
Journal of Computer and System Sciences 108 (2020) 10–28
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Relating the bisection width of dual-port, server-centric

datacenter networks and the solution of edge isoperimetric

problems in graphs

Alejandro Erickson a,1, Javier Navaridas b,2, Iain A. Stewart a,1

a School of Engineering and Computing Sciences, Durham University, Science Labs, South Road Durham DH1 3LE, UK
b School of Computer Science, University of Manchester, Oxford Road, Manchester M14 9LP, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 February 2017
Received in revised form 10 June 2019
Accepted 15 August 2019
Available online 27 August 2019

Keywords:
Datacenter networks
Server-centric datacenter networks
Stellar datacenter networks
Isoperimetric problems
Bisection width
S-bisection width

Stellar datacenter networks are a recent generic construction designed to transform a base-
graph into a dual-port, server-centric datacenter network. We prove that the S-bisection
width of any stellar datacenter network can be obtained from the solution of isoperimetric
problems on the base-graph, provided that the base-graph is regular. We extend previous
research on the stellar datacenter networks GQ∗, instantiated with generalized hypercubes,
and show that with respect to S-bisection width, GQ∗ performs well in comparison with
the dual-port datacenter network FiConn. Our work develops a strong combinatorial link
between graph bisection width and throughput metrics for stellar datacenter networks.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The design of datacenter networks is becoming an important aspect of computing provision as software and infrastruc-
ture services increasingly migrate to the cloud. The actual networks themselves have evolved as computational demands
have increased, and various new paradigms have emerged as regards the next generation of datacenter networks. A no-
table evolutionary shift was provoked by Al-Fares et al. [3] when they moved away from the hitherto tree-based datacenter
networks through the use of fat-trees, which originated with Leiserson [30] and are used in supercomputer design. The re-
sulting datacenter network Fat-Tree is a switch-centric datacenter network whereby all communication intelligence resides
in the (high-end) switches. This is symptomatic of a general phenomenon: the vast amount of research on interconnection
networks (designed for networks-on-chips, distributed-memory multiprocessors, clusters, and so on) provides a source of
ideas for both datacenter network topologies and solutions of datacenter network design problems. Of course (and ger-
mane to this paper), the differing demands and constraints of datacenter networks mean that these ideas are not always
immediately applicable.

E-mail addresses: alejandro.erickson@gmail.com (A. Erickson), javier.navaridas@manchester.ac.uk (J. Navaridas), i.a.stewart@durham.ac.uk (I.A. Stewart).
1 Supported by EPSRC grant EP/K015680/1: ‘Interconnection Networks: Practice unites with Theory (INPUT)’.
2 Supported by EPSRC grant EP/K015699/1: ‘Interconnection Networks: Practice unites with Theory (INPUT)’ and by the European Union’s Horizon 2020

programme under grant agreement No. 671553 ‘ExaNeSt’.
https://doi.org/10.1016/j.jcss.2019.08.005
0022-0000/© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcss.2019.08.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://creativecommons.org/licenses/by/4.0/
mailto:alejandro.erickson@gmail.com
mailto:javier.navaridas@manchester.ac.uk
mailto:i.a.stewart@durham.ac.uk
https://doi.org/10.1016/j.jcss.2019.08.005
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2019.08.005&domain=pdf

A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28 11
Whilst fat-trees are a step forward, they are not a panacea; for example, fat-trees deliver high bandwidth but are difficult
to scale. Other paradigms have been proposed including: similar switch-centric datacenter networks but based upon Clos
networks, like VL2 [18]; unstructured datacenter networks incorporating random graph topologies, like Jellyfish [38]; highly
connected clique-based topologies such as Dragonfly [27]; hybrid solutions that route certain structured communications
through a high-speed optical switch, like Helios [16]; and even mutable topologies that are interconnected by free-space
optics, like Firefly [23]. Although not necessarily immediately deployable, such proposals and ideas form a valuable part
of the research literature: they might either become practical in the future (or, at least, variations might); and they might
inspire analytical results that can be reused elsewhere or lead to more pragmatic designs.

Another type of datacenter network has recently been proposed whereby the servers not only undertake the intrinsic
computations but also deal with all aspects of routing and communication so that the switches have no processing power
at all and function solely as crossbars; as such, switches are only directly connected to servers whereas servers can be
connected to both switches and servers. These datacenter networks are called server-centric networks with well-known ex-
amples being DCell [20], BCube [19], CamCube [1], FiConn [31], DPillar [33], and HCN and BCN [21] (CamCube is somewhat
different from the others in that it includes no switches, with servers being directly connected to one another). One crit-
icism of some server-centric datacenter networks is that as they scale, more and more NIC (network interface controller)
ports are required at each server; consequently, commodity servers, where there are commonly only two NIC ports, cannot
be used and this significantly increases the overall cost. The datacenter network FiConn was explicitly designed to be dual-
port so that each server is adjacent to exactly one switch and at most one server. From the list of server-centric datacenter
networks above, DPillar, HCN, and BCN are also dual-port with other dual-port server-centric datacenter networks having
very recently been proposed such as DCube in [22] and SWCube and SWKautz in [32]. It is with dual-port server-centric
datacenter networks that we are primarily concerned in this paper.

The scale and expense of datacenters means that the design process needs to be subject to thorough evaluation. As such,
a range of metrics has been put forward, again inspired by experiences of interconnection networks in other domains. These
metrics attempt to measure network aspects such as hardware costs, scalability, throughput, latency, routing capability, fault
tolerance, and so on. However, the characteristics of datacenter networks differ from other interconnection networks and
an active research area is the development of appropriate design metrics specifically tailored to datacenters. Fundamental
to the evaluation of (datacenter) network designs is their abstraction using mathematics and, in particular, graph theory.
Almost all metrics involve an abstraction of a network as a graph, as well as graph-theoretic concepts and techniques. How-
ever, as datacenter network design paradigms become more involved, the existing mathematical body of knowledge can fall
short. The study of server-centric datacenter networks is a case in point where the abstractions of such networks as graphs
are such that there are two very different types of nodes: server-nodes, corresponding to the servers; and switch-nodes,
corresponding to the switches. This can complicate the analysis significantly; for example, the exact server-node-to-server-
node diameter of DCell is currently not known (see [28] for upper and lower bounds). On the one hand, it is unsatisfactory
that basic facts as regards standard server-centric datacenter networks are as yet to be established; but on the other hand,
the design of new datacenter networks is giving rise to new and interesting combinatorial questions. It is with such combi-
natorial questions that we are primarily concerned in this paper.

In [15], a general graph-theoretic construction to build dual-port server-centric datacenter networks was devised. This
construction takes an arbitrary graph G as a base graph and builds the stellar datacenter network G∗ by replacing all vertices
of G with switch-nodes and subdividing each edge of G by using two server-nodes. The beauty of this construction is that
not only is it widely applicable and easy to describe in a constructive sense, but metric-relevant properties of G∗ can be
derived in terms of those of G . Consequently, if we carefully choose our base graph G (so that its graph-theoretic properties
are potentially well-suited to its use within an interconnection network context) then we can use existing mathematical
results concerning G along with the mathematics of the stellar construction in order to derive metric-relevant properties
of G∗ (as a datacenter network). In [15], such an approach was recently taken with G chosen to be the (well-known and
well-studied) generalized hypercube GQk,n , with the resulting stellar datacenter network, denoted GQ∗

k,n , empirically com-
pared against FiConn and DPillar as regards metrics related to network throughput, latency, load balancing, fault-tolerance,
and cost-to-build, and with regard to all-to-all, many all-to-all, butterfly, uniform random, hot-region, and hot-spot traffic
patterns (generalized hypercubes had already been used to design the datacenter network SWCube in [32]). The stellar data-
center network GQ∗

k,n was shown to generally outperform both FiConn and DPillar (sometimes significantly so), consequently
validating the stellar paradigm.

In this paper we continue the study of general stellar datacenter networks but within the context of bisection width.
Bisection width is a well-established and generally well-accepted theoretical metric measuring an interconnection network’s
throughput capacity (it has other relevance too); however, it has recently come under criticism. The extensive, thorough,
and novel critique in [25] is of cut-based metrics in general but within a wide network context. Our first contribution in
this paper is an examination of the arguments against bisection width in [25] but in a narrow (dual-port) server-centric
datacenter network context. We argue that in this narrower context, the arguments of [25] do not carry so much weight
and that bisection width, or more precisely the refinement S-bisection width, which we detail and justify here, and which
is specifically tailored for server-centric datacenter networks, is a relevant throughput metric. Our second contribution is
to examine the S-bisection width of a stellar datacenter network G∗ in relation to the bisection width of the base graph
G . We show that in general these measures can differ but that for a regular graph G , the bisection width of G (almost)
always provides an upper bound on the S-bisection width of G∗ . Further, we show that this upper bound can be met with

12 A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28
a hypercube as the base graph G; that is, the bisection width of G is equal to the S-bisection width of G∗ . Just as the
computation of the bisection width of an arbitrary graph G can be difficult and involved, we show that the same is true of
the computation of the S-bisection width of G∗ . However, we develop a method to compute the S-bisection width of G∗
exactly when G is any regular graph (of course, regular graphs feature widely as interconnection networks). Our approach to
the analysis of S-bisection width is novel in that we exhibit a strong involvement with the well-established mathematical
study of edge isoperimetric problems in graphs. Our method to compute the S-bisection width of G∗ involves the implicit
calculation of edge isoperimetric subsets of G . Our third contribution is to apply our methodology and undertake an ex-
perimental comparison of GQ∗

k,n and FiConn with respect to S-bisection width. Just as GQ∗
k,n was empirically shown in [15]

to have better properties in relation to network throughput, latency, load balancing, fault-tolerance, and cost-to-build than
FiConn, we show that the same can be said as regards S-bisection width. An additional generic contribution of this paper
is that it emphasises that there is very interesting and relevant mathematics underlying the design of modern datacenter
networks.

In Section 2, we outline basic graph-theoretic definitions and concepts as well as detailing the stellar construction and
the notion of S-bisection width. In Section 3, we look at bisection width in detail, in tandem with the critique of bisection
width in [25], before commenting on this critique and justifying S-bisection width as a valuable throughput metric within
our context. Our main technical results are proven in Section 4, with our experimental evaluation of GQ∗

k,n and FiConn with
respect to S-bisection width contained in Section 5. We give our conclusions and some directions for further research in
Section 6.

2. Basic notation and concepts

We begin by explaining our basic notation and some core graph-theoretic concepts for what follows (other definitions
and concepts are introduced as appropriate). Our graphs are always undirected and a graph G = (V , E) has the set V as
its vertex-set and the set E as its edge-set. We refer the reader to [12] for notions as regards graph theory and to [10]
for background as regards general interconnection networks. We refer to a graph as having vertices and edges, and to an
interconnection network (and a datacenter network) as having nodes and links so as to accentuate the fact that it is to act as
a communication fabric, with links regarded as full duplex and consisting of two oppositely-oriented channels. Throughout,
we write ‘DCN’ to mean ‘datacenter network’. Note that DCNs are usually parameterized families of networks; we refer to
both the family and family members as a DCN.

2.1. Stellar DCNs

As we have already mentioned, stellar DCNs arose in [15] as a generic construction to formalise the process by which
certain server-centric DCNs, such as SWCube, SWKautz, and DPillar, are built, through the use of ‘link subdivision’ and so
that commodity off-the-shelf (COTS) hardware might be utilised (that is, dual-port servers).

Definition 1. Given the graph G = (V , E), the stellar DCN G∗ = (W ∪ S, E∗) is such that its node-set is partitioned into two
non-empty disjoint sets: the set of switch-nodes W , of which there are |V | in number; and the set of server-nodes S , of
which there are 2|E| in number. The set of links E∗ of G∗ is obtained from E: by identifying the switch-nodes of W with
the vertices of V ; and by replacing each edge of E with a unique path of 3 links so that the start and end nodes are the
corresponding switch-nodes and the two interim nodes are unique server-nodes.

Consequently, a stellar DCN G∗ has |V | + 2|E| nodes and 3|E| links. Moreover: every server-node is adjacent to exactly
one switch-node and exactly one server-node; and every switch-node is adjacent to the same number of server-nodes
in G∗ as the corresponding vertex in G has neighbours (consequently, it is possible to develop stellar DCNs for which
the server-nodes possess aspects of symmetry). In short, G∗ is obtained by regarding G as a switch-node network and
subdividing the edges of G with pairs of server-nodes. It is not difficult to see that every dual-port server-centric DCN for
which: there are switch-nodes and server-nodes; every switch-node is adjacent only to server-nodes; and every server-node
is adjacent to exactly one switch-node and exactly one server-node, arises from a stellar construction applied to some
graph G .

We illustrate a stellar construction in Fig. 1 using the Petersen graph as our graph G . The switch-nodes in G∗ are depicted
as squares and the server-nodes as circles (the colouring of nodes is an illustration of an S-bisection in the upcoming
Definition 4).

2.2. Bisection width

Interconnection network designs are often evaluated (either analytically or empirically) with respect to some form of
workload. The most common workload is a traffic pattern defined by a communication matrix in which the (i, j)th element
denotes the amount of data a source, i, needs to send to a destination, j; each non-zero element is typically called a flow.
In such traffic patterns, messages are generated without considering any temporal or causal relationship between them. In
this paper, we refer to the uniform random and the all-to-all traffic patterns, both of which deal with unit flows; that is, all

A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28 13
Fig. 1. A stellar construction with a Petersen graph as base. Nodes are black or white to illustrate an S-bisection.

communication matrix entries are 0 or 1. The uniform random traffic pattern is obtained by each node of the interconnection
network uniformly at random choosing some node (which may be itself) to which to send data. The all-to-all traffic pattern
is obtained by every node having to send (possibly different) data to every other node. Henceforth, we assume that any
traffic pattern only involves unit flows, unless we state otherwise.

As we shall see in the next section, the bisection width of a graph is strongly related with the throughput of an inter-
connection network under the uniform random and all-to-all traffic patterns.

Definition 2. Let G = (V , E) be some graph. A cut in G is a set of edges resulting from a partition (R, T) of V into two
non-empty disjoint subsets R and T in that the cut, denoted [R, T], consists of those edges with one incident vertex in R
and one in T . The width of a cut is the number of edges in the cut. A bisection is a cut where the size of R and T differ by
at most 1. The bisection width bw(G) of G is the smallest width of any bisection.

The concepts from Definition 2 are naturally inherited by interconnection networks when they are abstracted as graphs,
although rather than the width of a cut being of primary concern, within an interconnection network it is usually the
bandwidth.

Definition 3. Let G = (V , E) be an interconnection network where the two channels corresponding to every link have an
associated bandwidth. The bandwidth of a cut is the sum of the bandwidths of the channels of the cut, with the bisection
bandwidth of G being the smallest bandwidth of any bisection.

In what follows, we assume that the channel bandwidth is constant throughout the whole network and we concentrate
on the number of links (as opposed to channels) in a cut; that is, we focus on the bisection width of the undirected
graph underlying an interconnection network. Also, note that it might be the bisection width, rather than the cumulative
bandwidth, that is actually the resource of interest in an interconnection network; for example, as regards the diversity for
route selection (across a bisection) or as regards connectivity in the presence of faults. In any case, if all channels of an
interconnection network have the same bandwidth b then the bisection bandwidth is simply 2b times the bisection width
(as there are two channels per link).

2.3. S-bisection width

However, whilst bisection width and bisection bandwidth are relevant to interconnection networks where nodes are
homogeneous (in that every node can send and receive messages), these concepts need to be refined for interconnection
networks consisting of both server-nodes and switch-nodes (where only server-nodes can send and receive messages, with
the switch-nodes providing only message transit). Of course, this is the case for stellar DCNs.

Definition 4. Let G = (V , E) be an undirected graph and let G∗ = (W ∪ S, E∗) be the corresponding stellar DCN. An
S-partition of G∗ is a partition of the nodes of W ∪ S so that: W is partitioned as RW ∪ T W ; and S is partitioned as
R S ∪ T S with |R S | = |T S |. An S-partition (RW ∪ R S , T W ∪ T S) yields the S-bisection [RW ∪ R S , T W ∪ T S] defined as the set
of links incident with one node in RW ∪ R S and one node in T W ∪ T S . The width of an S-bisection is the number of links
it contains. The S-bisection width bw S (G∗) of G∗ is the minimum width over all S-bisections of G∗ .

An S-bisection is illustrated in Fig. 1 where server-nodes and switch-nodes are coloured black or white depending upon
whether they are in RW ∪ R S or T W ∪ T S , respectively. Note that necessarily |R S | = |T S | = 15, although |RW | �= |T W |.

Of course, the notion of S-bisection width is applicable to any datacenter network consisting of server-nodes and switch-
nodes. We return to a discussion of the S-bisection width of a stellar DCN when we examine the bisection width in relation
to interconnection networks in the next section.

14 A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28
2.4. Generalized hypercubes

We shall apply the methodology we develop to generalized hypercubes.

Definition 5. The generalized hypercube GQk,n of radix n and dimension k is the graph with vertex-set {0, 1, . . . , n − 1}k and
where a pair of vertices are adjacent if, and only if, their names differ in exactly one coordinate.

Variations on the generalised hypercube have been proposed in various networking contexts, including [2,8,19,26,33],
primarily because generalized hypercubes have good networking capacity, fault tolerance, and bisection width; also, the DCN
SWCube [32] was built from generalized hypercubes by subdividing edges not with two server-nodes but with one. Whilst
subdividing with one server-node potentially retains symmetry properties of the base graph, subdividing with two, as we do,
enables us to not only potentially retain symmetry but also to pack more server-nodes into the resulting datacenter network;
we have more to say on this point in our conclusions and directions for further research. In this paper, we instantiate
the stellar construction using generalized hypercubes for essentially the same reasons as above and also because stellar
generalized hypercubes, GQ∗

k,n , have already been studied in a DCN context in [15], as we explained in the Introduction. The
family of stellar generalized hypercubes is denoted GQ∗ .

3. Bisection bandwidth

In this section we examine the derivation and traditional role of the bisection bandwidth as a metric in the design of
interconnection networks before considering a recent critique of the validity of bisection bandwidth as a network metric.
Our primary context is when bisection bandwidth is used as a server-centric DCN metric. We then justify our focus on
S-bisection width.

3.1. An historical perspective

The bisection width of a graph first found application within the realm of interconnection networks as a means to
provide lower bounds on the area occupied by VLSI circuits ([41], where the larger the bisection width of the underlying
communication graph, the greater the area required by the corresponding VLSI circuit). The bisection width is also relevant
to more general network problems whose algorithmic solutions are structured around the divide-and-conquer paradigm
where: the network is split into two halves by the removal of a bisection; the two halves are recursively dealt with; and the
bisection is reintroduced. Often the quality of such an algorithm depends upon the size of the bisection, with the smaller
the bisection, the better the performance (see, e.g., [9]). A network problem to which the above applies is the network
layout problem where a network is typically laid out in a recursive fashion. Whilst this problem was first studied in the
context of VLSI layout (see, e.g., [7]), it is relevant to the layout of any network, including DCNs.

However, perhaps the most important application of the bisection width of a graph is with respect to the throughput
of an interconnection network under the uniform random and all-to-all traffic patterns (remember: we assume all traffic
patterns involve unit flows). As is explained in [10], given some interconnection network and some traffic pattern, the
channel load γc of some channel c (of some link) is the number of flows using that channel, when the flows have been routed
(according to some routing algorithm). A bottleneck channel is a most heavily loaded channel and we denote its load by γmax .
If each channel has bandwidth b then network throughput, namely the amount of data that can be injected at each node
without causing a channel to become saturated, is at most b

γmax
. This is the ideal throughput of the network. Consider the

uniform random traffic pattern and some bisection of smallest width, consisting of β links, in an interconnection network
on N nodes. On average, half the flows from one side of the cut use cut-channels to reach the other side of the cut; hence,
on average, at least one channel of the bisection is involved in at least N

4β
flows; that is, b

γmax
≤ 4βb

N . Consequently, the
higher the bisection width in relation to the number of nodes, the better the ideal throughput (theoretically speaking, that
is, in that it is implicitly assumed that flows can be balanced across the channels in a bisection, no account is taken of the
sizes of flows, no particular routing algorithm is assumed, and the analysis is according to expected performance). Thus, we
obtain an upper bound on the expected ideal throughput under the uniform random traffic pattern. An analogous argument
can be made for the all-to-all traffic pattern so that, likewise, we obtain an upper bound on the ideal throughput. Note
how whilst we strive for a high bisection width so as to maximise (this theoretical) throughput, this is at odds with the
consideration of bisection width to minimize VLSI circuit layout or improve the performance of divide-and-conquer network
algorithms.

Irrespective of the relevance of the bisection width of a graph to the design of interconnection networks, the NP-hardness
of computing the bisection width of an arbitrary graph (see, e.g., [17]) has resulted in a thriving area of research as regards
deriving the bisection width of (specific classes of) graphs and developing approximation algorithms for the computation of
the bisection width in general (see, e.g., [11]). The study of the bisection width is but one aspect of the more general study
of isoperimetric problems (about which we say more later) and partitioning problems (see, e.g., [6,35]).

A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28 15
3.2. A recent critique

Irrespective of any difficulties hinted at in the preceding paragraph, it cannot be denied that the bisection width is an
established metric as regards the assessment of (datacenter) network designs with respect to throughput. However, there
has been a recent thorough and extensive critique in [25] of the role of bisection width and other cut-based metrics as
useful metrics for throughput assessment in (general) network design.

The essential content of [25] is as follows. The framework of the paper is wide-ranging, encompassing: the server-centric
DCNs DCell [20] and BCube [19] (note that no dual-port server-centric DCNs are considered); the switch-centric DCNs Fat-
Tree [3], HyperX [2], Jellyfish [38], Long Hop [42], and Slim Fly [5]; the indirect interconnection networks Dragonfly [27] and
Flattened Butterfly [26]; and the direct interconnection network consisting of the family of hypercubes. A ‘longest matching’
traffic matrix is devised which is used to approximate near worst-case traffic (‘worst-case’ with respect to throughput). In-
tuitively speaking, the traffic matrix is constructed so as to ‘force’ the use of long paths, under the intuition that long paths
decrease throughput. This traffic matrix does not describe unit flows, as is the case for us, but results in traffic patterns
(including the uniform random and all-to-all traffic pattern) with variably weighted flows. For particular instances of the
above networks (with up to around 3,000 servers), the throughput under the new traffic patterns is empirically compared
with that predicted using cut-based metrics such as bisection bandwidth. It is argued that the bisection bandwidth and
other cut-based metrics generally do not always reflect the worst-case throughput. Other additional limitations of cut-based
metrics are remarked upon, such as: they are tied to the uniform random and all-to-all traffic patterns; they only provide
‘loose’ bounds; and it is NP-hard to compute the bisection width of an arbitrary graph. Finally, the above networks are
evaluated according to the new approach to evaluating worst-case throughput.

The paper [25] is extremely interesting and an excellent start in attempting to assess worst-case throughput in a system-
atic fashion. However, in our view, its findings are not conclusive in the much more restricted world in which we operate
in this paper, namely with regard to (dual-port) server-centric DCNs. First, no dual-port server-centric DCNs are considered
in [25]; indeed, only two server-centric DCNs appear there, whereas many more appear in the literature. Further, the par-
ticular instances of server-centric DCNs from DCell and BCube that were considered in [25] contain no more than around
2,000 servers; in our paper, we are concerned with using the server-centric paradigm to ultimately build datacenters of
perhaps 1 million servers. As regards the first two of the additional limitations of cut-based metrics that were remarked
upon in [25], both are valid observations. However, we have some comments in mitigation. First, although the bisection
width is tied to evaluating throughput under the uniform random and all-to-all traffic patterns, all-to-all traffic patterns are
extremely important for datacenters within, for example, the MapReduce paradigm. Second, any structural metric, like bi-
section width, will almost by definition be ‘loose’, given its ignorance of network applications, flows and their sizes, routing
algorithms, load balancing, and so on; although, the structured and symmetric nature of server-centric DCNs perhaps lessens
this ‘looseness’. Finally, the third of the additional limitations (above) is perhaps a red herring, for the NP-hardness result
presupposes arbitrary input graphs, whereas server-centric DCNs are all highly structured. There are no known NP-hardness
results restricted to classes of structured graphs; though it should be noted that it is not always easy to determine the
exact bisection width of even simple families of interconnection networks (see, e.g., [4]). This difficulty is accentuated when
working with more complicated cut-based metrics, and we are taken to the mathematically involved world of isoperimetric
and partitioning problems. A point in mitigation is that often (good) upper and lower bounds are readily available and also
heuristic methods can be applied so as to yield reasonable approximations.

In summary, we feel that the objections to bisection width made in [25] have some general validity but that in our
much more restricted world of dual-port server-centric DCNs, this validity has yet to be fully established. Consequently, we
feel that the study of bisection width as a throughput metric for (dual-port) server-centric DCNs is appropriate. In any case,
the bisection width still yields an upper bound on the subsequent throughput under an all-to-all traffic pattern (though
arguably there might exist improved upper bounds). Nevertheless, we feel that [25] has made a significant step forward
in proposing an alternative methodology for assessing worst-case throughput in DCNs and that this should be built on in
future. As a final remark, and importantly, the research in this paper is primarily combinatorial and is inspired (as much of
theory is) by applications rather than having as an intention an immediate improvement to applications.

3.3. S-bisection width and its validity

Having discussed and justified bisection width as an interconnection network design metric (in the right circumstances),
let us now turn to how we interpret bisection width in DCNs where there are both server-nodes and switch-nodes using
S-bisection width. The concept of interconnection networks consisting of switches and processors is, of course, not new.
In [10], Dally and Towles cope with such networks by insisting that bisections must partition equally both the set of
switches and the set of processors (or terminals in their language). However, to our knowledge, this ‘dual-bisectioning’
has not been justified and in practice researchers often insist only on a bisection of the terminals; that is, they adopt our
S-bisection approach. Indeed, in relation to throughput analysis, if one were to replace the arguments made in this section in
favour of bisection width as a valid metric for structured and symmetric interconnection networks with analogous ones for
server-centric DCNs but with respect to S-bisection width then one would obtain a valid justification for S-bisection width
as a sensible metric in our server-centric DCNs. This justification is further strengthened by the prevalence of all-to-all traffic
patterns built around the MapReduce paradigm in datacenter usage.

16 A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28
There is an alternative as to what should constitute the correct notion of a bisection in a server-centric DCN. In [4], and
with respect to the server-centric DCN BCube, two models are adopted: one where a switch-node is joined directly to its
adjacent server-nodes (as is the case for us); and one where a switch-node is replaced by what is called a hyperlink. It
is argued that the first model is appropriate for the situation where the links provide bottlenecks and the second where
the switches provide bottlenecks. Whilst the second model is theoretically interesting, we do not discuss it further here, as
most modern networking equipment is non-oversubscribed, e.g., 32Gbps 24-port switches for 1Gbps Ethernet and 480Gbps
32-port switches for 10Gbps Ethernet.

4. Bisection width vs. S-bisection width

We are now in a position whereby we have the validated server-centric DCN metric S-bisection width and we wish to
evaluate the S-bisection width of a stellar DCN G∗ , namely bw S (G∗), by relating it to the bisection width of the base graph
G , namely bw(G). We first give some general results before fixing G to be a hypercube and obtaining precise results for
stellar hypercubes. We then develop a general technique to compute the S-bisection width of an arbitrary regular graph and
apply this general technique to generalized hypercubes. Throughout, we see a close relationship between the S-bisection
width of stellar DCNs and edge isoperimetric properties.

4.1. Some basic results

The following two basic results are proven in [15]. Note that in a server-centric DCN the length (also known as the
hop-length) of a path from one server-node to another server-node is usually taken to be the number of server-nodes on
this path (this reflects the fact that switches generally operate as crossbars and merely forward on packets with negligible
buffering or routing overheads, when compared with these imposed by servers).

Lemma 6 ([15]). Let G = (V , E) be a connected graph with u′ and v ′ distinct vertices of V so that a shortest path in G from u′ to
v ′ has length m. Also, let u and v be server-nodes of G∗ so that u and v are adjacent to the switch-nodes u′ and v ′ , respectively. The
length of a shortest path from u to v in G∗ is 2m − 1, 2m, or 2m + 1. Hence, if G has diameter δ then G∗ has diameter at most 2δ + 1.

The connectivity of a graph is equal to the minimum number of mutually internally vertex-disjoint paths between any
2 distinct vertices. Clearly, at most two internally node-disjoint paths exist between a pair of server-nodes in G∗ , since
server-nodes have degree 2, but the connectivity of G is retained for switch-nodes within G∗ .

Lemma 7 ([15]). Let G be a graph of connectivity c ≥ 1. Let u and v be distinct server-nodes of G∗ that are not adjacent to the same
switch-node. There are c mutually server-node-disjoint paths in G∗ from u to v so that no switch-node apart from the two switch-nodes
adjacent to u and v lies on more than one of these paths.

The stellar DCN G∗ inherits any routing algorithm that exists for G since a path in G can be subdivided to induce a
corresponding switch-node-to-switch-node path in G∗ . A path between two server-nodes in G∗ can therefore be found by,
roughly speaking, augmenting a path between their respective neighbouring switch-nodes.

While notions of diameter, connectivity, and routing are straightforward to derive for G∗ , directly from G , the situation
is different in relation to relating the bisection width of G and the S-bisection width of G∗ . Exploring this relationship is
what this paper is all about.

Interconnection networks can, more often than not, be abstracted as regular graphs and there is a fundamental relation-
ship between the bisection width of a regular graph G and the S-bisection width of the stellar DCN G∗ .

Lemma 8. Let G = (V , E) be a d-regular graph resulting in the stellar DCN G∗. If |V | is even or bw(G) ≥ d
2 then bw S(G∗) ≤ bw(G).

If |V | is odd and bw(G) < d
2 then

bw S(G∗) ≤
{

d
2 if d

2 − bw(G) is even
d
2 + 1 if d

2 − bw(G) is odd.

Proof. Suppose that G∗ = (S ∪ W , E). Let (R, T) be a bisection of G . Build a partition (R ′, T ′) of G∗ as follows: if v ∈ V ∩ R
(resp. v ∈ V ∩ T) then place the corresponding switch-node v and all its d adjacent server-nodes in R ′ (resp. T ′).
Case (a): |V | is even.

So |R ′ ∩ S| = |T ′ ∩ S| = d|V |
2 and |[R ′, T ′]| = |[R, T]|. Hence, bw S(G∗) ≤ bw(G).

Case (b): |V | is odd.

As G is regular, d must be even, and w.l.o.g. |R ′ ∩ S| = d(|V |+1)
2 and |T ′ ∩ S| = d(|V |−1)

2 . Choose min{bw(G), d2 } pairs of
adjacent server-nodes so that one of these server-nodes lies in R ′ and one lies in T ′ , and for each pair, move the server-node
that was in R ′ to T ′ .

A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28 17
Fig. 2. Amending a bisection in K ∗
2n .

If bw(G) ≥ d
2 then we now have that |R ′ ∩ S| = |T ′ ∩ S| = d|V |

2 and |[R ′, T ′]| = |[R, T]|; consequently, bw S (G∗) ≤ bw(G).

If bw(G) < d
2 then we have that |R ′ ∩ S| = d(|V |+1)

2 − bw(G) and |T ′ ∩ S| = d(|V |−1)
2 + bw(G), with |[R ′, T ′]| = |[R, T]|.

Choose an additional
 d
2 −bw(G)

2 � pairs of adjacent server-nodes in R ′ and move them to T ′ . When d
2 − bw(G) is even, we

have that |R ′ ∩ S| = |T ′ ∩ S| = d|V |
2 and |[R ′, T ′]| = |[R, T]| + d

2 − bw(G); consequently, bw S (G∗) ≤ d
2 . When d

2 − bw(G) is
odd, we have that |R ′ ∩ S| = |T ′ ∩ S| + 2 and |[R ′, T ′]| = |[R, T]| + d

2 − bw(G) − 1; so, we need to choose an additional
server-node of R ′ and move it to T ′ which yields that |R ′ ∩ S| = |T ′ ∩ S| = d|V |

2 and |[R ′, T ′]| = |[R, T]| + d
2 − bw(G) + 1,

with bw S (G∗) ≤ d
2 + 1. �

Of course, regular interconnection networks invariably have a bisection width that is at least half their degree (indeed,
the degree of an interconnection network is usually such as to make the bisection width relatively large) and so the simple
upper bound for bw S(G∗) of bw(G) from Lemma 8 applies. If G = (V , E) is regular of degree d so that bw(G) < d

2 then we
say that the bisection width of G is small. Given the scenario where our aim is to maximise the S-bisection width of G∗ ,
Lemma 8 yields that when G is regular and either |V | is even or bw(G) is not small, the best we can hope to do is to show
that bw S (G∗) = bw(G). However, this need not be the case, even for the complete graph.

Lemma 9. For all n ≥ 2, it is the case that bw S(K ∗
2n) ≤ bw(K2n) −
 n

2 �.

Proof. Suppose that K ∗
2n = (S ∪ W , E∗). Take some bisection (R, T) of K2n of (minimal) width n2 and build the S-bisection

(R ′, T ′) of K ∗
2n as we did in the proof of Lemma 8. Let x, y ∈ R ′ ∩ W be such that x �= y. Note that x is adjacent to: n

server-nodes of R ′ , denoted by the set XR , each of which is adjacent to a server-node in T ′; and n − 1 server-nodes of R ′ ,
each of which is adjacent to a server-node in R ′ . Note also that y is adjacent to: n server-nodes of R ′ , each of which is
adjacent to a server-node in T ′ , with this resulting set of server-nodes of T ′ denoted Y T ; and n − 1 server-nodes of R ′ , each
of which is adjacent to a server-node in R ′ . The situation can be visualized as in Fig. 2(a). Switch-nodes are depicted by
squares and server-nodes by circles. The S-bisection (R ′, T ′) is depicted so that nodes of R ′ are black and the nodes of T ′
are white.

Amend the S-bisection (R ′, T ′) of K ∗
2n as follows: move the switch-node x and the server-nodes of XR to T ′; and move

the server-nodes of Y T to R ′ . Fig. 2(b) depicts this amendment where: some black nodes (the switch-node x and the n
server-nodes of XR) have changed colour to white; and some white nodes (the n server-nodes of Y T) have changed colour
to black. We obtain a new S-bisection (as there are still exactly the same number of server-nodes in the two new subsets
R ′ and T ′; that is, exactly the same number of server-nodes coloured black and white) and this new S-bisection has width
n2 −1. By pairing the (original) switch-nodes of R ′ in
 n

2 � pairs and iterating the above amendment, we repeatedly obtain an
S-bisection of K ∗

2n of width one less than the previous one. After
 n
2 � iterations we have exhausted all pairs of switch-nodes

and we have an S-bisection of width n2 −
 n
2 �. �

4.2. The stellar hypercube

We now turn our attention to stellar hypercubes, the reason being that hypercubes are the most ubiquitous intercon-
nection networks and generally form the starting point of any investigation. We prove that the bisection width of the
hypercube Q n and the S-bisection width of Q ∗

n are the same; so, for a standard class of interconnection networks the
S-bisection width of the stellar DCN can meet the upper bound set in Lemma 8 by the bisection width of the base graph.

18 A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28
In order that we might do this, we need to provide some notions and results relating to edge isoperimetric problems in
graphs.

Let G = (V , E) be a connected graph. For a subset A ⊆ V , define the sets of edges IG (A) = {(u, v) ∈ E : u, v ∈ A} and
θG(A) = {(u, v) ∈ E : u ∈ A, v /∈ A}. For any k where 1 ≤ k ≤ |V |, define IG(k) as max{|IG(A)| : A ⊆ V , |A| = k} and θG(k)

as min{|θG(A)| : A ⊆ V , |A| = k}. Note that if G is regular of degree d then 2IG (k) + θG(k) = kd. A subset A ⊆ V where
either |IG(A)| = IG(k) or |θG(A)| = θG(k) is called an edge isoperimetric subset of V . The study of (edge) isoperimetric sets in
combinatorial mathematics has a long history and includes ascertaining the functions IG (k) and θG (k) for specific graphs G
(isoperimetric problems are surveyed in, e.g., [6]).

We also require the following definitions. Fix n. For an integer i where 0 ≤ i ≤ 2n − 1, we denote the number of 1’s in
the representation of i as an n-bit binary string by wt(i). The lexicographic order of elements of {0, 1}n is such that the n-bit
binary string b is less than the n-bit binary string b′ if there is an index j ∈ {1, 2, . . . , n} such that the first j − 1 bits of b
and b′ are identical, the jth bit of b is 0 and the jth bit of b′ is 1.

We use the following result, first established by Harper in 1964.

Theorem 10 ([24]). Let n ≥ 1 and 1 ≤ k ≤ 2n. A particular subset of vertices A ⊆ V (Q n) of size k that minimizes |I Q n(A)| is the initial
segment of size k of the lexicographically-ordered elements of {0, 1}n, and

I Q n (k) =
k−1∑
i=0

wt(i).

As a matter of fact, a great many results relating to edge isoperimetric problems in graphs involve initial segments of
‘lexicographically-ordered’ vertices (where the notion of ‘lexicographic-order’ varies from graph to graph; see, e.g., [6]).

We also use a particular property of the function I Q n (k).

Lemma 11. Fix n. Let k = 2m + x where 0 ≤ m < n and 0 ≤ x ≤ 2m. We have that I Q n (k) = I Q n (2m) + x + I Q n (x). Hence, I Q n (2m) =
m2m−1 .

Proof. By Theorem 10, I Q n (k) =
k−1∑
i=0

wt(i). The first 2m elements of the lexicographically-ordered elements of {0, 1}∗ are

00 . . . 00 . . . 000, 00 . . . 00 . . . 001, 00 . . . 00 . . . 010, 00 . . . 00 . . . 011,

00 . . . 00 . . . 100, . . . 00 . . . 01 . . . 111,

where the last m bits are underlined, and the next x elements are

00 . . . 10 . . . 000, 00 . . . 10 . . . 001, 00 . . . 10 . . . 010, 00 . . . 10 . . . 011,

00 . . . 10 . . . 100, . . .

Consequently, counting the number of 1’s in the strings of the first block yields I Q n (2m) whereas counting the number of
1’s in the strings of the second block yields x + I Q n (x). Hence, I Q n (k) = I Q n (2m) + x + I Q n (x). The fact that I Q n (2m) = m2m−1

follows from a simple induction. �
Now for the first of our main results.

Theorem 12. The S-bisection width of Q ∗
n is equal to 2n−1 , which is also the bisection width of Q n.

Proof. The bisection width of Q n is well known to be 2n−1 (see, e.g., [29]). Suppose that Q ∗
n = (S ∪ W , E∗). Let ϕ be the

natural isomorphism from the switch-nodes W of Q ∗
n to the vertices of Q n; that is, if u is a switch-node (resp. U is a

set of switch-nodes) of W then ϕ(u) (resp. ϕ(U)) is the corresponding vertex (resp. set of vertices) of Q n , and if u′ is
a vertex (resp. U ′ is a set of vertices) of Q n then ϕ−1(u′) (resp. ϕ−1(U ′)) is the corresponding switch-node (resp. set of
switch-nodes) of W .

The result is trivial for n = 1 (partition the nodes of Q ∗
1 so that a server-node and its adjacent switch-node are on one

side of the partition, with the other server-node and switch-node on the other). So we may assume throughout that n ≥ 2.
Given a partition (R, T) of either Q n or Q ∗

n , we find it helpful to think of this partition as a 2-colouring of the vertices
or nodes, according to whether the vertex or node lies in R or T . Conversely, any 2-colouring of Q n or Q ∗

n corresponds to
a partition.

Let (R, T) be a partition of the vertices of Q n so that we include in R all those vertices whose first component (in their
n-bit names) is 0 and in T all those vertices whose first component is 1. In Q ∗

n , colour all switch-nodes of ϕ−1(R) white
and all switch-nodes of ϕ−1(T) black. Extend this colouring by colouring every server-node with the colour of its (unique)

A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28 19
adjacent switch-node. This results in an S-bisection of width 2n−1. In the remainder of this proof, we prove that there
cannot exist an S-bisection of Q ∗

n of width less than 2n−1.
Let π be a partition of the server-nodes of Q ∗

n so that exactly half are coloured black and half white; denote these
sets of server-nodes by Sb and S w , respectively. Hence, |Sb| = |S w | = n2n−1. The partition π induces a colouring of the
switch-nodes of Q ∗

n : a switch-node is coloured with the colour colouring the majority of the switch-node’s adjacent server-
nodes, with ties broken arbitrarily. Let the set of switch-nodes coloured black be denoted Wb with the set of switch-nodes
coloured white denoted W w . Hence, |Wb| + |W w | = 2n and we have an S-bisection of Q ∗

n which we call π also.
We claim that any S-bisection of Q ∗

n of minimum width must have been constructed as π was above. Suppose other-
wise: either there must exist a switch-node that is coloured black when more than one half of its neighbouring server-nodes
are coloured white; or there is a switch-node that is coloured white when more than one half of its neighbouring server-
nodes are coloured black. Either way, by swapping the colour of this switch-node we obtain an S-bisection of Q ∗

n of smaller
width, which yields a contradiction.

As our working hypothesis, suppose that π is an S-bisection of Q ∗
n of minimal width (constructed as above) and that

this width is less than 2n−1. We will show that this yields a contradiction. In order to do this, we differentiate between two
cases: the first where |W w | �= |Wb|; and the second where |W w | = |Wb|.
Case 1: Suppose w.l.o.g. that |W w | < |Wb|; hence, |W w | < 2n−1 (the case where |Wb| < |W w | proceeds identically).

The colouring of the switch-nodes of Q ∗
n naturally induces a colouring of the vertices of Q n , with the set of vertices of Q n

that are coloured white (resp. black) being denoted W ′
w (resp. W ′

b). In particular, ϕ(W w) = W ′
w and ϕ(Wb) = W ′

b , with
|W w | = |W ′

w | and |Wb| = |W ′
b|.

Consider the subgraph G w of Q n induced by the vertices of W ′
w . By definition, the number of edges in G w is at

most I Q n (|W w |). Let X denote the set of edges of Q n that are incident with exactly one vertex of W ′
w . So, n|W w | ≤

2I Q n (|W w |) + |X |. Let (u, v) ∈ X , with u ∈ W ′
w and v ∈ W ′

b . The (unique) path of length 3 in Q ∗
n joining ϕ−1(u) ∈ W w and

ϕ−1(v) ∈ Wb is such that at least one link on this path is incident with nodes of different colours. Hence, every edge of X
corresponds to at least one link of Q ∗

n whose incident nodes have different colours, and no link of Q ∗
n whose incident nodes

have different colours stems from two different edges of X . Thus, |X | < 2n−1 and consequently 2n−1 > n|W w | − 2I Q n (|W w |).
We claim that |W w | < 2n−2. Suppose otherwise and that |W w | = 2n−2 + x, where 0 ≤ x < 2n−2. By Lemma 11, we have

that

2n−1 > n|W w | − 2I Q n (|W w |) = n(2n−2 + x) − 2I Q n (2n−2 + x)

= n(2n−2 + x) − 2(I Q n (2n−2) + x + I Q n (x)) = n(2n−2 + x) − 2((n − 2)2n−3 + x + I Q n (x))

= 2n−1 + x(n − 2) − 2I Q n (x).

Hence, I Q n (x) > x(n−2)
2 .

Lemma 13. Let m ≥ 1. If 0 < x < 2m then I Q n (x) ≤ xm−wt(x)
2 , with equality only if x = 2m − 1 (in which case I Q n (2m − 1) =

m(2m−1 − 1)).

Proof. Suppose that x = 2i1 + 2i2 + . . . + 2ik , for some k where 1 ≤ k ≤ m and where m − 1 ≥ i1 > i2 > . . . > ik ≥ 0. Consider
the matrix with rows indexed 0 to x − 1 and with columns indexed 1 to m where the entry on row i and in column j is
the jth bit of the m-bit binary number representing the decimal number i. Note that the m-bit binary string b on row i is
the ith m-bit binary string b′ in the lexicographic order on {0, 1}m except written in reverse; in particular, wt(b) = wt(b′).
Thus, by Theorem 10, I Q n (x) is the total number of 1s in this matrix. The matrix can be visualized in Fig. 3.

Consider the rows 0 to 2i1 − 1. On these rows: all 1s appear in columns 1 to i1 − 1 (the upper shaded block in Fig. 3);
summing over the columns 1 to i1 − 1, there are exactly the same numbers of 0s and 1s; and in column i1 there are 2i1 0s.
Note also that in the rows 2i1 to x − 1: every entry in columns i1 + 1 to m contains 0; and every entry in column i1 is a
1 but there are less than 2i1 1s in this column (the rightmost shaded strip in Fig. 3). Thus, if we ignore the matrix entries
on rows 2i1 to x − 1 and in columns 1 to i1 − 1 then there are more 0s than there are 1s. Henceforth, we only focus on the
entries on rows 2i1 to x − 1 and in columns 1 to i1 − 1.

Consider the rows 2i1 to 2i1 + 2i2 − 1. On these rows: apart from the 1s in column i1, all 1s appear in columns 1 to
i2 − 1 (the middle shaded block in Fig. 3); apart from the 1s in column i1, summing over columns 1 to i2 − 1, there are
exactly the same numbers of 0s and 1s; and in column i2 there are 2i2 0s. Note also that in the rows 2i1 + 2i2 to x − 1:
every entry in columns i2 + 1 to i1 − 1 contains 0; and every entry in column i2 is a 1 but there are less than 2i2 1s in this
column (the middle shaded strip in Fig. 3). Thus, if we ignore the matrix entries on rows 2i1 + 2i2 to x − 1 and in columns
1 to i2 − 1 then there are more 0s than there are 1s.

We can proceed in this fashion with i3, i4, . . . , ik . Let x0 (resp. x1) be the number of 0s (resp. 1s) in the matrix. We
clearly have that x0 + x1 = xm and x0 ≥ x1 + wt(x) (as there are wt(x) columns where there are more 0s than there are
1s). Thus, x1 ≤ xm − (x1 + wt(x)) and so I Q n (x) = x1 ≤ xm−wt(x)

2 . (Note that if ik = 0 then the entry of the matrix on row
x − 1 and in column 1 is 0.) It is only when x = 2m − 1 that I Q n (x) = xm−wt(x)

2 , i.e., I Q n (2m − 1) = m(2m−1 − 1). The result
follows. �

20 A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28
Fig. 3. Matrix of 0s and 1s in the computation of I Q n (x).

By Lemma 13 and the fact that x < 2n−2, we must have that x(n−2)
2 ≥ I Q n (x) > x(n−2)

2 , which yields a contradiction. Hence,
our claim follows and we have |W w | < 2n−2.

Consider the set of nodes S w in Q ∗
n . Each node u ∈ S w is adjacent to exactly one node u′ ∈ W . Call this node u′ the

node of W that is tied to u and the fact that u′ is tied to u a tie. The number of ties to nodes of Wb is less than 2n−1 and
there are n2n−1 nodes in S w . Thus, there are more than n2n−1 − 2n−1 = (n − 1)2n−1 ties from nodes of S w to nodes of W w .
But each node of W w is involved in at most n ties with nodes from S w and so there must be more than (n−1)

n 2n−1 nodes
in W w . However, from above, |W w | < 2n−2 which yields a contradiction (as n > 1).

Case 2: |W w | = |Wb|; hence, |W w | = |Wb| = 2n−1.

Consider the bisection of Q n obtained by colouring any vertex ϕ(u) of Q n with the colour of u in Q ∗
n . This bisection has

width at least 2n−1. Every edge (u, v) of Q n where u and v have different colours is such that the unique path of length
3 in Q ∗

n joining ϕ−1(u) and ϕ−1(v) is such that at least one of its links is incident with nodes of different colours. Hence,
the width of the S-bisection π is at least 2n−1, which yields a contradiction. The result follows. �
4.3. The general case

We now develop a method for computing the S-bisection width of G∗ for regular graphs G = (V , E). However, while our
method is indeed general, in order to apply this method we need concise information as regards edge isoperimetric subsets
of G .

Theorem 14. Let G = (V , E) be a d-regular graph. The S-bisection width of G∗ is given by

min{βr : 0 ≤ r ≤ |V |},
where

βr =

⎧⎪⎨
⎪⎩

rd − 2
 |E|
2 � if |E| ≤ 2IG(r)

θG(r) if 2IG(r) < |E| < 2IG(r) + 2θG(r)

2
 |E|
2 � − rd if 2IG(r) + 2θG(r) ≤ |E|.

Proof. Fix r so that 0 ≤ r ≤ |V |. Consider some subset RW ⊆ W of r switch-nodes in G∗ . Define T W = W \ RW . Every
3-path in G∗ joining two switch-nodes is now determined as of one of three types:

(i) both switch-nodes are in RW
(ii) one switch-node is in RW and one is in T W
(iii) both switch-nodes are in T W .

A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28 21
Fig. 4. The set of 3-paths.

We can enumerate the above |E| 3-paths in G∗ by ordering all 3-paths of type (i) before all 3-paths of type (ii) before all
3-paths of type (iii), as in Fig. 4(a). Note that in Fig. 4(a) the left and right columns of switch-nodes are such that every
switch-node of W appears on d occasions. For convenience, in Fig. 4(a) we draw 3-paths of type (ii) so that the switch-node
in RW appears in the left column, and we depict switch-nodes of RW as black and switch-nodes of T W as white, with all
server-nodes as grey.

In order to extend the partition (RW , T W) of switch-nodes of G∗ to an S-bisection (RW ∪ R S , T W ∪ T S) of G∗ , we have
to choose |E| server-nodes of S as R S , with the remaining |E| server-nodes of S constituting T S . With reference to Fig. 4(a),
this equates to colouring |E| (currently grey) server-nodes black and |E| white. We wish to do this so as to minimize the
width of the resulting S-bisection. We make the following observations.

(a) No matter whether we choose to colour the 2 server-nodes of a 3-path of type (ii) both black, black and white, or
both white, we can do this so that the number of links so contributed to the total width of the resulting S-bisection is
exactly 1 (it is impossible for any such 3-path not to contribute a link to the total width).

(b) Ideally, we would wish to colour both server-nodes of a 3-path of type (i) (resp. (iii)) black (resp. white) so that no
links are contributed to the S-bisection. In both cases, if we cannot meet this ideal then no matter how we colour the
2 server-nodes of a 3-path of type (i) or (iii), the number of links so contributed to the total width of the resulting
S-bisection is exactly 2.

Consequently, it is apparent that in order to extend the partition (R W , T W) to an S-bisection (RW ∪ R S , T W ∪ T S) so as to
minimize the width, we should:

• first, place as many pairs of server-nodes of 3-paths of type (i) as we can in R S

• next, place as many pairs of server-nodes of 3-paths of type (iii) as we can in T S

• finally, place the remaining server-nodes arbitrarily (but so that we ensure any 3-path of type (ii) contributes exactly 1
link to the width of the resulting S-bisection).

We refer to this algorithm as our colouring algorithm (we think of a server-node of R S or T S as coloured black or white,
respectively), with the output as depicted in Fig. 4(b). The width of the resulting S-bisection is determined by the relative
numbers of 3-paths of types (i), (ii), and (iii). Moreover, this width can be easily computed.

An obvious algorithm to compute the S-bisection width of G∗ springs to mind: for every r ≥ 1 and for every possible
subset RW ⊆ W with |RW | = r, compute the width of the S-bisection (RW ∪ R S , T W ∪ T S) constructed according to our
colouring algorithm, and take the minimal such value. Unfortunately, this will not really suffice as the algorithm runs in
exponential time. However, we can improve things considerably.

Again, fix r ≥ 1 and consider the different possibilities for RW ⊆ W where |RW | = r. Each RW yields a unique figurative
depiction (f-d) as displayed in Fig. 4(a), whereby rd switch-nodes (in the right and left columns) are coloured black so that
in each column the switch-nodes coloured black appear contiguously (starting from the bottom) and so that w.l.o.g. there
are at least as many black switch-nodes in the left column as there are in the right. We have some observations.

• Having the f-d corresponding to some subset RW suffices for us to calculate the minimal width of a bisection of the
form (RW ∪ R S , T W ∪ T S).

• Different RW ’s might yield the same f-d.
• There might exist an f-d that does not stem from any subset RW ⊆ W of r switch-nodes.

22 A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28
As regards this last observation, this is because the structure of G and the choice of r presents constraints upon a possible
f-d that might arise, e.g., if we have an f-d where all black switch-nodes lie in the left column then there must exist an
independent set of size r in G . Note that even if an f-d does not stem from some subset R W ⊆ W of size r, we can still
talk about the width of the f-d as the number of links incident with nodes of different colours after applying our colouring
algorithm to the f-d.

The above suggests an improved algorithm to compute the S-bisection width of G∗: for every r ≥ 1, generate every f-d
stemming from some subset RW ⊆ W of r switch-nodes, compute the width of these f-d’s, and take the minimal such
value. Such an algorithm would imply that we need to be able to decide when an f-d stems from a subset R W ⊆ W of r
switch-nodes; however, we can get round this obstacle.

Denote by βr the minimal width of the S-bisection (RW ∪ R S , T W ∪ T S) constructed according to our colouring algorithm,
taken over all subsets RW ⊆ W of r switch-nodes. Order the f-d’s, involving rd black switch-nodes and irrespective of
whether they stem from some subset RW , so that some f-d f appears before some f-d f ′ if, and only if, f has more black
switch-nodes in the left column than f ′ does. For some f-d f , let f1 (resp. f2, f3) denote the number of 3-paths of type (i)
(resp. (ii), (iii)). Consequently, we are ordering the f-d’s according to increasing f1. Note that 2 f1 + f2 = rd.

Suppose that |E| is even. Let f and f ′ be consecutive f-d’s in our ordering, with f coming before f ′; so, f2 ≥ 2,
f ′
1 = f1 + 1, and f ′

2 = f2 − 2. Let w (resp. w ′) be the width of the f-d f (resp. f ′). With reference to Fig. 4(b), there are
three essential cases.

Case (a): |E|
2 ≤ f1.

We have w = 2(f1 − |E|
2) + f2 = rd − |E| and w ′ = w .

Case (b): f1 <
|E|
2 < f1 + f2.

We have w = f2 and w ′ = w − 2.

Case (c): f1 + f2 ≤ |E|
2 .

We have w = f2 + 2(
|E|
2 − (f1 + f2)) = |E| − rd and w ′ = w .

Consequently, our ordering of the f-d’s is such that as we move down the ordering, the width of the f-d’s does not increase.
In particular, the width of the f-d that stems from some subset RW ⊆ W of r switch-nodes and is furthest down the
ordering is equal to βr . This f-d is the f-d f for which f1 = IG (r), as: f stems from some subset RW ⊆ W of r switch-nodes;
and if any f-d f ′ for which f ′

1 > f1 stems from some subset R ′
W ⊆ W of r switch-nodes then IG (r) ≥ f ′

1, which yields a
contradiction. So, if we know IG (r) then we can trivially obtain βr as: rd − |E| in Case (a); rd − 2IG(r) = θG(r) in Case (b);
and |E| − rd in Case (c).

Suppose that |E| is odd. Define f , f ′ , w , and w ′ as above. With reference to Fig. 4(b), there are now five essential cases.

Case (a):
 |E|
2 � ≤ f1.

We have w = 2(f1 −
 |E|
2 �) + f2 = rd − (|E| − 1) and w ′ = w .

Case (b.1): f1 + 1 =
 |E|
2 �.

We have w = f2 and w ′ = w .

Case (b.2): f1 + 1 <
 |E|
2 � < f1 + f2.

We have w = f2 and w ′ = w − 2.

Case (b.3):
 |E|
2 � = f1 + f2.

We have w = f2 and w ′ = w .

Case (c): f1 + f2 <
 |E|
2 �.

We have w = f2 + 2(
 |E|
2 � − (f1 + f2)) = |E| + 1 − rd and w ′ = w .

As above, the f-d f for which f1 = IG (r) has width βr . As 2IG (r) + θG(r) = rd, the result follows. �
Of course, in order to apply Theorem 14 we need edge isoperimetric information that might not be readily available;

however, sometimes it is. Our application of Theorem 14 is to the stellar generalized hypercube GQ∗
k,n . Clearly, GQ∗

k,n has
k(n − 1)nk server-nodes and nk switch-nodes with each switch-node having degree k(n − 1). In order to apply Theorem 14
we need to know IGQk,n (t) (or, equivalently, θGQk,n (t)).

Theorem 15 ([34,36]). For 1 ≤ t ≤ nk, IGQk,n (t) =
t−1∑
i=0

wtn(i), where wtn(i) is the sum of the k (base n) ‘digits’ of i.

Nakano also shows in [36] that IGQk,n (t) evaluates to

IGQk,n (t) =

⎧⎪⎨
⎪⎩

(t
2

)
if t ≤ n

n−1∑(
IGQk,n

(

 t+i

n �
)

+ (n − i − 1)
 t+i
n �

)
if t > n.
i=0

A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28 23
Fig. 5. A visualization of FiConn2,4.

Consequently, given k and n, it is but a simple calculation to use Theorem 14 to obtain bw S (GQ∗
k,n) for specific values of

k and n; indeed, we do this in the next section.
We end this section with an important remark. Note that for a specific graph G we do not necessarily need to know

extensive edge isoperimetric information regarding G , as per Theorem 14, in order to calculate bw S (G∗); for in Theorem 12
we have already calculated bw S (Q ∗

k) using a combinatorial analysis specifically geared towards Q ∗
k .

5. An empirical evaluation of GQ∗ and FiConn

Armed with our theory from the previous section, we can now empirically compare the S-bisection widths of GQ∗ and
FiConn. Although this paper is primarily theoretical, it is useful to extend the analysis of GQ∗ against FiConn from [15] to
consider S-bisection width. We begin by briefly describing the DCN FiConn before explaining our experimental set-up and
our results.

5.1. The DCN FiConn

FiConn [31] is the best-known dual-port DCN and it serves as a reference point for comparing new dual-port designs.
For any even n ≥ 2, FiConnk,n is a recursively-defined DCN where k denotes the level of the recursive construction and n the
number of server-nodes that are directly connected to a switch-node (so, all switch-nodes have n ports). FiConn0,n consists
of n server nodes each of which is joined to a unique switch-node. Suppose that FiConnk,n has b server-nodes of degree 1
(it can easily be verified that b > 0 is even; remember that n is always even). In order to build FiConnk+1,n , we take b

2 + 1

copies of FiConnk,n and for every copy, we choose b
2 server-nodes of degree 1 ensuring that each of these server-nodes is

joined to a server-node of degree 1 in some other copy of FiConnk,n so that every other copy of FiConnk,n is represented
(these additional links are called level k + 1 links). The actual construction of which server-node is connected to which is
detailed precisely in [31]; in particular, there is a well-defined naming scheme where server-nodes of FiConnk,n are named
as specific k-tuples of integers. In fact, although it is not made clear in [31], there is a multitude of connection schemes
realising different versions of FiConnk,n . FiConn2,4, as constructed in [31], can be visualised in Fig. 5.

Some basic properties of FiConnk,n are as follows: if we denote the number of server-nodes in FiConnk,n by Nk then
N0 = n and Nk+1 = Nk(

Nk
2k+1 + 1); if we denote the number of switch-nodes in FiConnk,n by Ek then E0 = 1 and Ek+1 =

Ek(
Nk

2k+1 + 1); the number of level k links in FiConnk,n is Nk−1
2k+1 (

Nk−1
2k + 1); and the precise diameter of FiConnk,n is unknown

but known to be at most 2k+1 − 1.
Whilst an exact value of the S-bisection width of FiConnk,n is as yet unknown, a lower bound is given in [31] as Nk

2k+2 ,
where Nk is the number of server-nodes in FiConnk,n . In order to obtain an accurate comparison between the S-bisection
widths of GQ∗ and FiConn, we must ensure that any lower bound we use is not overly conservative. To this end, we give an
upper bound for FiConnk,n that is not much larger than the lower bound from [31].

24 A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28
Fig. 6. An upper bound on bw S (FiConnk,n) with up to 4 million server-nodes and switch-nodes with up to 64 ports.

Theorem 16. Let bk,n = Nk
2k+2 be the lower bound on the S-bisection width of FiConnk,n from [31] and let Fk be the number of canonical

copies of FiConnk−1,n in FiConnk,n. The S-bisection width of FiConnk,n is at most (1 + 2k

Nk−1
)bk,n, if Fk is even, and at most (1 + 1

Fk
)bk,n,

if Fk is odd.

Proof. From [31], we have Fk = Nk−1
2k + 1, for k > 0. If Fk is even then we can partition the set of copies into two sets X

and Y so that each set contains Fk
2 copies of FiConnk−1,n . What results is an S-bisection of FiConnk,n of width F 2

k
4 .

Alternatively, if Fk is odd then let X comprise
 Fk
2 � of the copies of FiConnk−1,n and let Y comprise the remaining

|X | + 1 copies. Denote the |X |Nk−1 server-nodes in X by S X and the (|X | + 1)Nk−1 server-nodes in Y by SY . This partition
clearly does not induce an S-bisection of FiConnk,n . However, we can amend the partition by moving server-nodes in SY

to S X . Suppose that (u, v) is a link joining a server-node u ∈ S X with a server-node v ∈ SY . Move v from SY to S X . This
yields a partition that is closer to an S-bisection of FiConnk,n but so that the width
 Fk

2 �(
 Fk
2 � + 1) = F 2

k −1
4 has not changed.

In order to obtain an S-bisection we need to be able to undertake this amendment Nk−1
2 times; that is, we need that

 Fk
2 �(
 Fk

2 � + 1) ≥ Nk−1
2 . From above, this condition is the same as Nk−1

2k+1 (
Nk−1
2k+1 + 1) ≥ Nk−1

2 , i.e., Nk−1 ≥ 2k+1(2k − 1). However,

from [31], Nk−1 ≥ 2k+1(n
4)2k

, when n > 4. As (6
4)2k

> 2k − 1 whenever k ≥ 1, we get that if n ≥ 6 then we can obtain our
S-bisection. The inequality can be easily verified by hand when n = 4.

So, if Fk is even (resp. odd) then we obtain an S-bisection of FiConnk,n of width F 2
k

4 (resp. F 2
k −1
4). By [31], Nk =

Nk−1(
Nk−1

2k + 1). Using this identity along with the lower bound bk,n = Nk
2k+1 and the identity Fk = Nk−1

2k + 1 yields the
result. �

For k small, the upper and lower bounds for the S-bisection width of FiConn are very close (as we shall soon see, we are
actually only interested in FiConnk,n when k = 2 and k = 3). For example, when k = 2 and n = 8 (resp. k = 2 and n = 48) we
have that b2,8 = 28 (resp. b2,48 = 22,575) and the upper bound from Theorem 16 is 30 (resp. 22,650). The upper bounds
on the S-bisection width of FiConnk,n are plotted in Fig. 6 with k = 2, 3, 4 and n ≤ 64 (so, there are up to around 4 million
server-nodes). Note that the S-bisection width of FiConnk,n is smaller, by approximately a factor of 2, for k = 3 than it is for
k = 2. This trend continues as k increases (this is not immediate from our graph). We remark that if we were to plot the
lower bounds on Fig. 6 then they would appear almost identical to the upper bounds; so, for clarity, we have omitted them.

5.2. The DCN GQ∗

The computational method underlying Theorem 14 allows us to compute the exact S-bisection width of the DCN GQ∗
where switch-nodes have radix up to 64 and where we have up to 4 million server-nodes (we use a simple Python script
which takes about 1 minute on a standard laptop). In Fig. 7 we plot the S-bisection width against the number of servers for
various DCNs GQ∗

k,n (note that once we fix the number of server-nodes and n, the value of k is predetermined). For the sake
of interest we also plot the S-bisection width of the stellar hypercube Q ∗

k . We remark that because of its lower switch-radix
relative to the number of server-nodes, the S-bisection width of Q ∗ is lower than that of the DCNs G∗ of comparable size.
k k,n

A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28 25
Fig. 7. The S-bisection widths of the DCN GQ∗
k,n with up to 4 million server-nodes and switch-nodes of radix up to 64.

In general, for a fixed number of server-nodes, the S-bisection widths of GQ∗
k,n plotted in Fig. 7 grow as the parameter n

increases.
With reference to Fig. 7, there appears to be a rather predictable trend and perhaps there is a closed form to describe

this data. However, we leave its derivation for future work.

5.3. Comparing GQ∗ and FiConn

In [15], GQ∗ and FiConn were empirically compared on the basis of network throughput, latency, load balancing, fault-
tolerance, and cost-to-build (network throughput was measured according to the aggregate bottleneck throughput). Network
throughput, load balancing, and fault tolerance were evaluated with respect to a routing algorithm GQSRouting for GQ∗

k,n ,
based on well-known fault-tolerant routing algorithms for GQ (surveyed by Young and Yalamanchili in [43]). The experi-
ments in [15] show that GQ∗ outperforms FiConn in all evaluations undertaken. Omitted from [15], however, is any empirical
discussion of S-bisection width. We now compare the S-bisection widths of GQ∗ and FiConn.

The S-bisection width of a DCN can only be interpreted relative to other properties of the DCN; therefore, a meaningful
comparison of the S-bisection widths of GQ∗ and FiConn can only be obtained when these other properties are also com-
parable. However, the question remains as to which other properties we should focus on. Comparing DCNs with a similar
number of server-nodes, i.e., size, is evidently desirable, but as adjusting the two parameters k and n can yield DCNs of
similar size with starkly different properties, it does not make sense to simply normalise S-bisection width by network
size. We focus on basic properties that can be made comparable by adjusting the parameters k and n of the networks in
question, while maintaining an approximately constant network size. The properties we choose are the hardware costs and
the diameter; that is, we compare GQ∗

k′,n′ with FiConnk,n when both the hardware costs and the diameters are roughly the
same.

First, we explain why we limit the parameter k in the DCNs FiConnk,n that we examine to k = 2 and k = 3. FiConn
is presented in [31] along with two routing algorithms: traffic oblivious routing (TOR); and traffic aware routing (TAR). The
algorithm TOR is a straightforward recursive algorithm which is used as a building block for TAR, and the hop-lengths
of the paths computed by TOR give the best known general upper bound for the diameter of FiConnk,n . What results is
that FiConnk,n has an effective diameter of 2k+1 − 1, even if the true diameter is less than this, and thus FiConn becomes
impractical to deploy for k > 3, since FiConn4,n would have an effective diameter of at least 31 with currently known routing
algorithms. Therefore, we only record our analysis for k = 2 and k = 3 but note that it holds for all small k.

Having explained how we only consider FiConn2,n and FiConn3,n , we now explain how we ensure that the DCNs GQ∗
k′,n′

and FiConnk,n (where k = 2 or k = 3) that are compared have similar hardware costs. We begin by showing that when G
is a regular graph, the total hardware cost of G∗ is proportional to the number of server-nodes, i.e., the size, and that this
holds for FiConn too.

We assume that the cost of a switch-node of some DCN with switch-nodes W and server-nodes S is proportional to
its radix (this assumption is justified in [37] for switches of radix of up to around 100-150 ports); so, let the cost of a
switch-node of W be C p units per port and let the cost of a server-node of S be Cs units. Hence, when G is a regular graph
of degree d, the total cost of the switch-nodes in G∗ is C pd|W | and the total cost of the server-nodes is Cs|S|. As |S| = d|W |,
we have that the total cost of the switch-nodes and server-nodes of G∗ is |S|(C p + Cs). For FiConn, as each server-node is
adjacent to exactly one switch-node, the number of switch-ports used is |S|. Hence, the total cost of the switch-nodes and

26 A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28
Fig. 8. The S-bisection widths of FiConn2,n , FiConn3,n , and GQ∗
k,n of comparable sizes and diameters where there are up to 4 million server-nodes and

switch-nodes of radix up to 64.

Table 1
Three DCNs with around 24 ports per switch.

DCN GQ∗
3,10 GQ∗

4,6 FiConn2,24

server-nodes 27,000 25,920 24,648
switch-nodes 1,000 1,296 1,027
switch-radix 27 20 24
links 81,000 77,760 67,782
diameter 7 9 7
bw S 2,496 1,944 1,560

server-nodes of FiConnk,n is |S|(C p + Cs). However, if G∗ and FiConn have the same number of server-nodes then FiConn
has fewer server-node-to-server-node links than G∗ does. In spite of this, the cost of the server-nodes and the switch-nodes
is much greater than the cost of the server-node-to-server-node links and so we feel it is entirely reasonable to equate the
hardware cost of either G∗ or FiConn with the number of server-nodes.

Let us now consider relative diameters. Recall that the effective diameter of FiConnk,n is 2k+1 − 1 and, from [15], the
diameter of GQ∗

k,n is 2k + 1, when n > 2, and 2k, when n = 2. The DCNs GQ∗
2,24 and FiConn3,8, for example, have 26,496 and

24,640 servers, respectively, but the S-bisection width of GQ∗
2,24 is over 4 times that of FiConn3,8. However, the (effective)

diameters of GQ∗
2,24 and FiConn3,8, 5 and 15, respectively, differ so much that it is difficult to conceive of an application

where one might replace the other. Hence, not only do we ensure that the numbers of server-nodes in two DCNs to be
compared are roughly the same but we do likewise as regards their diameters.

Diameter is controlled in the plot of Fig. 8 as follows. First, for some fixed number N of server-nodes, we choose n so
that FiConn2,n has roughly N server-nodes. We then calculate the (effective) diameter of FiConn2,n and we choose GQ∗

k,m
so that here are roughly N server-nodes and the diameter of GQ∗

k,m is roughly that of FiConn2,n which is 7 (by ‘roughly’
we mean within 2). Note that in Fig. 8, D denotes the diameter of GQ∗

k,m and we also include the S-bisection widths of
FiConn3,n; however, as the (effective) diameter of FiConn3,n is 15, we do not pursue comparisons with GQ∗

k,m .

5.4. Evaluation

Our results show that with respect to S-bisection width, the DCN GQ∗ outperforms the DCN FiConn when the hardware
costs and the diameters are made (roughly) equal. This accentuates the advantages of GQ∗ over FiConn as derived in [15].
We have pulled out a typical comparison in Table 1. The hardware costs of all DCNs are comparable as are their diameters.
However, there are significant differences in their S-bisection widths, with even GQ∗

4,6 performing better than FiConn2,24
despite having higher diameter and lower radix switch-nodes. In general, DCNs of the form GQ∗

3,n have S-bisection widths of
roughly 1.5 times those of DCNs of the form FiConn2,n when hardware costs are levelled (all of these DCNs have diameter 7).
If we consider DCNs of the form GQ∗

4,n (so that the diameter increases to 9) then the S-bisection widths are still comparable
with DCNs of the form FiConn2,n , and the DCNs of the form GQ∗ host more server-nodes.
4,n

A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28 27
6. Conclusions

In this paper we have achieved a number of novel research results: we have justified the use of bisection width, or
more precisely S-bisection width, as a valid metric in the evaluation of structured and symmetric server-centric DCNs;
we have shown how the study of isoperimetric problems in graph theory is highly relevant to the computation of the
S-bisection width of dual-port server-centric DCNs built according to a widely-applicable stellar methodology; we have
precisely evaluated the S-bisection width of stellar hypercubes; we have obtained a general method (albeit highly dependent
on research into isoperimetric problems) for computing the S-bisection width of stellar DCNs when the base graph is
regular; and we have applied our methods in order to show that when compared with FiConn, stellar generalized hypercubes
have much better properties with respect to S-bisection width (as they do as regards aggregate bottleneck throughput,
latency, load balancing, fault-tolerance, and cost-to-build).

We note that our exploitation of discrete mathematics within DCN design is not unique to this paper: in [39] we used
existing research on WK-recursive interconnection networks to develop improved routing algorithms for the DCNs HCN and
BCN; in [13] we used the recursive structure of the DCNs DCell and FiConn to develop new, improved proxy-routing algo-
rithms (our techniques can be applied more widely); in [40] combinatorial design theory was used to build switch-centric
DCNs that compare favourably with Fat-Trees in terms of fault-tolerance; and in [14] we proved that an abstraction of DPil-
lar is a Cayley graph and used the consequent node-symmetry to devise an optimal routing algorithm. In short, we are
showing that discrete mathematics has a fundamental role to play as regards the design of DCNs.

There are many directions for further research. The primary one is the continued study of the general stellar mechanism;
that is, we should be examining other base graphs G in tandem with the properties of G∗ and in comparison with other
dual port server-centric DCNs. Naturally, this study should pay attention to what has been proven as regards isoperimetric
problems (and, indeed, should inspire more work on such problems). Moreover, this study should involve metrics which
have so far not been studied and it should also consider the generic utilization of stellar DCNs within cloud computing; for
example, with regard to the capacity of these DCNs for virtualization.

Also, we intend to examine our generic stellar construction against similar ones where edge subdivision is done by
introducing one server-node (as was done to obtain the DCN SWCube from generalized hypercubes in [32]) and also three
or more server-nodes. On the face of it, our stellar construction should be preferable: we can incorporate more server-nodes
than if we subdivide edges with one server-node; and we retain symmetry unlike when we subdivide edges using three or
more server-nodes. This examination will be both analytical and empirical.

Finally, associated with the further investigation of the stellar methodology in the dual-port server-centric environment
are generalizations so as to convert graphs into multi-port DCNs. Of course, such generalizations would attempt to utilize
beneficial properties of the base graph. We say no more about this direction of research here beyond that it will involve
more complex graph substitution mechanisms, e.g., replacing edges with networks of server-nodes and possibly introducing
additional links between server-nodes so introduced (but in a structured and controllable manner).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, A. Donnelly, Symbiotic routing in future data centers, ACM SIGCOMM Comput. Commun. Rev. 40 (4)
(August 2010) 51–62.

[2] J.H. Ahn, N. Binkert, A. Davis, M. McLaren, R.S. Schreiber, HyperX: topology, routing, and packaging of efficient large-scale networks, in: Proc. of Conf.
on High Performance Computing Networking, Storage and Analysis, ACM, 2009, page article no. 41.

[3] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network architecture, ACM SIGCOMM Comput. Commun. Rev. 38 (4) (October
2008) 63–74.

[4] J.A. Aroca, A.F. Anta, Bisection (band)width of product networks with application to data centers, IEEE Trans. Parallel Distrib. Syst. 25 (3) (March 2014)
570–580.

[5] M. Besta, T. Hoefler, Slim fly: a cost effective low-diameter network topology, in: Proc. of Int. Conf. for High Performance Computing, Networking,
Storage and Analysis, IEEE, 2014, pp. 348–359.

[6] S. Bezrukov, Edge isoperimetric problems on graphs, in: L. Lovász, A. Gyarfas, G.O.H. Katona, A. Recski, L. Szekely (Eds.), Graph Theory and Combinatorial
Biology, in: Bolyai Society Mathematical Studies, vol. 7, Janos Bolyai Mathematical Society, 1999, pp. 157–197.

[7] S.N. Bhatt, F.T. Leighton, A framework for solving VLSI graph layout problems, J. Comput. Syst. Sci. 28 (2) (April 1984) 300–343.
[8] L.N. Bhuyan, D.P. Agrawal, Generalized hypercube and hyperbus structures for a computer network, IEEE Trans. Comput. C-33 (4) (April 1984) 323–333.
[9] T.N. Bui, S. Chaudhuri, F.T. Leighton, M. Sipser, Graph bisection algorithm with good average case behaviour, Combinatorica 7 (2) (June 1987) 171–191.

[10] W. Dally, B. Towles, Principles and Practices of Interconnection Networks, Morgan Kaufmann, 2003.
[11] J. Díaz, J. Petit, M.J. Serna, A survey of graph layout problems, ACM Comput. Surv. 34 (3) (September 2002) 313–356.
[12] R. Diestel, Graph Theory, Graduate Texts in Mathematics., vol. 173, Springer, 2012.
[13] A. Erickson, A. Kiasari, J. Navaridas, I.A. Stewart, Routing algorithms for recursively-defined data centre networks, in: Proc. of 13th IEEE Int. Symp. on

Parallel and Distributed Processing With Applications, IEEE, 2015, pp. 84–91.
[14] A. Erickson, A. Kiasari, J. Navaridas, I.A. Stewart, An optimal single-path routing algorithm in the datacenter network DPillar, IEEE Trans. Parallel Distrib.

Syst. 28 (3) (March 2017) 689–703.
[15] A. Erickson, I.A. Stewart, J. Navaridas, A.E. Kiasari, The stellar transformation: from interconnection networks to datacenter networks, Comput. Netw.

113 (Feb. 2017) 29–45.

http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4162752D4C6962646568436F737461526F777374726F6E32303130s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4162752D4C6962646568436F737461526F777374726F6E32303130s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib41686E42696E6B657274446176697332303039s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib41686E42696E6B657274446176697332303039s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib416C2D46617265734C6F756B697373617356616864617432303038s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib416C2D46617265734C6F756B697373617356616864617432303038s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib41726F6361416E746132303134s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib41726F6361416E746132303134s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4265737461486F65666C657232303134s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4265737461486F65666C657232303134s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib42657A72756B6F7631393939s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib42657A72756B6F7631393939s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib42686174744C65696768746F6E31393834s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib42687579616E4167726177616C31393834s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4275694368617564687572694C65696768746F6E53697073657231393837s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib44616C6C79546F776C657332303033s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4469617A50657469745365726E6132303032s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4469657374656C32303132s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib457269636B736F6E4B6961736172694E61766172696461735374657761727432303135s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib457269636B736F6E4B6961736172694E61766172696461735374657761727432303135s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib457269636B736F6E4B6961736172694E61766172696461735374657761727432303137s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib457269636B736F6E4B6961736172694E61766172696461735374657761727432303137s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib457269636B736F6E4B6961736172694E617661726964617332303137s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib457269636B736F6E4B6961736172694E617661726964617332303137s1

28 A. Erickson et al. / Journal of Computer and System Sciences 108 (2020) 10–28
[16] N. Farrington, G. Porter, S. Radhakrishnan, H.H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, A. Vahdat, Helios: a hybrid electrical/optical switch
architecture for modular data centers, ACM SIGCOMM Comput. Commun. Rev. 40 (4) (October 2010) 339–350.

[17] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, 1979.
[18] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz, P. Patel, S. Sengupta, VL2: a scalable and flexible data center network, ACM

SIGCOMM Comput. Commun. Rev. 39 (4) (August 2009) 51–62.
[19] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, S. Lu, BCube: a high performance, server-centric network architecture for modular data

centers, ACM SIGCOMM Comput. Commun. Rev. 39 (4) (August 2009) 63–74.
[20] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, DCell: a scalable and fault-tolerant network structure for data centers, ACM SIGCOMM Comput. Commun.

Rev. 38 (4) (August 2008) 75–86.
[21] D. Guo, T. Chen, D. Li, M. Li, Y. Liu, G. Chen, Expandable and cost-effective network structures for data centers using dual-port servers, IEEE Trans.

Comput. 62 (7) (July 2013) 1303–1317.
[22] D. Guo, C. Li, J. Wu, X. Zhou, DCube: a family of network structures for containerized data centers using dual-port servers, Comput. Commun. 53

(November 2014) 13–25.
[23] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S.R. Das, J.P. Longtin, H. Shah, A. Tanwer, Firefly: a reconfigurable wireless data center fabric using free-space

optics, ACM SIGCOMM Comput. Commun. Rev. 44 (4) (October 2014) 319–330.
[24] L.H. Harper, Optimal assignments of numbers to vertices, J. Soc. Ind. Appl. Math. 12 (1) (March 1964) 131–135.
[25] S.A. Jyothi, A. Singla, P.B. Godfrey, A. Kolla, Measuring and Understanding Throughput of Network Topologies, Proc. of Int. Conf. for High Performance

Computing, Networking, Storage and Analysis (SC’16), vol. 65, IEEE, 2016.
[26] J. Kim, W.J. Dally, D. Abts, Flattened butterfly: a cost-efficient topology for high-radix networks, ACM SIGARCH Comput. Archit. News 35 (2) (June 2007)

126–137.
[27] J. Kim, W.J. Dally, S. Scott, D. Abts, Technology-driven, highly-scalable dragonfly topology, in: Proc. of 35th Ann. Int. Symp. on Computer Architecture,

IEEE, 2008, pp. 77–88.
[28] M. Kliegl, J. Lee, J. Li, X. Zhang, C. Guo, D. Rincon, Generalized DCell structure for load-balanced data center networks, in: Proc. of IEEE INFOCOM Conf.

on Computer Communications Workshops, IEEE, 2010, pp. 1–5.
[29] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Array, Trees, Hypercubes, Morgan Kaufmann, 1992.
[30] C.E. Leiserson, Fat-trees: universal networks for hardware-efficient supercomputing, IEEE Trans. Comput. 34 (10) (October 1985) 892–901.
[31] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, S. Lu, J. Wu, Scalable and cost-effective interconnection of data-center servers using dual server ports, IEEE/ACM

Trans. Netw. 19 (1) (February 2011) 102–114.
[32] D. Li, J. Wu, On the design and analysis of data center network architectures for interconnecting dual-port servers, in: Proc. of IEEE INFOCOM, IEEE,

2014, pp. 1851–1859.
[33] Y. Liao, J. Yin, D. Yin, L. Gao, DPillar: dual-port server interconnection network for large scale data centers, Comput. Netw. 56 (8) (May 2012) 2132–2147.
[34] J.H. Lindsey, Assignment of numbers to vertices, Am. Math. Mon. 71 (5) (May 1964) 508–516.
[35] B. Monien, R. Preis, S.S. Schamberger, Approximation algorithms for multilevel graph partitioning, in: T.F. Gonzalez (Ed.), Handbook of Approximation

Algorithms and Metaheuristics, Chapman and Hall/CRC, 2007, pp. 60.1–60.15.
[36] K. Nakano, Linear layouts of generalized hypercubes, in: Proc. of Graph-Theoretic Concepts in Computer Science, in: Lecture Notes in Computer Science,

vol. 790, Springer, 1994, pp. 364–375.
[37] L. Popa, S. Ratnaswamy, G. Iannaccone, A. Krishnamurthy, I. Stoica, A cost comparison of data center network architectures, in: Proc. of 6th Int. Conf.

on Emerging Networking Experiments and Technologies, vol. 16, ACM, 2010.
[38] A. Singla, C.-Y. Hong, L. Popa, P.B. Godfrey, Jellyfish: networking data centers randomly, in: Proc. of 9th USENIX Conference on Networked Systems

Design and Implementation, USENIX Association, 2012, pp. 225–238.
[39] I.A. Stewart, Improved routing in the data centre networks HCN and BCN, in: Proc. of 2nd Int. Symp. on Computing and Networking - Across Practical

Development and Theoretical Research, IEEE, 2014, pp. 212–218.
[40] I.A. Stewart, On the mathematics of data centre network topologies, in: Proc. of 20th Int. Symp. on Fundamentals of Computation Theory, in: Lecture

Notes in Computer Science, vol. 9210, Springer, 2015, pp. 283–295.
[41] C.D. Thompson, A Complexity Theory for VLSI, PhD thesis, Carnegie-Mellon University, 1980.
[42] R.V. Tomic, Optimal networks from error correcting codes, in: Proc. of ACM/IEEE Symp. on Architectures for Networking and Communications Systems,

ACM, 2013, pp. 169–179.
[43] S.D. Young, S. Yalamanchili, Adaptive routing in generalized hypercube architectures, in: Proc. of 3rd IEEE Symp. on Parallel and Distributed Processing,

IEEE, 1991, pp. 564–571.

http://refhub.elsevier.com/S0022-0000(19)30066-2/bib46617272696E67746F6E506F7274657252616468616B726973686E616E32303130s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib46617272696E67746F6E506F7274657252616468616B726973686E616E32303130s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib47617265794A6F686E736F6E31393739s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib477265656E6265726748616D696C746F6E4A61696E32303039s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib477265656E6265726748616D696C746F6E4A61696E32303039s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib47756F4C754C6932303039s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib47756F4C754C6932303039s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib47756F577554616E32303038s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib47756F577554616E32303038s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib47756F4368656E4C6932303133s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib47756F4368656E4C6932303133s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib47756F4C69577532303134s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib47756F4C69577532303134s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib48616D6564617A696D6951617A69477570746132303134s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib48616D6564617A696D6951617A69477570746132303134s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib48617270657231393634s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4A796F74686953696E676C61476F646672657932303136s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4A796F74686953696E676C61476F646672657932303136s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4B696D44616C6C794162747332303037s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4B696D44616C6C794162747332303037s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4B696D44616C6C7953636F74744162747332303038s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4B696D44616C6C7953636F74744162747332303038s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4B6C6965676C4C65654C6932303130s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4B6C6965676C4C65654C6932303130s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4C65696768746F6E31393932s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4C6569736572736F6E31393835s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4C6947756F577532303131s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4C6947756F577532303131s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4C69577532303134s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4C69577532303134s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4C69616F59696E59696E32303132s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4C696E6473657931393634s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4D6F6E69656E5072656973536368616D62657267657232303037s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4D6F6E69656E5072656973536368616D62657267657232303037s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4E616B616E6F31393934s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib4E616B616E6F31393934s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib506F70615261746E6173616D7949616E6E6163636F6E6532303130s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib506F70615261746E6173616D7949616E6E6163636F6E6532303130s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib53696E676C61486F6E67506F706132303132s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib53696E676C61486F6E67506F706132303132s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib5374657761727432303134s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib5374657761727432303134s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib5374657761727432303135s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib5374657761727432303135s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib54686F6D70736F6E31393830s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib546F6D696332303133s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib546F6D696332303133s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib596F756E6759616C616D616E6368696C6931393931s1
http://refhub.elsevier.com/S0022-0000(19)30066-2/bib596F756E6759616C616D616E6368696C6931393931s1

	Relating the bisection width of dual-port, server-centric datacenter networks and the solution of edge isoperimetric problems in graphs
	1 Introduction
	2 Basic notation and concepts
	2.1 Stellar DCNs
	2.2 Bisection width
	2.3 S-bisection width
	2.4 Generalized hypercubes

	3 Bisection bandwidth
	3.1 An historical perspective
	3.2 A recent critique
	3.3 S-bisection width and its validity

	4 Bisection width vs. S-bisection width
	4.1 Some basic results
	4.2 The stellar hypercube
	4.3 The general case

	5 An empirical evaluation of GQ* and FiConn
	5.1 The DCN FiConn
	5.2 The DCN GQ*
	5.3 Comparing GQ* and FiConn
	5.4 Evaluation

	6 Conclusions
	References

