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Rising Above Chaotic Likelihoods∗
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Abstract. Berliner [J. Amer. Statist. Assoc., 86 (1991), pp. 983–952] identified a number of difficulties in using
the likelihood function within the Bayesian paradigm which arise both for state estimation and for
parameter estimation of chaotic systems. Even when the equations of the system are given, he
demonstrated “chaotic likelihood functions” both of initial conditions and of parameter values in the
logistic map. Chaotic likelihood functions, while ultimately smooth, have such complicated small
scale structure as to cast doubt on the possibility of identifying high likelihood states in practice. In
this paper, the challenge of chaotic likelihoods is overcome by embedding the observations in a higher
dimensional sequence space; this allows good state estimation with finite computational power. An
importance sampling approach is introduced, where pseudo-orbit data assimilation is employed in
the sequence space, first to identify relevant pseudo-orbits and then relevant trajectories. Estimates
are identified with likelihoods orders of magnitude higher than those previously identified in the
examples given by Berliner. The pseudo-orbit data assimilation importance sampler exploits the
information both from the model dynamics and from the observations. While sampling from the
relevant prior (here, the natural measure) will, of course, eventually yield an accountable sample,
given the realistic computational resource this traditional approach would provide no high likelihood
points at all. While one of the challenges Berliner posed is overcome, his central conclusion is
supported. Chaotic likelihood functions for parameter estimation still pose a challenge; this fact helps
clarify why physical scientists maintain a strong distinction between the initial condition uncertainty
and parameter uncertainty.
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1. Introduction. Nonlinear chaotic systems pose several challenges both for state esti-
mation and for parameter estimation. Chaos as a phenomenon implies sensitive dependence
on the initial condition: initially nearby states will eventually diverge in the future. The
bifurcations of various chaotic systems [31] reveal how the behavior of the system differs as a
parameter value changes. One might think that Bayesian analysis should be able to obtain
good estimation both of initial conditions and of parameter values without much trouble.
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Berliner [3] examined the log-likelihood function of estimates of initial conditions and param-
eter values for the logistic map, noting that chaotic systems can lead to “chaotic likelihood
functions” and suggesting that Bayesian analysis would require prohibitively intensive com-
puting. The failure of variational approaches, when applied to long window observations of
chaotic systems [8, 13, 22], supports his point. Sensitivity to the initial conditions, on the
other hand, suggests that information in the observations (even over a relatively short window)
can lead to good estimates of the initial condition [14]. An importance sampling approach
to Berliner’s challenge without “intensive computing” is deployed in this paper. Adopting
pseudo-orbit data assimilation (PDA) [8, 13] recasts the problem into a higher dimensional
sequence space, where truly high likelihood states are successfully located. The challenges
of initial condition estimation and parameter estimation are dissimilar for chaotic systems.
PDA does not easily generalize to parameter estimation, as it is unclear how to mathemati-
cally define a relevant subspace of the parameter space in which the high likelihood trajectories
might exist. Thus challenges remain in identifying high likelihood parameter values given the
initial condition; this asymmetry reflects differences between the initial conditions and pa-
rameter values. In terms of estimating initial conditions given the parameter values, however,
Berliner’s challenge as originally stated is met and resolved.

2. Chaotic likelihood function of initial conditions. Berliner’s [3] formulation of the
problem is adapted here. The logistic map is the system; in sections 2–4, the parameter a = 4
is known but the true initial state x̃0 is not. In that case, the experiment is said to fall within
the perfect model scenario.1 In the first four sections of this paper, the mathematical system
and the model are identical and the word model is not used. Once real systems are considered,
either structural model error or parameter inaccuracy requires one to distinguish the system
which generated the data from the model(s) employed to analyze it.

The evolution of system states2 xi ∈ Rm is then governed by the nonlinear dynamics
f : xi+1 = f(xi), where for the logistic map

f(xi) = axi(1− xi).(1)

Assuming additive observational noise, δi, yields observations, si = x̃i + δi, where x̃ is the
true system state (Truth) and the observational noise, δi, is independent normally distributed,
δi ∼ N(0, σ2). Under this assumption of normality, the log-likelihood function is

LLik(x0) = −
n−1∑
i=1

(si − f i(x0))2/2σ2,(2)

where f i(x) is the ith iteration of f(x), si is the ith observation, and n is the duration of
observations considered.

Figure 1 shows the chaotic likelihood structure of 1024 candidate values of x0 drawn
uniformly on the interval zero, one. Panel (a) plots the log-likelihood for each x0; this can be

1The perfect model scenario, when the system and the model are identical, eases use of a digital computer;
one avoids the issue of “round-off error” by consistent use of the same computer and code. This implies, of
course, that (1) no longer reflects the perfect model. For discussion, see [1, 28, 29] and references therein.

2For m = 1, the state xi is a scalar.
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Figure 1. Typical log-likelihood of 1024 states (uniformly distributed on [0, 1]) for the logistic map. The
true initial condition x̃0 =

√
2/2 (denoted by “×”), σ = 0.1, and n = 32. (a) Log-likelihood function, (b)

relative log-likelihood to x̃0. States which have (relative) log-likelihood less than −400 are plotted on the −400
horizontal line. All logarithms are using the natural base. The maximum likelihood value found was ∼ e−109,
which corresponds to log-likelihood of −132 relative to Truth.

contrasted with various panels in Berliner’s [3, Figure 3].3 Panel (b) shows the log-likelihood
relative to that of the true trajectory of the system state.4 For the convenience of illustration,
the same normalization used in panel (b) is applied in Figures 2–4 in this paper. From Figure 1,
it is clear that no high likelihood states are identified. This is not a case of equifinality.5

Given the observational noise distribution, one can add random draws from the inverse of
the observational noise distribution to the observation to obtain candidate estimates of initial
condition. Figure 2(a) shows the relative log-likelihood of 1024 samples from inverse obser-
vational noise. No high likelihood states are identified in this way. (The maximum likelihood
value found was ∼ e−90.) To illustrate the impact of making much more precise observations,
consider a case where x̃0 is known to be within a region of radius only σ/10. Figure 2(b)
shows the relative log-likelihood of 1024 uniformly sampled states in the region around Truth
with σ/10 radius. Yet again, no high likelihood state is identified. (The maximum likelihood
value found increases to ∼ e−85.)

This difficulty here is not a shortcoming of the likelihood framework, as there are high
likelihood states other than Truth. One may demonstrate that such high likelihood states exist

3Here log-likelihood functions based on a sequence of 32 observations are computed because the problem
becomes more obvious when more observations are used. Berliner examined 15 and 10 observations. Shorter
sequences of observations are examined in section 3.

4Note: given that only finite observations are considered the true state of the system is, with probability 1,
not the maximum likelihood state.

5Equifinality occurs when many potential solutions to a task are each good, making it impossible to identify
the true solution given the information in hand. In such cases the sampled likelihood functions are relatively
flat. Equidismality arises when the sampled relative likelihood function is flat yet all solutions tested have
vanishingly small likelihood given the information. Examining the relative likelihood obscures the difference;
fortunately, the expected (distribution of) likelihood can be computed from the noise model alone without
knowledge of the true initial condition.
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Figure 2. Relative log-likelihood of 1024 states (a) sampled from inverse observational noise, (b) uniformly
sampled from [x̃0 − σ

10
, x̃0 + σ

10
]. The true initial condition x̃0 =

√
2/2 (denoted by “×”), σ = 0.1, and n = 32.
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Figure 3. (a) Following Figure 1(b), but in this case including a set of 1024 states (blue), which are
extremely close to x̃0, generated by spiral sampling around the x̃0 (see footnote 6); (b) zoom in of (a).

by sampling the points on a logarithmic spiral approaching Truth (to machine precision).6

Figure 3 demonstrates that high likelihood states other than Truth do exist (i.e., some of the
blue points). A smooth curve of the log-likelihood function is only observed within a radius
of x̃0 smaller than ∼ 10−7 (see Figure 3(b)).

Without knowing Truth, of course, this approach to identifying high likelihood points is
inaccessible. The likelihood function is extremely jagged; as Berliner [3] stressed, finding even
one high likelihood state by sampling the state space is prohibitively costly. That said, there
is no sense in which “sensitivity to the initial conditions” can be taken to imply that the

6In these experiments 1024 points are generated by x̃0+2−(10+ 60i
1024

)εi, i = 1, 2, . . . , 1024 where εi is randomly
drawn from U(0, 1).
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information in the initial condition is “forgotten” or “lost.” There is sufficient information in
the observation segment to distinguish high likelihood initial states. Candidate states with
nonvanishing log-likelihood relative to Truth can be found by extracting the information from
the system dynamics using a relatively new approach to data assimilation: PDA.

3. Importance sampling via PDA.

3.1. Methodology. Uniform sampling in state space is not an efficient approach to lo-
cating high likelihood states. As the dimension of the system increases, the task becomes
even more computationally impractical. The PDA importance sampler7 locates high likeli-
hood states in the trajectory manifold by adopting the PDA approach [8, 13]. PDA takes
advantage of the fact that solutions consistent with the known dynamics will lie along a lower
dimensional manifold in the higher dimensional sequence space. A brief introduction of the
PDA approach is given in the following paragraph (see [8, 13] for additional details).

Given a dynamical system of dimension m and a sequence of n observations,8 define a
sequence space as the m×n dimensional space in which a single point can be thought of as a
particular series of n states ui for i = 0, . . . , n−1, where ui is an m-dimensional vector. Most
points in sequence space do not correspond to a trajectory of the system. Define a pseudo-
orbit, U ≡ {u0, . . . ,un−2,un−1}, to be a point in the m × n dimensional sequence space for
which ui+1 6= f(ui) for one or more components of U. Thus a pseudo-orbit corresponds to a
sequence of states which is not a trajectory of the system. Each sequence of n observations
si, i = 0, . . . , n−1, defines a pseudo-orbit (a point in the sequence space). Call this an observed
pseudo-orbit, S ≡ {s0, . . . , sn−2, sn−1}, which with probability one will not be a trajectory.

Define the mismatch to be

ei =| f(ui)− ui+1 | .(3)

By construction, trajectories have a mismatch of zero. The mismatch cost function is then
given by

C(U) =
n−1∑
i=0

e2i .(4)

The most common form of PDA simply minimizes the mismatch cost function for U in the
m × n dimensional sequence space starting from the observed pseudo-orbit. If a gradient
descent (GD) approach is adopted,9 then a minimum of the mismatch cost function can be
obtained by solving the ordinary differential equation

dU

dτ
= −∇C(U),(5)

7In high dimensional space the sampler targets the relevant lower dimensional trajectory manifold which is
more efficient than sampling a hypersphere suggested by one observation. Even in the one dimensional logistic
map this approach succeeds by using PDA to sample the trajectory manifold in the n-dimensional sequence
space.

8For the logistic map, observations and system states share the same one dimensional space.
9Other methods for this minimization are available, GD is discussed here due to its simplicity and adequacy.

D
ow

nl
oa

de
d 

08
/2

1/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

RISING ABOVE CHAOTIC LIKELIHOODS 251

where τ denotes algorithmic time.10 In practice, the minimization is initialized with the
observed pseudo-orbit, i.e., 0U = S, where the presuperscript zero on U denotes the initial
algorithmic time (τ = 0) of the GD. Under GD, a point in sequence space moves towards
the trajectory manifold under (5). The minimization algorithm requires differentiating the
mismatch cost function (4), which gives

∂C(U)

∂ui
= 2×


−(ui+1 − f(ui))J(ui), i = 0,
−(ui − f(ui−1)) + (ui+1 − f(ui))J(ui), 0 < i < n− 1,
−ui − f(ui−1), i = n− 1,

(6)

where J(ui) is the Jacobian of f at ui. The ordinary differential equation (5) is solved using
the Euler approximation in the examples below.

The mismatch cost function has no local minima other than points on the manifold, for
which C(U) = 0 (this defines the trajectory manifold11) and of course every segment of
trajectory lies on this manifold [13]. Denote the result of the GD minimization at algorithmic
time τ = α as αU ≡α u0, . . . ,

α un−1. Here α indicates algorithmic time in GD (i.e., the
number of iterations of the GD minimization). As α → ∞, the pseudo-orbit αU approaches
a trajectory of the model asymptotically. In other words, the GD minimization takes the
observed pseudo-orbit towards a model trajectory (∞U is a point in sequence space on the
trajectory manifold).

In practice, the GD algorithm is run for a finite time and a trajectory is not obtained.
Nevertheless, the values of αu0 for large α define candidate trajectories using information
from the observation window 0 ≤ i ≤ n − 1. For i > 0, the i-step preimages of the relevant
component of αui provide candidates for the initial state. Complications arise from the fact
that the logistic map is two-to-one; these complications have nothing to do with chaos per
se.12 In one-to-one chaotic maps the calculation of preimages is straightforward. The logistic
map is a two-to-one map, and in most cases13 only one of the two preimages for each αui
is relevant to x̃i−1. In practice a threshold criterion to discard irrelevant preimages must be
defined; a simple example would be to discard (with high probability) those preimages whose
distance from the corresponding previous observation exceeds some threshold based on the
properties of the observational noise (a 3σ criterion is adopted in the following section and
shown to be adequate for the purpose of this paper).

3.2. Results. The green points in Figure 4 were located using an PDA importance sam-
pler; note that some have relative log-likelihood near zero (maximum 1.3). As expected, the
observations do not contain sufficient information to identify the state of the system at the
time of the final observation with the same degree of precision as the initial state. This is

10The approach can be generalized to situations where the gradient is not known analytically [15]; improving
the ability to work without gradient information would widen the application of the approach significantly.

11Back substitution of the solution of −un−1 − f(un−2) = 0 into (6) shows that the only critical points for
C(U) have ui−f(ui−1) = 0 for all i in 0 ≤ i ≤ n−1. All points on the trajectory manifold have zero mismatch
(are trajectories) and only points on the trajectory manifold have zero mismatch.

12They have nothing to do with chaos beyond the fact that one-to-one maps in one dimension cannot display
chaotic dynamics, of course.

13It is not true in all cases, however. For discussion of the point, see [17].
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Figure 4. (a) Following Figure 3(a), but in this case including the states located by PDA importance sampler
which are plotted in green. (b) The forward images of those states plotted in (a) at time 31.

reflected in the fact that the green points are much less close to the true state at time 31
(Figure 4(b)) than the corresponding green points at time 0 (Figure 4(a)).

Two experiments were conducted to test the robustness of the PDA importance sampling
approach. The first is based on 2048 different realizations of observations given the same
initial condition, x̃0 =

√
2/2, to examine consistency. The second considers 2048 different

initial conditions to examine robustness over different states. Three different observation
window lengths were used in each experiment. Tables 1 and 2 shows the results. States with
greater likelihood than the true state are often identified.

Given uncertain observations, one can never identify Truth of a chaotic system unam-
biguously; this was noted by Berliner and MacEachern [2, 20], then Lalley [17, 18], and later
explored by Judd and Smith [13]. Using the PDA approach, high likelihood states are indeed
found: states with relative log-likelihood larger than minus one are found in every single ex-
perimental run. The fact that some PDA states have greater likelihood than Truth reflects
the fact that Truth is not expected to be the most likely model state given the observations.

For each experimental run, the minimum distance between those states obtained by PDA
importance sampler (whose relative log-likelihood is larger than minus one) and Truth is
recorded. The minimum, maximum, and median statistical values of the minimum distance
from Truth are reported in Tables 1 and 2. It is clear that the PDA importance sampler iden-
tifies states at higher quality (the minimum distance from Truth decreases) as the observation
window length increases. This is expected inasmuch as more information from the dynamics
is available given a longer window. Table 1 shows that the maximum value of the minimum
distance among the 2048 different realizations is 1.49×10−10 for a window length of 32 and in
Table 2 the maximum value of the minimum distance among different true initial conditions
is 2.02× 10−10. The PDA importance sampler is both robust and efficient in this case.14

14Drawing samples uniformly from within a distance of 0.1 of Truth would require ∼ 108 candidates in order
to find a candidate within ∼ 2× 10−10 of Truth; even then that close candidate need not have high likelihood.
The results of Tables 1 and 2 were obtained with only 1024 GD minimization iterations in each realization
(each and every one of which identified high likelihood states close to Truth).
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Table 1
Statistics of high likelihood states located by PDA importance sampler based on 2048 different realizations

of observations (of x̃0 =
√

2/2) for the logistic map: (i) statistics of the number of states (whose log-likelihood
relative to the true state is larger than minus one); (ii) statistics of the number of states (whose relative
log-likelihood is larger than zero); (iii) statistics of the minimum distance between the states (whose relative
log-likelihood is larger than minus one) and Truth.

Window # of RLLik> −1 # of RLLik> 0 Minimum distance to x̃0
length Min Max Median Min Max Median Min Max Median

32 6 15 8 0 14 6 2.00× 10−15 1.49× 10−10 9.98× 10−12

16 2 11 8 0 11 6 1.57× 10−10 7.63× 10−6 5.13× 10−7

8 2 7 7 0 7 5 8.58× 10−8 4.55× 10−2 2.56× 10−4

Table 2
Statistics of high likelihood states located by PDA importance sampler based on 2048 different true initial

states for the logistic map: (i) statistics of the number of states (whose log-likelihood relative to the true state is
larger than minus one); (ii) statistics of the number of states (whose relative log-likelihood is larger than zero);
(iii) statistics of the minimum distance between the states (whose relative log-likelihood is larger than minus
one) and Truth.

Window # of RLLik> −1 # of RLLik> 0 Minimum distance to x̃0
length Min Max Median Min Max Median Min Max Median

32 6 360 28 0 338 16 4.77× 10−15 2.02× 10−10 1.50× 10−11

16 3 56 14 0 48 9 3.04× 10−10 1.54× 10−5 9.93× 10−7

8 2 20 7 0 20 7 6.36× 10−8 5.60× 10−3 3.32× 10−4

The experiments above solve by demonstration Berliner’s “impossible” challenge: they
demonstrate that truly high likelihood points can be located using dynamical information,
easing Berliner’s identification problem of the initial condition. Selecting an ensemble from
this high likelihood set allows for informative forecasts which do not become useless until after
those from the point forecasts illustrated by Berliner [3] become uninformative.

3.3. Equifinality and relative likelihood. Maximum likelihood estimation has been widely
used [26] since its introduction by Fisher [10] in 1922. The “best” estimate is often chosen
from a set of candidates, and only the relative likelihood of candidates within that sample is
considered. Figure 5 shows the log-likelihood of 1024 states (the same set used in Figure 2(b));
the red dashed line is the median log-likelihood of those states. In this case, the problem is
not one of which estimate to select (equifinality), but one of recognizing that each and every
candidate has vanishing likelihood (equidismality). In practice, Truth is unknown, therefore,
it cannot be used as a reference, as it is in Figure 2. Given the observations and the noise
model, however, the expected log-likelihood of Truth can be determined15 and serve as a
reference. Figure 5, the log-likelihood of 1024 states are plotted along with the expected log-
likelihood of Truth (black dashed line). Figure 5 shows that it is not a case of equifinality
but a case of equidismality. In cases where it is observed that all traditional candidate states

15The log-likelihood of Truth is −
∑n−1
i=0 δ

2
i /2σ

2 (from (2)), where δi (observation noise) is independently and
identically distributed ∼ N(0, σ2) distributed. Let Z =

∑n−1
i=0 δ

2
i /σ

2, Z being a random variable following a
chi-squared distribution with n degrees of freedom. Statistics of the log-likelihood of Truth can therefore be
simply derived from Z.
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Figure 5. Log-likelihoods of 1024 states uniformly sampled from [x̃0− σ
10
, x̃0 + σ

10
], the red dashed line is the

median log-likelihood of those states, and the black dashed line is the expected log-likelihood of Truth, following
Figure 2(b).

have vanishingly small log-likelihood relative to the expected log-likelihood of Truth, a PDA
based importance sampling might prove valuable.

4. Implications for quantifying uncertainty in practice. Having solved one of Berliner’s
“impossible” challenges for nonlinear systems, a reviewer asks for potential implications this
solution might hold in practice. Two possibilities stand out. The first regards improved
noise reduction on the initial condition of the forecast via a PDA importance sampler; this
would indeed be expected to improve forecast skill. Berliner’s problem, however, focuses
on identification of the point at the starting (oldest) observation, while weather forecasts
are launched near the time of the end (most recent) observation. In operational weather
forecasting, a relatively small set of initial conditions (∼ 51) are launched as forecasts in
a relatively high dimensional space (∼ 107) in a Monte Carlo fashion every forecast cycle
(typically, every 6 hours); see [12, 19, 32]. As is long held in weather forecasting (see [11]
for a discussion), uncertainty in the state at the start of the observation window in time
collapses much more dramatically than that in the state at the end (present time); this is
consistent with results shown in Figure 4. Figure 2 of [11] captures the challenge Berliner and
MacEachern [2, 20], Hansen and Smith [11], and Lalley [18] foresaw. High likelihood states
at the present time lie along the unstable manifold; such sets of states are more efficient and
informative, in terms of exploring initial condition uncertainty, than traditional approaches
like singular vectors [24] or bred vectors [33].

A second possibility lies in reanalysis [25]. A reanalysis uses the most modern weather
model to revisit and improve the estimate of the state of the atmosphere of the distant
past; here the opportunity for PDA importance sampler to make a contribution appears
greater. A reanalysis takes a modern model and reconsiders past periods of time; reanalysis
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is now common in atmospheric (weather) and oceanic contexts [16, 23, 34]. This task closely
resembles that posed by Berliner. The results achieved in Tables 1 and 2 reflect the aims
of reanalysis directly, albeit in a perfectly known one dimensional system. Interpretations in
terms of scalar “noise reduction” are limited, as there can be information gained simply by
restricting the state estimate to the model manifold.

Reanalysis has many applications, one of significant current interest is index-based insur-
ance. In this case, uncertainty quantification of the index would be of significant interest.
In short, the complications of evaluating insurance claims based on certifying damages in far
flung regions of the world has led to the insurance policies triggered by a model-based mete-
orological index [9]. To the extent that the methods deployed in this paper better quantify
(and reduce) the uncertainty in the wind speeds of a storm within a few days of its passing,
the efficiency of index-based insurance could be improved.

Note from Tables 1 and 2 that the longer the window length the better the estimate (noise
reduction) achieved. Noise reduction based upon PDA importance sampler might also help
fill in missing historical observations, as well as identify model deficiency when identifying
model trajectories intended to reflect past observations.

5. Distinguishing between initial conditions and parameters. The likelihood functions
of initial conditions and that of parameter values have similar features [3]. There are, however,
fundamental differences in the information available to address these two distinct estimation
problems.

Given the structure of the model class, the model parameter value determines dynamical
behaviors of the model (e.g., natural measures) which are not changed by the initial condition.
Given the model and true parameter value, the search for unknown initial conditions is aided
by the restriction the nature measure(s) places on candidate initial conditions in the state
space (and, thereby, on trajectories in the sequence space).

It is unclear how to construct similar constraints on unknown parameter values in the
parameter space given the true initial state (if they exist16). Uncertainty in the initial state
differs from uncertainty in the parameter value. The information in a measurement of the
initial condition uncertainty will decay with time and eventually become statistically indistin-
guishable from a random sample of the natural measure, while the information in the initial
condition is preserved, arguably forever.

While assuming the parameter value is perfect might initially appear extreme, it appears
less nonsensical given that one has already assumed that the model structure is perfect.
Assuming the initial state is perfect indicates a noise free observation is possible. Let the
model’s parameters be contained in the vector a ∈ Rl. A set of l + 1 sequential noise free
observations si, si+1, . . . , si+l would, in general, be sufficient to determine a [21]. Thus if one
noise free observation is obtainable, obtaining only a few more noise free observations would
define the true parameter value precisely. Perhaps a more realistic way to put the problem
is to estimate the parameter value(s) given realistic observations, without assuming the true
initial condition is known. In that case, the goal is to locate high likelihood trajectories (Smith

16Neither is it clear how to construct the set of parameter values whose corresponding invariant measure
contains the “true” initial state, or how to exploit this set; what is clear is how to exploit the existence of a
trajectory manifold given a particular value of the parameter.
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et al. [30] call these shadowing trajectories) for particular sets of parameter values. It is not
yet clear how to solve such a problem. In fact, it is not clear if it is possible to constrain the
solution in the parameter space in a manner analogous to the constraints in the space of the
initial condition achieved by using a trajectory manifold in the state space.

Given a perfect model structure and knowing the true parameter value(s), the true initial
state is a well-defined goal of the identification. Inasmuch as structural model errors imply
no true parameter value exists [7, 14], it is unclear how one might define the true initial state
and the goal of estimation must be rethought when the structure of the system differs from
that of the model.

Despite the importance of model parameters, outside linear systems there is no general
method of parameter estimation.17 Methods have been developed to obtain useful parameter
values with some success: McSharry and Smith [21] and Smith [28] estimate model parameters
by incorporating the global behavior of the model into the selection criteria; Creveling, Gill,
and Abarbanel [5] have exploited synchronization for parameter estimation; Smith et al. [30]
focused on the geometric properties of trajectories; Du and Smith [6] select parameter values
based on the ignorance score of ensemble forecasts. Each of these methods, however, requires
a large set of observations. Challenges remain when only a short sequence of observations is
available. Berliner’s second challenge still stands.

6. Conclusion. Berliner illustrated that even in the perfect model scenario traditional
approaches are unable to provide good estimates of the initial condition for nonlinear chaotic
systems. In large part, those failures are due to the inability of traditional approaches to
skillfully meld the information in the dynamics of the nonlinear system itself with that in
the observations. The importance sampling approach presented here uses PDA to combine
information from both observations and dynamics more effectively, thereby locating high
likelihood initial states; this achieves one aim Berliner (1991) argued to be impossible. As
discussed in section 5, this achievement may prove useful in reanalysis studies.

Despite the similarity of state estimation and parameter estimation, there are fundamental
differences between uncertainty in the initial state and uncertainty in parameter value. Signif-
icant obstacles remain in meeting Berliner’s second challenge regarding parameter estimation
while PDA overcomes his first challenge regarding the initial condition.
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