-
nitude of the correlation energy implies weak perturbation and hence fast convergence of the perturbative
expansion for the interacting state and for the KS potential, we discuss several choices for the zeroth-order
Hamiltonian in such expansions. Our first two choices yield KS potentials containing only Hartree and
exchange terms: the exchange-only optimized effective potential (xOEP), also known as the exact-exchange
potential (EXX), and the Local Fock exchange (LFX) potential. Finally, we choose the zeroth order Hamil-
tonian that corresponds to minimum magnitude of the second order correlation energy, aiming to obtain
at first order the most accurate approximation for the KS potential with Hartree, exchange and correlation
character.

1 Introduction

Electronic structure calculations are becoming indispens-
able in many areas of modern science, with applications
spanning fields from drug discovery [1] to supercon-
ductivity [2]. This change has been largely driven by
the continuing development of density functional theory
(DFT) over 50 years, which enjoys extraordinary and
growing popularity [3]; and by the robustness of modern
computational codes combined with the increasing speed
of modern computers.

The importance of DFT in the theory of electronic
structure was reflected in the 1998 divided Nobel Prize
in Chemistry between Kohn [4] and Pople [5] for their
developments of DFT and of computational methods in
quantum chemistry respectively. The shared prize also
reflected the importance of the synthesis of the two the-
ories, since on their own both are limited, either by the
difficulty to improve systematically on the approximations
(DFT), or by poor scaling (wave function theory – WFT).
In order to overcome these limitations, and to satisfy the
growing demands for more accurate electronic structure
calculations, on larger and more complicated systems, it
is important to gain new insights. Such insights can be
obtained from the integration of DFT with WFT [6–13].
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In the scientific community, a dichotomy is perceived
between DFT and WFT. The different emphasis of the
two theories, density vs wave function, appears to hinder
their smooth integration. The constrained search formu-
lation by Levy [14] and by Lieb [15] and the adiabatic
connection path construction [16–18] are seminal works
in this area. Put together, they enabled Görling and Levy
to formulate DFT perturbation theory (PT) [19,20], and
Bartlett and co-workers to develop ab initio DFT [8]. In
these approaches, the correlation energy is approximated
from second-order PT (or higher) and the KS potential
is then determined using the optimized effective potential
(OEP) method [21,22].

However, as the correlation energy from second-order
PT is unbound from below, any minimization of the sub-
sequent total energy functional is variationally unstable,
tending to yield unphysically low total energies [10,23].
Of course, there are physical situations (such as molecu-
lar dissociation) where the second order correlation energy
term from a single reference Slater determinant will nec-
essarily diverge to negative infinity; but the point is that
using a correlation energy functional from second order
PT, the tendency to diverge is inherent for all systems. In
practice this divergence indeed turns out to be far more
common than in quantum chemical methods employing
perturbation theory, such as second order Møller–Plesset
PT (MP2) [23,24]. Whilst ways to alleviate the varia-
tional collapse have been put forward, for example by
using Fock exchange energies instead of the true KS
orbital energies [9,11], the absence of a rigorous solution to
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this issue has hindered progress in the cross-fertilization
between WFT and DFT.

Nevertheless, many-body perturbation theory (MBPT)
has been employed successfully to yield an accurate cor-
relation energy functional for DFT in the random phase
approximation (RPA) [17,25–32], by combining the adi-
abatic connection path construction with the fluctuation
dissipation theorem [33], but also using the Sham–Schlüter
equation [34,35].

A few years ago, Gidopoulos proposed a natural way to
integrate DFT and WFT, by constructing a pure WFT
method whose solution happens to be the Kohn–Sham
(KS) system of DFT [36]. In that theory, it is no longer
necessary to fix the electron density along the adiabatic
connection path or elsewhere, making it a straightforward
task to employ techniques from WFT in order to deter-
mine key quantities of DFT. The aim of the present paper
is to demonstrate how the new formalism works, by con-
structing perturbative expansions of the KS potential that
can be expected to converge optimally.

The paper is structured as follows. In Section 2, we
review the WFT method from [36], which is based on the
minimization of the energy difference given by,

TΨ [v]
.
= 〈Ψ |Hv|Ψ〉 − Ev > 0, (1)

where Ψ is the ground-state (g.s.) of the physical (inter-
acting) system, and Hv is an effective Hamiltonian,

Hv =

N∑
i=1

[
−1

2
∇2
i + ven(ri) + v(ri)

]
, (2)

for some local potential v(r), which simulates the electron-
electron repulsion. The g.s. of Hv is Φv and the g.s. energy
is Ev,

HvΦv = EvΦv. (3)

The energy difference TΨ [v] is strictly positive due to
the Rayleigh–Ritz inequality; the positivity of the energy
difference is preserved even when it is expanded with PT
and an approximation up to second order is kept. Hence
when TΨ [v] is minimized there is no possibility of incur-
ring the variational collapse of DFT with a correlation
energy functional from second order PT. The relation
between equation (1) and Lieb’s functional [37] is explored
in reference [38].

In Section 3, we see how the optimization over the total
energy in the traditional OEP manner is equivalent to
optimizing over the magnitude of the correlation energy.
We then compare in Section 4 our method with the tra-
ditional DFT perturbation theory (DFT PT) approach.
In Section 5, we discuss three different expansions for the
KS potential: the first two yield at first order the exact
exchange and local Fock exchange potentials respectively,
and the final one already at first order includes correla-
tion and has not been considered in the literature so far.
Finally, we draw conclusions in Section 6.

2 Power series expansions of the KS
potential

In this section, we review the key results from the WFT
approach developed by Gidopoulos in [36]; namely, how
minimization of the energy difference in equation (1)
yields the KS potential, and how to derive power series
expansions of the KS potential from perturbation theory.

Inequality (1) holds because the interacting state Ψ can-
not be the exact g.s. of a non-interacting Hamiltonian Hv;
however, we can view Ψ as an approximate g.s. of Hv.
Then, choosing v(r) to minimize TΨ [v] amounts to select-
ing the Hamiltonian Hv in the class (2) which optimally
adopts Ψ as its approximate ground state. It transpires
that the minimizing potential vs of TΨ [v] is the KS poten-
tial, since setting the functional derivative of TΨ [v] w.r.t.
v(r) equal to zero yields

ρΨ (r)− ρs(r) = 0, (4)

where ρΨ is the density of Ψ and ρs is the density of vs.
By the definition of the KS potential and the Hohenberg–
Kohn theorem, the potential vs must be the KS potential
(a detailed proof can be found in [36]).

With the variational principle (1), the problem of con-
structing a power series expansion of the KS potential is
simplified, as it is no longer necessary to employ the adia-
batic connection path formalism, where the local potential
varies in an unknown manner along the path. Instead, we
may substitute any power series expansion of Ψ in TΨ [v],
truncating the energy difference TΨ [v] at a finite order.
Optimization over v for a given expansion of TΨ [v] then
yields a corresponding expansion for the KS potential.

Of course, for a specific power series expansion of Ψ , it
was always possible to truncate the expansion at any order
and thus obtain its density; numerically inverting the den-
sity then leads to a (numerical) power series expansion of
the KS potential. The difference with the present theory
is that this procedure can be formally carried out for a
whole class of Taylor series expansions of Ψ , characterized
by the choice of zeroth-order Hamiltonian. It is then pos-
sible to consider the corresponding class of Taylor series
expansions of the KS potential and search in that class
for those expansions that converge faster than others. In
other words, our method allows us to construct and then
search a wide space of power-series expansions for the KS
potential, to find those expansions which are expected to
be the most accurate when truncated at some finite order.

In the following, we review from [36] the way to con-
struct the lowest order in such expansions. In order to
expand the energy difference, we use the interacting state
Ψu(α), g.s. of the perturbative Hamiltonian Hu(α):

Hu(α)Ψu(α) = Eu(α)Ψu(α), (5)

Hu(α) = Hu + α
[
Vee −

∑
i

u(ri)
]
, (6)

where Vee is the electron-electron repulsion operator. The
zeroth-order Hamiltonian is Hu; it belongs to the class
of effective Hamiltonians (2) but with a local potential
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ven(r) + u(r) instead of ven(r) + v(r). Similarly to v(r),
the effective potential u(r) mimics the electronic repulsion
in a mean-field way. The fully interacting Hamiltonian H
is obtained for α = 1, Hu(1) = H.

Obviously, for α = 0, Ψu(0) = Φu. If we substitute Ψu(0)
in place of Ψ in TΨ [v] and search for the potential that
minimizes TΨu(0)[v], the minimizing potential will be v = u
obviously. Hence, for small α, we expect that the potential
which minimizes TΨu(α)[v] will be close to u. Setting

v(r) = u(r) + αv′(r), (7)

the leading term in the energy difference TΨu(α)[u + αv′]
turns out to be of second order:

TΨu(α)[u+ αv′] = α2Tu[u+ v′] +O(α3), (8)

where

Tu[w] =
∑
n6=g.s.

|〈Φu,n|Vee −
∑
i w(ri)|Φu〉|2

Eu,n − Eu
, (9)

Φu,n, Eu,n are the nth eigenstate and energy eigenvalue
of the effective Hamiltonian Hu.

The second-order energy difference Tu[w] is a functional
of both the potentials u and w, but for now we take u to be
fixed and focus on its dependence on w. In the following,
we seek to minimize Tu[u + v′] over v′: this is equivalent
to minimizing Tu[w] over w, because w = u+ v′ and u is
fixed. In [36] the same symbol v was used for the potential
appearing as the argument of the functional TΨ in (1)
and for the argument of Tu in (9). Here, we use different
symbols v and w to avoid confusion.

The functional derivative of Tu[w] with respect to w, at
fixed u, is given by1

δTu[w]

δw(r)
=
∑
i, a

〈φu,i|Ju −Ku − w|φu,a〉
εu,i − εu,a

×φ∗u,a(r)φu,i(r)+c.c. (10)

Ju(r) is the direct Coulomb (or Hartree) local poten-
tial operator and Ku is the Coulomb exchange non-local
operator. φu,i and φu,a are respectively occupied and
unoccupied orbitals in the Slater determinant Φu, with εu,i
and εu,a their corresponding eigenvalues. The functional
derivative in equation (10) represents a charge density
with zero net charge,∫

dr
δTu[w]

δw(r)
= 0. (11)

Optimization over w in equation (9), by setting the
functional derivative (10) equal to zero (at fixed u), yields
the first order KS potential. We denote by w0[u] the
minimizing potential of Tu[w] for fixed u,

min
w
Tu[w] = Tu

[
w0[u]

]
. (12)

1 Note that in [36], the functional derivative in equation (10) has
the wrong sign. It is correct in this paper.

From (8), the first-order term v′[u] in the KS expansion
can be obtained from

w0[u](r) = u(r) + v′[u](r). (13)

The desired expansion of the KS potential to first order is
(2) and (7)

vs[u](r) = ven(r) + u(r) + α v′[u](r) +O(α2). (14)

The exact KS potential does not depend on u, but when
the expansion is truncated at a finite order, the KS poten-
tial up to that order will depend on u. Hence, we write
vs[u] to denote the KS potential up to first-order, and vs
to denote the exact KS potential. We also denote by Φs[u]
the g.s. of vs[u], i.e. the KS determinant of the first-order
KS potential vs[u].

In the Taylor expansion of the KS potential (14), the
zeroth-order term, ven(r) +u(r), is the same as the poten-
tial in Hu. The first-order term in the expansion of vs
is v′[u]. We may construct as many expansions for the
KS potential as there are choices for u, and more besides
using an altogether different expansion for Ψ , such as
Møller–Plesset.

It is interesting to note that, by setting w = u in the
functional derivative (10), we retrieve the equation for the
exchange-only OEP (xOEP), also known in the literature
as (exchange-only) exact exchange potential (EXX). This
particular choice of u will be discussed in more detail
in Section 5; for now, we see how it also arises from an
alternative perspective.

The density ρΨu(α)(r) of the weakly interacting state
Ψu(α) is given by

ρΨu(α)(r) = ρu(r) + α
δTu[w]

δw(r)

∣∣∣∣
w=u

+O(α2), (15)

where ρu(r) is the density of the zeroth-order state
Φu. The density ρΨu(α)(r) of the weakly interacting sys-
tem differs from the zeroth-order density ρu(r) by a
charge density equal (up to first order) to the functional
derivative (10), where the latter is evaluated at w = u.
Therefore, the search for the zeroth order potential u for
which the g.s. density does not change to first order yields
the exchange-only OEP (xOEP), as observed by Bartlett
and coworkers [24].

Furthermore, the density ρΨu(α) is related to the density
ρu+αv′(r) as follows:

ρΨu(α)(r) = ρu+αv′(r) + α
δTu[w]

δw(r)

∣∣∣∣
w=u+v′

+O(α2). (16)

Hence, the density ρΨu(α) of the weakly interacting state
differs from the density ρu+αv′(r) of the non-interacting
state by a charge density equal (up to first order) to
the functional derivative (10), where the latter is evalu-
ated at w = u + v′. Therefore, these densities are equal
if the potential w is equal to the minimizing potential
w0[u] (13); this minimizing potential defines the KS poten-
tial vs[u] (14). In other words, for any u, the density of the
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KS state is equal to the density of the weakly-interacting
state (to first order),

ρs[u](r) = ρΨu(α)(r) +O(α2), (17)

where ρs[u](r) = ρu+αv′[u](r).
Although there can be several u that yield a converging

expansion for Ψ and for the KS potential vs, we want to
find those u whose expansions converge faster than others.
We investigate this in Section 3.

2.1 Relation with the Sham–Schlüter method

Before proceeding to Section 3, we make contact with
MBPT and the formalism of Green’s functions. In MBPT,
the requirement by Kohn and Sham that the density of the
auxiliary noninteracting (KS) system be equal to the den-
sity of the interacting system leads to the Sham–Schlüter
equation [34,35,39],∫

dr′vxc(r
′)

∫
dωGs(r, r

′;ω)G(r′, r;ω)

=

∫∫
dxdy

∫
dωGs(r,x;ω)Σxc(x,y;ω)G(y, r;ω) ,

(18)

in which G(r, r′;ω) and Gs(r, r
′;ω) are respectively the

one-particle Green’s functions for the interacting and the
noninteracting (KS) systems. Equation (18) determines
the approximate exchange and correlation (xc) potential
vxc in terms of an approximate xc self-energy Σxc(r, r

′, ω).
Following Engel and Dreizler [40], who derive the OEP

equation for the xc potential from the Sham–Schlüter
equation, we point out the relation between equation (18)
and equations (16) and (17). Using (16) and requiring that
the densities of the noninteracting and interacting systems
be equal up to first order, i.e. requiring the validity of (17),
yields the OEP equation,

δTu[w]

δw(r)

∣∣∣∣
w0[u]

= 0, (19)

which determines the first-order KS potential v′[u] (13).
This equation for v′[u] is equivalent to the Sham–Schlüter
equation (18) with v′[u] in place of vxc and the modified
self-energy, Σ − u, in place of Σxc.

Of course, in our theory, we do not impose the validity
of (17), since the equality of the two densities comes out
naturally from the optimisation of the second-order energy
difference Tu[w] (9).

3 Reference determinants with minimum
correlation energy

Historically, the xOEP is found by a minimization of the
total energy 〈Φv|H|Φv〉, where the Slater determinant Φv
depends on the effective potential v(r) (see Eq. (2)). Since
the exact energy 〈Ψ |H|Ψ〉 does not depend on v, the min-
imization of the energy is equivalent to the minimization
over v of the magnitude of the correlation energy from the
reference Slater determinant Φv,

EcH [v]
.
= 〈Ψ |H|Ψ〉 − 〈Φv|H|Φv〉 < 0; (20)

we have explicitly shown the dependence of the corre-
lation energy on the interacting Hamiltonian H of the
system and on v. Hence, another interpretation of the
xOEP follows:

Corollary 1. xOEP is that effective potential v(r) with
weakest correlation energy from its ground state Φv.

The implication is that if we want to treat the inter-
acting Hamiltonian perturbatively to all orders, then the
effective Hamiltonian with the xOEP potential is the best
zeroth-order Hamiltonian, as the remaining correlation
energy to be treated perturbatively is smallest.

Often, we are interested in the lowest orders of pertur-
bative expansions either because we want to study the
limit of weak interactions or because we can only access
the lowest orders numerically. Hence, we consider the par-
tially interacting system described by the perturbative
Hamiltonian Hu(α) in (6) where the zeroth-order poten-
tial u(r) is meant to be determined later on in an optimal
way. We make the following statement for the weakly
interacting system described by the Hamiltonian Hu(α),
in the limit α→ 0 and for any u:

Lemma 1. The KS potential vs[u](r) is that effective
potential with weakest correlation energy from its ground
state Φs[u].

In this statement, the KS potential vs[u] is given to first
order and the lowest (dominant) order in the correlation
energy is second.

Proof. The correlation energy for the partially interact-
ing system using as reference the g.s. Φv (see Eq. (3)) of an
effective local potential v(r) in the class of Hamiltonians
(2) is:

EcHu(α)
[v]

.
= Eu(α)− 〈Φv|Hu(α)|Φv〉 < 0. (21)

For fixed u, the potential that minimizes the magnitude
of the correlation energy EcHu(α)

[v] over v is the same as

the potential that minimizes the expectation value
〈Φv|Hu(α)|Φv〉 over v, since Eu(α) does not depend on
v. This optimal effective potential is different in general
from the xOEP, due to the dependence of the former on
u and on α.

Let us expand the correlation energy (21) in powers of
α and obtain the dominant term. Obviously, when α = 0,
the potential v that minimizes the energy 〈Φv|Hu(0)|Φv〉
(or minimizes the magnitude of EcHu(0)

[v]) is v = u.

Hence, for small α, we substitute equation (7) in (21)
and we expand the correlation energy

EcHu(α)
[u+αv′]

.
= Eu(α)−〈Φu+αv′ |Hu(α)|Φu+αv′〉, (22)

to second order in α to obtain

EcHu(α)
[u+ αv′] = −α2Tu[u+ v′] +O(α3), (23)

where Tu[w] is given by (9).
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Up to second order in α, the correlation energy (23) is
thus equal to minus the energy difference (8):

EcHu(α)
[u+ αv′] = −TΨu(α)[u+ αv′]. (24)

The KS potential vs[u] in (14) is that potential which
minimizes the energy difference, and hence the statement
follows.

It follows that when we minimize Tu[w] over w to obtain
the first order KS potential vs[u], the resulting potential
not only has the same density as Ψu(α) to first order, but
it also has the following unique properties among other
effective local potentials:

– it best adopts Ψu(α) (to first order) as its own
approximate ground state, and

– its KS ground state Φs[u] has the lowest magnitude
of correlation energy to second order.

Let us denote by Ecu[w] the negative of the energy
difference Tu[w],

Ecu[w] = −Tu[w]. (25)

Ecu[w] is a second order correlation energy expression. It is
useful to use this notation to represent the total energy of
the weakly interacting systems described by Hu(α) using
three different references: the zeroth-order state Φu, the
perturbative state Φu+αv′ , and the KS determinant Φs[u].
Keeping up to second order, we have in the limit α→ 0:

Eu(α) = 〈Φu|Hu(α)|Φu〉+ α2Ecu[u] +O(α3), (26)

= 〈Φu+αv′ |Hu(α)|Φu+αv′〉
+ α2Ecu[u+ v′] +O(α3), (27)

= 〈Φs[u]|Hu(α)|Φs[u]〉
+ α2Ecu

[
u+ v′[u]

]
+O(α3), (28)

where Φs[u] is the ground state of the first order KS poten-
tial vs[u] in (14). In general, for a given u, the optimal
potential v′[u] (13) does not vanish and therefore the first-
order KS potential vs[u] is different to the zeroth-order
potential u.

In the following, we shall determine u optimally by
selecting the one that makes Ecu

[
u+ v′[u]

]
small.

4 Comparison of DFT PT and the present
WFT

4.1 Traditional DFT PT method

In traditional DFT PT the KS potential is obtained from
a perturbative expansion of the total energy functional,
thus they are of the same order. The first order term in
the expansion of the total energy is the exact exchange
energy functional, which yields through functional differ-
entiation the exchange potential, the first order term in
the expansion of KS potential. Similarly, the correlation
energy functional (truncated at second order) yields the
correlation potential, which is the second order term in

Fig. 1. Traditional DFT PT scheme linking the exchange
energy Ex[ρ] with the exchange potential vx(r) in first order,
and the correlation energy Ec[ρ] with the correlation potential
vc(r) in second order.

the expansion of the KS potential. The familiar scheme is
summarized in Fig. 1.

Because the exact exchange energy cannot be written
explicitly in terms of the density, its functional deriva-
tive (the exact exchange potential) cannot be obtained
directly from the density but only after solving an integral
equation (Fredholm equation of the first kind), known as
the equation for the optimized effective potential method.
Although we are solving an OEP equation, the exchange
potential is still the functional derivative of the exchange
energy functional w.r.t. the density.

4.2 Present WFT method

In the present WFT method, which happens to have the
KS potential as its solution, the xc potential is not the
functional derivative of the xc energy w.r.t. the density
(since the various quantities are not density functionals)
and cannot be obtained directly. Instead, minimization
of the magnitude of the second-order correlation energy
functional Ecu[v], equation (25), yields the minimizing
potential w0[u], which emulates the Hartree exchange and
correlation potential (Hxc) for the KS system with density
ρs[u] (17). The sum ven +w0[u] gives the KS potential up
to first order, equation (14), for α = 1.

The xc-potential term in vs[u] is obtained by subtract-
ing the Hartree potential from the optimal potential w0[u].
The scheme is summarized in Figure 2.

We emphasize again the conceptual shift between the
two theories: in DFT PT, the KS potential is obtained
by minimizing the total energy of the system, while in
the present WFT method the KS potential is obtained
by minimizing the energy difference TΨ [v]. To dominant
order, the latter optimization amounts to minimizing
the magnitude of the correlation energy from the KS
determinant.

5 Optimal choices for u

In the following, we shall explore some choices for approxi-
mations to the interacting state Ψ . Based on the expansion
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Fig. 2. Present WFT scheme linking the second-order correla-
tion energy functional Ec

u[w] with the first-order exchange and
correlation potential vxc(r).

Ψu(α) discussed so far, this amounts to making a suit-
able choice for the potential u. However, we are free to
pick any Ψ̃ which might be expected to yield an accu-
rate approximation to the exact KS potential; in addition,
we shall also consider a Møller–Plesset expansion for Ψ .
In any case, since we shall only consider perturbative
expansions for Ψ , we wish to find expansions for the KS
potential vs which are expected to give accurate results
when the expansion is truncated at the lowest (meaning-
ful) order: first order for Ψ and vs, and second order for the
correlation energy.

In traditional DFT PT, the first order KS potential is
restricted to Hartree and exact exchange, in fact in DFT
PT the Hartree and exchange potential is defined as the
first order term in the expansion of the KS potential. We
shall discuss two choices for Hu for which the first order
KS potential indeed corresponds to Hartree and exchange
only. Finally, we shall introduce a third choice for Hu,
which is expected to yield a first order KS potential with
accurate Hartree and exchange and correlation character.

5.1 Exchange optimized effective potential

We anticipate that a good choice for u is such that
the magnitude of the second-order correlation energy∣∣Ecu[u]

∣∣ = Tu[u] (25, 26) is small, but we shall not discuss
here how to find the global minimum of Tu[u]. An ener-
getically better choice will be investigated in Section 5.3.
However, we present below an alternative argument which
allows us to pick a u for which Tu[u] is small. That choice
of u yields xOEP.

For all zero-order potentials u, it holds that:

min
w
Tu[w] ≤ Tu[u]. (29)

The inequality holds because the search for the minimum
over the potential w includes the value w = u. Inequality
(29) states that for any potential u, the magnitude of its
correlation energy

∣∣Ecu[u]
∣∣ = Tu[u] is always larger or at

most equal to the minimum of Tu[w]. It follows that the

potential uHx, for which equality holds in (29),

TuHx

[
uHx + v′[uHx]

]
= TuHx

[uHx], (30)

will have correlation energy with small magnitude (but
not the smallest possible). Equality in (30) holds when
the first-order term in the expansion of the KS potential
vanishes,

v′[uHx] = 0 . (31)

The potential uHx is then determined by setting w = uHx

in equation (10) and finding the potential uHx which
makes this functional derivative vanish,∑

i,a

〈φuHx,i|JuHx
−KuHx

− uHx|φuHx,a〉
εuHx,i − εuHx,a

× φ∗uHx,a(r)φuHx,i(r) + c.c. = 0. (32)

This is the well-known equation for the xOEP. Hence the
KS potential is

vs[uHx](r) = ven(r) + uHx(r) +O(α2). (33)

We note two differences between our method and DFT
PT, which also yields the xOEP:

– In DFT PT the xOEP is the functional derivative
of the exchange energy functional, which appears as
the first-order term in the DFT PT expansion of the
xc energy functional.

– In DFT PT, the total energy that gives rise to xOEP
is truncated to first order and includes exchange
energy and no correlation energy. There is no way to
pair xOEP with a correlation energy functional with-
out self-consistently altering the exchange potential
away from its exchange only character.

In the current WFT, the first order KS potential is
always paired, naturally, with a second order correla-
tion energy, even when the first-order potential is xOEP.
Specifically, the correlation energy corresponding to xOEP
is given by EcuHx

[uHx] = −TuHx
[uHx].

Finally, we remark that the xOEP can be obtained
[35] from the Sham–Schlüter equation (18), when we keep
only the exchange term in the self-energy and approxi-
mate the interacting Green’s function G with Gs (linear
Sham–Schlüter equation).

5.2 Local Fock exchange potential

So far, we have approximated the interacting state Ψ with
the partially interacting state Ψu(α), and considered which
local potentials u(r) will give accurate approximations to
the KS potential. In the prior section, we saw how one par-
ticular choice of u yields the well-known xOEP. However,
we now consider an altogether different approximation to
Ψ , the Møller–Plesset (MP) expansion ΨMP.

We initially consider only the zeroth-order term in the
MP expansion, the Hartree-Fock (HF) determinant ΦHF.
Following the approach in [41], we search for the effective
Hamiltonian Hv, with local potential v(r) (Eq. (2)), which
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optimally adopts ΦHF as its ground-state. We therefore
minimize the energy difference THF[v], given by

THF[v] = 〈ΦHF|Hv|ΦHF〉 − Ev, (34)

over v(r) to determine the optimal Hv. The functional
derivative of THF[v] is equal to

δTHF[v]

δv(r)
= ρHF(r)− ρv(r) (35)

where ρHF(r) is the HF density, i.e. the density of ΦHF.
The ground-state whose potential minimizes this energy

difference thus has the same density as the HF determi-
nant. Denoting this optimal potential as vMP0, the local
Fock-exchange (LFX) potential is defined as2

vLFX(r) = vMP0(r)−
∫
dr′

ρHF(r′)

|r− r′|
; (36)

and the MP expansion of the KS potential is

vMP
s (r) = ven(r) +

∫
dr′

ρHF(r′)

|r− r′|
+ vLFX(r) +O(α2).

(37)
The local potential with the HF density has been consid-
ered previously in the literature as an accurate approxi-
mation to xOEP and EXX [42–44]. Much like for Ψu(α)
and subsequent expansions of the KS potential vs[u], we
can consider higher order terms in the MP expansion of
ΨMP, which give rise to MP expansions of the KS poten-
tial. However, from Brillouin’s theorem [45], singly excited
Slater determinants do not couple directly with their
zeroth-order HF state, which means the density of ΨMP

does not change to first order. Therefore, the potential
which optimizes the energy difference,

TΨMP1
[v] = 〈ΨMP1|Hv|ΨMP1〉 − Ev, (38)

where ΨMP1 is the first-order MP state, is the same poten-
tial as that which minimizes the energy difference in
equation (34). Including first-order corrections to the MP
expansion thus leaves the density and hence the expan-
sion of the KS potential unchanged up to first-order.
This is entirely analogous to our derivation of the xOEP:
the xOEP is that zero-order effective potential (uHx),
such that when we switch on the Coulomb interaction,
the g.s. density of the weakly interacting state does not
change to first-order (15), and whose corresponding power
series expansion for the KS potential also has vanishing
first-order correction (31).

Both potentials (LFX and xOEP) have exchange char-
acter. In DFT PT, the xOEP is the exact exchange
potential (EXX) as it is the functional derivative of the
exchange energy functional with respect to the density.
The LFX potential cannot be expressed exactly but only

2 This is defined differently in [41] because in the current paper
we do not include the electron-nuclear potential ven in the local
potential v.

approximately [41] as the functional derivative of the
exchange energy functional.

Similarly to the xOEP, the LFX potential as well
can be obtained from the Sham–Schlüter equation (18)
when we keep the exchange part of the self-energy and
omit correlation [39]. However, unlike xOEP, the linear-
response approximation (the replacement of G by Gs) is
not employed to determine the LFX potential, and hence,
from the point of view of the Sham–Schlüter method, the
xOEP is an approximation of the LFX potential. On the
other hand, from the DFT point of view, the LFX poten-
tial is instead an approximation of the exact exchange
potential since only the latter is the functional derivative
of the exact exchange energy w.r.t. the density [41,44].

As discussed in [41], the LFX and xOEP potentials are
mathematically distinct, but share many physical proper-
ties, and would thus be expected to yield similar results
when exchange dominates over correlation. Indeed, this
was demonstrated to be the case, and it was theorized that
the difference in results between the two methods is likely
to indicate the correlation strength for a given system.
Although the two methods are very similar, one advantage
of the LFX method is that the functional derivative (35)
is easier to compute, as there is no need to calculate the
KS orbital shifts [46,47].

5.3 First order exchange and correlation potential

We previously saw that making the magnitude of the
correlation energy Ecu[u] (26) small gave rise to the well-
known Hartree and exact exchange potential in the first
order KS potential (33). Whilst it is interesting to repro-
duce this result with our method, we want to develop a
new expression that will give accurate results for systems
where correlation is important.

As mentioned, finding the absolute minimizing poten-
tial of

∣∣Ecu[u]
∣∣ (26) is mathematically complex. The

argument which gave rise to the Hartree and exact
exchange potential does not fully optimize

∣∣Ecu[u]
∣∣, and

thus the expansion of vs[u] is not expected to converge as
fast as desired. Let us instead try to minimize the mag-
nitude of the correlation energy Ecu[u + v′]. In principle,
this involves a coupled minimization over u and v′ which
is even more complicated than minimizing

∣∣Ecu[u]
∣∣ over u.

However, in practice the two minimizations of Ecu[u+ v′]
can be approximately decoupled, simplifying significantly
the minimization scheme. To proceed, we split Tu[w] into
two terms,

Tu[w] = Su[w] +D[u], (39)

with

Su[w] =
∑

n single

|〈Φu,n|Vee −
∑
i w(ri)|Φu〉|2

Eu,n − Eu
(40)

and

D[u] =
∑

n double

|〈Φu,n|Vee|Φu〉|2

Eu,n − Eu
. (41)
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The first term Su[w] is a sum is over singly excited
determinants from Φu, while the second term D[u] is a
sum over doubly excited determinants.

The potential w appears only in Su[w] but not in
D[u]. Hence the minimizing potential w0[u] of Tu[w] also
minimizes Su[w] but leaves D[u] unaffected.

In practice [48], we have found that for any reasonable
u, the minimization of Tu[w] over w reduces Su[w] to very
small values, compared with D[u]:

0 < Su
[
w0[u]

]
� D[u]. (42)

Therefore, the dominant term is D[u], and the minimum
of the energy difference Tu[w] over w is given by D[u] to
a good approximation,

Tu
[
w0[u]

]
' D[u]. (43)

We conclude that in order to pick the best u, so as to min-
imize the minimum Tu

[
w0[u]

]
, it is sufficient to choose u

to minimize the double-excitations term D[u]. This opti-
mal u0, with minimum D[u0] will correspond to the best
zeroth-order effective Hamiltonian Hu0

for a perturbative
expansion of the interacting Hamiltonian (6). This domi-
nance of D[u] over Su[w0[u]] also reinforces that u = uHx

is not energetically the best choice of u, since D[u] is not
optimised in any way by this choice and can be quite large.

To minimize the double-excitations term, we first need
to derive the functional derivative of D[u],∫

dr δu(r)
δD[u]

δu(r)
= lim
λ→0

D[u+ λδu]−D[u]

λ
, (44)

so we need to determine how D[u] changes due to a
perturbation u → u + λδu. Given that the ground and
excited state wavefunctions, Φu and Φu,n, as well as their
respective energy levels, Eu and Eu,n, are affected by the
perturbation, D[u+ λδu] to first order is

D[u+ λδu] =
∑ ∣∣(Φn + λΦ

(1)
δu,n

∣∣Φ0 + λΦ
(1)
δu,0

)∣∣2
En + λE

(1)
δu,n − E0 − λE(1)

δu,0

, (45)

where the dependence on u is now assumed and
Φ0 labels the ground state. We use the notation(
Φ1

∣∣Φ2

)
= 〈Φ1|Vee|Φ2〉. To write D[u + λδu] explicitly to

first order in λ, we multiply it by the denominator in
equation (45) and then write both sides of the subsequent
expression as a power series in λ. We then expand the
squared term which yields the following expression for the
r.h.s. of equation (44),

lim
λ→0

D[u+ λδu]−D[u]

λ

=
∑ (

Φn
∣∣Φu)

En − E0

{(
Φ0

∣∣Φ(1)
δu,n

)
+
(
Φ
(1)
δu,0

∣∣Φn)
− 1

2

E
(1)
δu,n − E

(1)
δu,0

En − E0

(
Φ0

∣∣Φn)}+ c.c. (46)

We must now determine the perturbed states and ener-

gies. We begin with the perturbed state |Φ(1)
δu,n〉; from

Rayleigh–Schrödinger perturbation theory, this is given
by

|Φ(1)
δu,n〉 =

∑
m6=n

〈Φm|δU |Φn〉
En − Em

|Φm〉 , (47)

where δU
.
=
∑
i δu(ri).

Since |Φn〉 is a doubly excited state, we can write it
in the form |Φabij 〉, where i, j denote occupied orbitals in
the ground state and a, b denote unoccupied orbitals. The

matrix element, |Φ(1)
δu,n〉, is evaluated using Slater–Cordon

rules and is given by

|Φ(1)
δu,n〉 =

∑
c

∑
k

〈c|δu|k〉
εk − εc

|Φabcijk〉 , (48)

where k ∈ |Φabij 〉, and c 6∈ |Φabij 〉. The possible combina-
tions for the pair (k, c) are therefore

(a, i); (a, j); (b, i); (b, j); (µ, i); (µ, j); (a, ν); (b, ν), (49)

where µ 6= (i, j), |µ〉 ∈ |Φ〉 and ν 6= (a, b), |ν〉 6∈ |Φ〉. Any
other permissible combination of (k, c) represents a triple
excitation which will vanish in the final expression. We
now determine the state |Φabcijk〉 based on these possible
combinations. We write

|Φabcijk〉 = ĉ†cĉk ĉ
†
b ĉj ĉ

†
aĉi |Φ〉 , (50)

where ĉ† and ĉ are fermion creation and annihilation
operators. Using the anticommutator properties of these
operators, namely

{ĉ†i , ĉ
†
j} = {ĉi, ĉi} = 0; {ĉ†i , ĉj} = δij , (51)

and the fact that

ĉ†nĉn |Φ〉 =

{
|Φ〉 , |n〉 ∈ |Φ〉 ;
|0〉 , |n〉 6∈ |Φ〉 , (52)

we get the following possible combinations for the state
|Φabcijk〉:

|Φabcijk〉 =



|Φabjijb 〉 = |Φai 〉 ,
|Φabiija〉 = |Φbj〉 ,
|Φabjija 〉 = − |Φbi 〉 ,
|Φabiijb〉 = − |Φaj 〉 ,∑
ν |Φabνija 〉 = −

∑
ν |Φbνij 〉 ,∑

ν |Φabνijb 〉 =
∑
ν |Φaνij 〉 ,∑

µ |Φ
abµ
ijk 〉 =

∑
µ |Φabjµ〉 ,∑

µ |Φ
abµ
ijk 〉 = −

∑
µ |Φabiµ〉 .

(53)
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We are now able to compute the matrix element(
Φ0

∣∣Φ(1)
δu,n

)
in equation (46) (relabelling µ as k and ν as

c),

(
Φ0

∣∣Φ(1)
δu,n

)
=
〈j|δu|b〉
∆bj

(
Φ0

∣∣Φai )+
〈i|δu|a〉
∆ai

(
Φ0

∣∣Φbj)
− 〈j|δu|a〉

∆aj

(
Φ0

∣∣Φbi)− 〈i|δu|b〉∆bi

(
Φ0

∣∣Φaj )
+

unocc∑
c6=(a,b)

{
〈c|δu|b〉
∆bc

(
Φ0

∣∣Φacij )
− 〈c|δu|a〉

∆ac

(
Φ0

∣∣Φbcij )
}

+
occ∑

k 6=(i,j)

{
〈i|δu|k〉
∆ki

(
Φ0

∣∣Φabjk)
− 〈j|δu|k〉

∆kj

(
Φ0

∣∣Φabik)
}
, (54)

where ∆αβ = εα − εβ . The matrix element
(
Φ
(1)
δu,0

∣∣Φn) is
determined in a similar manner and is given by

(
Φ
(1)
δu,0

∣∣Φn) =
〈j|δu|b〉
∆jb

(
Φbj
∣∣Φabij )+

〈i|δu|a〉
∆ia

(
Φai
∣∣Φabij )

− 〈j|δu|a〉
∆ja

(
Φaj
∣∣Φabji )− 〈i|δu|b〉∆ib

(
Φbi
∣∣Φbaij )

+

unocc∑
c6=(a,b)

{
〈i|δu|c〉
∆ic

(
Φci
∣∣Φabij )

− 〈j|δu|c〉
∆jc

(
Φcj
∣∣Φabji )

}

+

occ∑
k 6=(i,j)

{
〈k|δu|a〉
∆ka

(
Φak
∣∣Φabij )

− 〈k|δu|b〉
∆kb

(
Φbk
∣∣Φbaij )

}
. (55)

Finally, we compute the perturbed energy levels E
(1)
δu,n

and E
(1)
δu,0 and hence the difference E

(1)
δu,n − E

(1)
δu,0,

E
(1)
δu,n − E

(1)
δu,0 = 〈Φabij |δU |Φabij 〉 − 〈Φ0|δU |Φ0〉

=

∫
drδu(r)

(
|φa(r)|2 + |φb(r)|2

−|φi(r)|2 − |φj(r)|2
)
. (56)

We collate these terms to determine the r.h.s. of
equation (46). Let us first consider what happens to the
first four terms in each of equations (54) and (55) in the
context of equation (46). The contribution from the very

first term in each expression is given by

occ∑
i,j
i6=j

unocc∑
a,b
a6=b

(
Φabij
∣∣Φ0

) 〈j|δu|b〉
∆jb

[(
Φ0

∣∣Φai )− (Φbj∣∣Φabij )
∆ai +∆bj

]
, (57)

where(
Φ0

∣∣Φai )− (Φbj∣∣Φabij ) =
( ∑
k∈Φu

−
∑
k∈Φa

i

)
〈ik||ak〉, (58)

= 〈ij||ab〉 − 〈ib||ab〉, (59)

with 〈ij||ab〉 = 〈ij|Vee|ab〉 − 〈ij|Vee|ba〉. The other three
terms in equations (54) and (55) which involve a single-
orbital substitution can be evaluated in a similar manner,
and by relabelling dummy indices it can be shown that
each of terms is equal. The total contribution from these
terms is therefore

4
occ∑
i,j
i6=j

unocc∑
a,b
a6=b

(
Φabij
∣∣Φ0

) 〈i|δu|a〉
∆ai

〈ji||bi〉 − 〈ja||ba〉
∆ai +∆bj

. (60)

It is noted that several of the other terms in equations (54)
and (55) are duplicates of each other, which again can
be seen by relabelling dummy indices. After expanding
all the remaining terms in equations (54), (55) and (57)
in terms of KS orbitals, the functional derivative of the
double excitations term is found to be equal to

δD[u]

δu(r)
= 2

occ∑
i,j
i6=j

unocc∑
a,b
a6=b

〈ab||ij〉
∆ai +∆bj

×

{
2φ∗i (r)φa(r)

〈ji||bi〉 − 〈ja||ba〉
∆ai

+
unocc∑
c6=(a,b)

φ∗c(r)φb(r)
〈ij||ac〉
∆bc

+ φ∗i (r)φc(r)
〈cj||ab〉
∆ic

+
occ∑

k 6=(i,j)

φ∗i (r)φk(r)
〈jk||ab〉
∆ki

− φ∗k(r)φa(r)
〈ij||kb〉
∆ka

− 1

2

[
|φa(r)|2 − |φi(r)|2

] 〈ij||ab〉
∆ai +∆bj

}
+ c.c.

(61)

The above expression is equal to zero at the minimizing
potential, u(r) = u0(r).

This result is reminiscent of the derivative of the double-
excitations part of the second-order correlation energy in
traditional DFT PT. In reference [10], in which part of the
KS potential is expanded in terms of a Gaussian basis set
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{gt(r)} with coefficients bσt , the derivative of the doubly-
excited correlation energy term with respect to bσt can be
expressed as

∂E
(2)
d

∂bσt
= −

∫
drgt(r)

δD[u]

δu(r)
, (62)

with δD[u]/δu(r) given by equation (61). However, as
previously stressed, in reference [10] and other works in
DFT PT, the minimization is carried out over the total
energy, which is unbound from below. We discuss at some
length the issues with a total energy minimization using a
second-order correlation energy functional in Section 5.4.

We can further simplify equation (61) in a manner
which is also beneficial if we want to employ the Unsöld
approximation [49] (common energy denominator approx-
imation) [49–55]. We note that some terms contain a
denominator of mixed sign, which yields less accurate
results if we approximate the denominators with a con-
stant. Consider the complex conjugate of the expression

[
occ∑
i,j
i6=j

unocc∑
a,b,c
a6=b6=c

φ∗c(r)φb(r)
〈ab||ij〉

∆ai +∆bj

〈ij||ac〉
∆bc

]∗

=
occ∑
i,j
i6=j

unocc∑
a,b,c
a6=b6=c

φc(r)φ∗b(r)
〈ij||ab〉

∆ai +∆bj

〈ac||ij〉
∆bc

=
occ∑
i,j
i6=j

unocc∑
a,b,c
a6=b6=c

φ∗c(r)φb(r)
〈ab||ij〉

∆ai +∆cj

〈ij||ac〉
∆cb

, (63)

where in the last step we have just swapped the labels of
the dummy indices b and c. This term plus its complex
conjugate is therefore equal to

occ∑
i,j
i6=j

unocc∑
a,b,c
a6=b6=c

φ∗c(r)φb(r)〈ab||ij〉 〈ij||ac〉
∆bc

×

[
1

∆ai +∆bj
− 1

∆ai +∆cj

]

= −
occ∑
i,j

unocc∑
a,b,c

φ∗c(r)φb(r)
〈ab||ij〉〈ij||ac〉

(∆ai +∆bj)(∆ai +∆cj)
,

(64)

where the denominator is now of fixed (positive) sign. We
can perform a similar procedure for the term with denom-
inator ∆ki, which with its complex conjugate becomes

−
occ∑
i,j,k

unocc∑
a,b

φ∗i (r)φk(r)
〈ab||ij〉〈jk||ab〉

(∆ai +∆bj)(∆ak +∆kj)
. (65)

Using equations (64) and (65), we can rewrite
equation (61) as

δD[u]

δu(r)
=

occ∑
i,j

unocc∑
a,b

〈ab||ij〉
∆ai +∆bj

×

{
4φ∗i (r)φa(r)

〈ji||bi〉 − 〈ja||ba〉
∆ai

−
unocc∑
c6=(a,b)

[
φ∗c(r)φb(r)

〈ij||ac〉
∆ai +∆cj

− 2φ∗i (r)φc(r)
〈cj||ab〉
∆ci

]

−
occ∑

k 6=(i,j)

[
φ∗i (r)φk(r)

〈jk||ab〉
∆ak +∆bj

+ 2φ∗k(r)φa(r)
〈ij||kb〉
∆ak

]

−
[
|φa(r)|2 − |φi(r)|2

] 〈ij||ab〉
∆ai +∆bj

}
+ c.c. (66)

If desired, it is now straightforward to use the Unsöld
approximation [49] (set all denominators ∆ equal to a con-
stant) and remove the summations over the unoccupied
orbitals using the completeness relation.

The minimizing potential u0 is determined by setting
the functional derivative (61, 66) to zero:

δD[u]

δu(r)

∣∣∣∣
u=u0

= 0 . (67)

Equation (67) must be solved iteratively with an energy
minimization algorithm such as steepest descent. At the
nth iteration, the potential will be u(n)(r). Substitut-

ing the single-particle orbitals φ
(n)
u,p(r) and energies ε

(n)
u,p

of u(n)(r) into (66), we obtain δD[u]/δu(r) at u(n).
Using this functional derivative we correct the potential,
u(n) → u(n+1), so as to lower D[u]. Finally, we iterate until
the functional derivative (67) vanishes.

Once the optimal potential u0 has been found, together
with its single-particle orbitals φu0,p and energies εu0,p, we
may proceed to determine the first-order KS potential by
minimizing Su0

[w] over w, keeping u0 fixed.
The minimizing potential w0[u0] = u0 + v′[u0] (13) is

given by (for fixed u0):

0 =
δSu0

[w]

δw(r)

∣∣∣∣
w=u0+v′[u0]

=
∑
i, a

〈φu0,i|Ju0 −Ku0 − u0 − v′[u0]|φu0,a〉
εu0,i − εu0,a

× φ∗u0,a(r)φu0,i(r) + c.c. (68)
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Equation (68) is a standard OEP equation for the
potential v′[u0] with the simplification that during the
solution of the OEP equation the orbitals φu0,p and their
energies εu0,p remain fixed and independent of v′[u0].

The first-order correction v′[u0] does not vanish. Finally,
the KS potential to first order is given by

vs[u0](r) = ven(r) + u0(r) + αv′[u0](r) +O(α2); (69)

the correlation energy corresponding to the KS potential
is

Ecu0

[
u0 + v′[u0]

]
= −Su0

[
u0 + v′[u0]

]
−D[u0]. (70)

The criterion for the validity of the approximation in
(42) and (43), in which Su

[
u + v′[u]

]
is neglected in the

minimization of Tu
[
w0[u]

]
, is

Su0

[
u0 + v′[u0]

]
� D[u0]. (71)

In summary, by minimizing Tu[w] over u and w, not
only is the magnitude of the correlation energy the small-
est possible over all u and w, leading to a fast converging
expansion of the KS potential, but also the resulting
first order KS potential vs[u0] has both exchange and
correlation character, rather than just exchange.

5.4 Analysis of total energy minimization in DFT PT
using a second-order correlation functional

In this section, we focus on the functional derivative (f.d.)
of the second-order correlation energy functional and of
the total energy in DFT PT and analyse the tendency to
variational collapse that has been observed in calculations.

Using notation in this paper, (9) and (25), the second-
order correlation energy, Ec[ρ], in DFT PT [19,20] is given
by

Ec[ρ] = EcvHxc[ρ]

[
vHx[ρ]

]
, (72)

where vHxc[ρ] is the Hartree, exchange and correlation
part of the KS potential with density ρ. We note that
just the Hx part of the KS potential of density ρ appears
in the argument of the correlation energy functional on
the right (in the square brackets, amounting to w = vHx

in (9)), although the KS orbitals and their energies are
obtained from the KS equations with the full Hxc poten-
tial (which gives the dependence in the subscript, i.e.,
u = vHxc in (9)). Some authors use the simpler form,
where both potentials are the same [10]:

Ec[ρ] = EcvHxc[ρ]

[
vHxc[ρ]

]
. (73)

To proceed with the analysis and compare with our
method, it is convenient to view the density functionals
(72) and (73) as potential functionals. Hence, we consider
the density, ρ = ρu, to be the g.s. density of an effec-
tive Hamiltonian Hu, with g.s. Slater determinant Φu, see
equations (2)–(5). The effective potential u is the Hxc

potential and from (19) the Hx part of the KS poten-
tial with density ρu is w0[u] 3. Finally, the second-order
correlation energy of DFT PT (72) can be written as a
potential functional [56], using our notation, as

Ec[ρu] = Ecu
[
w0[u]

]
= −Su[w0[u]

]
−D[u]; (74)

and DFT’s total energy (as a potential-functional) is

E[ρu] = 〈Φu|H|Φu〉 − Su
[
w0[u]

]
−D[u]. (75)

Using the simpler form for the correlation energy (73), we
have

Ec[ρu] = Ecu[u] = −Su[u]−D[u]; (76)

and the corresponding total energy potential-functional is

E[ρu] = 〈Φu|H|Φu〉 − Su[u]−D[u]. (77)

It is common practice with potential functionals (or equiv-
alently implicit density functionals) to employ the OEP
method to minimize the total energy. The functional
derivative of the total energy w.r.t. the effective potential
is, in the two cases:

δE[ρu]

δu(r)
=

δ

δu(r)
〈Φu|H|Φu〉 −

δSu
[
w0[u]

]
δu(r)

− δD[u]

δu(r)
, (78)

and

δE[ρu]

δu(r)
=

δ

δu(r)
〈Φu|H|Φu〉 −

δSu[u]

δu(r)
− δD[u]

δu(r)
. (79)

To simplify the two functional derivatives, first we note
the identity [36]:

δ

δu(r)
〈Φu|H|Φu〉 =

δSu[w]

δw(r)

∣∣∣∣
u

. (80)

Using the chain rule we have

δSu
[
w0[u]

]
δu(r)

=
δSu[w]

δu(r)

∣∣∣∣
w0[u]

+

∫
dx

δw0[u](x)

δu(r)

δSu[w]

δw(x)

∣∣∣∣
w0[u]

. (81)

From (81), (19) and (39), we obtain

δSu
[
w0[u]

]
δu(r)

=
δSu[w]

δu(r)

∣∣∣∣
w0[u]

. (82)

We conclude that the f.d. of the total energy (75) is

δE[ρu]

δu(r)
=
δSu[w]

δw(r)

∣∣∣∣
u

− δSu[w]

δu(r)

∣∣∣∣
w0[u]

− δD[u]

δu(r)
; (83)

3 w0[u] is the Hx part of the KS potential with density ρu, and
emulates the Hxc part of the KS potential with density ρs[u] (17).
See Section 4.2.
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and the f.d. of the total energy (77) is

δE[ρu]

δu(r)
= − δSu[w]

δu(r)

∣∣∣∣
u

− δD[u]

δu(r)
. (84)

The f.d. of the total energy (75) is the sum of three terms
(83). The first term vanishes for the xOEP potential uHx,
see Section 5.1. The sum of the second and third terms
vanishes for u0, the minimizing potential of Tu

[
w0[u]

]
.

Hence, the total energy (75) will have a stationary point
(but not a minimum) at a potential lying somewhere
between uHx and u0. That potential will be the Hxc poten-
tial of DFT PT. It is intriguing to investigate the relation
of the latter potential with the Hxc potential of the present
theory, u0 + αv′[u0] (69).

The minimization of the total energy (75) over u
amounts to a balanced search to achieve two goals: to
minimize the expectation value 〈Φu|H|Φu〉 (well behaved)
and to maximize the second-order difference Tu

[
w0[u]

]
.

Although bound from below, Tu
[
w0[u]

]
is not bound from

above and the search will be biased towards the maxi-
mization of Tu

[
w0[u]

]
. During the iterations the potential

is expected to move away from the minimum of Tu
[
w0[u]

]
.

Hence, the second term on the r.h.s. of (83), which we had
omitted based on (42) and (43), can no longer be neglected
as it is prone to diverge, similarly to the third term.

The f.d. of the total energy (76) has only two terms
(84) because the f.d. of 〈Φu|H|Φu〉 cancels with part of the
f.d. of Su[u] (80). Thus, fully self-consistently and with-
out risk of variational collapse, the Hxc potential (solution
of δE[ρu]/ δu(r) = 0) can be obtained by searching for
the potential ũ (dependent on w) that minimizes the
(positive) second-order quantity Su[w] + D[u] and then
choosing w so that ũ = w. From (77) and (84), it is evident
that an algorithm to minimize Su[w] + D[u] will effec-
tively maximize rather than minimize the total energy
(77). Even more strongly than the previous case, the min-
imization of the total energy (76) does little to lower the
value of 〈Φu|H|Φu〉 (since the f.d. of this term cancels)
while it leads to the divergence of Su[w] +D[u].

6 Summary and discussion

The research reported in this paper builds on previ-
ous work at the interface between wave function theory
(WFT) and Kohn–Sham (KS) density functional the-
ory (DFT) [36]. The link between WFT and KS-DFT,
established in [36], is that among all non-interacting
Hamiltonians Hv with an effective potential v(r), the
KS effective Hamiltonian adopts energetically optimally
the interacting ground state as its approximate ground
state. Specifically, the KS potential turns out to be opti-
mal in that it minimizes an appropriate energy difference
TΨ [v] (1) over all effective potentials v(r). This energy
difference depends on the interacting state Ψ and is
strictly positive, TΨ [v] > 0 (1).

There is a large number of partially interacting
Hamiltonians Hu(α) (6), with 0 ≤ α ≤ 1, that yield the
interacting Hamiltonian of interest H for α = 1; they

differ in the choice of effective potential u(r) appearing
in the zero-order Hamiltonian Hu (2). For any of these
partially/weakly interacting systems of electrons, their
ground state Ψu(α) can be expanded in a power series
in the small perturbation α

(
Vee −

∑
i u(ri)

)
. When we

replace Ψ in the energy difference TΨ [v], with an expansion
of any of the partially interacting ground states Ψu(α),
truncated at a finite order, we obtain a corresponding
power series expansion of the energy difference. Minimiz-
ing order-by-order the expansion of the energy difference
w.r.t. the effective potential v, we obtain a corresponding
power series expansion of the KS potential in powers of α.

There are at least as many expansions of the KS poten-
tial in powers of α as there are choices for the zero-order
potential u. For any of the weakly interacting ground
states Ψu(α), and for small α, the dominant term in the
expansion of the energy difference TΨ [v] is second order:
TΨu(α)[u+ αv′] = α2 Tu[w] +O(α3), with w = u+ v′ and
Tu[w] > 0.

Minimization of the second order energy difference
Tu[w] over w(r) gives an expansion of the KS potential
up to first order. The aim is to choose optimally the
zero-order effective potential u in order to obtain fast
converging expansions for Ψu(α) and for the KS potential.

The link between WFT and KS-DFT is explored further
in the present work: we consider the correlation energy
EcH [v] of the interacting system, with non-interacting
reference the ground state Φv of the Hamiltonian with
effective potential v. The potential that minimizes the
magnitude of the correlation energy EcH [v] over all effec-
tive potentials v is xOEP.

When we expand the ground state energy of the par-
tially interacting system in powers of α, we obtain a power
series expansion of the correlation energy. We consider the
correlation energy EcHu(α)

[u + αv′] of the partially inter-

acting system with reference to the ground state of the
effective potential u(r) +αv′(r). In the weakly interacting
limit, α → 0, the dominant term in the expansion of the
correlation energy is second order and it is equal to minus
the second-order energy difference: EcHu(α)

[u + αv′] =

−α2 Tu[w] + O(α3), with w = u + v′, see equation (23).
This is the first important result of the paper.

We recall that the optimization of the energy difference
Tu[w] over all effective potentials w (i.e. over all reference
ground states of w) yields the KS potential up to first-
order. We conclude that, for any u, the ground state of
the KS potential (up to first-order) is the optimum refer-
ence for the correlation energy, since the magnitude of the
second order correlation energy is minimum for that ref-
erence. We extend this reasoning by seeking the effective
potential u for which the correlation energy from the KS
reference state Ecu

[
w0[u]

]
= −Tu

[
w0[u]

]
(already a quan-

tity with minimum magnitude over w) also has small or
minimum magnitude over the zero-order potential u.

Intuitively, small magnitude of correlation energy
implies weak perturbation and hence fast convergence
of the perturbative expansion for Ψu(α) and for the KS
potential. We consider three choices for the zeroth-order
potential u. In the first two, the density of the zero order
state is equal to the density of the weakly interacting state,
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within first order. In both cases, the first order term in
the expansion of the KS potential vanishes. These two
choices yield the Hartree and exact exchange potential of
DFT (xOEP) and the Hartree and LFX potential [41]. By
minimizing the magnitude of the correlation energy over
w and over u (our third choice) we hope to obtain the
fastest converging power series expansion for Ψu(α) and
for the KS potential, with the latter having exchange and
correlation character. Since our second order expressions
are bound from below, their minimization is mathemati-
cally well posed. We claim then that we have derived for
the first time well behaved equations determining in an
ab initio manner the KS potential with Hartree, exchange
and correlation character, in a power series expansion of
the potential up to first order.
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