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Abstract 

Abandoned historical metal mines represent significant long-term sediment source locations contributing highly 

contaminated anthropogenic legacy sediments to river systems. Despite this, our understanding of spatial and 

temporal variability in the rates and geomorphological drivers of specific contaminated sediment source locations 

across abandoned mines remains poorly constrained. In this study, sediment flux from two abandoned historical 

lead mines in the North Pennines, UK, was monitored over an 18 month period using repeat terrestrial laser 

scanning, enabling the spatial and temporal significance of several common geomorphological processes to be 

quantified for the first time. A novel contaminated sediment budget approach is used to integrate topographical 

change data with a pXRF survey of surface sediment metal concentrations. Approximately 434 t (289 t a
-1

) of 

eroded sediment entered the stream from a source area of 0.023 km
2
. The majority of the erosion was driven by 

two dominant processes, with gullying accounting for 60% and bank erosion contributing 30%. Redeposition of 

eroded material within the survey area was minimal (3%), indicating very high levels of coupling between source 

locations and the stream network and the export of the vast majority of eroded sediments (97%) from the mined 

area. Rates for all erosive processes were highly episodic and primarily driven by high magnitude, low frequency 

storm events. Metal concentrations in surface sediments exhibited considerable spatial variability, with notable 

hotspots around the former ore processing areas and on the tailings heaps. However, 84% of all sediments 

sampled were in excess of available soil guideline values for Pb and 65% in excess of equivalent guideline values 

for Zn, indicating that abandoned mine sites still have the potential to be significant sources of contaminant metals 

and pose a risk to the wider environment. In total, an estimated 4.59 t of Pb and 2.14 t of Zn entered the stream 

network in a sediment-associated form during the 18 month monitoring period. Although these overall 

contaminated sediment inputs are high, they are restricted to particular geomorphological processes, are spatially 

variable in terms of the magnitude of specific source locations, and are delivered in fairly discrete events. This 
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provides invaluable information for the future management of other abandoned mines and targeted mitigation of 

their potential legacy effects. 
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1. Introduction 

River catchments impacted by historical metal mining are often highly contaminated, leading to a significant 

and persistent legacy affecting sediment and water quality (Macklin et al., 2006; Mayes et al., 2010; Luís et 

al., 2011). Studies worldwide have demonstrated that fluvial systems in former mining areas are frequently 

still adjusting to historical disturbances related to the influx of large volumes of mine waste (Knighton, 1989; 

Singer et al., 2013) and typically still contain abnormally high levels of metals at abandoned mine source 

locations and stored in catchment wide floodplain sediments (Clement et al., 2017; Pavlowsky et al., 2017). 

In a European context, the Water Framework Directive (WFD) has established clear ecological and chemical 

water quality target guidelines that have included consideration of pollution caused by abandoned mining 

operations (European Commission, 2000). However, the focus of such schemes has primarily been on 

monitoring point source contaminant flux, such as waters draining directly out of mine adits. In contrast, 

regulatory attention given to more diffuse sources of pollution, and in particular sediment-borne 

contaminants, has until recently been lacking (Macklin et al., 2006). This is despite the recognition that 

~90% of metal contaminants in former mining catchments are commonly sediment-associated rather than in 

an aqueous form (Hudson-Edwards et al., 2008).  

The issue of defining contaminant sources within river catchments as either point or diffuse is dependent on 

the scale of investigation. For example, at the scale of an entire catchment, abandoned mines would typically 

be considered as point source locations for contaminated sediments. However, within the context of an 

individual mine the precise locations of the pollutant inputs will vary spatially owing to the arrangement of 

former mine workings (levels, waste heaps, etc.), the physical characteristics of the land surface and the 

distribution of processes driving topographic change. Unlike point sources, such as adit outflows, the spatial 

location of these sediment sources also changes through time as the condition and stability of the surface is 

altered and the dominance of different geomorphological processes varies. This spatial and temporal 

variation means that, at least at the intrasite scale, contaminated sediment inputs are therefore more 

accurately defined as dispersed in nature rather than as discrete point sources. These dispersed sources share 

a number of characteristics with more ‘classic’ diffuse sources (e.g., floodplain deposits), including spatial 

and temporal variability in metal concentrations and the potential for reworking and redistribution of 

contaminated sediments (Hudson-Edwards et al., 2008).  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

4 

 

The hydrological conditions under which point and diffuse contaminant sources dominate are 

characteristically different. Although point source mine water discharges dominate stream metal loadings 

during low flows, diffuse inputs are particularly significant during high flow events, when metal-rich 

sediments are susceptible to entrainment and transport (Mayes et al., 2008; Byrne et al., 2013; Foulds et al., 

2014). Diffuse contamination from mining includes direct input of polluted groundwater to surface waters 

via the hyporheic zone, runoff from mine wastes, and mobilisation of metal-rich floodplain sediments 

(Dennis et al., 2009; Palumbo-Roe et al., 2012). Owing to their diffuse nature, quantifying such inputs can be 

problematic, with most studies estimating diffuse source contributions using the residual from mass balance 

calculations based on measured point source water inputs and stream loadings (Mayes et al., 2008; 

Mighanetara et al., 2009; Banks and Palumbo-Roe, 2010). Such approaches provide useful approximations 

of the scale and general location of diffuse inputs but specific details on metal delivery mechanisms to fluvial 

environments are usually only inferred, limiting their value to practitioners involved in the management or 

remediation of formerly mined catchments. 

The two main sources of diffuse sediment (particulate) contaminants are direct erosion and entrainment of in 

situ metal-rich mine sediments (e.g., waste heaps) and the remobilisation of previously deposited channel or 

floodplain sediments (Gozzard et al., 2011). The long-term wider catchment-scale remobilisation and 

redistribution of mine sediments has received considerable attention by the scientific community for several 

decades (Lewin et al., 1977; Miller, 1997; Dennis et al., 2003; Clement et al., 2017). Underpinning much of 

this research has been the recognition that understanding the fluvial geomorphology of a catchment is 

fundamental to being able to predict the distribution, magnitude, and residence time of associated metal 

contamination (Brewer et al., 2003; Macklin et al., 2006; Hudson-Edwards et al., 2008; Dennis et al., 2009). 

In contrast, comparable recent research into the initial mobilisation of in situ sediments directly from 

abandoned mine source locations has been noticeably lacking despite its significance for a range of other 

related disciplines such as archaeology (Kincey et al., 2017) and ecology (Batty, 2005). 

The importance of in situ mine waste deposits as source locations for contaminated sediments is reflected in 

policy documents at national (Environment Agency, 2007) and European levels (e.g., the EU Mine Waste 

Directive, European Commission, 2006). Internationally, even in countries where solid mining waste is not a 

specifically regulated waste, such as the United States, research into the appropriate management of legacy 
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mine sites is still seen as a central priority (ITRC (Interstate Technology & Regulatory Council), 2008). 

However, actually translating knowledge of mine waste site locations and characteristics into an 

understanding of specific sediment contaminant sources is problematic. In the UK, a recent national 

assessment of metal mine pollution focused primarily on water quality data, with associated information 

regarding diffuse sediment contaminants being largely qualitative in nature (Mayes et al., 2009). Where 

comparable national assessments of sediment-related diffuse pollution have been attempted, these have by 

necessity been restricted to the use of a relatively simplistic classification of risk based on the mapping of 

waste deposits and broad topographic characteristics (Turner et al., 2011; Mayes et al., 2015). Local site-

scale appraisals of diffuse inputs of contaminated sediments have been undertaken (Forth, 1999), but these 

have generally tended to either involve qualitative descriptions of visually identified sediment transfer 

processes (Wray, 1998) or to focus on large-scale catastrophic events, such as tailings dam failures (Macklin 

et al., 2003; Kossoff et al., 2014). However, the baseline understanding generated through such local-scale 

assessments is fundamental to being able to develop a comprehensive and accurate understanding of the 

drivers of surface change and contaminated sediment flux at abandoned mines. Without this detailed process-

based knowledge, the validity of broader regional or national assessments cannot be properly evaluated and 

our ability to introduce effective management schemes or policies remains restricted. 

Although not primarily focused on contaminant flux, numerous studies have attempted to quantify erosion 

rates in historically mined areas, often driven by debates surrounding the most effective method for 

reclaiming land disturbed by recent (late twentieth century) surface mining activities (Soulliere and Toy, 

1986; Toy and Hadley, 1987). Such research has indicated that erosion and sediment transfer rates are 

significantly higher in former mining landscapes than in comparable unmined areas (Lusby and Toy, 1976; 

Tarolli and Sofia, 2016). This situation is exacerbated even further in former metal mining areas, where the 

phytotoxic nature of heavily contaminated mine sediments reduces the capacity for vegetation cover 

resulting in highly unstable surface deposits (Ostrander and Clark, 1991). Previous studies of erosion at 

abandoned mines have, however, tended to focus on either the role of individual geomorphic processes 

(Haigh, 1980; Davies and White, 1981; Esling and Drake, 1988) or particular landform characteristics 

(Nyssen and Vermeersch, 2010; Martín-Moreno et al., 2013), meaning that our ability to fully understand the 

relative contribution of the wide range of interrelated factors influencing erosion rates is still limited. 
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This current study integrates repeat terrestrial laser scanning (TLS) and portable X-Ray Fluorescence 

(pXRF) survey to quantify contaminated sediment flux at Whitesike and Bentyfield mines, two adjacent 

abandoned lead mines located along Garrigill Burn, a tributary of the South Tyne in the North Pennine 

uplands, Cumbria, UK. The novel sediment budget approach, based on high resolution quantification of 

surface change and sediment contamination, demonstrates a rigorous methodology for investigating 

abandoned mines and provides valuable insights into the processes determining rates of contaminant flux in 

heavily disturbed landscapes. The study site represents an ideal case study for assessing the significance of 

contaminated sediment flux in former metal mining districts worldwide. Significant documented erosion and 

water quality issues sit awkwardly alongside the diverse and sometimes competing designation priorities of 

administrative bodies responsible for the preservation of the natural and cultural heritage environments. This 

range of challenges and pressures are characteristic of the complex multifaceted and interdisciplinary nature 

of abandoned mines, making the key findings from the study transferable to the management of other former 

mining landscapes worldwide. 

 

2. Study site 

Whitesike and Bentyfield mines are a pair of adjacent historical lead mines located ~5 km southeast of 

Alston, Cumbria, UK (54°46’36.48” N, 2°23’07.84 W) (Fig. 1). The mines occupy a small (3.51 km
2
), steep 

catchment in the middle reaches of Garrigill Burn, an east-west flowing tributary of the upper South Tyne. 

Catchment elevations range from 330 m AOD at the confluence with the South Tyne to 614 m AOD at the 

watershed with the Nent catchment on Flinty Fell, with an overall channel gradient approaching 9%. The 

steep, narrow valley and mining remains located in close proximity to the stream channel provide minimal 

storage sites for colluvial deposits — a fairly typical situation within upland mining districts such as the 

North Pennines.  

The underlying bedrock geology in the catchment consists of the Carboniferous cyclothems that are typical 

of this area of the Alston Block; primarily involving successive sequences of limestones, sandstones, 

siltstones, and mudstones. Extensive mineralisation of the numerous faults within these deposits occurred 

during the early Permian (ca. 290 Ma) and resulted in the rich mineral veins for which the North Pennine 
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Orefield is internationally renowned (Stone et al., 2010). Galena (lead ore) and sphalerite (zinc ore) are the 

most abundant sulphide minerals occurring throughout the orefield and have been the focus of much of the 

historical mining activity, with the galena typically also bearing relatively high levels of silver (Dunham, 

1990; Dunham et al., 2001). 

Garrigill Burn is included within the Water Framework Directive (WFD) water body covering the South 

Tyne from upstream of Garrigill to the confluence with Black Burn. Recent water quality monitoring on 

behalf of the Environment Agency has indicated that this section of the upper South Tyne is failing its 

Environmental Quality Standards (EQS) for zinc (Zn) and for cadmium (Cd), with Garrigill Burn known to 

be one of the primary sources of metal loading for the main river (Atkins Ltd, 2010b). Of the five mine sites 

within the upper South Tyne catchment that have been included within the Mine Waste Directive (MWD) 

inventory of abandoned mines known to be causing serious environmental impacts, three are located along 

Garrigill Burn (Whitesike Mine, Bentyfield Mine, and Brown Gill Mine) (Environment Agency, 2014).  

Water sampling from locations along Garrigill Burn indicate that this tributary contributes up to 34.1% of the 

total Zn and 35.7% of the dissolved Zn loadings recorded at the Alston gauging station, the downstream 

WFD compliance point for the South Tyne (Atkins Ltd, 2010b).  Percentage contributions from Garrigill 

Burn to cadmium loadings in the South Tyne at Alston are lower but still significant (up to 25%). Lead (Pb) 

does not exceed the EQS at the Alston gauge, but Garrigill Burn is again the primary source, contributing up 

to 30.9% of the total Pb and 34.3% of the dissolved Pb loadings for the upper South Tyne. Importantly, 

although the EQS for Pb was not exceeded at Alston, the combined contribution from the upper South Tyne 

and the Nent meant that it has been exceeded farther downstream at Featherstone (Atkins Ltd, 2010a). With 

56% of the Pb loading at Featherstone gauging station coming from the South Tyne, the contribution from 

Garrigill Burn is again clearly of significance in terms of meeting overall EQS requirements in the wider 

Tyne basin. 

One limitation of the previous sampling work along Garrigill Burn was that all field visits coincided with 

generally low to moderate flow events (0.7–7.8 m
3
/s), meaning that they are only representative of a limited 

range of flow conditions within the catchment (Atkins Ltd, 2010b). Although point source metal 

concentrations sampled at the outflows from the Whitesike and Bentyfield adits were high, their flow rates 
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were low, suggesting that their contribution to overall Garrigill Burn contaminant levels is relatively small in 

comparison to other diffuse sources. Identifying the sources of these diffuse inputs, and in particular the 

sediment inputs likely to be of significance during high flow conditions, was a key focus for this current 

research.  

The documented history of ore extraction at Whitesike and Bentyfield mines primarily covers the period 

from the late seventeenth century until their abandonment in the early 1900s, although archaeological 

surveys suggest that the length of active mining almost certainly extends back much further (Oakey et al., 

2012; Railton and Wooler, 2012). Surface remains related to historical mining operations include mine adits, 

dressing floors (ore processing areas), a crushing mill wheel-pit, a two-storey mine shop, and multiple waste 

heaps associated with different stages of the extraction and processing workflow. Whitesike and Bentyfield 

mines are jointly under statutory archaeological protection as a nationally important Scheduled Monument 

(Historic England, 2015) and the majority of Whitesike Mine is also designated a Site of Special Scientific 

Interest (SSSI) because of the extensive calaminarian (metallophyte) grassland species found on the metal 

rich soils (Natural England, 2000). Despite these statutory designations, active erosion of the surface mining 

remains has been recognised as an ongoing problem for almost two decades (English Heritage, 2013). A 

programme of consolidation works to stabilise the mines was completed in 2012, informed by a 

geomorphological and flood risk assessment (Newson, 2012) and archaeological survey (Strickland and 

Wooler, 2012). Fieldwork for this current study commenced approximately five months after the stabilisation 

works had been completed and therefore at a time when the surface mining remains were considered to be at 

reduced risk of erosion. 

 

3. Material and methods 

3.1. Monitoring surface erosion - terrestrial laser scanning (TLS) 

Repeat terrestrial laser scanning was used to monitor surface erosion at Whitesike and Bentyfield mines at 

approximately monthly intervals over an 18 month period (September 2012 to March 2014). Scanning was 

undertaken using a Riegl VZ-1000 time-of-flight based terrestrial laser scanner operating at a scan frequency 

of 300 kHz (RIEGL, 2013). Laser returns were collected every 0.03° within a 30-130° vertical and 0-360° 
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horizontal range, resulting in a potential maximum of 40,011,334 points per individual 5.5 minute scan. The 

scanner had a nominal maximum range of 450 m, but scan distances were typically much shorter than this 

because of the narrow width of the valley and local relief (mean distance from nearest scan station = 23 m). 

Owing to the size (0.023 km
2
) and variable topography of the survey area, scans were collected from 21 

individual scan stations each month (Fig. 2). This was necessary in order to maintain approximately equal 

point spacing throughout the survey area (~20 mm) and avoid large areas of occlusion. These scans were 

broadly divided into three survey areas: Bentyfield Mine (13 scans; 14,013 m
2
), Whitesike Mine (6 scans; 

6444 m
2
), and the western tailings heaps that originally served as waste dumps for both mines (2 scans; 2144 

m
2
). To aid the registration of the multiple point clouds, a network of additional reflective target markers (n 

= 20) was established throughout the survey area. The locations of the scan stations and target positions were 

recorded using a Leica 1200 differential GPS and marked with semipermanent survey stakes, allowing the 

accurate relocation of the survey tripod and reflective targets each month. Adverse weather conditions and 

equipment issues during five survey visits (December 2012, February/April/July 2013, February 2014) 

meant that only 14 out of 19 TLS data sets were fully captured.   

Processing of the TLS data was undertaken in RiScan Pro v1.7.9 and involved the filtering of nonground 

points and the global georeferencing of the point clouds using the dGPS positions of the reflective targets. 

The coregistration of the multiple point clouds was then refined to a standard deviation error of <10 mm 

using the Multi Station Adjustment (MSA) tool, a cloud matching function based on an iterative closest point 

(ICP) algorithm. Registered monthly point clouds were exported as XYZ coordinates before being imported 

into ENVI v5.1 and interpolated to form 0.05 m resolution digital elevation models (DEMs).  

 

3.2. Quantifying geomorphic change using DEM differencing 

Geomorphic change occurring between successive TLS surveys was assessed using the DEM differencing 

method developed by Wheaton et al. (2010) and utilising the Geomorphic Change Detection (GCD) v6.1.8 

add-in for ArcGIS v10.2. This change detection method includes consideration of spatial uncertainty in DEM 

error resulting from a number of user-defined input survey and terrain parameters, an approach that has been 
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successfully employed by a number of recent studies across a range of geomorphic contexts (Blasone et al., 

2014; Kuo et al., 2015; Schaffrath et al., 2015).  

Based on the premise that DEM error is spatially variable, the change detection method involved definition 

of a three input fuzzy inference system (FIS) including categories relating to point density, slope angle, and 

surface roughness — factors that have been demonstrated as useful indicators of elevation uncertainty (Milan 

et al., 2011; Schürch et al., 2011; Rychkov et al., 2012). Categorical thresholds (i.e., low, medium, high) for 

FIS input parameters were defined through consideration of local terrain and survey characteristics, as well 

as comparative examples from previous studies (Wheaton, 2008; Wheaton et al., 2010; Blasone et al., 2014). 

The spatially variable error surfaces produced from sequential DEMs were combined to form a single 

propagated error raster, and a t score calculated the probability that elevation changes were real, based on the 

method outlined by Brasington et al. (2003). A 5 x 5 spatial coherence filter was subsequently applied to 

refine the DEM of Difference (DoD) uncertainty raster, based on the understanding that areas of erosion and 

deposition tend to occur in discrete units. A linear transform function was used to relate the output of this 

convolution filter to a cell-by-cell probability that the recorded elevation change was real, before these 

conditional probability values were combined with the FIS estimate of elevation uncertainty to generate a 

single updated probability surface. A probabilistic uncertainty threshold of 95% was used to either accept 

DoD cell values as real topographic change or reject them as relating to error (Wheaton et al., 2010).  

Change detection analyses included pairwise comparison of each of the successive monthly TLS survey 

intervals and quantification of total changes occurring across the entire 18 month monitoring period 

(September 2012 – March 2014). Although the change detection method applied allows for the removal of 

spurious values caused by errors in the primary data, elevation change values within the resulting DoDs can 

still represent a combination of both real geomorphic change (e.g., erosion, deposition) and seasonal patterns 

of vegetation growth (Coveney and Fotheringham, 2011; Fan et al., 2014). To account for this issue, discrete 

morphological signatures visible in the DoDs were digitised as vector polygons within ArcGIS, based on the 

budget segregation method outlined by Wheaton et al. (2013). The TLS DEMs, aerial photographs and field 

observations were used to interpret the geomorphological process likely to have caused each mapped feature, 

with this information being added to the polygon data as tabular attributes. Elevation change values extracted 
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to each of these process categories were converted to mass using a bulk density of 1.674 ±0.18 t m
-3

, based 

on an average of eight sediment samples taken from across the mined area. 

 

3.3 X-Ray Fluorescence (XRF) survey  

A field portable X-Ray Fluorescence (pXRF) survey was conducted on 15-17 August 2014 using a Niton 

XLT792 XRF analyser to characterise contaminant levels within surface soils around Whitesike and 

Bentyfield mines. Conditions over the three survey days were consistently dry, meaning surface moisture 

levels remained constant throughout. Zinc (Zn) and lead (Pb) were the main two metals historically extracted 

in the area and so analysis focused on understanding the spatial variation in their concentrations. Although 

cadmium (Cd) was identified as another metal of significance in terms of downstream water quality, large 

errors associated with the retrieval of this element during the field pXRF survey (mean error = 55%) meant 

that it was removed from subsequent analyses.  

The pXRF unit was operated in bulk soil mode with the measurement analysis time set to 120 seconds, as 

recommended by Kilbride et al. (2006) and Shuttleworth et al. (2014). Surface debris was removed and the 

soil lightly compacted where necessary in order to present a flat surface to the sensor optics (Ridings et al., 

2000). The accuracy of the internal calibration was checked at the beginning and end of each survey using 

analysis of appropriate certified reference material (CRM, till 4). The CRM concentrations measured in the 

field by the pXRF were all within ±14% of the reference value for Pb (𝜎 = 4.9) and ±8% for Zn (σ = 6.4). 

In situ pXRF measurements were recorded at 120 locations based on a predetermined stratified sampling 

strategy and positioned using a Garmin Etrex 10 handheld GPS (Fig. 2). This sampling approach categorised 

sample locations into relevant geomorphological landform units and whether they related to mine or non-

mine (e.g., ‘natural’ colluvium) sediments (Table 1). The main focus of the survey was to characterise 

sediment contaminant variation across the mine sites themselves, and so 105 measurements were taken along 

a 900 m reach of Garrigill Burn covering the extent of Whitesike and Bentyfield mines. To better understand 

the broader sediment dispersal implications of the mine survey, an additional five measurements were taken 

from channel sediments located farther downstream along Garrigill Burn and ten measurements along the 

main River South Tyne, five upstream and five downstream of the confluence with Garrigill Burn (Fig. 1). 
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A random subsample of 20% (n = 24) of the pXRF measurement locations were selected for additional 

comparative laboratory analyses (Table 1). This sample size was deemed sufficient to include a range of 

readings within each of the different geomorphological sample units and so test the accuracy of the field 

measurements. Following the recording of the in situ pXRF measurement at these locations, a soil sample of 

the immediate area was collected using a plastic trowel to avoid potential contamination. Laboratory 

analyses of the subset of field samples were undertaken to provide comparative reference data against which 

to validate the field pXRF measurements. Soil samples were initially oven dried at 40°C then sieved at 2 mm 

before being ground and homogenised using an agate ball mill and passed through a 250 µm sieve (Ridings 

et al., 2000). 

The same samples were then analysed using microwave-assisted acid extraction and inductively coupled 

plasma optical emission spectroscopy (ICP-OES). Subsamples weighing 150 mg were microwave digested in 

an acid solution of 4 ml H202, 9 ml HNO3, 3 ml HCL, and 2 ml HF (USEPA method 3052) before being 

filtered through Whatman glass microfibre filter papers. The filtrate was diluted to 50 ml using deionised 

water, and Pb and Zn concentrations were then determined using ICP-OES. The accuracy of the laboratory 

method was checked through analysis of samples of Certified Reference Material CRM BCS 362 (mine 

tailings) and CRM 7002 (light sandy soil). The relative percent difference (RPD) between the concentrations 

in each CRM and that measured by the ICP-OES was <5% for Pb and for Zn. 

To further explore spatial variability in surface contaminant levels, the handheld GPS positions relating to 

the sample locations were linked to the tabular pXRF results and imported into ArcGIS v10.2. Contaminant 

values at unsampled locations were then estimated through interpolation (ordinary kriging) of the measured 

sample points, with separate modelled surfaces being produced for Pb and Zn. This approach has been 

shown to enhance the ability to identify spatial trends and contaminant hotspots from sample pXRF data 

(Carr et al., 2008; Hürkamp et al., 2009). Map algebra within ArcGIS was then used to combine the 

interpolated contaminant data with the surface change results from the TLS, providing estimates of 

contaminant mass flux for Pb and Zn. This involved the conversion of the volumetric change raster to mass 

using the average bulk density value, followed by the calculation of per-pixel contaminant flux through 

combination with the interpolated XRF results. The wider significance of the XRF results was assessed 

through comparison with available soil guideline values (SGVs) (Table 2). 
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4. Results 

4.1. Rates and processes of surface change 

Total net surface change across the full survey area during the 18 month period of TLS monitoring was 

overwhelmingly erosional, with the results indicating that the mined area contributed ~434 t (260 m
3
) of 

sediment to Garrigill Burn, equivalent to 289 t a
-1

 (173 m
3
 a

-1
). The sediment budget constructed from the 

full TLS monitoring results (Fig. 3) displays the relative contribution of the different geomorphic drivers of 

change and highlights the dominance of certain erosional processes. Gullying accounted for ~60% (268 t) of 

all the recorded erosion from the overall survey area, with bank erosion contributing ~30% (134 t). Of the 

other erosion processes identified during the monitoring work, only diffuse slope erosion (21 t) and mass 

movements (13 t) recorded more than 10 t of mass loss. The other notable feature visible in the total 

sediment budget is the lack of sediment storage relative to the magnitude of recorded erosion (Fig. 3). A total 

of just 15.6 t of deposition was recorded across the entire mined area, representing only ~3% of the eroded 

material. These results indicate that the remaining ~97% of the eroded material was conveyed out of the 

immediate study area via Garrigill Burn and potentially therefore into the main River South Tyne system.  

Spatial variation in the occurrence and magnitude of different erosion processes was clearly visible in the 

change detection results across the two mines (Figs. 4 and 5). Although overall net change at each area was 

erosional, the magnitude of erosion was far greater for the western tailings heaps (277 t) than for either 

Whitesike (104 t) or Bentyfield (53 t) mines. This was despite the tailings heap survey area being just 2144 

m
2
, compared with 6539 m

2
 for Whitesike and 18,905 m

2
 for Bentyfield. The substantial amount of erosion 

from the tailings heaps is primarily the result of the progressive development of a large gully system in the 

west-facing slope of the tip (Figs. 6 and 7). Four distinct gullies were identified, including one major central 

gully that accounted for ~262 t of eroded material — equivalent to 95% of all net erosion from the tailings 

heap and >60% of the total net erosion for the entire mined area. Recorded deposition on the tailings heaps 

was minimal (0.7 t) owing to the direct connection between the base of the slopes and the main channel of 

Garrigill Burn, which flows through a culvert immediately below the tips. Diffuse slope erosion was 

recorded across large sections of the mined area, resulting in relatively low magnitude (20.6 t) but spatially 
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extensive surface change. The unvegetated and exposed slopes of the tailings heaps were affected most by 

diffuse slope erosion (12.1 t), with Whitesike (3.9 t) and Bentyfield (4.6 t) mines recording comparably less 

surface change from these processes. 

In contrast, surface changes recorded across Whitesike and Bentyfield mines were dominated more by 

processes associated with the main channel of Garrigill Burn than by slope processes (Figs. 4 and 5). Bank 

erosion resulted in 90 t of erosion at Whitesike Mine and 44 t at Bentyfield. This bank erosion involved 

individual large-scale collapses and slower progressive erosion from diffuse subaerial processes and direct 

entrainment of basal bank deposits. Particularly significant bank collapses were recorded adjacent to the 

lower dressing floor (37 t) and opposite the upper dressing floor (52 t) at Whitesike Mine and between the 

mine shop and dressing floors at Bentyfield Mine (37 t).  

Mass movements (excluding bank failures) were another significant process at Bentyfield Mine in particular, 

resulting in ~13 t of erosion during the 18 month monitoring period (Figs. 4 and 5). The largest example of 

this was a substantial landslide on the north-facing slope of the main Bentyfield spoil heap, which 

monitoring revealed to be a relatively slow-moving rotational failure. Although the downslope displacement 

of the overall landslide was gradual, uplift of the toe during rotational movement periodically introduced 

moderate amounts of sediment into Garrigill Burn through shallow basal failures. The base of the landslide 

was directly adjacent to the stream channel with little capacity for long-term sediment storage, meaning that 

the mass movement provided a continuous but small-scale supply of mine waste sediments to Garrigill Burn 

and the wider stream network. 

 

4.2. Temporal variability in process rates 

The approximately monthly frequency of TLS monitoring enabled high resolution temporal variation in the 

pattern and magnitude of surface change to be quantified. These results indicate that the erosion of the mine 

deposits was highly episodic rather than overtly seasonal in character, with a prominent peak in rates of 

surface change between May and June 2013 (Fig. 8). For example, ~59 t of erosion occurred at Whitesike 

Mine during May 2013, equivalent to 57% of the entire net surface change for this mine area. This peak in 

erosion rate was experienced across the majority of the mined area and was dominated by extensive bank 
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erosion along Garrigill Burn and incision along concentrated flow paths, suggesting the occurrence of a high 

intensity rainfall event and associated high flow conditions. This peak likely relates to a storm event that 

occurred on 18 May, resulting in 27.44 mm of rainfall and the highest ever recorded peak flow of 335.2 m
3
 s

-

1
 at the nearest gauging station on the main South Tyne at Alston, ~5.2 km away from Whitesike Mine (Fig. 

8A). For context, this peak flow was 2.4 times the median annual maximum discharge for the South Tyne at 

Alston (Qmed = 139.2 m
3
 s

-1
); the recorded daily mean discharge of 59.5 m

3
 s

-1
 for the event is 1% of the 

time. Secondary peaks in surface change did occur at other times, such as the very large (~23 t) bank 

collapse opposite the Whitesike Mine lower dressing floor in September 2012 (Fig. 8C). However, these 

tended to be more isolated occurrences relating to specific local conditions or precursory patterns of change, 

such as the progressive undercutting of stream banks prior to large-scale collapse. 

The detailed time series from the main gully system on the west-facing slope of the tailings heaps provides a 

useful example of the interactions between internal topographic adjustment and external environmental 

trigger factors (Figs. 7, 8B). The period recording the greatest amount of change was again the May-June 

2013 survey interval, in which the majority of the gully experienced considerable morphological adjustment. 

This included significant incision along much of the gully floor, including a depth change exceeding 1.4 m in 

the upper gully area. Similarly, the prominent gully sidewall collapse between November 2012 and January 

2013 potentially relates to external forcing in the form of large rainfall events in late November and 

December 2012. For example, the South Tyne station at Alston recorded 24.9 and 48.6 mm of rain on 25 and 

26 November respectively,; followed by a further 20 mm on 8 December and 29.2 mm on 20 December (Fig. 

8A). Other changes are likely to be the result of freeze-thaw and snowmelt, especially the extensive 

widening of the upper gully profile during January and May 2013.  

Small-scale changes were, however, taking place throughout the year between the major weather-related 

erosional changes (Fig. 8). These low magnitude changes appear to be caused by a combination of small-

scale sidewall collapses, downslope gravitational movement of eroded colluvial sediments, and animal 

activity (trampling, burrowing). For example, although the net change results indicate only moderate erosion 

between January and May 2013, the DoDs actually show that the gully underwent considerable internal 

modification owing to extensive cross-sectional and headward enlargement (Fig. 7). Interestingly, the 

majority of the eroded material was deposited on the central gully floor and remained there in temporary 
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storage until the major erosional event in May 2013, with the sediment export for this event therefore 

relating to further primary erosion of the gully and to the remobilisation of previously deposited sediments. 

These results suggest that temporal variation in the magnitude of surface change across the mined area was 

dominated by large-scale erosional events, but that low magnitude changes were occurring throughout the 

year; these have an important preparatory role in determining temporal fluctuations in sediment yields.     

 

4.3. Mine-scale spatial variability in Pb and Zn concentrations 

The results of the pXRF survey of the mine area show considerable variability in surface metal 

concentrations for Pb and Zn. Figure 9 shows the variability in metal concentrations between the different 

sample categories used in the initial field survey. Kruskal-Wallis H tests were conducted to determine if 

levels of Pb and Zn were significantly different between the three broad sample categories relating to mine, 

non-mine, and channel sediments. Although the results showed that there was no statistically significant 

difference in Pb between the three categories, χ
2
(2) = 3.332, p = 0.1890, there was a statistically significant 

difference in Zn concentrations, χ
2
(2) = 8.551, p = 0.0139. A post-hoc Mann-Whitney U (Wilcoxon rank-

sum) test indicated that the only pair of categories to differ significantly in terms of Zn concentrations were 

the channel and mine sediments (Z = -2.823, p = 0.0048).  The significance of these results is that, although 

landforms and deposits at the mine can be visually characterised in terms of their likely origin and formation, 

there is generally no equivalent distinction based solely on the levels of Pb and Zn in the corresponding 

sediments. This in turn implies a high degree of contaminant dispersal and mixing of sediments during the 

active mining period and through post-abandonment reworking. 

The mean Pb concentration recorded in the field was 6480 mg kg
-1

, with an overall range between a 

minimum of 60 and maximum of 78,000 mg kg
-1

 (Table 3). Analysis of the sample point values and 

interpolated surface (Figs. 10A, 11A) indicate clear spatial variability in Pb concentrations across the mined 

area, with notable hotspots in particular locations. The Pb levels are particularly elevated in the vicinity of 

the lower dressing floor of Whitesike Mine, with values here reaching the maximum recorded level of 

~78,000 mg kg
-1

. Another area of very high Pb concentrations (>30,000 mg kg
-1

) was recorded farther 

upstream around the Bentyfield dressing floor and crushing mill, in this case extending across both banks of 
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Garrigill Burn. The third main area of high Pb concentrations was located on the unvegetated slopes of the 

tailings heaps to the west of Whitesike Mine (Fig. 10A). These values are markedly lower than those on the 

dressing floors but are still in the region of 10,000-15,000 mg kg
-1

. Smaller hotspots with lower 

concentrations are found elsewhere across the mined area, including in the sediments immediately adjacent 

to the Whitesike Mine and Colonel’s Level adits (~9000-12,000 mg kg
-1

). Significantly, as well as hotspots 

of very high Pb concentrations, the results also indicate that 88% of all samples taken across the mined area 

were in excess of the UK residential / allotment soil guideline values and 84% were in excess of all available 

recommended guideline values for Pb (Table 2). All of the Pb values for the 20 channel sediment samples 

taken across the mined area were over 18 times greater than the threshold effects level (TEL) and 7 times 

greater than the probable effects level (PEL) guidelines specified by NOAA (Table 2).  

The mean Zn concentration recorded across the mined area was 3060 mg kg
-1

, with a range between 36 and 

69,920 mg kg
-1

 (Table 3). The spatial distribution of Zn concentrations across the mined area shows marked 

similarities to those for Pb, with a notable concentration of very high levels around the Whitesike lower 

dressing floor, including the maximum recorded value of ~70,000 mg kg
-1

 (Figs. 10B, 11B). The Bentyfield 

dressing floor area also recorded high levels of Zn within the surface sediments (~5000-15,000 mg kg
-1

), 

with smaller hotspots again identified in sediments adjacent to the main adit entrances (~2000-10,000 mg kg
-

1
). The Zn levels measured on the tailings heaps to the west were consistently high (>10,000 mg kg

-1
), 

probably reflecting the fact that these waste heaps were never subsequently reprocessed to extract zinc, as 

occurred at other locations in the North Pennines (Dawson, 1947). Although there are no UK soil guideline 

values currently available for Zn, the results indicate that 65% of all pXRF sample measurements across the 

mined area were in excess of the recommended Dutch soil remediation intervention value and 96% were in 

excess of the equivalent target value (Table 2). All of the Zn values for the 20 channel sediment samples 

taken across the mined area were more than twice the specified TEL and 95% of these samples were also in 

excess of the specified PEL (Table 2). 

 

4.4. Catchment-scale flux of contaminated sediments 
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The wider dispersal of contaminated sediments from the mined area was assessed through additional pXRF 

measurements taken from channel sediments located farther downstream along Garrigill Burn and from the 

main River South Tyne, up- and downstream of the confluence with Garrigill Burn (Fig. 1). Figure 11 clearly 

shows that stream sediment concentrations of Pb and Zn along Garrigill Burn increase with distance 

downstream. This trend continues beyond Whitesike and Bentyfield mines, with concentrations continuing to 

increase until the confluence with the South Tyne. The Pb concentrations increase from 1190 mg kg
-1

 for the 

sample point farthest upstream of the two mines to 4520 mg kg
-1

 at the confluence with the South Tyne. 

Similarly, Zn concentrations increase from 520 mg kg
-1

 at the upstream survey extent to 6450 mg kg
-1 

at the 

confluence with the South Tyne. In both these cases it must be stated that the upstream sample points are still 

actually downstream of other mining sites and so are unlikely to represent natural background geological 

levels. 

Analysis of the pXRF measurements taken along the main River South Tyne shows that the levels of Pb and 

Zn upstream of the confluence with Garrigill Burn are markedly lower than those taken downstream (Fig. 

12). The mean Pb concentration upstream of the confluence was 220 mg kg
-1

 while that for the downstream 

samples was 940 mg kg
-1

. Although these mean concentrations are clearly influenced by outlier values, the 

median results show a similar pattern, with a concentration of 220 mg kg
-1

 upstream of the confluence and 

696 mg kg
-1

 for the downstream samples. Samples taken immediately up- and downstream of the confluence 

saw a rise in Pb values from 260 to 2190 mg kg
-1

. The Pb concentrations then dropped to 620 mg kg
-1

 by the 

next sample point ~175 m downstream, remaining <750 mg kg
-1 

for all other downstream measurements. The 

mean Zn concentration upstream of the confluence with Garrigill Burn was 160 mg kg
-1

, increasing to 1970 

mg kg
-1

 for the equivalent downstream samples. The Zn concentrations saw a similar sharp increase 

immediately downstream of the confluence itself, with a change from 185 to 3045 mg kg
-1

. Unlike Pb, Zn 

values remained elevated for a greater distance downstream, decreasing to a value of 470 mg kg
-1

 ~450 m 

away from the confluence. Although based on a relatively small number of samples, these results correspond 

with earlier coarser resolution sampling of metal levels along the entire River South Tyne. For example, 

sampling by Macklin (1996) showed an overall trend of decreasing Pb and Zn concentrations with distance 

downstream, but with more abrupt periodic variations reflecting inputs from tributary confluences, including 

Garrigill Burn, and the influence of localised valley floor geometry.    
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4.5. Comparison of in situ XRF measurements to ICP-OES 

In situ field pXRF measured concentrations for Pb and Zn were generally lower than the equivalent values 

obtained using ICP-OES (Table 3). This underestimation of contaminant values by field-based pXRF 

measurements is common and typically relates to a combination of factors, including moisture content, 

physical matrix effects, and inhomogeneity between surface and substrate sediments (Kalnicky and Singhvi, 

2001; Kilbride et al., 2006; Peinado et al., 2010). Direct comparison between field results and laboratory-

analysed reference samples is therefore crucial in order to obtain a more accurate estimate of the true level of 

sediment contamination. 

The mean Pb value from the ICP-OES analyses was 8895 mg kg
-1

, compared with 4775 mg kg
-1

 for the field 

pXRF results of the equivalent samples. The minimum (133 mg kg
-1

) and maximum (75177 mg kg
-1

) Pb 

values were also markedly higher for the ICP-OES results. The Zn concentrations show a similar pattern, 

with the mean Zn values of 4090 and 2340 mg kg
-1

 for ICP-OES and pXRF respectively. The minimum and 

maximum ICP-OES Zn values were 165 and 19,360 mg kg
-1

, both significantly higher than the field pXRF 

equivalents. Moisture content for the samples used in the laboratory analyses ranged between 8.81 and 

38.18%, with a mean value of 19.53% and standard deviation of 7.18%. 

Linear regression between the field pXRF and ICP-OES values for Pb indicates a strong positive correlation 

with an R
2
 of 0.95 (p = <0.0005). Hürkamp et al. (2009) found a similar relationship (R

2
 = 0.94) based on a 

comparable dataset and used the straight line gradient of their regression equation to apply a correction factor 

to their original field pXRF results (x 1.51). The equivalent straight line gradient for the present study was 

higher (1.92) but still broadly comparable to the 1.51 recorded by Hürkamp et al. (2009). Applying the full 

regression equation increases the mean of the corrected field XRF values to 11,030 mg kg
-1

, compared with 

only 5890 mg kg
-1

 for the raw field measurements (Table 3). The maximum Pb concentration for the 

corrected data set increases to 149,340 mg kg
-1

. 

The relationship between the field pXRF and ICP-OES values for Zn is less strong than for Pb but still shows 

a moderate-strong positive correlation (R
2
 = 0.68, p = <0.0005) and a straight line gradient of 1.32. Applying 

the equation from a linear regression between these variables increases the mean of the corrected field XRF 
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values to 4924 mg kg
-1

, compared with an original raw field value of 2968 mg kg
-1

. The maximum Zn 

concentration increases from 69,920 mg kg
-1

 for the raw field pXRF data to 93,440 mg kg
-1

 for the corrected 

data (Table 3). 

 

5. Discussion 

5.1. Geomorphic drivers of erosion and contaminant release 

Erosion of surface remains at Whitesike and Bentyfield mines is mobilising sediments with high 

concentrations of Pb and Zn and delivering them to the wider fluvial system. Integrating the results of the 

TLS and pXRF surveys allows total contaminated sediment flux from the mined area to be estimated and 

partitioned into the relative contributions from different geomorphic drivers. Together, these results suggest 

that there was a net export of ~4.59 t of Pb and 2.14 t of Zn during the 18 month monitoring period (Fig. 13). 

The tailings heaps were the primary source of eroding sediments across the mined area, mainly owing to the 

development of a large gully system on the west-facing slope. Gullying across the overall survey area 

released an estimated 3.09 t of Pb and 1.22 t of Zn, with the majority of this originating from the western 

tailings heaps. Erosion of abandoned mine deposits through rilling and gullying has been identified in a 

number of previous studies (Haigh, 1980; Hancock et al., 2008), with the lack of vegetation and steep slopes 

on waste heaps often making these landforms particularly susceptible (Gozzard et al., 2011). 

The main concentrations of Pb and Zn were located across the lower dressing floor at Whitesike Mine, 

reflecting the nature of the processing activities that took place in this area (Fig. 10). Although monitoring 

revealed the upper surface of the dressing floor to be relatively stable, extensive lateral erosion of the banks 

of Garrigill Burn was recorded here. This is of particular concern given that the highest in situ pXRF levels 

for Pb (~78,000 mg kg
-1

) and Zn (~70,000 mg kg
-1

) from the entire mined area originated from bank samples 

in this location. A similar situation was found farther upstream at the Bentyfield dressing floor, where high 

levels of Pb (~35,000 mg kg
-1

) and Zn (~15,000 mg kg
-1

) have been recorded in areas experiencing moderate 

but persistent rates of bank erosion. Across the overall study area, bank erosion contributed 23% (1.07 t) of 

the total estimated Pb export and 32% (0.7 t) of the total Zn export (Fig. 13). 
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Although gullying of the tailings heaps and bank erosion along Garrigill Burn were the dominant 

geomorphic processes leading to the mobilisation of contaminated sediments, numerous other processes were 

also recorded (Fig. 4). Understanding the distribution and relative contribution of these lower magnitude 

processes is important as the pXRF results indicate that ~84% of all sediments sampled were in excess of 

available recommended soil guideline values for Pb and ~65% in excess of all available values for Zn. 

Similarly, the lack of clear separation between pXRF values for the different stratified sample categories 

(Fig. 9, section 4.3) indicates a high degree of mixing of sediments or leaching of contaminants between 

primary mine deposits and the local sedimentary environment. This demonstrates that erosion of any deposit 

within the vicinity of the mine is potentially mobilising highly contaminated and damaging sediments to the 

wider environment.  

Even with high resolution TLS DEMs, however, actually identifying the relative contribution of specific low 

magnitude drivers of diffuse erosion can be difficult, unless the processes themselves can be directly 

observed in the field. For example, needle-ice formation and associated sediment detachment was clearly 

visible on a section of the dressing floor slope at Bentyfield Mine in December 2012 — a process that is 

known to influence variations in seasonal sediment yields in upland catchments (Prosser et al., 2000). 

However, it is likely that other unrecorded diffuse slope processes were also occurring, including wind 

erosion, sheetwash, and soil creep, all of which have also previously been documented at other abandoned 

mines (Esling and Drake, 1988; Toy, 1989; Merrington and Alloway, 1994).  

Depositional processes were negligible in comparison with the overall magnitude of erosion, representing 

just ~3% of the total net erosion recorded. This can be explained by the proximity of the mine remains to the 

main stream channel and the corresponding lack of available storage areas on which eroded sediments could 

be deposited. For example, recorded deposition on the tailings heaps was only 0.7 t owing to the direct 

connection between the base of the tips and the main channel (Fig. 6). Because proximity to water was an 

important requirement for many aspects of historical metal mining operations, it is highly likely that this 

level of sediment connectivity is typical of many other metal mines in similar upland landscapes. This high 

degree of coupling between the eroding mine sediments and the stream channel has important implications 

for the mobilisation and dispersal of heavy metal contaminants to the wider environment, a point that will be 

considered in more detail in section 5.4. 
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5.2. Temporal variation in contaminated sediment flux 

Although surface changes occurred throughout the monitoring period, the TLS surveys demonstrate that the 

erosion of abandoned mines in upland environments is highly episodic and driven primarily by high 

magnitude, low frequency storm events. The pronounced peak in erosion recorded in the May-June survey 

interval was the result of the storm that occurred on 18 May 2013 (Fig. 8). This storm led to a record peak 

discharge of 335.2 m
3
 s

-1
, a daily mean discharge of 59.5 m

3
 s

-1
, and the highest ever recorded river level at 

the South Tyne gauging station in Alston (2.85 m; typical range for 90% of time is 0.16–1.90 m) 

(Environment Agency, 2017). This event caused extensive erosion across the entire mined area, with 

especially large-scale changes occurring close to the main channel of Garrigill Burn and along preexisting 

concentrated flow paths. More broadly, the storm also resulted in widespread flood damage across northern 

England (Durham County Council, 2013). Although erosion resulting from this single storm event dominated 

the overall sediment flux, it is also clear from the time series data that the relationship between large 

precipitation events, discharge, and the magnitude of net erosion is complex, with some of the largest events 

recording only minimal net surface change (Fig. 8). This reflects the different characteristics of the 

individual precipitation events, antecedent conditions and variability in rates of surface erosion and sediment 

mobilisation.  

For example, the intensity, duration, and spatial coverage of large precipitation events are crucial in 

determining the magnitude and extent of surface change. Precipitation associated with the 18 May event was 

actually relatively moderate (27. 4 mm), but the peak flow and river stage for the South Tyne at Alston 

reached record levels, suggesting that the storm was potentially high intensity and short duration. Antecedent 

conditions were also potentially important here, with 83.5 mm of rain falling during the 10 days leading up 

to the 18 May, meaning that catchments could have been near their moisture-holding capacity by the time the 

main storm occurred.  

In comparison, the largest precipitation event during the monitoring occurred on 27 July 2013 (65.7 mm), but 

this date recorded only a moderate mean flow (16.7 m
3
 s

-1
) and no net erosion (Fig. 8). The reduced South 

Tyne discharge for this event is at least partially attributable to a period of relatively dry antecedent weather, 
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with only 28.5 mm of total rainfall during the preceding 21 days. Similarly, precipitation on 23 December 

2013 was notably higher than the May 2013 event (39.4 mm); but the peak flow on the South Tyne was ~2.8 

times less (119.9 m
3
 s

-1
), the maximum stage was over 90 cm lower, and recorded erosion was relatively low. 

In this case, the event followed a period of relatively prolonged rainfall, with 107.4 mm recorded over the 

preceding 10 days, indicating that other factors were of importance in determining levels of erosion along 

Garrigill Burn. For example, the gauging station at Alston is ~5 km away from Whitesike Mine. Therefore, a 

localised high intensity rainfall event in Alston may not have actually been significant farther upstream in the 

South Tyne catchment, and equally, high flow events recorded at the Alston gauging station could be 

reflecting localised storms from tributaries other than Garrigill Burn.  

Sediment production and supply are also crucial in determining temporal variation in sediment flux and the 

observed disparities between precipitation events and net erosion rates. The time series from the main gully 

system on the western tailings heaps demonstrates this relationship very effectively (Fig. 7). The period from 

January to May 2013 saw extensive erosion of the upper gully but with the majority of the eroded material 

being retained in colluvial storage. The 18 May event then mobilised this stored sediment, resulting in a peak 

in net erosion for that month. In contrast, erosion in the months leading up to the 23 December event was 

relatively minor, meaning that even though this rainfall event was higher magnitude there was minimal 

sediment available and so the overall net surface change was limited. These data clearly suggest that, 

although large precipitation events are significant in driving the timing of surface processes, the specific 

intensity duration and spatial location of a storm, as well as the presence of readily available sediment, are 

crucial factors in determining the actual impacts that occur. The significance of high magnitude storms in 

driving the erosion of abandoned mines and release of contaminated sediments has been recognised in 

previous studies. Olyphant et al. (1991) found that low frequency, high magnitude rainfall events occurring 

in late spring are particularly effective at increasing sediment yields from abandoned mines, due to a 

combination of direct erosion and the flushing of previously eroded colluvial sediments from the slopes. The 

results from Whitesike and Bentyfield clearly fit this pattern but it should be noted that high intensity storms 

occurring at any time of year can result in a dramatic increase in erosion rates at abandoned mines (Evans et 

al., 2000). High intensity storms such as these can dominate patterns of annual erosion and contaminant flux, 

with Smith and Olyphant (1994) recording over 50% of the annual sediment yield from an abandoned coal 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

24 

 

mine in the midwestern USA as being produced by only 15% of the annual storms. Numerous other studies 

have also highlighted the dominance of diffuse sediment-borne contaminant inputs over point source metal 

contributions during high flow events, even if the actual sediment sources have not been specifically 

quantified (Mayes et al., 2008; Byrne et al., 2013). With the frequency and intensity of extreme precipitation 

events predicted to increase under projected climate scenarios (Kirtman et al., 2013), it appears highly likely 

that the large-scale erosion of heavily contaminated mine deposits will also increase in future decades 

(Macklin et al., 2006; Foulds et al., 2014).  

 

5.3. Fluvial dispersal of contaminated sediments 

The lack of sediment storage within the mined reaches of Garrigill Burn means that highly contaminated 

eroded mine sediments are often directly coupled with the main stream and the wider Tyne catchment. The 

high sediment delivery from Garrigill Burn reflects the steep, narrow valley and close proximity of the 

mining remains to the stream channel — a common situation in many upland mining areas where operations 

were reliant on water resources and water power. In such settings, erosion of mining remains is active and 

coupling between hillslopes and channels is high as floodplains are small and fragmented. Eroded 

contaminated sediments are therefore rapidly conveyed out of tributary systems such as Garrigill Burn before 

being attenuated through dispersal and storage within the wider Tyne catchment. 

The pXRF results indicate that Pb and Zn levels in stream sediments increase with distance downstream 

along Garrigill Burn, with values rising well above all recommended guideline values (Fig. 11). This 

increase in metal levels is likely to relate to cumulatively increasing inputs from the mine deposits at 

Whitesike and Bentyfield, as well as contributions from additional downstream mining remains (e.g., at 

Beldy, Fig. 1). Measurements taken along the main South Tyne show the impact of sediment contributions 

from Garrigill Burn, with Pb and Zn levels increasing and remaining elevated for at least 400 m downstream 

(Fig. 12). The results demonstrate that sediment inputs to Garrigill Burn are clearly impacting the wider 

Tyne catchment, with most of the contaminated sediments originating from Whitesike and Bentyfield mines 

during infrequent but high magnitude storm events. This dispersal of contaminated mine sediments has 
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important implications for downstream water quality targets and our understanding of the broader catchment-

scale patterns of heavy metal transfer (Miller, 1997; Dennis et al., 2009; Mayes et al., 2013). 

 

5.4. Wider implications for the monitoring and management of abandoned mines  

This study has demonstrated that correlating the scale and timing of sediment inputs with measured 

contaminant levels provides valuable insights into where and when episodic diffuse metal inputs are 

occurring. Such information is crucial when planning appropriate management or remediation schemes to 

reduce contaminated sediment inputs from abandoned mines. At Whitesike and Bentyfield, for example, the 

diffuse sediment contaminant load could be significantly reduced by targeting any future management work 

on just the west-facing slope of the tailings heaps, with contributions from other locations being relatively 

small in comparison. Any such management intervention would need to consider the nature of the process 

driving the mobilisation of the contaminated sediments (i.e., gullying) and be able to stabilise the slopes even 

during high magnitude storms when erosion and contaminant flux are typically at their highest.  

From a methodological perspective, the combined use of TLS monitoring and pXRF sampling has proved 

effective at directly quantifying diffuse sediment inputs to river systems impacted by historical metal mining. 

With its ability to identify specific contaminated sediment source locations, this integrated methodology 

provides an important comparative approach to other studies that quantify diffuse inputs using water 

sampling and indirect mass balance estimates (e.g., Mighanetara et al., 2009). However, comparison of the in 

situ pXRF and laboratory ICP-OES analyses suggests that the field results could be underestimating actual 

metal levels by a factor of ~1.9 for Pb and ~1.3 for Zn (section 4.5), likely owing to a combination of 

moisture content and particle size (Binstock et al., 2009). The implication of this is that actual contaminant 

levels are likely to be appreciably higher and the wider environmental impacts more pronounced, with the 

results presented essentially therefore recording a best case scenario for current levels of contaminated 

sediment flux to Garrigill Burn.  

Global estimates suggest ~349 million t of Pb and 713 million t of Zn were extracted worldwide up to the 

late twentieth century (Singer, 1995), with a considerable proportion being through relatively early, 

unregulated and uncontrolled operations (Nriagu, 1996; Price et al., 2011). Combined with recent 
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assessments indicating that there are at least 4900 noncoal abandoned mine sites throughout just England and 

Wales alone (Mayes et al., 2009), the scale of the global legacy from historical mining is considerable. Many 

of these abandoned mines are likely to share similar intrinsic (e.g., phytotoxic sediments, angle of repose 

waste heaps) and extrinsic (e.g., harsh or variable climates) factors that make them particularly susceptible to 

erosion. Because ~90% of metal contaminants in mined catchments are associated with sedimentary forms 

(Hudson-Edwards et al., 2008), it is therefore imperative that further research is directed toward developing 

our understanding of the drivers, rates, and timing of erosion on abandoned metal mines. 

 

6. Conclusions 

This study has quantified the role of eroding abandoned metal mines as ongoing source contributors of 

heavily contaminated sediments to fluvial systems. The erosion of abandoned mines is a significant and 

persistent issue, with 289 t a
-1

 of sediment entering Garrigill Burn from just two relatively small historical 

metal mines, equivalent to an estimated heavy metal contribution of ~3.06 t a
-1

 of Pb and 1.43 t a
-1

 of Zn. 

This ongoing release of Pb is equivalent to ~3% of the annual total production output from the two mines 

during their peak period of operation (1845-1900). Given the lack of storage capacity downstream of the 

mines along Garrigill Burn, we can assume that a high proportion of the eroded sediment is likely to reach 

the River South Tyne. In the absence of further stabilisation works, this process is likely to continue, with 

these two historical metal mines therefore acting as a significant source of Pb and Zn pollution for at least the 

foreseeable future.    

Coupling between eroding mine sediments and stream channels is high, with only ~3% of the eroded 

material being deposited as colluvial material. This reflects a combination of factors, including the steep and 

narrow form of the valley, the proximity of the mine remains to the stream and direct connectivity between 

eroding landforms and the channel network. Gullying of poorly consolidated and unvegetated waste heaps 

was the dominant driver of erosion at the mines, accounting for ~60% of all recorded erosion from the entire 

survey area. Bank erosion accounted for a further ~30% of the total erosion, with the remaining ~10% 

attributable to a range of lower magnitude diffuse erosion processes and discrete but slow-moving slope 

failures.  
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Erosion at the mine sites, and therefore the corresponding release of contaminated sediments, is highly 

episodic rather than overtly seasonal in character, being driven by high magnitude, low frequency storm 

events. The surface sediments themselves display considerable spatial variation in their concentrations of 

heavy metals, relating primarily to the distribution of the different mining processes which took place across 

the site. Particularly high concentrations (up to ~78,000 mg kg
-1

) were identified across the ore processing 

floors and in the tailings heap deposits to the west of the mined area; both areas also experienced 

considerable erosion in the form of bank collapses and gullying respectively. Importantly, however, the 

pXRF results also indicate that ~84% of all sediments sampled were in excess of all available soil guideline 

values for Pb and ~65% in excess of all available guideline values for Zn, indicating that any erosion across 

the majority of the mined area is potentially mobilising damaging levels of heavy metals.  

Abandoned metal mines present a unique and complex set of interdisciplinary challenges to the global 

science and management communities. There is a need to carefully balance their potentially damaging legacy 

effects — particularly in the form of high erosion rates, phytotoxic surface sediments, and water quality 

impacts — against their role as ecological habitats for rare metallophyte plant communities (Batty, 2005) and 

as important cultural heritage archives (Howard et al., 2015; Kincey et al., 2017). This current study has 

provided valuable insights into the distribution and timing of contaminated sediment flux from abandoned 

mines, enhancing our understanding of such sites as heavy metal source locations and therefore bridging the 

gap to existing studies focused on the wider catchment implications of historical mining (e.g., Miller, 1997; 

Macklin et al., 2006; Foulds et al., 2014; Clement et al., 2017; Pavlowsky et al., 2017). Future research 

should focus on monitoring sediment source contributions from abandoned mines in a range of other 

physical and environmental contexts, with the overall aim being to enhance our understanding to a point 

where realistic predictions can be made about likely morphological responses and contaminant inputs under 

a variety of future management and climate scenarios. 
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Table 1 

Stratified sampling strategy for pXRF field survey and laboratory reference analyses 

Category Example context No. of pXRF measurements 

Paired 

laboratory 

analyses (20%) 

Hillslope – non-mine ‘Natural’ undisturbed hillslope  15 3 

Hillslope – mine Spoil and tailing heaps   15 3 

Floodplain – non-mine 
Floodplain with no distinct mining 

features 
15 3 

Floodplain – mine Dressing floors 15 3 

Stream bank – non-

mine 

Bank comprised of non-mine 

sediments 
15 3 

Stream bank – mine 
Bank comprised of mine sediments 

(e.g., dressing waste) 
15 3 

Channel sediment 

(mine area) 
Exposed within-channel sediments 15 3 

Channel sediment 

(wider catchment) 
Exposed within-channel sediments 

15 

(5 from Garrigill Burn,  

5 from S. Tyne u/s of confluence,  

5 from S. Tyne d/s of confluence) 

3 

TOTAL  120 24 
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Table 2 

Soil guideline values for Pb and Zn (after Macklin et al., 2006; Buchman, 2008) 

Guidelines Context Pb (mg kg
-1

) Zn (mg kg
-1

) 

UK CLEA SGV Residential with plant uptake 450 - 

 Residential without plant uptake 450 - 

 Allotments 450 - 

 Commercial / industrial 750 - 

Dutch soil remediation Target 85 140 

 Intervention 530 720 

NOAA (SQuiRTs) Threshold effects level (TEL) 35 123 

 Probable effects level (PEL) 91.3 315 
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Table 3 

XRF and ICP-OES summary statistics for Pb and Zn concentrations (mg kg
-1

) 

 

Pb  

(all field 

data) 

Pb  

(mine 

area) 

 

Pb  

(Garrigill 

Burn –  

stream 

sediments) 

Pb  

(South Tyne –  

upstream of 

confluence) 

Pb  

(South Tyne –  

downstream of 

confluence) 

Pb  

(In situ 

–  

lab 

sample) 

Pb 

(ICP-

OES) 

 

Pb 

(all field 

data – 

adjusted) 

Mean 5,888 6,481 4,055 220 937 4,774 8,896 11,033 

Std. Dev. 10,560 11,092 1,551 38 634 8,506 16,753 20,254 

Minimum 61 61 2,126 165 441 61 133 0 

Maximum 77,999 77,999 6,638 262 2,189 33,036 75,177 149,340 

 

 

Zn  

(all field 

data) 

Zn  

(mine 

area) 

 

Zn  

(Garrigill 

Burn –  

stream 

sediments) 

Zn  

(South Tyne –  

upstream of 

confluence) 

Zn  

(South Tyne –  

downstream of 

confluence) 

Zn  

(In situ 

–  

lab 

sample) 

Zn  

(ICP-

OES) 

 

Zn 

(all field 

data – 

adjusted) 

Mean 2,968 3,057 4,909 160 1,971 2,338 4,092 4,924 

Std. Dev. 7,020 7,405 2,748 23 979 3,320 5,331 9,280 

Minimum 36 36 1,830 128 471 41 167 1,048 

Maximum 69,921 69,921 9,156 185 3,046 14,739 19,358 93,436 

Count 120 105 5 5 5 24 24 120 
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Figure captions: 

Fig. 1. Location of Whitesike and Bentyfield mines within the South Tyne catchment. The position of pXRF stream 

sediment measurements taken along Garrigill Burn and the main River South Tyne are shown in the detail map. 

 

Fig. 2. TLS survey areas and scan positions (A) and XRF sample measurement locations overlain on 1
st
 Edition OS map 

from 1868 (B) (aerial photograph © Historic England, Historic OS map © Crown Copyright and Landmark Information 

Group Limited, 2016). 

 

Fig. 3. Sediment budget for the total 18 month TLS monitoring period (September 2012-March 2014) for the combined 

area at Whitesike and Bentyfield mines. All values in bold are in tonnes. Percentage values indicate the proportion of 

the total eroded material. N.B. individual storage processes have been combined into overall slope and channel process 

groupings. 

 

Fig. 4. Surface changes occurring during the period September 2012 – March 2014 at Bentyfield Mine (A), Whitesike 

Mine (B), and the shared tailings heaps (C). 

 

Fig. 5. Sediment budgets for the separate TLS survey areas at Whitesike and Bentyfield mines and the tailings heaps, 

representing total recorded net change over the 18 month monitoring period. All values in bold are in tonnes. 

Percentage values indicate the proportion of the total eroded material. N.B. individual storage processes have been 

combined into overall slope and channel process groupings. 

 

Fig. 6. Field photographs facing downstream (A) and upstream (B) and UAV aerial image (C) showing the tailings 

heaps located to the west of Whitesike Mine. The UAV imagery was captured at the start of the TLS monitoring period 

in September 2012, while the field photographs were taken in March 2014 during the final survey. Garrigill Burn can be 

seen flowing from right to left (east to west) through a culvert underneath the main tailings heaps. 

 

Fig. 7. Pairwise change detection results between the 14 individual TLS survey dates for the main gully system on the 

western slope of the tailings heaps. Data are displayed with the viewer positioned face-on and slightly above the slope. 

Sequence is read from left to right and row by row.   
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Fig. 8. Relationship between (A) rainfall and daily mean discharge for the River South Tyne at Alston and net 

volumetric change per day for (B) gullying of the tailings heaps and (C) bank erosion at Whitesike Mine. River South 

Tyne data are from the UK National River Flow Archive. Error bars are based on the spatially variable change detection 

analysis conducted at a 95% confidence interval outlined in the methodology. 

 

Fig. 9. Pb and Zn concentration variability for each of the stratified pXRF sample categories. The horizontal lines 

represent the median value, the length of the box represents the interquartile range (IQR), while the whiskers define all 

data within 1.5 IQR of the nearer quartile. Data points beyond 1.5 IQR are shown individually.  

 

Fig. 10. Pb (A) and Zn (B) concentrations recorded during the pXRF survey of Whitesike and Bentyfield mines, 

displayed as modelled (interpolated) surfaces. 

 

Fig. 11. Graphs of downstream variation in Pb (A) and Zn (B) concentrations at Whitesike and Bentyfield mines, based 

on the results of the field XRF survey. The locations of the key mining features are indicated for reference. The extent 

of the main mined area relates to the polygon shown on Fig. 10. The right-hand extent of the graph indicates the 

confluence with the River South Tyne. 

 

Fig. 12. Changes in Pb and Zn values along the main River South Tyne in relation to the confluence with Garrigill 

Burn. 

 

Fig. 13. Budget diagram showing approximate contaminant flux from the entire mined area for Pb and Zn. Values in 

bold are in tonnes and percentages relate to the proportion of the total eroded material. 
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Highlights (85 characters or less) 

 

Contaminated sediment flux was quantified using a novel high resolution methodology. 

Erosion was dominated by gullying (60%) and bank erosion (30%). 

Slope-channel coupling was high, with the export of 97% of the eroded sediments. 

3.1 t a-1 of Pb enters the stream, equivalent to 3% of annual 1845-1900 mine output. 

Abandoned mines represent persistent sources of contaminated legacy sediments. 
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