Downloaded 08/02/18 to 129.234.39.193. Redistribution subject to CCBY license

SIAM J. Sci. COMPUT. (© 2018 SIAM. Published by SIAM under the terms
Vol. 40, No. 3, pp. C401-C428 of the Creative Commons 4.0 license

TSFC: A STRUCTURE-PRESERVING FORM COMPILER*

MIKLOS HOMOLYA', LAWRENCE MITCHELL}, FABIO LUPORINI?, AND
DAVID A. HAMY

Abstract. A form compiler takes a high-level description of the weak form of partial differential
equations and produces low-level code that carries out the finite element assembly. In this paper
we present the Two-Stage Form Compiler (TSFC), a new form compiler with the main motivation
being to maintain the structure of the input expression as long as possible. This facilitates the
application of optimizations at the highest possible level of abstraction. TSFC features a novel,
structure-preserving method for separating the contributions of a form to the subblocks of the local
tensor in discontinuous Galerkin problems. This enables us to preserve the tensor structure of
expressions longer through the compilation process than is possible with other form compilers. This
is also achieved in part by a two-stage approach that cleanly separates the lowering of finite element
constructs to tensor algebra in the first stage, from the scheduling of those tensor operations in the
second stage. TSFC also efficiently traverses complicated expressions, and experimental evaluation
demonstrates good compile-time performance even for highly complex forms.
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1. Introduction. The development of state-of-the-art finite element simulation
software has become an especially demanding endeavor. Advanced finite element
techniques are particularly complicated, the efficient utilization of modern comput-
ers requires onerous effort, and the application domain itself is often a source of
remarkable complexity. Automatic code generation techniques have been employed
by various software projects to decouple and manage these complexities. Examples
include Analysa [6], GetDP [13], Sundance [39], FreeFem++ [19], the FEniCS Project
[37, 3], and Firedrake [47]. The finite element method is particularly suited to code
generation approaches since the entire mathematical specification of a finite element
problem can be expressed at a high level of abstraction. The specification of the weak
form of the equations, along with the discrete function space from which each vari-
able is to be drawn, is sufficient to characterize the problem completely. The Unified
Form Language (UFL) [4] is a domain-specific language for the finite element method
and provides the input language for FEniCS and Firedrake. UFL captures the weak
form and discretized function spaces, thereby providing the information that the code
generation system requires.
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The solution of a finite element problem requires three distinct operations. First,
each integral in the problem (that is, each multilinear form) must be evaluated on
each cell or facet of the mesh. Second, the facet and cell components are assembled
into global matrices and/or vectors as appropriate. Finally, these global objects are
used by a linear solver to compute the answer to the system. Time varying and
nonlinear PDEs are solved by composing these operations under the control of a time
integration scheme and nonlinear solver, respectively.

A form compiler takes a multilinear form expressed in UFL and produces low-
level code that assembles the form on a single cell or facet of the mesh. The current
production form compiler in FEniCS is the FEniCS Form Compiler (FFC) [27, 38]
while the SyFi Form Compiler (SFC) [5] was an earlier alternative. The UFL Anal-
yser and Compiler System (UFLACS) has been developed as a replacement for the
previous FFC implementations and has recently become default. In this paper we
present the Two-Stage Form Compiler (TSFC), a new form compiler in use in the
Firedrake project. The main motivation in TSFC is to maintain the structure of the
input expression as long as possible to facilitate the application of optimizations at
the highest possible level of abstraction. A follow-up paper [22] demonstrates this
through the automatic sum factorization of high-order finite element kernels. In this
paper, however, we focus on explaining how structure can be maintained through the
compilation pipeline.

The contributions of TSFC, and therefore of this paper, are a number of al-
gorithmic advances over the state-of-the-art form compilers currently available. By
efficiently traversing the input UFL expressions, the compile time of TSFC scales
much better than legacy FFC as form complexity increases and in the cases where the
transformation from the reference cell to the mesh is nonaffine. TSFC preserves the
tensor structure of expressions through the compilation process for longer than either
FFC or UFLACS. In particular, this is achieved by a new approach to isolating the
components of a weak form which must be inserted into different rows and columns
of the output tensor. Finally, TSFC cleanly separates the lowering of finite element
constructs to tensor algebra on the one hand, from the scheduling of those tensor
operations on the other. This facilitates the optimization of this schedule either in
situ or by a downstream tool.

The rest of this work is arranged as follows. In the remainder of this section we
review some concepts necessary for understanding form compilers, and then give an
overview of other current form compilers. In section 2 we emphasize the importance
of preserving structure and propose a novel, structure-preserving method for an issue
that arises in discontinuous Galerkin problems. We compare this with the approach
adopted by UFLACS and consider their compatibility with our existing optimization
technology. Then we discuss the first compilation stage in section 3, briefly describing
the preprocessing in UFL, then explaining the translation of the preprocessed UFL
form to the intermediate tensor algebra language. Section 4 then gives a detailed
description of this intermediate representation along with its translation to low-level
C code. Section 5 discusses optimizations employed at various stages of the form
compilation pipeline. Experimental evaluation is presented in section 6, and section 7
finally concludes the paper.

1.1. The role of a form compiler. Consider the stationary heat equation
—V - (kVu) = f with k thermal conductivity and f heat source on a domain ) with
u = 0 on the boundary. Its standard weak form with test function v € V can be
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written as
(1.1) a(v,u) = L(v),
where a is a bilinear and L a linear form defined as
(1.2) a(v,u;x, K) = /Q/-@Vu -Vvdz and

(1.3) L(vyz, f) = /vadx.

Here, x and f are prescribed spatial functions that parametrize the forms a and L,
and x represents the coordinate field that characterizes the domain 2. Following the
UFL terminology, we refer to v and u as arguments, and to x, s, and f as coefficients.
The latter we added in (1.2) and (1.3) after a semicolon to emphasize the presence of
form coefficients. A form must be linear in its arguments, but not necessarily in its
coefficients.

Let V and V be suitable finite-dimensional spaces of functions on €2, and let their
bases be {¢;}5_, and {¢;}_,. Secking a solution u(z) = S°7_, w;¢;(x) in the solution
space V reduces (1.1) to a linear system A - u = b with

(1.4) Aij = a(¢i, ¢jiw, k) and
(1.5) b; = L(¢s; , f).

A is the bilinear form a assembled as a matrix, and b is the linear form L assembled
as a vector.

UFL is an embedded domain-specific language for the description of the weak
form and discretized function spaces of finite element problems. It is embedded in
Python. Listing 1 defines a and L in UFL; lines 10 and 11 correspond to (1.2)
and (1.3), respectively. Line 1 defines an abstract mesh of triangular cells in a 2-
dimensional space with coordinates attached to each vertex (equivalent to a first-
order Lagrange space). Setting dim=3 would create a 2-dimensional surface in a
3-dimensional space. Setting the degree of the coordinate element higher than one
would allow the triangular cells to be curved. Users of FEniCS and Firedrake typically
create a concrete mesh object which extends the UFL class with mesh data that define
a tessellation of a concrete physical domain. Line 2 sets up the function space V' = Vv
with P, elements on the mesh; we seek a solution in this space. Listing 1 specifies
that x and f are also from V.

Listing 1. Stationary heat equation in UFL.

1 mesh = Mesh(VectorElement ("Lagrange", triangle, 1, dim=2))
2 V = FunctionSpace(mesh, FiniteElement ("Lagrange", triangle, 2))
3

4 u = TrialFunction (V)

5 v = TestFunction(V)

6

7 kappa = Coefficient (V)

8 f = Coefficient (V)

9

10 a = kappa*dot(grad(u), grad(v))*dx

11 L = fxvx*dx
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The UFL specification serves as the input of a form compiler. Form compilation
can be understood as the partial evaluation of a multilinear form given a basis for
each of its arguments. For example, the bilinear form a is compiled to the function
(z,k) — A, and the linear form L to the function (z,f) — b. Form compilers
typically assume that the domain consists of a single cell; this makes the argument
bases independent of actual physical domain up to a space transformation which is
encapsulated in the coordinate coefficient x. This does not limit the applicability of
form compilation since, given a tessellation 7 of the domain 2, one can evaluate forms
locally on each cell and assemble the contributions into the global tensors efficiently
[27, sect. 2.2].

1.2. A compiler pass. A compiler may be understood as a series of expression
transformations, called compiler passes. A pass takes an expression and produces
a new expression, implementing, for example, a simplification or an optimization, or
translating the expression to a different language. A compiler may use several interme-
diate languages between the source and target language to decompose the translation
process into several simpler passes, and especially to facilitate optimizations at the
right level of abstraction.

It is common practice in form compilers to change the integral from physical to
reference space. This enables, for example, the precomputation of basis functions at
quadrature points. We use this transformation as an example for a compiler pass.
Let us consider the Laplace operator

(1.6) a(v,u) = /K Vu-Vodz.

Let z: K — K be the mapping of coordinates from the reference cell to the physical
cell, and let the Jacobian of this mapping be J = Va. For a P, element u(z(X)) =
@(X), and likewise for v. The gradient transforms as V, = J~TV, and the integral
needs scaling as dz = |J|dX. Thus we have

(1.7) /Vu-Vvdx:/ JIVa-J TV |J| dX.
K

K

By locally applying the above substitutions to the arguments, gradients and the
integral, we obtain the expression in (1.7). As one can see, J~7 is referenced twice,
and J is referenced twice directly, or three times indirectly. A later pass may replace
J with the evaluation of Vz. It is therefore better to think of expressions as directed
acyclic graphs (DAGs) rather than trees. Graph representations of (1.6) and (1.7)
are provided in section SM1 of the supplementary material.

1.3. Facet integrals in discontinuous (Galerkin methods. Discontinuous
Galerkin methods connect cells through flux terms which are expressed as integrals
over the interior facets of a mesh. @lgaard, Logg, and Wells [44] extended the form
language with interior facet integrals and provided an implementation in FFC; here
we follow their description. Consider, for example, the bilinear form

atv.) = [ [le]as,

where [v] denotes the jump in the function value of v across the facet S. The jump is
expressed as [v] = vT —v~, where v+ and v~ are the function values as seen from the
two cells KT and K, respectively, incident to S (see Figure 1). While UFL provides
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Fi1G. 1. Two cells Kt and K~ sharing a common facet S.

utility functions such as jump and avg for convenience, its only additional primitive is
restriction: quantities to be evaluated on interior facets must be restricted to either
side of the facet. The two sides of a facet are arbitrarily marked as 4+ and —.

Let {¢] }™_; be the local finite element basis on K+, and similarly let {¢; }I | be
the local finite element basis on K ~. Since interior facet integrals involve both cells,
let {¢;}?", be a local basis on K = KT U K~ by the following construction:

¢f(x) fl1<i<nandze KT,
0 ifl<i<nandze K™,
0 ifn+l1<i<2nandz e KT,
¢, _,(x) fn+1<i<2nandazec K.

(1.8) ¢i(w) =

This construction makes the local tensor A;; = a(¢;, ;) a block tensor:

(+7+) (+7_)
(1.9) _ [A A } .

A(7’+) A(f’f)

FFC, UFLACS, and TSFC construct the interior facet tensor A by computing its
subtensors. The subtensor A(f:) can be seen as the evaluation of a corresponding
form a(* 1), and the same applies for the other subtensors. Section 2 presents a novel
algorithm implemented in TSFC for the separation of the multilinear form into several
forms corresponding to the subtensors of the local tensor.

1.4. Other contemporary form compilers. FFC contains several compilers
for weak forms—they are called “representations.” The quadrature representation [45]
generates code that performs runtime quadrature, akin to what one would manually
write. The tensor representation [27, 28] computes the local tensor as the contraction
of a precomputable reference tensor with an element-dependent geometry tensor. This
allows the elimination of the quadrature loop, which especially benefits higher-order
schemes. However, due to the nature of this representation, the size of the reference
tensor grows exponentially with the number of coefficients in the form, rendering this
representation inefficient or even infeasible for a wide variety of problems. On the
other hand, the quadrature representation suffers from an implementation limitation
that expressions are seen as a tree rather than a DAG. This can dramatically increase
the perceived size of the input expression (see Figure 2), which is detrimental to form
compilation speed and generated code size. In case of nonaffine geometries as well as
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F1G. 2. DAG representation of an expression with shared subexpressions (left), and a tree view
of the same expression (right).

for “complicated forms”—such as various formulations of hyperelastic models—the
effect can be prohibitive.

UFLACS, which was integrated as another FFC representation, and has recently
become the default implementation for most cases, has been developed to overcome
this limitation. However, to keep the internal data structures simple, UFLACS is eager
to lower high-level constructs early in the form compilation pipeline. The high-level
structure expressed in the input form, if preserved longer, could facilitate optimiza-
tions that are otherwise difficult to obtain. Section 2 provides further insight.

2. Preserving structure. Optimizations are best expressed at a specific level
of abstraction. If the representation is too high level, the transformation may not
be expressible at all, and if the representation is too low level, difficult analyses may
be needed to recognize the optimization opportunity. It is therefore desirable to
postpone representation-lowering operations until the appropriate optimizations have
been applied. There are two principal ways in which UFLACS lowers structure early,
but TSFC does not: lowering tensor expressions to scalar expressions, and argument
factorization.

Argument factorization rewrites the integrand as a sum of products such that
each product contains a term without arguments and for each argument a component
of (a derivative of) that argument. This is always possible since the form is multilinear
in its arguments. Lowering to scalars is a practical requirement: distributivity rules
in vector and tensor algebra are numerous, and completeness of the implementation
is necessary for correctness in all cases. The sum-of-product form makes it easy to
separate the form into parts that correspond to the subtensors of the local tensor
in interior facet integrals (see subsection 1.3). We also note that UFLACS applies
argument factorization irrespective of the integral type. In some cases it turns out to
be an effective optimization, as argument-independent expressions are exposed and
precomputed outside the inner loops. However, this approach is in general suboptimal.
The transformation may require the expansion of products involving one or more
arguments which affects an expression in two major ways: (a) by increasing the
operation count (which is usually only partially counteracted by the subsequent loop
hoisting), and (b) by destroying the common subexpressions that naturally arise when
a problem is specified in a tensor algebra language.
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To demonstrate what UFLACS does, let us consider the following interior facet
integral as an example:

(2.1) /S [u],, - {Vo}ds,

where [u],, is the product of the jump of v with the facet normal n, and {Vu} is the
average of Vu. The equivalent integrand with restrictions is

(u+n+ + u_n_) . (VU+ + Vv_) .

N | =

(2.2) [u]n - {Vv} =
n is of unit length, and always pointing out of the cell to which it is restricted.

UFLACS first lowers the expression to scalars, in this case by expanding the dot
product. Assuming a 2-dimensional space, this step yields

1

- zi: (v nf +uny) (Vo) + (Vv7),)

[ (whnf +un7) (VoF), + (V7))

[u]n - {Vo}

[\)

| =

+ (wnd 4+ ung) ((Vor), + (07),) |.
Argument factorization is achieved through the application of distributivity rules:
[l {90} = gutn (Vot),+ gutnf (Vo) + gumng (Vob),+ gumnp (Vo),
+ %mn; (Vot), + gutng (Vo ), + gung (Vob), + gung (Voo),

At this point one can easily separate the form based on argument restrictions:

(2.3a) (+,+)=>;u+n (Vv+)1+%u+n (Vot),,
(2.3b) (+,—):>;u+n (Vo 1+%u+n (Vv7),,
(2.3¢) <—,+>:»;u (Vv+)1—|—%u ng (Vot),
(2.3d) (- ) = qung (Vo) + sung (Vo).

In contrast, TSFC separates the form into parts that correspond to the subtensors
without applying argument factorization. This is achieved by simply exploiting the
linearity of the form in its arguments. Suppose L(v) is a linear form and an interior
facet integral, written with restrictions as in subsection 1.3. Its formulation could
be seen as a function F of v* and v~. Since each instance of an argument is either
positively or negatively restricted in the form, the following equality holds:

(2.4) FwT,v7)=F(™,0)+ F0,v7).

This means that splitting the form based on its contributions to the subtensors of the
interior facet tensor is as simple as substituting an appropriately shaped zero for any
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argument that has the “wrong” restriction. This approach also naturally generalizes
to any number of arguments. Applying this approach to (2.2) directly yields

(2.5a) % (u+n+ +0n7) - (Vo 4+ V0) = %u“‘n"’ Vo,
(2.5b) ) = % (utnt4+0n7) - (VO+ Vo) = %u"’n“‘ Vo,
(2.5¢) ) = % (On* +u"n7) - (Voo +V0) = %u Vo

(2.50) )= 5 (00 +umn) - (V04 Voo) = jumn™ - Vo

Equations (2.3) and (2.5) are equivalent, but TSFC’s approach preserves the tensor
structure of the original expression and does not require rearrangement. In general,
the preserved structure can be exploited. For example, COFFEE [41, 40] explores a
transformation space with the goal of minimizing the operation count of a kernel, and
argument factorization is difficult to undo. This renders inaccessible to COFFEE a
part of the transformation space, potentially eliminating the most efficient configura-
tions.

Although we cannot presently provide hard evidence for performance improve-
ment due to preserving the (geometric) tensor structure of the input form, TSFC
is designed to have the option of lowering tensor structure sooner or later. Truter
[52] implements optimizations that must precede the lowering of tensor structure, but
they can be conveniently done before most other form compiler phases. Homolya,
Kirby, and Ham [22, sect. 3.4], however, show an example where early lowering to
scalars leads to poorer description of nonzero patterns, but translating this to mea-
surable performance increase is currently blocked by lack of support for said patterns
in global assembly.

Compared to previous form compilers, we essentially applied an inversion of order:
lowering of finite element objects and geometric terms happens before either lowering
tensor structure or applying argument factorization. The latter are both optional since
argument factorization does not always improve performance, and explicit loops for
tensor operations might be better than unrolled loops. This creates an intermediate
representation that is a tensor algebra expression without any finite element objects or
geometric terms, as sketched in Figure 3, splitting compilation into two stages, hence
the name: Two-Stage Form Compiler (TSFC). A tensor algebra language (GEM) is
used as an intermediate representation, and the first stage lowers finite element objects
and geometric terms to this language (section 3), while the second stage generates
code to evaluate this tensor algebra expression (section 4).

3. First stage (UFL — GEM). GEM is a tensor algebra language very similar
to UFL in its tensor algebra features, although it contains nothing specific to the
finite element method. This approach works very well, because the evaluation of
finite element objects and geometric terms is expressible using only tensor algebra.

3.1. Tensor algebra and index notation in UFL. The tensor nature of UFL
expressions is represented as shape and free indices:
shape An ordered list of dimensions and their respective extent, e.g., (2, 2). A
dimension is only identified by its position in the shape.
free indices An unordered set of dimensions where each dimension is identified by
a symbolic index object. One might think of free indices as an “unrolled
shape.”
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Form language UFL

lower finite
elements and
geometry

Tensor algebra
language GEM
schedule

operations,
create loop
structure, etc.

Host language C / COFFEE

Fic. 3. TSFC compiles forms in two stages. The first stage translates the evaluation of finite
element objects to tensor algebra expressions. The second stage generates C code to evaluate tensor
algebra expressions.

These traits are an integral part of any UFL expression. For example, let B be a 2 x 2
matrix, then B has shape (2, 2) and no free indices. Bi 1 has scalar shape and no
free indices; B; ; has scalar shape and free indices ¢ and j; and B;; has scalar shape
and free index i. UFL has four basic node types related to the tensor nature of its
expressions:
e Indexed(A, (a1, q9,...,a.))
where A is a tensor expression of rank r, and « is a multi-index consisting
of fixed indices and free indices. The result has scalar shape, but all the free
indices of « become free indices of the result, i.e., Indexed can convert shape
to free indices.
e IndexSum(e, i)
Tensor contraction of the scalar-valued expression e over the free index i.
e ComponentTensor(e, )

where a := (a1, 9, ...,ak) is a multi-index consisting of free indices, and e
is a scalar-valued expression with free indices oy, aa, ..., o (at least). These
free indices are turned into shape, in the order they appear in «.

e ListTensor(ej,e,...,¢€n)
where ej,eq,..., e, are expressions of shape (si,s2,...,5,). The result is
a concatenation of (the otherwise unrelated) expressions ey, es, ..., €,, with
shape (n, s1, S2, ..., 8).

The index notation provides a low-level representation for many vector and matrix
operations. For example, dot product, elementwise multiplication, and outer product
are all expressible using only multiplication of scalars and some of the above tensor
operations:

e dot(u, v) = IndexSum(u[i] * v[i], i)
e elem_mult(u, v) = ComponentTensor(uli] * v[i], (i,))
e outer(u, v) = ComponentTensor(ul[i]l * v[jl, (i, j))

3.2. UFL preprocessing and modified terminals. TSFC relies on UFL to
preprocess the form. The most important step in this procedure is to change the
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integral from physical to reference space. This involves scaling the integral and the
application of pullbacks on the functions (arguments and coeflicients) of the form.
For example, the Laplace operator

(3.1) /Vu -Vude,
where u and v are the trial and the test function respectively, becomes
(3.2) /J*Tva - J7TVe|J| dX

if v and u require no reference value transformation, as discussed in subsection 1.2.
J is the Jacobian of the coordinate transformation. Note the change in the integral
measure (dz versus dX). After this transformation, UFL does various simplifications
on the form: the Jacobian is replaced with the gradient of the spatial coordinates,
determinants are expanded, divergence and curl are expressed with tensor algebra on
gradients, and various products are expanded using the index notation. Subsection 3.1
demonstrated that lowering to the index notation introduces ComponentTensor nodes;
however, to make this discussion easier to follow, we simplify most of them away, even
though in reality they are only eliminated at a later stage (subsection 4.2). Finally,
gradients and restrictions are propagated to leaf nodes or terminals, i.e., nodes of the
expression graph with no children. This reduces the number of language constructs
that the form compiler needs to handle while preserving a rich language for the user.
As a result of these operations, (3.2) becomes

Oz Oz Oz Oz
(80 (), () (), e
0X )1, \0X /4, 0X )1, \0X /5,
(ﬁ 22 %)1 2 .
B = (o= ’ Oz ’ s DadJ(J)
ox)a1 (5x)
(3.3) B
K :—} Sl [ ) >inv(J)
d 1,12
/Z <Z KiB,is(Va)i?,) <Z Ki4,i5(vq~})i4> |d| dX,
i5 i3 iq
where ]e[, is a notation for ComponentTensor(e, ). Equation (3.3) denotes a single

expression, although some subexpressions are assigned names for simpler presentation.
In UFL, terminals are (a) constant literals, (b) coefficients, (c¢) arguments, (d) ge-
ometric quantities, and (e) quadrature weight. Various terminal modifiers may wrap
a terminal. TSFC only needs to handle the following terminal modifiers:
e PositiveRestricted, NegativeRestricted
Restriction to one particular side of the facet in an interior facet integral.
e ReferenceGrad
Gradient in the reference space, possibly applied multiple times.
A modified terminal is a terminal with a set of modifiers attached. In this setup,
the translation of modified terminals is independent of their context (surrounding
outer expression), and the translation of the overall expression does not need to know
more about the modified terminals than their shape and free indices. Since GEM
intentionally mimics the tensor algebra features of UFL, the latter problem is trivial.
We discuss the former in the next subsection.

© 2018 STAM. Published by SIAM under the terms of the Creative Commons 4.0 license



Downloaded 08/02/18 to 129.234.39.193. Redistribution subject to CCBY license

TSFC: A STRUCTURE-PRESERVING FORM COMPILER C411

3.3. Substitution of modified terminals. Currently, the substitution rules
for modified terminals mimic the evaluation rules of FFC:

e Arguments. FIAT [25] provides the tabulation matrix that contains the
value of each basis function at each quadrature point for the finite element of
the argument. This becomes a compile-time constant matrix in GEM. This
matrix is then indexed with the quadrature index and the corresponding
argument index.

e Coefficients. We need a GEM expression that evaluates the coefficient at
each quadrature point. The matrix-vector product of the element tabulation
matrix with the local basis function coefficients gives exactly that. That
vector for the cell is given as a kernel argument, which is represented as a
runtime value in GEM.

e Geometric quantities. Because Firedrake represents the mesh coordinates
as a finite element field, the Jacobian and further derivatives of the coordinate
field are simply evaluated as coefficients. Other geometric terms typically
appear in facet integrals (e.g., facet normal), and, as a consequence of UFL
preprocessing, are expressed in reference space. They depend on the cell type,
which is known at compile time, and often on the facet, which is provided
as a kernel argument at runtime. Thus the evaluation of a geometric term
usually involves indexing into a compile-time constant tensor with the facet
index.

Applying these evaluation rules, the modified terminals of (3.3) are replaced with
the following expressions:

(3.4 vi [EY) EX)].
(3.5) vi— [} EZ).
830 _Zr Cé};’l)c’r E'r Clgal"lz)cT
(3.6) v (2,1) 2,2) | >
aX _Zr C s Cr Zr CQ/" Cr

where E®) is the tabulation matrix of the first derivative of the finite element of v
in the bth direction, C(*?) is the tabulation matrix of the first derivative in the bth
direction of the ath component of the coordinate element, and c is the vector of the
local basis function coefficients of the coordinates, which is not known at compile time
but provided as a runtime parameter. The quadrature index is ¢, while j and k are
the test and trial function indices, respectively, and r is the basis function index of
the coordinate element.

This general treatment of the Jacobian also works for nonsimplex cells and higher-
order geometries. We will discuss optimizations for affine simplices in section 5. Since
indexing a tensor with fixed indices immediately selects the appropriate entry, these
substitutions yield the following integrand expression:

JOD =3 "cVe,,

" d:= JoD j@2) _ j(1.2) y@21)
T =) CiPen, J22) g2

" = [J(z,n Jn ] :
Jen . c@e,.

2: o p ::] By, [
769 = 3 ol ¢ L
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o (€)) (2) o (1) 2)
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Aggregating the integrand values for each quadrature point with quadrature weight
w, gives the GEM representation of (3.1) as

6 Yu, |d|z<zms,i5 [£0) E;?;L) (ZK [0 E;?;]i)
q i5 i3 iq

This representation only contains tensor algebra operators applied to compile-time
constant tensors and a runtime argument to the local kernel. All the finite element
and geometric terms have been lowered; the first stage of form compilation is complete.

3.4. Intermediate representation (GEM). Since GEM mimics the tensor
algebra features of UFL and lacks other features, such as finite element objects and
geometric quantities, one may rightly ask why the tensor algebra subset of UFL could
not be adopted as the intermediate representation. The reason for the creation of
GEM is to relax some of the constraints on free indices which are intrinsic in UFL.

Free indices are just an “unrolled shape” in UFL that may be “rolled back”
any time. For any operation, free indices of the operands are subject to the same
constraints that apply to shape. For example, tensors must have equal shape for
addition; consequently, they also must have the same free indices. GEM interprets
free indices differently. A free index in GEM simply means that the value of the
expression depends on that index. For example, let u be a 3-dimensional vector (no
free indices). u; and u; are scalars with free indices ¢ and j, respectively. So far, it is
identical to UFL. However, in GEM u;+wu; is just an expression that depends on both
i and j, that is, a scalar with free indices 7 and j, while in UFL the same expression is
illegal because the free indices do not match: the addition of a 3-dimensional vector
with itself cannot produce a 3 x 3 matrix.

While the enforcement of strict shape checking is valuable for preventing user
errors in a weak form, this strictness becomes an obstacle when the modified terminals
are replaced with their respective evaluation rules. For example, we replaced Vv with
[Eélj) EéQJ)] in subsection 3.3. In UFL this would mean replacing a vector with a
third-order tensor, which yields an illegal expression in the general case. In GEM it
just replaces a vector with another vector which depends on ¢ (quadrature index) and
j (argument index). There is eventually a summation over ¢, and the dependence on
j gives the components of the element tensor. This difference in free indices poses no
difficulty for the UFL — GEM translation since GEM is strictly more permissive.

4. Second stage (GEM — C). This section discusses the second stage of
form compilation, which is the translation of GEM to C, a programming language
with explicit loops and only scalar expressions.

4.1. Overview of GEM. GEM was intentionally designed to be very similar
to UFL in its tensor algebra features. In common with UFL, the tensor nature of
expressions can be expressed as shape or free indices (see subsection 3.1). Most
supported operations are naturally scalar, such as addition and multiplication, but
there are a few tensor operations as well, such as tensor contraction (called IndexSum).
Here we give a summary of all GEM nodes:

e Terminals:
— Literal (tensor literal)
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— Zero (all-zero tensor)
— Identity (identity matrix)
— Variable (runtime value, for kernel arguments)
e Scalar operations:
— Binary operators: Sum, Product, Division, Power, MinValue, MaxValue
— Unary operators: MathFunction (e.g., sin, cos)
— Comparison (>, >, =, #, <, <): compares numbers, returns Boolean
— Logical operators: LogicalAnd, LogicalOr, LogicalNot
— Conditional: selects between a “true” and a “false” expression based
on a Boolean-valued condition
e Index types:
— int (fixed index)
— Index (free index): creates a loop at code generation
— VariableIndex (unknown fixed index): index value only known at run-
time, e.g., facet number
e Tensor nodes: Indexed, ComponentTensor, IndexSum, ListTensor
See subsection 3.1 for details.

4.2. Elimination of ComponentTensor nodes. The duplicity of shape and free
indices would noticeably complicate the process of code generation. To avoid that,
we eliminate nonscalar shape in nonterminal nodes by removing all ComponentTensor
nodes using a rule that is analogous to beta reduction:

(4.1) Indexed(ComponentTensor(e, &), ) — €|a—g;

where e is an expression with scalar shape, « is a multi-index containing distinct free
indices of e, and § is a multi-index of the same rank as a. e|o— g denotes a substitution
of indices in e, where «; is replaced with §; for all . The rule replaces indexing into
a ComponentTensor by a substitution of the indices.

A ComponentTensor node must be immediately inside an Indexed node or at
the root of the expression because Indexed is the only GEM operator that accepts
nonscalar shape. Since the UFL — GEM stage produces a GEM expression with
scalar shape and the argument indices as free indices, the application of (4.1) removes
all ComponentTensors from the intermediate representation. The downside of this
approach is the possibility of code duplication when different substitutions are applied
on the same subexpression.

To demonstrate this, we continue with our Laplace operator example. To simplify
our presentation in subsection 3.2, most ComponentTensor nodes were eliminated,
except for K defined in (3.3). Eliminating K in (3.7) gives

Biyis [,,1) (2 Biyis [.(1) a2

(4.2) qu ] Z (Z d [Eq,k Eq,kLS Z d {Eq,j E(m}u )
q 15 13 7

As one can see, this step duplicates the elementwise division of the adjugate matrix

by the determinant.

4.3. Code generation. Since ComponentTensor nodes are eliminated, we can
now restrict our attention to the index notation. A simple code generation approach
for the evaluation of such tensor expressions is to introduce a temporary variable
and generate a pair of perfect loop nests (Figure 4(a)) for each tensor contraction
(IndexSum). The first loop nest initializes the temporary, and the second accumu-
lates the result. Consequently, the first loop nest contains all the free indices of the
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1: for all i do 1: for all ¢ do
2: for all j do 2: ti] « alt] + bli]
3: d[i, j] < (a[i] + b[i]) * c[4] 3: for all j do
4: d[i, j] « t[i] * c[j]
(a) A perfect loop nest of two loops: the (b) The result of hoisting operations from
inner loop is perfectly nested in the outer the inner loop; an imperfect loop nest.

loop since the outer loop contains no other
statements than the inner loop.

Fic. 4. An example of loop hoisting. The calculation ali] + b[i] is independent of the inner
loop, and thus it need not be repeated for all j.

1: for all 7 do 1: for all 7 do 1: for all ¢ do

2: cli] < ali] + b[d] 2: cli] < ali] + bli] 2: ¢ < alt] + bli]

3: for all 7 do 3: d[i] < ci] = cd] 3: di] <= cxc

4: d[i] < cl[i] * [i]

(a) Sequence of two loops (b) After loop fusion (c) After shape reduction

F1c. 5. An example of a pair of loops before and after loop fusion. If ¢ is not needed later, its
shape can be reduced after fusion.

IndexSum expression, while the second loop nest has one more index, the index being
summed over. For example, applying this approach to (4.2), we introduce temporaries
JOD g2 7@ and J(22) as in subsection 3.3, ti, to, and t3 for Dinr Doiys and
Zi5’ respectively, and A for the whole expression. (The code for this intermediate
step is provided in Algorithm SM1 of the supplementary material.)

While this simple approach produces correct code, introducing temporaries merely
for tensor contractions may cause too much inlining. In particular, shared subexpres-
sions other than tensor contractions are still expanded, and there is also room for
loop hoisting (Figure 4). Therefore, we also introduce temporaries to evaluate subex-
pressions that (a) have a reference count greater than one, or (b) have a different set
of free indices than their unique parent. In our example, the determinant of the
Jacobian is an instance of (a), and wy * abs(...) in the final loop nest is an instance
of (b). So we also introduce temporaries d and t4, respectively. The result of this is
Algorithm 1, which also adds loop nests for “defining” ListTensor expressions, such
as adjugate matrix B, |} = [Eéllz Eé ,3] and Iy [Eélj) Eéi)]

Finally, we apply loop fusion to reduce the size of the temporaries (see Figure 5).
Here we use a simple and fast algorithm. First, we construct an ordering of all free
indices that appear in the GEM expression and apply this ordering to each (perfect)
loop nest. Based on our knowledge about the structure of finite element assembly
kernels, and in common with FFC, we choose the quadrature indexr to be the first
(outermost), followed by the argument indices in order, and then by all other indices.
A possible ordering that we use for our example is (g, j, k, r, 3,14, 45). This means a
number of loop interchanges (Figure 6) in Algorithm 1. Considering dependencies, we
also take a topological ordering of the loop nests that heuristically tries to maximize
loop fusion (subsection 4.4). For our example, this results in Algorithm 2. Finally, we
apply maximal loop fusion without further reordering. The fused algorithm is Algo-
rithm 3. Note that many of the temporaries are now scalar, or at least have a reduced
tensor order. The supplement contains a transcription to C code in Listing SM1.
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Algorithm 1. Generated loop nests for the expression (4.2).

1: for all ¢ do 23: for all ¢ do > Common subexpression
2: JEDgl +0 24: dlg = J®V[g « JD[q —
3: for all ¢,r do J2) [q] * J(Q’l)[Q]
4 JAD[g 4= Y «e, 25: for all i3,i5,q,k do
5: for all ¢ do 26:  tilis,q k] += Blg,is,i5] =+ dlg] *
6: J(LQ) [q] —0 ll[qakal?)]
7: for all ¢, do 27: for all ¢,j do
. 1 2
8 J(12) [q] += C(};Q) e, 28: Ialg, j,...] « {E(g; E(EJ)}
9: for all g do 29: for all i5,q,j do
10:  J@D[gl 0 30:  tafis, g, 5] < 0
11: for all ¢,r do - 31: for all iy,i5,¢q,7 do
122 J@Y[g += Y xc, 32 tolis,q,§] += Blq,ia,is] +~ d[q] *
13: for all ¢ do l2[q, J,44]
14: JZ2[g] 0 33: for all ¢, 5,k do
15: for all ¢, do 34: t3(q,j, k] < 0
16 J2D[g += C2P xe, 35: for all i5,q, 7],k do
17: for all q do 36: t3 [Qaj7 k] += tl[if)a q, k] * 4o [i5a Q»J]

18 B }e[ﬂ“)[q] —J“’zwa] 37: for all j,k do
: q,...

—J@V[g  JED[g 38: Alj, k] <0
19: for all ¢, k do 39: for all ¢ do © Hoisted computation
2:  lfg,k,...] [Eélg Eﬁ} 40:  taq] = wq x abs(d[q])

' ’ 41: for all j,k,q do

21: for all i5,q,k do 49: A[j, k] += ta]q] * t3[q, j, k]
22: tl[i5,q,k‘} 0

1: for all ¢ do 1: for all j do

2: for all j do 2: for all 7 do

3: clj, ] < ali] = b[j] 3: clj, 4] < ali] = bly]

Fic. 6. An example of loop interchange: the inner and outer loops are swapped. Loop inter-
change is only applicable to a perfect loop nest (see Figure 4(a)).

4.4. Topological orderings of loop nests. The GEM DAG describes the de-
pendencies of each node in that DAG. The nodes can be evaluated in any order
which respects those dependencies. That is, if there is an edge from node a to node b,
then node b must be evaluated before node a. Any ordering which respects the con-
straints imposed by the DAG edges is called a topological ordering, and the process
of generating such an ordering is called topological sorting.

Topological sorting is a well-understood problem [12, sect. 22.4]. Every DAG
admits a topological ordering, but this is not in general unique. For correct code
generation as described in subsection 4.3, any topological ordering suffices. However,
the choice of ordering determines which loops can be fused, and thus how much
memory is saved. Reducing the working set size® can help to fit into faster memory,

IThe amount of memory required to carry out a sequence of operations.
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Algorithm 2. Reordering loops in Algorithm 1.

1: for all j,k do 23: for all ¢,k do
22 A[j k[0 24 g k,..] — [Eélzi Eﬁ}
3 for a(lllg do 25: for all ¢, k,i5 do
4: JED[g] + 0 .
26: tl[q,k,25] ~0
5: for all ¢ do .
6: J2)[g] + 0 27: for all g, k,is,i5 do
28: tl [q7k7i5] += B[q7i37i5] - d[Q] *
7: for all ¢ do Ll ki
(2,1) 1 [qa 57'3]
8: J= [q] —0
p Nod 29: for all ¢ do
9: for all ¢ do 30. o] = w. % abs(d
10: J(2:2) [q] < 0 alq] q (dla])

31: for all ¢, 5 do

11: for all ¢, do ] W @)
12: JAV[g] += C{g};l) e, 32: lalg, 3, -] + {Eq’j EqJ]
13: for all ¢, do 33: for all a j, 15 do
14: JE2[q] += 015717,’2) % Cp 34: talg, j,is] < 0
15: for all ¢, do 35: for all ‘8 j» i4,15 do o
16 J@D[g += OV x e, 86:  t2[q,4,%5] += Blg,is, 5] + dlg]
l2[qa,777/4]
17: for all ¢,r do 37. for all ¢, j, k do
2,2 : s J>s
s JEg 4= O vy 38:  3lg,j, k] <0
19: for all ¢ do

39: for all ¢, j, k,i5 do

0: t3 [q,j, k‘] +=1 [q, k, i5] * tQ[q,j, i5]
41: for all ¢, j,k do

42: Aj, k| += talq] * t3]q, j, K]

JED g 2]
—JZVg]  JOV[g)

S

20: Blg,...] «

21: for all ¢ do
222 dlg] = JUV[g x JEV[g —
J32)[g] x TV [g]

thus also reducing execution time.

We use a variant of Kahn’s algorithm [23], [30, sect. 2.2.3, Algorithm T] with
heuristics to maximize loop fusion. Algorithm 4 presents Kahn’s algorithm for topo-
logical sorting. Line 6 is a point of ambiguity, since S can have more than one element.
Any choice will yield a correct, but different, topological ordering, so our heuristics
are about choosing “wisely.”

Loop fusion occurs between two consecutive loop nests for all common outer loops.
We maximize this at every choice in a greedy manner. The number of loops in the
previously chosen loop nest, however, poses an upper limit on the number of loops
that can be fused as a result of the current choice. For example, if the previous choice
was a loop nest with indices (g, ), this rule so far expresses no preference between (g, )
and (g,r) for the next choice, because only the g loop can be fused in both cases.
Therefore we further refine our heuristic to prefer those loop nests with exactly the
same loops as the previously chosen loop nest. Delaying “entry” into further inner
loops is a heuristic designed in the hope that more loop nests with those indices will
satisfy the dependency requirements once we have no other option but to “enter”
those further inner loops, thus enabling more loop fusion later.

Algorithm 5 shows our version of the CHOOSE-ELEMENT function. We maintain
the ordered loop indices of the previously chosen loop nest in cursor, which is initial-
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Algorithm 3. The result of loop fusion on Algorithm 2.

1: for all 5,k do

= = e
L

13:

28:
29:
30:
31:

32:

© P NP d

Alj, k] <0

: for all ¢ do

JAED 0
J12) 0
JZD 0
JZ2) 0
for all r do
JAD = ot e,
J12) 4= 0(1’2) P,
q,r T
JED y— o2 .
q,r T
J22) 4= 0% xe,
B |: J(2,2) _J(1,2)
- _J(2,1) J(l,l)
d= J(l,l) " J(2,2) _ J(1’2) " J(2,1)
for all £ do
L[5 5]
for all i5 do
tl[kv 15} 0
for all i3,i5 do
tl[k}, 15} += B[ig, 25] +d * 11[13]
ty = wq * abs(d)
for all j do
5 5)
for all i5 do
to [25] +~—0
for all 74,45 do
to [25] += B[i4, i5] ~d=x* lg[i4]
for all £ do
t3+ 0
for all i5 do
t3 += tl[k‘,i5] * t2 [15}
A[], k‘] += t4 * t3

ized to () at the beginning of a topological sort. We can assume that S is nonempty.
First, we try to choose an element with the same loop indices as the previous one
(lines 3-5). If that is not possible, we try to choose an element such that cursor is a
prefix of its loop indices (lines 6-10), and we update cursor accordingly. If that is not
possible either, we drop the last (innermost) index from cursor and repeat. Before
this step cursor must have had at least one index; otherwise So = S # &, so the
function would have returned in line 10.

Figure 7 shows the dependency graph of the loop nests in Algorithm 1, along with

the solution our algorithm yields. The ordering precisely corresponds to what we have
seen in Algorithm 2.
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Algorithm 4. Kahn’s algorithm for topological sorting.

1: function TOPOLOGICAL-SORT(G)

2 refcount < in-degree for each node in G
3 L+ ]

4: S < {u | refeount[u] = 0} > root nodes of G
5: while S is nonempty do

6 u + CHOOSE-ELEMENT(.S)

7 S+ S—{u}

8 insert w to the front of L

9: for all v € children[u] do

10 DECREMENT(refcount[v])

11: if refcount[v] = 0 then

12: S+ Su{v}

13: return L

Algorithm 5. Heuristic to maximize loop fusion.

1: function CHOOSE-ELEMENT(SS)

2 while true do

3 Sy ={u € S| loop_indices|u] = cursor}
4 if S; is nonempty then

5: return any element from S;

6 Sy ={u € S| cursor is a prefix of loop_indices[u]}
7 if S5 is nonempty then

8 u < any element from S

9 cursor <— loop_indices|u]

10: return u

11: remove last index from cursor

4.5. Related work. Since efficient implementation of tensor algebra expres-
sions is not specific to the finite element method, the related work is broad in scope.
Various tensor algebra libraries and domain-specific languages [8, 14, 48, 50] have
been developed for quantum chemistry computations. However, while the working set
size? of a finite element local assembly kernel rarely exceeds a megabyte, the tensors
in quantum chemistry computations are typically huge, even reaching petabytes in
size. Consequently, the optimized implementation of individual tensor operations on
distributed-memory parallel computers is usually the major concern, as is the case
with SIAL [48], libtensor [14], and CTF [50]. Similarly, TensorFlow [1] serves for
the instrumentation of tensor computations on large-scale heterogeneous computing
systems for machine learning purposes, so most of their challenges do not overlap
ours. The Tensor Contraction Engine [8], however, also considers optimizations on
the whole tensor algebra expression, which are applicable to our case as well. Some
of these ideas were also applied to do efficient tensor contractions on GPUs [43].

Some other projects also feature tensor expressions as intermediate representa-
tions. SPL [53] is a component of the SPIRAL system [46], and its language is quite
similar to GEM, but tuned for signal processing problems such as the fast Fourier
transform. X-SPL [15] is an extension that features index mappings similar to the

2The amount of memory required to carry out a sequence of operations.
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F1a. 7. Dependency graph of the loop nests of Algorithm 1. At the right of each node are the
name of the temporary variable and the ordered loop indices of the loop nest. The bold numbers at
the upper left of each node represent a valid ordering of these operations.

FlexiblyIndexed nodes in GEM. EIN [9] is another tensor language, and the inter-
mediate representations of Diderot [10, 24]. It uses a static single assignment form,
while GEM is a simple expression language that cannot express control flow. Al-
though this choice limits the kind of kernels GEM can represent, GEM is also easier
to reason about.

Algebraic transformations on tensor algebra expressions can produce equivalent
formulations that require many fewer operations to compute. Lam, Sadayappan, and
Wenger [35, 36] first studied the problem of single-term optimization, also known
as strength reduction: the operation-minimal evaluation of tensor contractions over
the product of several tensors with various indices. They prove that the problem
is NP-complete, but they also provide a pruning search strategy that is efficient in
practice, since a single term typically consists of only a limited number of tensors.
Kschischang, Frey, and Loeliger [31] show that such a single term can be characterized
by a factor graph. If the factor graph is cycle-free, then it straightforwardly yields the
unique optimal factorization. Otherwise different factorizations can be produced by
various transformations that break the cycles. Considering the sum of single terms,
Hartono et al. [18] achieved further improvements over single-term optimization by
considering various factorizations of the whole expression. Since the space of different
factorizations is huge, they relied on various search techniques. Exploiting common
subexpression elimination during the search resulted in further gains [17]. TSFC
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primarily relies on COFFEE to provide operation minimization (see subsection 5.5).

Although rearranging compound expressions may drastically reduce the required
computational work in some cases, the efficient implementation of primitive tensor
operations is necessary for the effective use of hardware. Traditionally, BLAS (Basic
Linear Algebra Subroutines) implementations provide optimized dense linear algebra
operations; Springer and Bientinesi [51] present efficient strategies for generalizing to
tensor-tensor multiplication. However, these routines are optimized for large tensors
and matrices. Eigen [16] is a templated, header-only C++ library that provides ef-
ficient linear algebra routines for small tensors. Miithing, Piatkowski, and Bastian
[42] use libxsmm [20] in their high-order discontinuous Galerkin code, which contains
heavily optimized BLAS-like routines for small matrices. Kjolstad et al. [29] present
the Tensor Algebra Compiler (taco), which generates efficient code for primitive ten-
sor operations, especially for various sparse array formats. While finite element local
assembly mostly involves dense tensor operations, Kirby [26] describes a theory of
reference transformation that requires multiplications with sparse matrices for finite
elements with stronger than C° continuity.

Since tensors in quantum chemistry computations are huge, optimizing the mem-
ory requirement is of great importance so that computations can fit in the main
memory. While this is not an issue for finite element local assembly, fitting the work-
ing set into the cache can have an important performance impact. The evaluation
of tensor expressions in a scalar programming language such as C requires the in-
troduction of array temporaries which may be indexed. The order in which these
temporaries are produced and consumed affects the working set size of the kernel.
Lam et al. [32, 34] give an algorithm for the evaluation order of nodes of an expres-
sion tree that minimizes the maximal total size of live temporaries. Their work can
be understood as a generalization of the Sethi—Ullman algorithm [49], where nodes
are not assumed to have the same size, and instead each node can have an arbitrary
size. Since tensor-valued temporaries are both produced and consumed by loops,
loop fusion can eliminate dimensions of these temporaries, thus reducing the required
memory, as we demonstrated in subsection 4.3. Lam et al. [33] formalize the legal-
ity of loop fusions over expression trees and their effect on the memory requirement.
They give an algorithm for finding the memory-optimal set of loop fusions based on
dynamic programming and pruning, with an exponential complexity in the number
of index variables. Allam et al. [2] propose an alternative algorithm that reduces this
problem to an integer linear programming formulation. Cociorva et al. [11] studied
space-time trade-off optimization in this context by allowing some recomputations for
further loop fusion opportunities. In TSFC we have implemented a fast algorithm
that may produce suboptimal results (subsections 4.3 and 4.4), rather than striving
for optimality at the cost of high algorithmic complexity [33, 2].

5. Optimizations. This section discusses various optimizations in TSFC which
are not essential for the understanding of the overall form compilation process, and
whose proper effects are often only understood in composition with other optimiza-
tions at various points of the form compilation pipeline.

5.1. Constant folding for zero tensors. Constant folding means replacing
computations whose operands are all known at compile time with the result of the
computation. This is a standard technique in modern optimizing compilers. TSFC
implements a limited version of it at the GEM level: only computations involving
zero tensors are folded. This limited version can still yield significant benefits since
the application of 0 - X = 0 can eliminate an arbitrarily complex expression X. Zero
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tensors can arise, for example, as tabulation matrices for higher derivatives than the
degree of the finite element.

5.2. Cellwise constant quantities. We saw in subsection 3.3 that the evalu-
ation of arguments and coefficients involves a tabulation matrix M, , that contains
the value of each basis function at each quadrature point. When an argument or a
coefficient, or more commonly a derivative of it, is cellwise constant, then evaluation
need not happen for every quadrature point. So instead of the matrix M, , we create
a vector M, which does not have the quadrature index as a free index. This change
in combination with loop hoisting (see subsection 4.3) will hoist the evaluation of all
cellwise constant subexpressions out of the quadrature loop.

5.3. Fast Jacobian evaluation for affine cells. The Jacobian of the coor-
dinate transformation appears in virtually every form after preprocessing, even the
simplest ones. In those cases an inefficient Jacobian evaluation may likely become
the dominant cost of assembly. Consequently, FEniCS has, and Firedrake used to
have, efficient handwritten code snippets for Jacobian evaluation on affine simplices.
As described in subsection 3.3, we now implement Jacobian evaluation as coefficient
evaluation. This allows us to handle arbitrary order geometries with a single code
path, but it also implies that each entry of the Jacobian is evaluated as a matrix-vector
product. For affine cells, the Jacobian is cellwise constant, so this reduces to a dot
product of two vectors (subsection 5.2). The code snippets evaluate each Jacobian
entry with a single subtraction.

Since both approaches are correct and thus yield identical results, it follows im-
mediately that the tabulation vector must have precisely two nonzero entries which
are 1 and —1. Therefore, we introduced another optimization rule which applies to all
coefficient evaluation: if the quantity is cellwise constant and the tabulation vector
has at most two nonzero entries, then we expand the dot product that evaluates the
coefficient. This, of course, composes with constant folding (subsection 5.1), so the
multiplications with zeros vanish, and we obtain a formulation that is performance
equivalent to the code snippets.

5.4. Unrolling short IndexSum loops. In most cases, unrolling short loops,
which are typically geometric loops, improves performance. When this optimization
is applied, the generated code for the Laplace operator becomes as in Algorithm 6.
It also negates the code duplication around Jacobian inverses that was caused by the
beta expansion step (subsection 4.2). This optimization is enabled by default in TSFC.
However, as demonstrated, it is completely optional and can be delayed to run after
those optimizations that benefit from the tensor structure of the source expression.

5.5. COFFEE integration. Although we did not emphasize this, TSFC does
not generate C code directly, but an abstract syntax tree (AST) for C, so that COFFEE
can further optimize the kernel. Since this is just a different representation of C code,
the discussions in section 4 are still completely valid. COFFEE performs both low-
level optimizations, such as alignment and padding to facilitate vectorization by the
host C compiler, and high-level optimizations to reduce the operation count. The
latter require restructuring the loops and expressions. In essence, COFFEE seeks
to determine the optimal trade-off among common subexpressions elimination, loop-
invariant code motion, and factorization. For this, it analyzes a transformation space
which also includes the FFC tensor representation and many of the factorizations
performed by UFLACS. For further details about COFFEE and for comparative
performance evaluations, see Luporini, Ham, and Kelly [40].
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Algorithm 6. Generated code when unrolling applied, equivalent to Algorithm 3.

1: for all j,k do 14: KOO = jg@2) - g
2 A[ ., k] < 0 15: K(172) = —J(172) - d
3: for all ¢ do 16: K@Y = g&b - g
4: JOD 0 17: K@2) — g1 - g
5: J12) 0 18: for all k do
6 J@D 19: tik] = KB\ + Koy B
s 0 bl = K+ Kol
8 or all r do
0. g Célr,l) ‘e, 21: ts = wy * abs(d)
(1.2) o _ C(’Lz) 22: for all j do

" j(z 1) o o "o 23: = KuB) + Kn )
11: 4= ¥ Cp

J22) 4 C%M) 24: t4 = K12E(1) + KzzE(Q)
12 = Cgr ¥ e 25: for all k do.
130 d=J0D 5 g2 _ J1.2)  J21 o A[], k] += ts*(ts [k]xts+ta[k]xts)

6. Experimental evaluation. We experimentally evaluate and compare form

compilation times with the following form compilers:

e FFC quadrature representation (supports affine cells only);

e modified version of FFC quadrature representation, developed for Firedrake

to support nonaffine cells;

e UFLACS;

e TSFC.
We disabled optional optimizations, and also included in the form compilation times
the time to compile the generated C or C++ code, using GCC 5.4.0 as C and C++
compiler at the -02 optimization level. FFC tensor representation is not included
since its limitations are well known [45] (subsection 1.4), and it fails to compile our
more difficult test problems due to missing features.

Our test problems consist of the left-hand sides of four elliptic PDEs of increasing
complexity: the Helmholtz equation, linear elasticity, a simple hyperelastic model,
and the Holzapfel-Ogden model as described in [7]. A full description is provided in
supplement section SM4.

Figure 8 presents violin plots of the form compilation times, each made from
18 samples. The measurements were run on an Intel Xeon E5-2620 (Sandy Bridge)
2.00 GHz CPU. Due to the nature of development with Firedrake or FEniCS, the
form compiler is frequently invoked in an interactive manner. Consequently, form
compilation shall preferably take no more time than a fraction of a second; waiting
for more than a couple of seconds is undesirable in a natural workflow.

To make the measurements as fair as possible, we configured FFC representations
to skip element compilation, and for the C++ compilation we only kept the relevant
tabulate_tensor method from the generated UFC class. However, since we did not
want to change the generated code, we had to include the relevant header files. FFC
representations generate code that uses functions from the standard C++ header
<algorithm>, the compilation of which takes about 0.9 seconds on the test machine.
Form compilers targeting Firedrake (fd_bendy and TSFC) generate C code, and the
inclusion of relevant header files induces much less overhead. This effect dominates
the simplest test case, the Helmholtz equation. For further fairness, we also included
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Fic. 8. Form compilation time for forms of increasing complexity with the following form com-
pilers: modified version of FFC quadrature representation which supports nonaffine cells (fd-bendy),
upstream FFC quadrature, UFLACS, TSFC as an FFC representation (TSFCT), and standalone
TSFC. 3-dimensional Holzapfel-Ogden data for fd_bendy are missing because compilation ran out
of memory after more than 6 hours on a machine with 64GB of memory.
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TSFC as an FFC representation (shown as TSFCT), including the same set of header
files as for the other FFC representations.

All form compilers compile the Helmholtz equation quickly and perform tolerably
on the elastic model. The modified version of FFC quadrature with nonaffine sup-
port (fd_bendy) demonstrates excessive compilation times on the simple hyperelastic
model already. While nonaffine support adds a huge toll to compile-time performance,
even the base version of FFC quadrature becomes unmanageable as form complexity
increases, as the data for the Holzapfel-Ogden model demonstrate. UFLACS and
TSFC, however, have tolerable compile-time performance in all cases, TSFC being
somewhat faster but typically within the same order of magnitude.

The overall compilation time of the most difficult case (Holzapfel-Ogden 3D) with
TSFC can further be reduced from 3.7 to 2.2 seconds by disabling the optimization
described in subsection 5.4. This configuration, however, did not yield significant
benefits for the other test cases as long as C compilation times are also included.

For reproducibility, we cite archives of the exact software versions that were used
to produce these results. The modified version of FFC with support for nonaffine
geometries requires custom branches of FFC [57] and UFL [64] which require older
versions of COFFEE [54], FIAT [59], and Instant [62]. For all other form compilers
and representations we used recent versions: COFFEE [55], dijitso [56], FFC [58],
FIAT [60], FInAT [61], TSFC [63], and UFL [65]. The experimentation framework
used to generate the violin plots is available in [21].

7. Conclusion. The experimental data demonstrate that the efficient traversal
of expressions keeps the compilation time with TSFC acceptably low even for highly
complicated forms. This was a crucial requirement for properly supporting non-
simplicial cells as well as higher-order geometries in Firedrake.

A comprehensive analysis of run-time performance (of the generated code) is
beyond the scope of this paper. For such an analysis, we refer readers to Luporini,
Ham, and Kelly [40], which compares the representations of FFC, UFLACS, and
an earlier and a recent version of COFFEE. TSFC is compatible with COFFEE’s

optimizations.
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