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Leptogenesis can successfully explain the matter-antimatter asymmetry via out-of-equilibrium decays of
heavy Majorana neutrinos in the early Universe. In this article, we focus on nonresonant thermal
leptogenesis and the possibility of lowering its scale. In order to do so, we calculate the lepton asymmetry
produced from the decays of one and two heavy Majorana neutrinos using three-flavored density matrix
equations in an exhaustive exploration of the model parameter space. We find regions of the parameter
space where thermal leptogenesis is viable at intermediate scales, T ∼ 106 GeV. However, the viability of
thermal leptogenesis at such scales requires a certain degree of cancellation between the tree- and one-loop
level contribution to the light neutrino mass matrix, and we quantify such fine-tuning.
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I. INTRODUCTION

There is overwhelming experimental evidence for an
excess of matter over antimatter in the Universe. This
asymmetry remains a fundamental and unresolved mystery
whose explanation demands new physics beyond the
standard model (SM). The baryon asymmetry may be
parametrized by the baryon-to-photon ratio, ηB, which is
defined to be

ηB ≡ nB − nB̄
nγ

;

where nB, nB̄ and nγ are the number densities of baryons,
antibaryons and photons, respectively. This quantity can be
measured using two independent methods that probe the
Universe at different stages of its evolution. Big bang
nucleosynthesis, BBN, [1] and cosmic microwave back-
ground radiation, CMB, data [2] give

ηBBBN ¼ ð5.80–6.60Þ × 10−10;

ηBCMB ¼ ð6.02–6.18Þ × 10−10;

at 95% CL, respectively. As the uncertainties of the CMB
measurement are smaller than those from BBN, we shall
apply the CMB value throughout this work.
In order to dynamically produce the observed baryon

asymmetry in the early Universe, the mechanism of interest
must satisfy the following Sakharov conditions [3]1: B
(or L) violation, C/CP violation and a departure from
thermal equilibrium. Leptogenesis [4] satisfies these con-
ditions and produces a lepton asymmetry which is sub-
sequently partially converted to a baryon asymmetry via
Bþ L violating sphaleron processes [5].
Leptogenesis is particularly appealing as it typically

takes place in models of neutrino masses, simultaneously
explaining the baryon asymmetry and the smallness of the
neutrino masses. In its simplest realization, the lepton
asymmetry is generated via out-of-equilibrium decays of
heavy Majorana neutrinos [6–9]. This process occurs
approximately when the temperature, T, of the Universe
equals the mass scale of the decaying heavy Majorana
neutrino.
In general, the scale of thermal leptogenesis is not

explored below the Davidson-Ibarra (DI) bound, M1 ≈
109 GeV [10]. Davidson and Ibarra found an upper bound,

*kristian.p.moffat@durham.ac.uk
†silvia.pascoli@durham.ac.uk
‡petcov@sissa.it
§schulzhg@ucmail.uc.edu∥jturner@fnal.gov

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1This statement implicitly assumes quantum field theory is
CPT invariant.

PHYSICAL REVIEW D 98, 015036 (2018)

2470-0010=2018=98(1)=015036(28) 015036-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.015036&domain=pdf&date_stamp=2018-07-27
https://doi.org/10.1103/PhysRevD.98.015036
https://doi.org/10.1103/PhysRevD.98.015036
https://doi.org/10.1103/PhysRevD.98.015036
https://doi.org/10.1103/PhysRevD.98.015036
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


proportional to M1, on the absolute value of the
CP-asymmetry of the decays of the lightest heavy
Majorana neutrino. This constrains the regions of param-
eter space in which successful leptogenesis may occur as a
function of M1. This translates into the DI bound on M1

itself as the minimum value required for successful lepto-
genesis. There have been a number of in-depth numerical
studies which support this bound and require M1 ≥
109 GeV [11,12] in conjunction with a bound on the
lightest neutrino mass, m1 ≤ 0.1 eV [11,13,14].
The original derivation of this bound makes some

simplifying analytical assumptions and, hence, is subject
to three caveats: only the lightest heavy Majorana neutrino
decays, the heavy Majorana neutrino mass spectrum is
hierarchical, and flavor effects, which account for the
differing interaction rates of the charged-lepton decay
products of the heavy Majorana neutrinos, are ignored.
In this work, we shall investigate scenarios of three-
flavored thermal leptogenesis in a more general setting
than these conditions allow. We shall then consider lower
heavy Majorana neutrino masses at scales M1 ≈ 106 GeV.
Given the existence of low-scale leptogenesis models at the
TeV scale, we shall refer to this as “intermediate” scale
leptogenesis.
There are several reasons to explore leptogenesis at

intermediate scales. First, the introduction of heavy neu-
trinos to the SM leads to a correction to the Higgs mass
which may potentially be unnaturally large. This is because
the correction to the electroweak parameter μ2 (the negative
of the coefficient in the quadratic term of the Higgs
potential), is proportional to the light neutrino masses
and to M3, with M the heavy Majorana neutrino mass
scale [15]. In order to avoid corrections to δμ2 larger than
say 1 TeV2, one requires the lightest pair of Majorana
neutrino masses to have M1 < 4 × 107 GeV and M2 <
7 × 107 GeV [16]. Second, there is a tendency for baryo-
genesis models to reside at the GeV or GUT scales which
leaves intermediate scales relatively unexplored. Finally,
thermal leptogenesis at intermediate scales may resolve a
problem that arises in the context of supersymmetric
models which include gravitinos in their particle spectrum.
Gravitinos have interaction strengths that are suppressed by
the Planck scale and consequently are long-lived and
persist into the nucleosynthesis era. The decay products
of the gravitinos can destroy 4He and D nuclei [17,18] and
ruin the successful predictions of nucleosynthesis. Thus, in
order reduce the number of gravitinos present at this stage,
one requires a reheating temperature less than a few times
109 GeV depending on the gravitino mass [19].
The scale of leptogenesis may be lowered through the

introduction of a symmetry to the SM. In [20], nonresonant
thermal leptogenesis is explored at intermediate scales in
the context of small B − L violation. It is shown that the DI
bound may be evaded because, in the context of this near-
symmetry, the lepton number conserving part of the CP

asymmetries can be enhanced as they are not connected to
light neutrino masses. It is shown that the scale may be
lowered to 106 GeV. An alternative symmetry-based
approach is to introduce supersymmetry in which one
may also reduce the scale of leptogenesis to intermediate
scales. In this context, the bound on the absolute value of
the CP-asymmetry found by Davidson and Ibarra is
greatly enhanced. Consequently, the DI bound is lowered
thus allowing for the possibility of intermediate scale
leptogenesis [21].
Beyond the application of supersymmetry and heavy

pseudo-Dirac neutrinos, there are other means of lowering
the scale of leptogenesis; if the decaying heavy Majorana
neutrinos are near-degenerate in mass, the indirect
CP-violation may be resonantly enhanced [6–9] and
subsequently the mechanism may be lowered to the TeV
scale. This has been explored in the context of type-I
[22–25], II [26–29] and III [30,31] seesaw mechanisms.
Another mechanism, proposed by [32], is one in which
leptogenesis is achieved via CP-violating heavy Majorana
neutrino oscillations [33–36]. The generation of the lepton
asymmetry takes place close to the electroweak scale and
the associated GeV-scale heavy Majorana neutrinos may be
searched for at a variety of experiments such as LHCb
[37,38], BELLE II [39] and the proposed facility, SHiP
[40–42]. Although, leptogenesis via oscillations is a test-
able and plausible explanation of the baryon asymmetry, it
has been shown its simplest formulations require a certain
amount (∼105) of fine-tuning [43].
In this article, we revisit the question: how low can the

scale of thermal leptogenesis go? We focus solely on the
possibility that the heavy neutrinos are Majorana in nature
and find thermal leptogenesis is possible at intermediate
scales without resonant effects. In addition, we present an
in-depth numerical study of the dependence of the baryon
asymmetry produced from nonsupersymmetric thermal
leptogenesis on the low and high-scale model parameters.
The work presented in this paper is structured as follows:

in Sec. II, we review the origins of light neutrino masses in
the type-I seesaw framework, further we review the Casas-
Ibarra parametrization of the Yukawa matrix and then
introduce a modification of this parametrization in the
presence of large radiative corrections. We end this section
by introducing a measure of fine-tuning in the context of
the neutrino masses. In Sec. III, we discuss the motivations
for and some theoretical aspects of thermal leptogenesis.
We follow, in Sec. III A, with the density matrix equations
we shall solve to calculate the lepton asymmetry. We
demonstrate, in Sec. III B, that the fully flavored
Boltzmann equations, which do not incorporate flavor
oscillations, may significantly qualitatively differ from
the lepton asymmetry calculated from the density matrix
equations and justify the use of semi-classical density
matrix equations rather than kinetic equations derived
from first principles nonequilibrium quantum field theory
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(NE-QFT). Our numerical methods are described in
Sec. IV. The results of our numerical study for one and
two decaying heavy Majorana neutrinos are presented in
Secs. VA and V B, respectively. In Sec. VI, we explore the
analytical consequences of the numerical results and
provide an explanation for the fine-tuning. Finally, we
summarize and make some concluding remarks in Sec. VII.

II. NEUTRINO MASSES AND THE
TYPE-I SEESAW MECHANISM

In addition to the excess of matter over antimatter, the
SM cannot account for nonzero neutrino masses which
were discovered through the observation of neutrino
oscillations by Super-Kamiokande twenty years ago [44]
and were subsequently confirmed by a large number of
other oscillation experiments. These oscillations occur
because the neutrino flavor and mass eigenstates do not
coincide. Such a misalignment between bases may be
described by the Pontecorvo-Maki Nakagawa-Sakata,
PMNS, matrix U, which relates the flavor and mass
eigenstates of the light neutrinos through

ναL ¼
X

i¼1;2;3

Uαiνi;

and is conventionally parametrized as2

U ¼

0
B@

1 0 0

0 c23 s23
0 −s23 c23

1
CA
0
B@

c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

1
CA

×

0
B@

c12 s12 0

−s12 c12 0

0 0 1

1
CA
0
B@

1 0 0

0 ei
α21
2 0

0 0 ei
α31
2

1
CA;

where cij ≡ cos θij, sij ≡ sin θij, δ is the Dirac phase and
α21, α31 are the Majorana phases [45] which are physical if
and only if neutrinos are Majorana in nature.
The current best-fit and 1σ range of the neutrino

parameters [46] are provided in Table I. The Dirac
CP-violating phase, δ, enters the neutrino oscillation
probabilities sub-dominantly and remains mostly uncon-
strained by experimental data. However, as has been
anticipated [47], the complementarity of long-baseline
experiments such as T2K [48] and NOνA [49] with reactor
experiments like Daya-Bay [50], RENO [51] and Double-
Chooz [52], have begun to show slight sensitivity to the
value of δ.
With information on neutrino masses given by oscilla-

tion experiments, another crucial question is whether they
are Dirac or Majorana particles. The nature of neutrinos is

of fundamental importance as it relates to lepton number
violation. The most sensitive process to this is neutrino-
less double beta decay which can also provide some
information on the neutrino mass spectrum [53–65] and
the Majorana phases [45,66–71] (α21, α31 ¼ ½0; 720�°).
Constraints on the absolute mass scale can be derived
from 3Hβ-decay experiments [72] such as Mainz [73] and
Troitzk [74] which place an upper limit of the electron
antineutrino mass of 2.2 eV. The experiment KATRIN [75]
will be able to reduce this limit by an order of magnitude to
0.2 eV or make a measurement if the mass is larger
than 0.35 eV.
In addition, cosmology provides complementary bounds

on the sum of the neutrino masses thanks to the imprint that
neutrinos leave on the CMB and large-scale structure (LSS)
in the early Universe. These bounds are significantly more
stringent than the bounds from tritium-decay experiments
with the 95% CL constraint

P
mν ≤ 0.2 eV [2]. In order to

account for different analyses and underlying cosmological
models, we shall impose a constraint3

X
mν ≤ 1.0 eV;

throughout this work. As discussed previously, the SM
cannot explain neutrino masses in its minimal form.
Arguably the simplest extension of the SM that incorpo-
rates small neutrino masses is the type-I seesaw mechanism
[23–25]. This mechanism introduces a set of heavy
Majorana neutrino fields Ni and augments the SM
Lagrangian to include the following terms

L ¼ iNi∂Ni − YαiLα Φ̃Ni −
1

2
MiNc

i Ni þ H:c:; ð1Þ

in which Y is the Yukawa coupling and Φ the Higgs SUð2Þ
doublet,ΦT ¼ ðϕþ;ϕ0Þ and Φ̃ ¼ iσ2Φ�, and LT ¼ ðνTL; lTLÞ

TABLE I. Best fit and 1σ ranges from global fits to neutrino
data [46].

Best-fit �1σ range

θ13ð°Þ 8.52þ0.15
−0.15

θ12ð°Þ 33.63þ0.78
−0.75

θ23ð°Þ 48.7þ1.4
−6.9

δð°Þ 228þ51
−33

Δm2
21

10−5 eV2
7.40þ0.21

−0.20

Δm2
31

10−3 eV2 (NO) 2.515þ0.035
−0.035

Δm2
32

10−3 eV2 (IO) −2.483þ0.034
−0.035

2We have adopted the PDG parametrization of the PMNS
matrix [1].

3For our best-fit points we find none that exceed
P

mν ¼
0.63 eV (see Appendix D) and thus all are in within the more
relaxed cosmological bound

P
mν < 0.72 eV provided by

Planck TTþ lowP [2].
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is the leptonic SUð2Þ doublet. For convenience we have
chosen, without loss of generality, the basis in which the
Majorana mass term is diagonal. In our work, we shall
assume that there are three heavy Majorana neutrinos Ni,
with a mildly hierarchical mass spectrum in which
M1 < M2 < M3.
After electroweak symmetry breaking, at the tree level,

the light neutrino mass matrix (at first order in the seesaw
expansion) is4

mtree ≈mDM−1mT
D; ð2Þ

in which mD ¼ vY is the Dirac mass matrix that develops
once the Higgs acquires the vacuum expectation value v.
The tree-level mass matrix is not generically an accurate

approximation of the light neutrino mass matrix over all
regions of the parameter space. This is because there is no
guarantee that the radiative corrections to the neutrino self-
energy are negligible. Indeed, there exist regions of
parameter space in which radiative corrections are compa-
rable to, or larger than, the tree-level contribution to the
mass (see Table VI). For this reason, we find it necessary to
incorporate the effects of the one-loop contribution (illus-
trated in Fig. 1) to the masses given by [76]

m1-loop ¼ −mD

0
B@ M
32π2v2

0
B@logðM2

m2
H
Þ

M2

m2
H
− 1

þ 3
logðM2

m2
Z
Þ

M2

m2
Z
− 1

1
CA
1
CAmT

D;

¼ −
1

32π2v2
mDdiagðgðM1Þ; gðM2Þ; gðM3ÞÞmT

D;

with

gðMiÞ≡Mi

0
B@logðM2

i
m2

H
Þ

M2
i

m2
H
− 1

þ 3
logðM2

i
m2

Z
Þ

M2
i

m2
Z
− 1

1
CA;

giving a total light neutrino mass of

mν ¼ mtree þm1-loop:

The contribution from two-loop corrections is usually small
as these will be suppressed by an extra factor of the Yukawa
couplings squared and a further factor Oð10−2Þ from the
loop integral. This is discussed in more detail and estimated
in Appendix D.
The matrix mν is rewritten in the Takagi factorized form

through the PMNS matrix with

mν ¼ Um̂νUT;

where m̂ν is the positive diagonal matrix of light neutrino
masses.
By analogy with the parametrization of Casas and Ibarra

(CI) [77], the Yukawa matrix can be written in the
following way to include the loop-level corrections [78]

Y ¼ 1

v
mD ¼ 1

v
U

ffiffiffiffiffiffi
m̂ν

p
RT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðMÞ−1

q
; ð3Þ

with R a complex orthogonal matrix and

fðMÞ≡M−1 −
M

32π2v2

0
B@logðM2

m2
H
Þ

M2

m2
H
− 1

þ 3
logðM2

m2
Z
Þ

M2

m2
Z
− 1

1
CA

¼ diag

�
1

M1

;
1

M2

;
1

M3

�

−
1

32π2v2
diagðgðM1Þ; gðM2Þ; gðM3ÞÞ:

This parametrization expresses the Yukawas in terms of
both low energy measurable parameters (in mν and U) and
high energy, currently untestable parameters (in the com-
plex orthogonal matrix R and the Majorana mass matrix
M). An advantage to using this parametrization is that one
can automatically achieve the correct structure of mass-
squared differences.
Naturally, when the loop corrections are negligible we

may replace fðMÞ−1 with M and Eq. (3) reduces to the
usual CI parametrization. Throughout the remainder of this
work, we shall apply the parametrization of Eq. (3) to
ensure radiative corrections are accounted for. We para-
metrize the R-matrix in the following way

R ¼

0
B@

1 0 0

0 cω1
sω1

0 −sω1
cω1

1
CA
0
B@

cω2
0 sω2

0 1 0

−sω2
0 cω2

1
CA

×

0
B@

cω3
sω3

0

−sω3
cω3

0

0 0 1

1
CA; ð4Þ

where cωi
≡ cosωi, sωi

≡ sinωi and the complex angles
are given by ωi ≡ xi þ iyi with jxij, jyij ≤ 180° for
i ¼ 1, 2, 3.
In general, the structure of the R-matrix cannot be

constrained; however in [79], the authors demonstrated if
the heavy Majorana neutrino mass matrix is invariant under
a residual CP-symmetry, the R-matrix is constrained to be
real or purely imaginary [79]. It was shown in [80,81] that
the PMNS phases were a sufficient source of CP-violation
to generate the observed baryon asymmetry if thermal
leptogenesis occurred during an era in which flavor effects
were non-negligible.

4Here we have chosen to work with a convention in which this
term lacks the usual minus sign. We choose the sign of the one-
loop contribution to be consistent with this.
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Both the light and heavy Majorana neutrino mass
matrices determine the structure of the Yukawa matrix.
Once the value of the lightest neutrino mass is fixed, we
shall assume the best-fit value for the solar and atmospheric
mass squared splittings and hence the light neutrino mass
matrix is determined. In addition, we constrain the sum of
the neutrino masses such that it is within experimental
bounds, specifically

P
mν ≤ 1.0 eV. In order to ensure the

lepton asymmetry does not become resonantly enhanced
[82], we choose the right-handed neutrino mass spectrum to
be mildly hierarchical: M2 > 3M1 and M3 > 3M2 [83]. In
summary, the model parameter space of leptogenesis,
as given by the Casas-Ibarra parametrization of Eq. (3),
is 18-dimensional and we shall henceforth denote this
quantity as p.
In anticipation of our results, we shall define a parameter

that quantifies the degree of fine-tuning for a given
solution. First we define the fine-tuning measure to be

F:T:≡
P

3
i¼1 SVD½m1-loop�iP

3
i¼1 SVD½mν�i

; ð5Þ

where SVD½m1-loop�i and SVD½mν�i denote the ith singular
values of the m1−loop and mν neutrino mass matrices,
respectively. As the neutrino mass matrix is the sum of
the tree- and one-loop contributions, a cancellation between
the two leads to the fine-tuning measure being larger than
unity. In the limit that the tree-level contribution dominates,
the fine-tuning measure tends to zero.
We declare a technical limitation that we shall accept in

this work. In lowering the value of M1, we find fine-tuned
solutions in which the tree-level and one-loop contributions
cancel to produce a neutrino mass matrix smaller than
either alone. However, the higher-order radiative correc-
tions cannot be assumed to perform a similar cancellation
and thus we should take care that the two-loop contribution
is not too large in comparison with the one-loop correct
light neutrino mass matrix (see Appendix D).

III. THERMAL LEPTOGENESIS

Minimal thermal leptogenesis [4] proceeds via the out-
of-equilibrium decays of the heavy Majorana neutrinos.CP
violation, arising from the interference between tree- and
loop-level diagrams, causes the CP-asymmetric decays of
the heavy Majorana neutrinos which induce a lepton
asymmetry. The production of the asymmetry from decays
competes with a washout from inverse decays of the heavy
Majorana neutrinos. The final lepton asymmetry is partially
reprocessed to a baryon asymmetry via electroweak spha-
leron processes which occur at unsuppressed rates at
temperatures above the electroweak scale [5].
The time evolution of the lepton asymmetry may be

calculated using semi-classical or NE-QFT methods. In
both approaches, these kinetic equations account for the
decay of the heavy Majorana neutrino and washout

processes. In the simplest formulation, these kinetic
equations are in the one-flavored regime, in which only
a single flavor of charged lepton is accounted for. This
regime is only realized at sufficiently high temperatures
(T ≫ 1012 GeV) when the rates of processes mediated by
the charged lepton Yukawa couplings are out of thermal
equilibrium and therefore there is a single charged lepton
flavor state which is a coherent superposition of the three
flavor eigenstates. However, if leptogenesis occurs at
lower temperatures (109 ≪ T ðGeVÞ ≪ 1012 ), scattering
induced by the tau Yukawa couplings can cause the single
charged lepton flavor to decohere and the dynamics of
leptogenesis must be described in terms of two flavor
eigenstates. In such a regime, a density matrix formalism
[84–88] allows for a more general description than semi-
classical Boltzmann equations, since it is possible to
calculate the asymmetry in intermediate regimes where
the one and two-flavored treatments are inadequate.

A. Density matrix equations

As previously mentioned, the most basic leptogenesis
calculations were performed in the single lepton flavor
regime. The one-flavored regime is realized at high temper-
atures (T ≫ 1012 GeV) where the leptons and antileptons
that couple to the right-handed neutrinos,Ni, maintain their
coherence throughout the era of lepton asymmetry pro-
duction. This implies there is a single lepton (antilepton)
flavor, l1 (l1), which may be described as a coherent
superposition of charged lepton flavor-states, (e, μ, τ),

jl1i≡
X

α¼e;μ;τ

c1αjlαi; c1α ≡ hlαjl1i;

jl1i≡
X

α¼e;μ;τ

c1α jlαi; c1α ≡ hlαjl1i;

where the amplitudes ciα are functions of the Yukawa
matrix, Y. In such a regime, the interaction rate mediated
by the SM lepton Yukawas are out of thermal equilibrium
(Γα < H) and this implies there are no means of distin-
guishing between the three leptonic flavors. However, if
leptogenesis occurs at lower scales (109≲TðGeVÞ≲1012),
the interactions mediated by the tau charged lepton Yukawa
come into thermal equilibrium (Γτ > H) and the Universe
may distinguish between τ and τ0, where τ0 is a linear
combination of the electron and muon flavored leptons
orthogonal to τ. The one- and fully two-flavored descrip-
tion of leptogenesis is appropriate at T ≫ 1012 GeV and
109 ≪ T ðGeVÞ ≪ 1012 , respectively. There exists the
possibility that thermal leptogenesis occurs at even lower
temperatures, T < 109 GeV, during which the interactions
mediated by the muon have equilibrated. In such a regime,
the kinetic equations should be given in terms of all three
lepton flavors. In this work, we shall focus on this particular
scenario. Our discussion of the density matrix equations
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and notation will closely follow the prescription of [88]
where the theoretical background and derivation of the
density matrix equations are fully presented. We refrain
from rederiving the details of this formalism and instead
refer the interested reader to the aforementioned reference.
The most general form of the density matrix equations,
assuming three decaying heavy Majorana neutrinos, is
given by

dnN1

dz
¼ −D1ðnN1

− neqN1
Þ

dnN2

dz
¼ −D2ðnN2

− neqN2
Þ

dnN3

dz
¼ −D3ðnN3

− neqN3
Þ

dnαβ
dz

¼ ϵð1ÞαβD1ðnN1
− neqN1

Þ − 1

2
W1fP0ð1Þ; ngαβ

þ ϵð2ÞαβD2ðnN2
− neqN2

Þ − 1

2
W2fP0ð2Þ; ngαβ

þ ϵð3ÞαβD3ðnN3
− neqN3

Þ − 1

2
W3fP0ð3Þ; ngαβ

−
ℑðΛτÞ
Hz

2
64
0
B@

1 0 0

0 0 0

0 0 0

1
CA;

2
64
0
B@

1 0 0

0 0 0

0 0 0

1
CA; n

3
75
3
75
αβ

−
ℑðΛμÞ
Hz

2
64
0
B@

0 0 0

0 1 0

0 0 0

1
CA;

2
64
0
B@

0 0 0

0 1 0

0 0 0

1
CA; n

3
75
3
75
αβ

;

ð6Þ

where Greek letters denote flavor indices, nNi
(i ¼ 1, 2, 3)

is the abundance of the ith heavy Majorana neutrino,5 neqNi

the equilibrium distribution of the ith heavy Majorana
neutrino, Di (Wi) denotes the decay (washout) correspond-
ing to the ith heavy Majorana neutrino, and are given
by [14]

DiðzÞ ¼ Kixiz
K1ðziÞ
K2ðziÞ

; ð7Þ

and

WiðzÞ ¼
1

4
Ki

ffiffiffiffi
xi

p
K1ðziÞz3i ; ð8Þ

withK1 andK2 the modified Bessel functions of the second
kind with

xi ≡M2
i =M

2
1; zi ≡ ffiffiffiffi

xi
p

z;

and

Ki ≡ Γ̃i

HðT ¼ MiÞ
; Γ̃i ¼

MiðY†YÞii
8π

: ð9Þ

H is the Hubble expansion rate and Λα is the self-energy
of α-flavored leptons. The thermal widths Λτ, Λμ of the
charged leptons is given by the imaginary part of the self-
energy correction to the lepton propagator in the plasma

(see Appendix A). Finally, the P0ðiÞ
αβ ≡ ciαc�iβ, denotes the

projection matrices which describe how a given flavor of
lepton is washed out and the CP-asymmetry matrix
describing the decay asymmetry generated byNi is denoted

by ϵðiÞαβ. These CP-asymmetry parameters may be written
as [6,86,88,89]

ϵðiÞαβ ¼
3

32πðY†YÞii
×
X
j≠i

�
i½YαiY�

βjðY†YÞji − YβiY�
αjðY†YÞij�f1

�
xj
xi

�

þ i½YαiY�
βjðY†YÞij − YβiY�

αjðY†YÞji�f2
�
xj
xi

��
;

ð10Þ
where

f1

�
xj
xi

�
¼

ξðxjxiÞffiffiffi
xj
xi

q ; f2

�
xj
xi

�
¼ 2

3ðxjxi − 1Þ ð11Þ

and

ξðxÞ ¼ 2

3
x
�
ð1þ xÞ log

�
1þ x
x

�
−
2 − x
1 − x

�
:

Eq. (6) may be used to calculate the lepton asymmetry in all
flavor regimes and even accurately describes the transitions
between them [84–88]. The off-diagonal entries of nαβ,
which in general may be complex, allow for a quantitative
description of these transitions. If leptogenesis proceeds at
temperatures 109 ≲ TðGeVÞ≲ 1012, (for example), the
terms ℑðΛτÞ=Hz damp the evolution of the off-diagonal
elements of nαβ. This reflects the loss of coherence of the
tau states when the SM tau Yukawa couplings come in to
equilibrium. The remaining equations provide a description
of leptogenesis in terms of Boltzmann equations for the
diagonal entries of nαβ and for nNi

. Although a more
accurate treatment of leptogenesis is provided by the NE-
QFT approach, the density matrix equations that we choose
to solve are accurate so long as we are in the strong washout
regime. In Appendix B, we demonstrate that this is the case
and thus justify our use of the density matrix formalism.

5This quantity is normalized to a co-moving volume contain-
ing one right-handed neutrino which is ultra-relativistic and in
thermal equilibrium.

MOFFAT, PASCOLI, PETCOV, SCHULZ, and TURNER PHYS. REV. D 98, 015036 (2018)

015036-6



In general, nαβ is a 3 × 3 matrix whose trace gives the
total lepton asymmetry:

nB−L ≡ X
α¼e;μ;τ

nαα:

The latter is then multiplied by a factor a=f ≈ 0.01, where
a ¼ 28=79 describes the partial conversion of the B − L
asymmetry into a baryon asymmetry by sphaleron proc-
esses, and f ≡ nrecγ =n�γ ¼ 2387=86 accounts for the dilution
of the asymmetry due the change of photon densities (nγ)
between leptogenesis (nγ ¼ n�γ ) and recombination
(nγ ¼ nrecγ ): ηB ≃ 10−2nB−L [14].

B. Thermal leptogenesis with three flavors

In this section, we demonstrate, in the case of one
decaying heavy Majorana neutrino, the need to solve the
density matrix equations, rather than the more approximate
Boltzmann equations (in which the off-diagonal entries of
the density matrix are set to zero). Although we shall give
explicit expressions for the density matrix equations in this
section, we emphasize that our main results are always

found by solving Eq. (6) in which all three heavy Majorana
neutrinos decay. The Boltzmann equations, with one
decaying heavy Majorana neutrino, are written as

dnN1

dz
¼ −D1ðnN1

− neqN1
Þ

dnττ
dz

¼ ϵð1Þττ D1ðnN1
− neqN1

Þ −W1ðjYτ1j2nττÞ
dnμμ
dz

¼ ϵð1ÞμμD1ðnN1
− neqN1

Þ −W1ðjYμ1j2nμμÞ
dnee
dz

¼ ϵð1Þee D1ðnN1
− neqN1

Þ −W1ðjYe1j2neeÞ; ð12Þ

where we have used the abbreviationW1 ¼ W1

ðY†YÞ11. This set
of equations is appropriate for M1 ≪ 109 GeV, when the
flavor components of the charged leptons each experience
strong and distinct interactions with the early Universe
plasma. The density matrix equations, with specified flavor
indices, follow straightforwardly from an explicit expan-
sion of the commutators in Eq. (6). The resulting equations,
for a single decaying heavy Majorana neutrino are

dnN1

dz
¼ −D1ðnN1

− neqN1
Þ

dnττ
dz

¼ ϵð1Þττ D1ðnN1
− neqN1

Þ −W1fjYτ1j2nττ þℜ½Y�
τ1ðYe1nτe þ Yμ1nτμÞ�g

dnμμ
dz

¼ ϵð1ÞμμD1ðnN1
− neqN1

Þ −W1fjYμ1j2nμμ þℜ½Y�
μ1ðYe1nμe þ Yτ1n�τμÞ�g

dnee
dz

¼ ϵð1Þee D1ðnN1
− neqN1

Þ −W1fjYe1j2nee þℜ½Y�
e1ðYμ1n�μe þ Yτ1n�τeÞ�g

dnτμ
dz

¼ ϵð1Þτμ D1ðnN1
− neqN1

Þ −W1

2
fnτμðjYτ1j2 þ jYμ1j2Þ þ Y�

μ1Yτ1ðnττ þ nμμÞ þ Y�
e1Yτ1n�μe þ Y�

μ1Ye1nτeg

−
�
ℑðΛτÞ
Hz

þ ℑðΛμÞ
Hz

�
nτμ

dnτe
dz

¼ ϵð1Þτe D1ðnN1
− neqN1

Þ −W1

2
fnτeðjYe1j2 þ jYτ1j2Þ þ Y�

e1Yτ1ðnee þ nττÞ þ Y�
μ1Yτ1nμe þ Y�

e1Yμ1nτμg −
ℑðΛτÞ
Hz

nτe

dnμe
dz

¼ ϵð1Þμe D1ðnN1
− neqN1

Þ −W1

2
fnμeðjYe1j2 þ jYμ1j2Þ þ Y�

e1Yμ1ðnee þ nμμÞ þ Y�
e1Yτ1n�τμ þ Y�

τ1Yμ1nτeg −
ℑðΛμÞ
Hz

nμe:

ð13Þ

The Boltzmann equations, Eq. (12), are recovered in the
limit ℑðΛμÞ=Hz;ℑðΛτÞ=Hz → ∞ as the off-diagonal den-
sity matrix elements become fully damped. This limit is
only valid for M1 ≪ 109 GeV. However, for a given point
in the model parameter space, p, it is not a priori obvious if
these Boltzmann equations well approximate the density
matrix equations.
We illustrate the quantitative difference between the

density matrix equations [Eq. (13)] and the Boltzmann

TABLE II. Benchmark points used to test the three-flavored
equations against the density matrix equations.

δð°Þ α21ð°Þ α31ð°Þ x1ð°Þ y1ð°Þ x2ð°Þ y2ð°Þ x3ð°Þ y3ð°Þ
BP1 180 0 0 100 45 150 25 45 35
BP2 270 90 180 10 60 55 25 70 −15
BP3 330 40 220 0 100 −1 10 1 −75
BP4 320 450 450 15 180 −90 2 144 −175
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equations [Eq. (12)] by solving both for four benchmark
points: BP1, BP2, BP3 and BP4 with a vanishing initial
abundance ofN1, (see Table II). In these scenarios, the light
mass spectrum is chosen to be normally ordered,
m1 ¼ 10−2 eV, M1 is allowed to vary with M2 ¼ 3.5M1

M3 ¼ 3.5M2 which satisfies a mildly hierarchical mass
spectrum.
As can be seen from Fig. 2, the deviation between the

two is generally small (< 5%) for M1 ∼ 106 GeV. In the
case of BP1, the Boltzmann equations do not deviate from

FIG. 1. One-loop level diagrams showing the physical particle contributions to neutrino mass at one loop. The W-boson contribution
proportional to the momentum is neglected. When the external momentum is taken to be zero, the Z- and Higgs-boson contributions (Z0,
H0 ≡ ϕ0 − v) together provide a correction to the tree-level mass that is finite and independent of the choice of renormalization scale.

FIG. 2. ηB is shown as a function of varying M1 for density matrix (red) and fully three-flavored (blue, dashed) equations. The
solutions for BP1 (BP2) is shown on the top left (right) and BP3 (BP4) on bottom left (right) with m1 ¼ 10−2 eV.

MOFFAT, PASCOLI, PETCOV, SCHULZ, and TURNER PHYS. REV. D 98, 015036 (2018)

015036-8



the density matrix solutions until M1 ≈ 109 GeV and for
M1 ≈ 106 GeV, the discrepancy between the two is neg-
ligible. A more pronounced deviation is exhibited in BP2,
BP3 and BP4, with an underestimation from the Boltzmann
equations particularly evident in BP4 in which the R-matrix
has relatively large elements. In this example, the deviation
between the solutions even for low masses M1 ¼ 107 GeV
and M1 ¼ 106 GeV is ∼20% and ∼5%, respectively. The
discrepancy grows as a function ofM1. As can be seen from
these benchmark points, the fully three-flavored equations
may not well approximate the density matrix equations well
even forM1 ≪ 109 GeV. As we are interested in exploring
the parameter space over a range of values of M1, we shall
use the more accurate density matrix equations.
Here we summarize the approximations and physical

effects that we shall exclude from our calculation but
whose inclusion would increase the accuracy of our
calculations. Such effects include lepton number-changing
scattering processes, spectator effects [90–92], thermal
corrections [93,94] and the inclusion of quantum statistical
factors [95–98].
jΔLj ¼ 1 scattering and related washout processes occur

as a result of Higgs and lepton mediated scattering
involving the top quark and gauge bosons. It has been
demonstrated that scatterings involving the top quark are
most important at relatively low temperatures, T < M [99].
Therefore, the effects of jΔLj ¼ 1 scattering on the strong
washout regime (where the bulk of lepton asymmetry is
produced at T > M) are small and have been estimated to
affect the final lepton asymmetry to a level less than
∼Oð10Þ% [100,101]. However, for weak washout these
corrections are necessary for a correct calculation of the
final lepton asymmetry [102]. Spectator processes cause
the redistribution of the asymmetry generated in the
leptonic doublets amongst other particle species in the
thermal bath. These processes typically protect the lepton
asymmetry from washout and therefore increase the effi-
ciency of leptogenesis [103]. Although the inclusion of
spectator effects could further lower the scale of successful
thermal leptogenesis, we relegate the inclusion of these
effects for further studies. Besides, the neglect of these
effects leads to an overly-conservative estimate of the
amount of baryon asymmetry produced. Quantum kinetic
equations are derived from the first principles of NE-QFT
based on the Closed-Time Path (CTP) formalism. This
approach resolves unitarity issues and properly accounts for
the effect of quantum statistics on the lepton asymmetry.
However, it has been shown there is little qualitative
difference between the density matrix and CTP approach
in the strong washout regime [98]. This is because in the
strong washout regime, where the decays and inverse
decays of the heavy Majorana neutrinos occur much faster
than the expansion rate of the Universe, the majority of the
lepton asymmetry is produced at temperatures smaller than
the mass of the decaying heavy Majorana neutrinos. As a

consequence, the contributions of the particle distribution
functions are heavily Boltzmann-suppressed.
We demonstrate in Appendix B that the regions of

parameter space we explore in this work correspond to
strong washout. This allows us to make two justifiable
simplifications to our kinetic equations which are more
easily implementable for a phenomenological study. First,
we ignore the impact of lepton number-changing scatter-
ings and, second, we solve kinetic equations using the
density matrix formalism rather than equations derived
from NE-QFT.

IV. COMPUTATIONAL METHODS

The computational core of this work is solving a set of
coupled differential equations as shown in Eq. (6). We use
the PYTHON interface for complex differential equations
[104] to the LSODA algorithm [105] that is available in
SCIENTIFIC PYTHON [106].
Our aim is to find regions of the model parameter space,

p, that yield values of ηBðpÞ that are consistent with the
measurement ηBCMB

¼ ð6.10� 0.04Þ × 10−10. In order to do
so, we have to use an efficient sampling method. This is
mainly for three reasons. First, the parameter space has a
relatively high dimension. Second, the function ηBðpÞ itself
does not vary smoothly with changes of p. In fact, tiny
variations of the input parameters yield function values
differing in many orders of magnitude and sign. Third, the
computation of ηBðpÞ for a single point is relatively
expensive and can take up to the order of seconds. Thus,
any attempt at a brute-force parameter scan is doomed to fail.
Finally, we are not only interested in a single best-fit point
but also a region of confidence that resembles the measure-
ment uncertainty.
We found the use of MULTINEST [107–109] (more

precisely, PYMULTINEST [110], a wrapper around
MULTINEST written in PYTHON) to be particularly well
suited to address all the aforementioned complications
associated to this task. The MULTINEST algorithm has seen
wide and very successful application in astronomy and
cosmology. It provides a nested sampling algorithm that
calculates Bayesian posterior distributions which we will
utilize in order to define regions of confidence.
In all our scenarios, MULTINEST uses a flat prior and the

following log-likelihood as objective function

logL ¼ −
1

2

�
ηBðpÞ − ηBCMB

ΔηBCMB

�
2

: ð14Þ

Once a MULTINEST run is finished, we use SUPERPLOT
[111] to visualize the posterior projected onto a two-
dimensional plane.

V. RESULTS

We present the solutions to the density matrix equations
of Eq. (6) for the case of one and two decaying heavy
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Majorana neutrinos in Secs. VA and V B, respectively. In
principle, it is necessary to consider the decay of all three
heavy Majorana neutrinos, however we first consider the
decay of the lightest heavy Majorana neutrino as computa-
tionally this scenario is less expensive than the two and
three decaying heavy Majorana neutrinos case. In Sec. V B,
we demonstrate the scale of thermal leptogenesis involving
the decay of two heavy Majorana neutrinos does not
change significantly from the scenario of one decaying
case. These two scenarios are qualitatively and quantita-
tively similar and so we do not proceed to the case where
the third heavy Majorana neutrino contributes to the baryon
asymmetry through their decays.

A. Results from N1 decays

As detailed in Sec. IV, solving the density matrix
equations of Eq. (13) for an 18-dimensional model param-
eter space, p, is a challenging numerical task. In order to
reduce the volume, p, we shall fix certain parameters. First,
as the solar and reactor mixing angles are relatively
precisely measured, we shall use the values for these
angles from global fit data [46]. Although we allow the
lightest neutrino mass (m1 for NO and m3 for IO) to vary
within the experimentally allowable region, given by the
sum of neutrino masses, the other two light masses are
determined from the best-fit values of the atmospheric and
solar mass squared splittings from global fit data [46].

Finally, we fix the heavy Majorana mass spectrum leaving
only 11 of the 18 parameters of p to be varied.
In all scenarios, we choose a set of initial values for M1,

M2 and M3, in which, as mentioned, we ensure M3 > 3M2

andM2 > 3M1. We explore the parameter space and find the
regions consistent with ηBCMB

to a 1 and 2σ level. Through
the inspection of the fine-tuning of the solutions in the
regions of 1σ agreement, we decide either to lower the scale
of M1 or not (while keeping the ratios M2=M1 and M3=M2

fixed). The lower the scale, the higher the fine-tuning and
thus the greater the impact of higher-order corrections. Thus
we do not further lower the scale when either the two-loop
contributions becomes greater than a few percent or when
the fine-tuning exceeds Oð1000Þ (see Appendix D). If one
were to incorporate the effects of higher radiative orders, the
parameter space could be explored at even lower scales
where the fine-tuning is greater.
In the case of one decaying heavy Majorana neutrino

contributing to the lepton asymmetry, we shall pick out six
scenarios in total, all of which satisfy a mild hierarchical
spectrum:

(i) S1:
M1 ¼ 106 GeV, M2=M1 ≃ 3.15, M3=M2 ≃ 3.15;

(ii) S2:
M1¼106.5 GeV, M2=M1 ≃ 3.15, M3=M2 ≃ 3.15;

(iii) S3:
M1 ¼ 106.5 GeV, M2=M1 ≃ 5, M3=M2 ≃ 5;

FIG. 3. The top (bottom) three plots from left to right show evolution of the B − L asymmetry for each flavor evolved as a function of
z ¼ M1=T for the best-fit points of S1, S2 and S3 (S1, S2 and S3), respectively.
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for normally ordered light neutrino masses. In the case of
inverted ordering, we shall denote these scenarios as S̄1, S̄2
and S̄3. Scenarios S1 (S̄1) and S2 (S̄2) have the same mass
ratios, with S1 (S̄1) corresponding to the lowest value of the
scale M1 with acceptable fine-tuning values and S2 (S̄2)

presented for comparison. S3 (S̄3) corresponds to the lowest
scale for its given set of mass ratios. In Fig. 3, we provide
the temperature evolution of the absolute magnitude of the
lepton asymmetry number densities, jnααj, α ¼ e, μ, τ for
the best-fit points of each scenario.

FIG. 4. S1: Triangle plot showing the two-dimensional projection of the 11-dimensional model parameter space for posterior
distributions using normal ordering with one-decaying heavy Majorana neutrino and heavy Majorana neutrino mass spectrum:
M1 ¼ 106 GeV, M2 ¼ 3.15M1, M3 ¼ 3.15M2. The contours correspond to 68% and 95% confidence levels, respectively.
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The parameters of the PMNS matrix are varied within
their allowable or measured 3σ range: δ ∈ ð0; 360Þ°, θ23 ∈
ð38.6; 52.5Þ° and α21, α31 ∈ ð0; 720Þ°. We solve the density
matrix equations of Eq. (13) assuming a vanishing initial
abundance ofN1 with an end point of the integration, z ≈ 100
after which ηB is constant. In addition, we ensure the Yukawa
couplings, Yαβ, are perturbative and theCP-asymmetry does
not suffer from resonant effects as detailed in Appendix C.
The plots in Fig. 4 show two-dimensional projections of

the eleven-dimensional posterior.6 The dark (light) blue
contours correspond to the regions of parameter space
consistent with 68% (95%) confidence levels. In addition to
the two-dimensional posterior plots, we provide the best-fit
point for each heavy Majorana neutrino mass spectrum
scenario as shown in Table III where the upper (lower) three
rows of the table correspond to normal (inverted) ordering.
For the two-dimensional posterior plots of scenario S1,

as shown in Fig. 4, the region of the model parameter space
consistent to a 1σ level with the observed baryon asymmetry
favors larger values of the CP-violating Dirac phase,
120 ≤ δð°Þ ≤ 360. The likelihood function appears to be
more sensitive to α21 than α31: from Fig. 4, we observe 80 ≤
α21ð°Þ ≤ 270 while 65 ≤ α31ð°Þ ≤ 720 is consistent with the
measured baryon asymmetry to a 1σ level. Although the
atmospheric mixing angle may take most value within its 3σ
range, the likelihood function favors values close to 45° and
in the upper octant. The values of the lightest neutrino mass
which are consistent with the observed ηB tend to be close to
the upper limit, which for normal ordering is m1 ≃ 3.32×
10−1 eV. This strong dependence of ηB on the lightest
neutrino mass agrees with work which investigated (two)
flavored thermal leptogenesis [112].
In general, the likelihood function is more sensitive to

the imaginary than the real components of the R-matrix.
For example, we find that ηB is relatively insensitive to

x1 and x3: x1, x3 ∈ ð−180°; 180°Þ is consistent with the
measured ηB to 2σ level. On the contrary, the likelihood
function is highly sensitive to x2 with preferred values of
approximately 90°. We note that the two-dimensional
projections onto parameters x1 and x3 are not included
in the triangle plots as ηBðpÞ exhibits flat directions in both
these parameters and the two-dimensional projection plots
show little interesting structure.7 The complex components
of the R-matrix are likely to be within a small range:
y1 ≃ 180°, y2 ≃ 3° and y3 ≃ 180° where the explanation for
this structure has been detailed in Sec. VI. Given the mass
of the decaying heavy Majorana neutrino is relatively light,
it would be expected that large phases of the PMNS and R-
matrix are favored as these ensure the Yukawa couplings
are sufficiently large.
The triangle plots for larger masses of M1 and more

hierarchical heavy Majorana neutrino spectra of S2 and S3
are shown in Figs. 10 and 11, respectively. Unsurprisingly,
on comparison of scenario S1 and S2 (which share the same
mass splitting but different values of M1) we observe the
scenario with the larger heavy Majorana neutrino masses
has a larger region of the model parameter space consistent
with the measured ηBCMB

. Moreover, as expected, the con-
straints on the R- and PMNS-matrix parameters in scenario
S2 are weaker yet qualitatively similar to S1. In particular,
the m1-dependence in S2 is less severe than in the scenario
of S1; for example in Fig. 4 the 2σ allowed region for the
lightest neutrino mass is 1.25 × 10−1 ≤ m1ðeVÞ ≤ 3.32 ×
10−1 while in the case of Fig. 10, 3.16 × 10−2 ≤ m1ðeVÞ ≤
3.32 × 10−1. For smaller values of m1, successful lepto-
genesis is possible for larger values of the heavy Majorana
neutrino mass M1. For larger heavy Majorana neutrino
mass splitting, we anticipate the model parameter volume
consistent with data will be reduced. This is because the
CP-asymmetry becomes increasingly suppressed for larger
mass splittings. This effect is confirmed upon comparison
of Figs. 10 and 11 where the former has milder mass

TABLE III. The best-fit points for the leptogenesis scenarios in Figs. 4–13 are given and are all consistent with
ηB ¼ ð6.10� 0.04Þ × 10−10, θ13 ¼ 8.52° and θ12 ¼ 33.63°. The upper (lower) three rows are the best-fit points for normal (inverted)
ordering. The final two rows are the best fit points for normal ordering in the loop and tree-level dominated scenarios.

θ23ð°Þ δð°Þ α21ð°Þ α31ð°Þ x1ð°Þ y1ð°Þ x2ð°Þ y2ð°Þ x3ð°Þ y3ð°Þ
m1ð3Þ
(eV)

M1

(GeV)
M2

(GeV)
M3

(GeV)

S1 46.24 281.21 181.90 344.71 132.23 179.88 87.81 2.88 −30.25 177.5 0.120 106.0 106.5 107.0

S2 46.57 88.26 116.07 420.44 44.36 171.78 86.94 2.96 97.01 174.30 0.079 106.5 107 107.5

S3 46.63 31.71 130.95 649.65 −72.33 170.54 86.96 2.22 −1.86 178.31 0.114 106.5 107.2 107.9

S1 40.56 158.51 157.48 511.0 −16.23 179.29 90.04 1.29 −107.14 179.22 0.0047 106.0 106.5 107.0

S2 43.67 201.02 238.77 658.33 −39.88 178.68 88.12 2.46 53.97 158.01 0.0133 106.5 107.0 107.5

S3 43.64 57.28 179.87 292.95 86.58 174.40 91.11 1.61 134.48 173.74 0.012 106.5 107.2 107.9

F:T loop 44.59 140.04 537.15 291.89 164.06 −149.85 178.99 49.15 93.39 −14.50 0.15882 109.0 109.5 1010

F:T tree 43.81 31.59 681.96 276.19 271.56 −125.27 14.95 −11.50 344.87 5.22 0.0041 109.0 109.5 1010

6As each individual plot of the triangle plots is relatively small,
we provide the following link to view each individually: https://
gitlab.dur.scotgrid.ac.uk/leptogenesis-public/thermal/wikis/home. 7However, these plots are included in the aforementioned link.
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splitting. In contrast to S1, in the case of both S2 and S3, the
likelihood function favors values of θ23 close to 45° and in
the lower octant.
The triangle plot showing the two-dimensional posterior

distributions of the 11-dimensional model parameter space
for S1 is shown in Fig. 5. The dark (light) red contours
correspond to the regions of parameter space consistent
with 68% (95%) confidence levels. As anticipated, the

points of the model space consistent with the measurement
are different from the normal ordering case and the volume
of parameter space p consistent with the measured ηBCMB

is
less constrained. In particular, we observe that the like-
lihood function is relatively insensitive to changes of δ, α31
and θ23. However, this scenario displays a similar feature
to S1, where the likelihood function favors values of
α21 ≤ 360°.

FIG. 5. S1: Triangle plot showing the two-dimensional projection of the 11-dimensional model parameter space for posterior
distributions using inverted ordering and with one-decaying heavy Majorana neutrino mass spectrum: M1 ¼ 106 GeV, M2 ¼ 3.15M1,
M3 ¼ 3.15M2. The contours correspond to 68% and 95% confidence levels, respectively.
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Additionally, the likelihood has a flat direction in the x1
and x3 parameters of the R-matrix (as discussed in Sec. VI).
We observe that all values of x1 and x3 are consistent to a 2σ
level with the measured ηB; however, the likelihood is very
sensitive to x2 with x2 ≃ 90°. Similarly, to the normal
ordering scenario the imaginary phases of R are constrained
with y1 ≃ 180°, y2 ≃ 2° and y3 ≃ 180°. The triangle plots
for larger masses ofM1 and more hierarchical spectra of S2
and S3 are shown in Figs. 12 and 13, respectively. As seen
in the case of normal ordering, the scenario with the slightly
more hierarchical mass spectrum (M2 ¼ 5M1, M3 ¼ 5M2)
has a slightly smaller volume of parameter space consistent
with the data than the case of the milder hierarchy.

Although we allow for the possibility there exists a
certain level of cancellation between the tree and one-loop
level contributions to the light neutrino masses, we avoid
regions of the parameter space where the perturbative series
no longer converges. We present the fine-tuning measure
defined in Eq. (5) for the regions of the model parameter
space within 1σ of the measured ηB. To be explicit, the top
(bottom) three plots of Fig. 6 shows the distribution of the
fine-tuning measure within the 1σ region of S1, S2 and S3
(S̄1, S2 and S3) shown in Figs. 4, 10, and 11 (Figs. 5, 12,
and 13), respectively. Moreover increasing the spread from
1σ to 5σ would allow for a broader spread of fine-tuning
values, both smaller and larger.

FIG. 6. The top (bottom) three plots from left to right show the fine-tuning for regions of the model parameter space within 1σ of
measured ηB for S1, S2 and S3 (S1, S2 and S3), respectively.

FIG. 7. The left (right) plot shows the fine-tuning for regions of the model parameter space within 1σ of measured ηB for S4 (S4).
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In general, for normal ordering, the fine-tuning measure
for points within 1σ is Oð100Þ. We observe that the
minimal fine-tuning value for S1 ≈ 330. Somewhat unsur-
prisingly, the scenario with the large mass of decaying
heavyMajorana neutrino, S2, has smaller fine-tuning due to
the fact the complex phases of the R-matrix may attain a
broader range of values. We observe the minimum fine-
tuning measure in the case of S2 to be ≈180. However, in
the case of S3 (where the decaying heavy Majorana
neutrino mass is the same as S2 the mass splitting between
the heavy Majorana neutrinos is larger) the fine-tuning
values are in general larger due to the increased mass of N3.
The fine-tuning present in the case of inverted ordering

is, in general, less than in the case of normal ordering. The
minimum value of fine-tuning present in S1 ≃ 100. Again,
the same pattern emerges as in the case of normal ordering
where the fine-tuning in S2 (S3) is less (greater) than S1. In
fact, for S2 the minimum fine-tuning ≈40. Again, we
emphasize that the fine-tuning we present here is for points
in p within 1σ of the best fit value of ηBCMB

and allowing for
an increase in the spread around the best fit value would
allow for smaller (and larger) values of fine-tuning.
At such scales, T ≪ 109 GeV, it is impossible to have

successful leptogenesis without some degree of cancella-
tion between the tree and one-loop level contributions.
However, we did investigate if there existed regions of p
such that thermal leptogenesis was viable (within 1σ of the
central value of ηBCMB

) where either the tree or one-loop
level contribution dominates. In the latter scenario, where
the radiative corrections dominate over the tree-level
contributions, the fine-tuning measure should be close to
unity as jm1-loopj=jðmtree þm1-loopÞj ≈ 1 formtree ≪ m1-loop.
We applied the same numerical procedure to solve the
density matrix equations with one decaying heavy
Majorana neutrino and vetoed points in p if the fine-tuning
measure was not within the boundary 0.9 ≤ F:T ≤ 1.1.
After scanning a series of differing heavy Majorana neutrino
mass spectra, we found the loop-dominated scenario was
possible, assuming normal ordering, for M1 ¼ 109 GeV
with M2 ¼ 3.15M1 and M3 ¼ 3.15M2. The best-fit point is
denoted as F:T loop in Table III and the triangle plot of the
two-dimensional posterior distributions may be found on
the provided webpage. In the former scenario, where the
tree-level contributions dominates, the fine-tuning measure
will be close to zero. Using MULTINEST to search for regions
of p consist with tree-domination we required the fine-tuning
to be within the boundary 0 ≤ F:T ≤ 0.2. We found no
solutions compatible with this condition forM1 < 109 GeV.
However, we did find a single point consistent with a fine-
tuning ≈0.18 for a mass spectrum ofM1 ¼ 109 GeV,M2 ≈
3.15M1 and M3 ≈ 3.15M2. Note that a two-dimensional
projection of the posterior is not possible and we simply
provide the value of this point as F:T tree in Table III. For
larger values of M1 more points will exist that satisfy the
condition and so we regard F:T tree as the solution of lowest

M1 in which the tree-level is the dominant contribution. The
absolute values of the Yukawa matrix elements are listed for
all scenarios for reference in Appendix E.
We note that it is possible to reduce the fine-tuning by

considering the scenario where M2 ¼ M3. Such a scenario
may result from the introduction of a partial symmetry
into the type-I seesaw. Since, in this section, we only
consider the case where N1 decays, this does not lead to
resonant leptogenesis. As an example, consider S1 but with
M2 ¼ M3 ≈ 5.05 × 106 GeV. Such a point in p leads to
ηB ¼ 6.1 × 10−10, which is in good agreement with the
experimental value. In this case, N2 and N3 act as two
Majorana components of a pseudo-Dirac pair. The con-
tribution ofN2 andN3 to the tree-level mass is cancelled (as
together they are lepton number conserving) and a dramatic
reduction in our fine-tuning measure occurs, resulting in
F:T: ≈ 2.1. This is similar to the scenarios considered in
[20] and will not be further discussed in this paper.
In summary, foregoing fine-tuning of the light neutrino

masses ≳Oð10Þ, it is possible to lower the scale of
nonresonant thermal leptogenesis to T ∼ 106 GeV with a
mildly hierarchical heavy Majorana neutrino mass spec-
trum. At such intermediate scales, interactions mediated by
the SM charged lepton Yukawa couplings are greater than
the Hubble rate. We have properly accounted for such
effects as we calculated the lepton asymmetry from three-
flavored density matrix equations. In the case of normally
ordered light neutrinos, larger values of the δ are favored in
conjunction with an atmospheric mixing angle close to
θ23 ¼ 45° (slightly above or below depending on the
scenario, see Table III). We observe that larger masses
ofm1 are favored as this compensates for decreasingM1. In
the scenario of an inverted ordered mass spectrum, the
likelihood function shows little sensitivity to changes in the
low-energy neutrino parameters. On the other hand, the R-
matrix is comparatively highly constrained. In addition, we
present the distribution of the fine-tuning measure within
1σ of the measured ηB and found the fine-tuning was in
general smaller for inverted than normal ordering and
usually took values ∼Oð100Þ. We find that the minimum
observed value of the fine-tuning measure in the vicinity of
the best-fit is ∼40. However, at the most likely point, the
F.T. assumes values ∼Oð100Þ.

B. Results from N2 decays

In this section, we explore the possibility that the decay
of two heavy Majorana neutrinos contributes to the baryon
asymmetry. In this setup, the density matrix equations
follow rather straightforwardly from Eq. (6) and the
numerical procedure to find the two-dimensional posterior
plots is the same as discussed in Sec. VA. The qualitative
difference between this case and the former as discussed in
Sec. IV is that now N2 may decay in addition to N1. As
M2 > M1, N2 will decay before N1 with the average time
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between the two decays determined by the hierarchy of
their masses.
In [113], the authors explored thermal leptogenesis using

the decay of two heavy Majorana neutrinos in the limit
where the third is decoupled from the theory. Using analytic
estimates, they found the minimal mass of the lightest

heavy Majorana neutrino, for successful leptogenesis, to be
M1 ∼ 1.3 × 1011 GeV assuming a mildly hierarchical mass
spectrum. In this scenario, we explored a number of heavy
Majorana neutrino mass scenarios and found the lowest
mass of N1 which allowed for successful leptogenesis
was M1 ¼ 106.7 GeV with M2 ≈ 6.3M1 and M3 ≈ 4M2.

FIG. 8. S4: Triangle plot showing the two-dimensional projection of the 11-dimensional model parameter space for posterior
distributions using normal ordering, with two-decaying steriles neutrinos and mass spectrum: M1 ¼ 106.7 GeV, M2 ¼ 5.0M1,
M3 ¼ 5.0M2. The contours correspond to 68% and 95% confidence levels, respectively.
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We denote these two scenarios as S4 and S4 for normal and
inverted ordering, respectively, and the best-fit point and
corresponding triangle plots are shown in Figs. 8 and 9.
Naively, one would think that the decay of two heavy

Majorana neutrinos would further lower the scale of

leptogenesis; however, this is not the case as there is
nontrivial interplay between the decays and washout
processes of N2 and N1. We note that contribution of
the third heavy Majorana neutrino to the lepton asymmetry

in these scenarios is negligible as the CP-asymmetry ϵð3Þαβ is

FIG. 9. S4: Triangle plot showing the two-dimensional projection of the 11-dimensional model parameter space for posterior
distributions using inverted ordering, with two-decaying steriles and mass spectrum:M1 ¼ 106.7 GeV,M2 ¼ 5.0M1,M3 ¼ 5.0M2. The
contours correspond to 68% and 95% confidence levels, respectively.
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several orders of magnitude lower than that of the other two
and its washout term W3 decays far faster.
Unlike in the previous section, we find the two-

dimensional posterior projections in this case for both
orderings do not appear to be too dissimilar. In both
cases, the likelihood function is insensitive to δ. In

addition, the atmospheric mixing angle can be in the
lower or upper octant and there is strong dependence on
large values of m1 (m3) in S4 (S4). The dependence of the
likelihood on the R-matrix parameters is similar to the
cases discussed in Sec. VA; we find x1 and x3 may
take any values while x2 ≃ 90°. Likewise, two of the

FIG. 10. S2: Triangle plot showing the two-dimensional projection of the 11-dimensional model parameter space for posterior
distributions using normal ordering with one-decaying heavy Majorana neutrino and heavy Majorana neutrino mass spectrum:
M1 ¼ 106.5 GeV, M2 ¼ 3.15M1, M3 ¼ 3.15M2. The contours correspond to 68% and 95% confidence levels, respectively.
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imaginary components of the R-matrix are constrained to
be large y1, y3 ≃ 180° while the other is nearly vanishing
y2 ≃ 2.5°. For reference, the corresponding absolute value
Yukawa matrices are given in Table V Appendix E. In a

similar fashion to Sec. VA, we present the fine-tuning

measure for the regions of the model parameter space

within 1σ of the measured ηB. We observe for normal and
inverted ordering the fine-tuning ∼Oð100Þ.

VI. DISCUSSION OF FINE-TUNED RESULTS

We may gain an understanding of why fine-tuned
solutions were found by the numerical machinery through

FIG. 11. S3: Triangle plot showing the two-dimensional projection of the 11-dimensional model parameter space for posterior
distributions using normal ordering with one-decaying heavy Majorana neutrino and heavy Majorana neutrino mass spectrum:
M1 ¼ 106.5 GeV, M2 ¼ 5M1, M3 ¼ 5M2. The contours correspond to 68% and 95% confidence levels, respectively.

THREE-FLAVORED NONRESONANT LEPTOGENESIS AT … PHYS. REV. D 98, 015036 (2018)

015036-19



inspection of the structure of the Yukawa matrix at the best-
fit points. Looking at the solutions for one and two
decaying heavy Majorana neutrino scenarios, we observe
that generically jy1j ≈ 180°, y2 ≈ 0°, jy3j ≈ 180° and
jx2j ≈ 90°. Consider as a typical example S1, for which
the orthogonal R-matrix assumes the following form

R ≈

0
BB@

− i
2
ey3 cos x2 1

2
ey3 cos x2 sin x2

i
2
ey1þy3 − 1

2
ey1þy3 1

2
ey1 cos x2

1
2
ey1þy3 i

2
ey1þy3 − i

2
ey1 cos x2

1
CCA;

which has the structure

FIG. 12. S2: Triangle plot showing the two-dimensional projection of the 11-dimensional model parameter space for posterior
distributions using inverted ordering with one-decaying heavy Majorana neutrino and heavy Majorana neutrino mass spectrum:
M1 ¼ 106.5 GeV, M2 ¼ 3.15M1, M3 ¼ 3.15M2. The contours correspond to 68% and 95% confidence levels, respectively.
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R ≈

0
B@

R11 R12 R13

−iR22 R22 R23

−R22 −iR22 −iR23

1
CA: ð15Þ

The appearance of y1 and y3 in the exponentials, and the
proximity of x2 to 90°, result in jR13j ∼ 1, jR1ij ≪ jR22j
and jRi3j ≪ jR22j.

In the case of the asymmetries ϵð1Þαα , generated in the N1

decays, and for the best-fit values of the parameters listed in
Table III, the leading term in the expansion of the function
f1ðxj=x1Þ in powers of xj=x1 ¼ M2

1=M
2
j ≪ 1, j ¼ 2, 3, as

can be shown, gives a sub-dominant contribution. The
dominant contribution is generated by the next-to-leading
term in the expansion of f1ðxj=x1Þ as well as by the leading

FIG. 13. S3: Triangle plot showing the two-dimensional projection of the 11-dimensional model parameter space for posterior
distributions using inverted ordering with one-decaying heavy Majorana neutrino and heavy Majorana neutrino mass spectrum:
M1 ¼ 106.5 GeV, M2 ¼ 5M1, M3 ¼ 5M2. The contours correspond to 68% and 95% confidence levels, respectively.
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term in the expansion of the self-energy function f2ðxj=x1Þ
in powers of xj=x1 ¼ M2

1=M
2
j ≪ 1. Under the approxima-

tion m1 ¼ m2, the part of the asymmetry proportional to f1
[which we call ϵð1Þαα ðf1Þ] is

ϵð1Þαα ðf1Þ ¼
3

16πðY†YÞ11
M2

1

v4
5

9

M2
1

M2
2

× ðm2
1jUα1 þ iUα2j2ℑ½ðR�

11R21Þ2�
þm1

ffiffiffiffiffiffiffiffiffiffiffiffi
m1m3

p
ℑ½R�

11R
2
21U

�
l3R

�
13ðUα1 þ iUα2Þ�Þ:

and

ϵð1Þαα ðf2Þ ¼
3

16πðY†YÞ11
M2

1

v4
2

3
m

3
2

1

ffiffiffiffiffiffi
m3

p jR21j2

×

�X
j¼2;3

M1

Mj

�
ℑ½R11R�

13U
�
l3ðUα1 þ iUα2Þ�:

Numerical estimates at the best-fit values of Table III show
that this second contribution (the resonance function
contribution) is somewhat larger than the first one,
although, the baryon asymmetry in the cases studied by
us is produced in the nonresonance regime.
In the density matrix equations, the CP-asymmetry

parameters enter in the combinations

ϵð1Þee ðf1Þ þ ϵð1Þee ðf2Þ;
ϵð1Þμμ ðf1Þ þ ϵð1Þμμ ðf2Þ;
ϵð1Þττ ðf1Þ þ ϵð1Þττ ðf2Þ;

in the three-flavor regime.
Thus, although for our best-fit scenarios ϵð1Þee ðf2Þ þ

ϵð1Þμμ ðf2Þ þ ϵð1Þττ ðf2Þ may be Oð10−22Þ, this does not mean

that the ϵð1Þαα ðf2Þ give a negligible contribution in the
generation of the lepton (baryon) asymmetry.
We note that there is a factor ðY†YÞ−111 in the diagonal

CP-asymmetries ϵð1Þαα [Eq. (10)] for the lightest heavy
Majorana neutrino and a factor ðY†YÞ11 [Eq. (8)] appears
in the washout term W1. Thus, we naively expect that in
order achieve successful leptogenesis, by reducing the
washout, ðY†YÞ11 should be made small. Expanding
this quantity, in terms of the R-matrix elements and the
remaining CI parameters, we find

ðY†YÞ11 ¼
M1

v2
ðm1jR11j2 þm2jR12j2 þm3jR13j2Þ:

Thus, with the assumption that this quantity should be
small, the relative smallness of the elements R1i is
explained and with it the values of x2 and y2.
Similarly, given the dependence on jR21j in ϵð1Þαα ðf2Þ, it

may be expected that we should maximize the values of

y1 and y3. With these imaginary parts of ω1 and ω3 large,
the values of the corresponding real parts x1 and x3 is
immaterial. This is reflected in the relative flatness of their
directions in the parameter space plots. The dependence
on m1 in ðY†YÞ11 may initially lead one to expect m1 to be
minimized. That this is not the case is due to the factors m2

1

or m3=2
1

ffiffiffiffiffiffi
m3

p
appearing in the expressions for ϵð1Þαα . In order

to maximize these CP-asymmetries, one would expect m1

to be found at its largest allowed value (determined by the
constraint on the sum of the neutrino masses).
Let us now examine how these choices of parameters

affect the expressions for the tree- and one-loop light
neutrino masses. We may estimate the light masses using
the largest value of the Yukawa matrix (∼10−2 in the case
of S1, see Appendix E) and the smallest heavy mass
M1 ¼ 106 GeV:

mtree ∼ v2
Y2

M1

∼Oð10−6 GeVÞ:

This mass is too large from the point of view of the
experimental bound and yet the numerical machinery is
enforcing neutrino masses which sum to < 1 eV. Let us
investigate why this estimate fails. This structure of the
R-matrix leads to the following structure for the Dirac mass
matrix:

mD

ffiffiffi
f

p
¼ ð δ1; u;−iuþ δ2 Þ;

in which jδ2j ≪ jδ1j ≪ juj where each of δ1, δ2 and u are
3-component complex vectors. We may rewrite the tree and
one-loop masses in terms of this relatively simple matrix
mD

ffiffiffi
f

p

mtree ¼ ðmD

ffiffiffi
f

p
ÞM−1f−1ðmD

ffiffiffi
f

p
ÞT;

where the commutativity of the diagonal matrices M and f
has been exploited. For the one-loop contribution, we find

m1-loop ¼ ðmD

ffiffiffi
f

p
Þðf −M−1Þf−1ðmD

ffiffiffi
f

p
ÞT:

This ensures that their sum is

mν ¼ mD

ffiffiffi
f

p
ðmD

ffiffiffi
f

p
ÞT

¼ δ1δ
T
1 þ uδT2 þ δ2uT þ δ2δ

T
2 :

Due to the relative smallness of the elements of δi, the light
neutrino mass matrix may be considerably smaller than
would be expected from a naive estimate based on the size
of u. Neglecting terms containing a δi, we find that

mtree ¼ −m1-loop:

This is the mechanism by which we arrive at the fine-tuned
mass matrices.
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Although in this analysis, the results of S1 were used, the
other solutions differ essentially only in the sign used for yi.
This introduces a different pattern of minus signs in the
matrix of Eq. (15) (and hence also in the expression
for mD

ffiffiffi
f

p
) which does not affect the overall argument.

Note that this argument is true even for the solutions of the
two-decaying heavy Majorana neutrinos equations.

VII. SUMMARY AND CONCLUSIONS

In this work, we have explored the viable model
parameter space of thermal leptogenesis associated to a
type-I seesaw mechanism. To do so, we numerically solved
the three-flavored density matrix equations [88] for one and
two-decaying heavy Majorana neutrinos. Of the eighteen
dimensional model parameter space, seven parameters were
fixed from neutrino oscillation data, cosmological con-
straints and consideration of a mildly hierarchical heavy
Majorana neutrino mass spectrum.
To find the regions of parameter space consistent

with the measured baryon-to-photon ratio we used
PYMULTINEST which implements a nested sampling algo-
rithm to calculate Bayesian posterior distributions which
are utilized to find regions of confidence. In addition, we
ensured the Yukawa matrix entries respected perturbativity
and we protected against resonance effects by assuming a
mildly hierarchical heavy Majorana neutrino mass spec-
trum. In the case of one decaying heavy Majorana neutrino,
we found the lightest heavy Majorana neutrino mass that
could successfully generate the baryon asymmetry, with
our choice of upper bound on R-matrix components, to be
M1 ≃ 106 GeV. This is possible as regions of the parameter
space which have levels of fine-tuning in the light neutrino
mass matrix > Oð10Þ were explored. In conjunction,
eleven parameters were allowed to vary thus compensating
for the smaller heavy Majorana neutrino masses. Moreover,
with normal ordering, maximally CP-violating values of δ
and θ23 close to 45° (in most cases slightly larger than 45°,
see Table III) is preferred. In addition, there was strong
dependence on the mass of the lightest neutrino. On the
other hand, we found in the case of inverted ordering there
were no strong constraints on low energy neutrino param-
eters. For this scenario, the level of fine-tuning was
∼Oð100Þ. In the case of one decaying heavy Majorana
neutrino, we found the scenario with the smallest fine-
tuning, at intermediate scales, was S2, (F:T ∼ 40) with a
heavy Majorana neutrino spectrumM1 ¼ 106.5 GeV,M2 ≈
3.15M1 andM3 ≈ 3.15M2. We showed also that fine tuning
would not be necessary at all if M2 ¼ M3, when the one-
loop contribution to the light Majorana neutrino mass
matrix is strongly suppressed. We also explored the
possibility that either the tree or one-loop radiative cor-
rections dominate the neutrino mass matrix. We found the
lowest scale possible for this scenario, assuming a mildly
hierarchical spectrum, wasM1 ¼ 109 GeV. As discussed, a

motivation for exploring leptogenesis at intermediate scales
is to avoid large corrections to the Higgs mass. Although,
we found regions of the parameter space of three-flavored
thermal leptogenesis consistent with the observed baryon
asymmetry, we did not seek to minimize δμ2 and relegate
this to a future study.
Finally, we investigated the case of two decaying heavy

Majorana neutrinos. We found the lowest scale for both
normal and inverted ordering to be M1 ¼ 106.7 GeV. This
scale is higher than in the one decaying heavy Majorana
neutrino case because the scale of the washout is larger
for N2 and its CP-asymmetry is small in comparison with
N1. Although the washout for N2 decays much more
quickly than for N1, it still has an appreciable effect on
the final lepton asymmetry and so one must raise the scale
of the heavy Majorana neutrino masses to achieve suc-
cessful leptogenesis. In this paper, we did not include
spectator effects which could potentially further lower the
scale of thermal leptogenesis and may be investigated in
future work.
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APPENDIX A: THERMAL WIDTH

The terms proportional to the thermal width in Eq. (6) are
explicitly given below

HðzÞ ∼ 1.66
ffiffiffiffiffi
g�

p M2
1

MP

1

z2
⇒ zHðzÞ ¼ 1.66g�

M2
1

MP

1

z
; ðA1Þ

where z ¼ M1

T and MP is the Planck mass. From [88],

ℑðΛαÞ ¼ 8 × 10−3f2αT: ðA2Þ
Using Eqs. (A1) and (A2), we find

ℑðΛαÞ
Hz

¼ 8 × 10−3f2αMP

1.66
ffiffiffiffiffi
g�

p
M1

; ðA3Þ

in which MP ¼ 1.22 × 1019 GeV and g� ¼ 106.75. Note
that fτ is the τ charged lepton Yukawa coupling

mτ ¼ fτv ⇒ fτ ¼
mτ

v
¼ 1.776

174
∼ 1.02 × 10−2;

mμ ¼ fμv ⇒ fμ ¼
mμ

v
¼ 0.105

174
∼ 6.03 × 10−4; ðA4Þ

where all the units above are in GeV. We can rewrite
Eq. (A3)

ℑðΛτÞ
Hz

¼ 4.66 × 10−8
MP

M1

;

ℑðΛμÞ
Hz

¼ 1.69 × 10−10
MP

M1

: ðA5Þ

APPENDIX B: STRONG WASHOUT

In this paper we have assumed that the density matrix
approximation is appropriate (as opposed to the more
accurate NE-QFT approaches). We also assume that the
baryon asymmetry is insensitive to the initial values of the
particle abundances. These assumptions are justified if
we are working in the strong washout regime defined by
K1 ≫ 1 where

K1 ≡ Γ̃1

Hz
; ðB1Þ

with

Γ̃1 ¼
M1ðm†

DmDÞ11
8πv2

; ðB2Þ

the decay rate of N1 into leptons and anti-leptons at zero
temperature. In this Appendix, we provide justification for
assuming K1 ≫ 1 is generally satisfied.

Employing the tree-level appropriate CI parametrization,
we find

K1 ¼
ðm†

DmDÞ11
M1

1

10−3 eV
;

¼ ðY†YÞ11v2
M1

1

10−12 GeV
;

¼ m1jR11j2 þm2jR12j2 þm3jR13j2
10−12 GeV

: ðB3Þ

For the normally ordered mass spectrum, following
experimental constraints on the masses, m2 and m3 are
increasing functions of m1. Thus, if the elements of R are
fixed, K1 is smallest whenm1 ¼ 0. A random scan over the
angles of R (allowing xi in [0, 360]° and yi in [0, 180]°) for
106 points leads to the conclusion that> 99.9% of points in
the parameter space lead to K1 > 1 and ∼99.7% of points
lead to K1 > 10.
In IO, a random scan of 106 points found none for which

K1 < 1 only 9 points for which K1 < 10. Thus, the
experimental constraints in both the IO and NO case
greatly favor strong washout.
In conclusion, very few points in the parameter space

satisfy the experimental constraints on the neutrino mass-
squared differences and mass-sum whilst simultaneously
achieving weak washout. Thus it is a safe assumption that
the washout is strong and our numerical methods are
accurate.

APPENDIX C: THE RESONANCE REGION

The analytical expressions using CP asymmetry param-
eters have been calculated under the assumption that the
heavy Majorana neutrinos have well-separated masses such
that the usual Feynman rules may be used in perturbation
theory. The meaning of well-separated here is such that the
mass differences are significantly larger than their decay
rates. In this Appendix, we investigate this assumption.
The total CP asymmetry parameter is defined in terms of

Γ1, the decay rate for N1 → ϕ†l and Γ̄1, the rate for CP
conjugate process N1 → ϕl†, as

ϵð1Þ ¼
X
α

ϵð1Þαα ≡ Γ1 − Γ̄1

Γ1 þ Γ̄1

; ðC1Þ

and the decay terms are

D1ðzÞ≡ Γ1 þ Γ̄1

Hz
: ðC2Þ

As analytical expressions for these are well known, we may
put them to use in finding the decay rate. We have

Γ1 ¼
Hz
2

ðϵð1Þ þ 1ÞD1ðzÞ: ðC3Þ
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The Hubble parameterH in a radiation-dominated Universe
is, from the Friedmann equation,

H ¼ −
_T
T
¼

ffiffiffiffiffiffiffiffiffi
8πG
3

r ffiffiffiffiffiffiffiffiffi
π2g�
30

r
T2; ðC4Þ

which may be expressed in terms of M1, z and the Planck
mass MP with

H ¼ M2
1

MP

ffiffiffiffiffiffi
2π

3

r ffiffiffiffiffiffiffiffiffi
π2g�
30

r
1

z2
: ðC5Þ

Thus, the decay rate may be written in terms of the
functions that are typically written in the Boltzman equa-
tions by

Γ1 ¼
M2

1

MP

ffiffiffiffiffiffi
2π

3

r ffiffiffiffiffiffiffiffiffi
π2g�
30

r
ð1þ ϵð1ÞÞD1ðzÞ

z
ðC6Þ

≈ð7.03 × 10−19 GeV−1Þ ×M2
1ð1þ ϵð1ÞÞD1ðzÞ

z
: ðC7Þ

In order to avoid the resonance region we require that

Γ1 ≪ M2 −M1: ðC8Þ

To test this, the PMNS angles; x1, x2, x3; and M1, M2, M3

were fixed according to the best-fit points for NO (Figs. 4,
10, and 11) and also for IO (Figs. 5, 12, and 13) and a
random scan over the remaining parameters for 105 points
was performed with the criterion

Γ1

M2 −M1

> 0.01: ðC9Þ

We found there were no points which verified this condition
and thus the assumption of nonresonance is justified.

APPENDIX D: HIGHER-ORDER RADIATIVE
CORRECTIONS

We have been careful to include the one-loop radiative
corrections to the light neutrino masses. In doing so, we have
expanded the region of the parameter space in which we may
accurately explore leptogenesis. Of course, there may also be
regions in which the higher-order corrections are important.
Wemay ask the question how can we be sure that the neglect
of two loops, three loops etc. was legitimate?
A pragmatic approach is to perform an order-of-

magnitude estimate of the effects of the higher-order
corrections for those points in the parameter space of most
significance to our result: the best-fit points for the scenarios
S1 to S4 and F:T loop, F:T tree. If, in these scenarios, the
higher-order corrections appear small, then our main con-
clusions are left untouched.
Our estimate of the two-loop effect (whichwe shall assume

generically dominates three or more loops) will be given by
two extra factors of the Yukawa couplings and the conven-
tional loop factor ð4πÞ−2 to the one-loop effect. Let us use

m2-loop ¼ 1

ð4πÞ2 jYmaxj2m1-loop; ðD1Þ

with jYmaxj the largest elementof thematrix of absolutevalues
of the Yukawas, as a conservative estimate (over-estimate) of
thesecond-order radiativecorrection toneutrinomasses. (This
is similar to the estimate used in [78].)
From Table VI, we see that the two-loop contributions

generally provide small corrections and therefore that
corrections beyond one-loop order are safely neglected at
these points.

APPENDIX E: YUKAWA MATRICES

Here we provide a table of the absolute values of the Yukawa matrices (jYj) for the best-fit points of each scenario
considered in Tables III and IV.

TABLE IV. The best-fit points for the leptogenesis scenarios in Figs. 8 and 9are given and are all consistent with
ηB ¼ ð6.10� 0.04Þ × 10−10, θ13 ¼ 8.52° and θ12 ¼ 33.63°. The upper (lower) row is the best-fit points for normal (inverted) ordering.

θ23ð°Þ δð°Þ α21ð°Þ α31ð°Þ x1ð°Þ y1ð°Þ x2ð°Þ y2ð°Þ x3ð°Þ y3ð°Þ m1ð3Þ (eV) M1 (GeV) M2 (GeV) M3 (GeV)

S4 47.85 105.65 133.40 367.99−99.50 178.77 94.22 0.12 −9.59 172.53 0.208 106.7 107.5 108.1

S4 44.11 243.0 347.54 437.04 14.94 167.76 90.79 1.42 132.12 178.29 0.0084 106.7 107.5 108.1
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