
SIAM J. SCI. COMPUT. c© 2016 SIAM. Published by SIAM under the terms
Vol. 38, No. 5, pp. S25–S47 of the Creative Commons 4.0 license

AUTOMATED GENERATION AND SYMBOLIC MANIPULATION
OF TENSOR PRODUCT FINITE ELEMENTS∗

A. T. T. MCRAE† , G.-T. BERCEA‡ , L. MITCHELL§ , D. A. HAM§ , AND C. J. COTTER¶

Abstract. We describe and implement a symbolic algebra for scalar and vector-valued finite
elements, enabling the computer generation of elements with tensor product structure on quadrilat-
eral, hexahedral, and triangular prismatic cells. The algebra is implemented as an extension to the
domain-specific language UFL, the Unified Form Language. This allows users to construct many finite
element spaces beyond those supported by existing software packages. We have made corresponding
extensions to FIAT, the FInite element Automatic Tabulator, to enable numerical tabulation of such
spaces. This tabulation is consequently used during the automatic generation of low-level code that
carries out local assembly operations, within the wider context of solving finite element problems
posed over such function spaces. We have done this work within the code-generation pipeline of the
software package Firedrake; we make use of the full Firedrake package to present numerical examples.

Key words. automated code generation, tensor product finite element, finite element exterior
calculus

AMS subject classifications. 65M60, 65N30, 68N20

DOI. 10.1137/15M1021167

1. Introduction. Many different areas of science benefit from the ability to gen-
erate approximate numerical solutions to PDEs. In the past decade, there has been
increasing use of software packages and libraries that automate fundamental opera-
tions. The FEniCS Project [27] is especially notable for allowing the user to express
discretizations of PDEs, based on the finite element method, in UFL (the Unified Form
Language) [4, 2], a concise, high-level language embedded in Python. Corresponding
efficient low-level code is automatically generated by FFC (the FEniCS Form Com-
piler) [24, 28], making use of FIAT (the FInite element Automatic Tabulator) [22, 23].
These local “kernels” are executed on each cell1 in the mesh, and the resulting global
systems of equations can be solved using a number of third-party libraries.

There are multiple advantages to having the discretization represented symboli-
cally within a high-level language. The user can write down complicated expressions
concisely without being encumbered by low-level implementation details. Suitable op-
timizations can then be applied automatically during the generation of low-level code;
this would be a tedious process to replicate by hand on each new expression. Such

∗Received by the editors May 13, 2015; accepted for publication (in revised form) March 24, 2016;
published electronically October 27, 2016. This work was supported by the Grantham Institute and
Climate-KIC, the Natural Environment Research Council [grants NE/K006789/1, NE/K008951/1,
and NE/M013480/1], and an Engineering and Physical Sciences Research Council prize studentship.

http://www.siam.org/journals/sisc/38-5/M102116.html
†The Grantham Institute and Department of Mathematics, Imperial College London, London,

SW7 2AZ, UK, and Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
(a.t.t.mcrae@bath.ac.uk).
‡Department of Computing, Imperial College London, London, SW7 2AZ, UK (gheorghe-teodor.

bercea08@imperial.ac.uk).
§Department of Computing and Department of Mathematics, Imperial College London, London,

SW7 2AZ, UK (lawrence.mitchell@imperial.ac.uk, david.ham@imperial.ac.uk).
¶Department of Mathematics, Imperial College London, London, SW7 2AZ, UK (colin.cotter@

imperial.ac.uk).
1Note on terminology: Throughout this paper, we use the term “cell” to denote the geometric

component of the mesh; we reserve the term “finite element” to denote the space of functions on a
cell and supplementary information related to global continuity.

S25

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

http://www.siam.org/journals/sisc/38-5/M102116.html
mailto:a.t.t.mcrae@bath.ac.uk
mailto:gheorghe-teodor.bercea08@imperial.ac.uk
mailto:gheorghe-teodor.bercea08@imperial.ac.uk
mailto:lawrence.mitchell@imperial.ac.uk
mailto:david.ham@imperial.ac.uk
mailto:colin.cotter@imperial.ac.uk
mailto:colin.cotter@imperial.ac.uk

S26 MCRAE, BERCEA, MITCHELL, HAM, AND COTTER

transformations have previously been implemented in FFC [34, 24]. In this paper,
we extend this high-level approach by introducing a user-facing symbolic representa-
tion of tensor product finite elements. First, this enables the construction of a wide
range of finite element spaces, particularly scalar- and vector-valued identifications of
finite element differential forms. Second, while we have not done this at present, the
symbolic representation of a tensor product finite element may be exploited to auto-
matically generate optimal-complexity algorithms via a sum-factorization approach.

Firedrake is an alternative software package to FEniCS which presents a similar—
in many cases, identical—interface. Like FEniCS, Firedrake automatically generates
low-level C kernels from high-level UFL expressions. However, the execution of these
kernels over the mesh is performed in a fundamentally different way; this led to signif-
icant performance increases, relative to FEniCS 1.5, across a range of problems [36].
As well as the high-level representation of finite element operations embedded in
Python, Firedrake and FEniCS have other attractive features. They support a wide
range of arbitrary-order finite element families, which are of use to numerical analysts
proposing novel discretizations of PDEs. They also make use of third-party libraries,
notably PETSc [10], exposing a wide range of solvers and preconditioners for efficient
solution of linear systems.

A limitation of Firedrake and FEniCS has been the lack of support for anything
other than fully unstructured meshes with simplicial cells: intervals, triangles, or
tetrahedra. There are good reasons why a user may wish to use a mesh of non-
simplicial cells. Our main motivation is geophysical simulations, which are governed
by highly anisotropic equations in which gravity plays an important role. In addition,
they often require high aspect-ratio domains: the vertical height of the domain may be
several orders of magnitude smaller than the horizontal width. These domains admit
a decomposition which has an unstructured horizontal “base mesh” but with regular
vertical layers; we will refer to this as an extruded mesh. The cells in such a mesh
are not simplices but instead have a product structure. In two dimensions (2D) this
leads to quadrilateral cells; in three dimensions (3D), triangular prisms or hexahedra.
From a mathematical viewpoint, the vertical alignment of cells minimizes difficulties
associated with the anisotropy of the governing equations. From a computational
viewpoint, the vertical structure can be exploited to improve performance compared
to a fully unstructured mesh.

On such cells, we will focus on producing finite elements that can be expressed as
(sums of) products of existing finite elements. This covers many, though not all, of
the common finite element spaces on product cells. We pay special attention to ele-
ment families relevant to finite element exterior calculus, a mathematical framework
that leads to stable mixed finite element discretizations of PDEs [7, 8, 6]. This paper
therefore describes some of the extensions to the Firedrake code-generation pipeline
to enable the solution of finite element problems on cells which are products of sim-
plices. These enable the automated generation of low-level kernels representing finite
element operations on such cells. We remark that, due to our geophysical motivations,
Firedrake has complete support for extruded meshes whose unstructured base mesh
is built from simplices or quadrilaterals. At the time of writing, however, it does not
support fully unstructured prismatic or hexahedral meshes.

Many, though not all, of the finite elements we can now construct already have
implementations in other finite element libraries. deal.II [11] contains both scalar-
valued tensor product finite elements and the vector-valued Raviart–Thomas and
Nédélec elements of the first kind [39, 32], which can be constructed using tensor
products. However, deal.II only supports quadrilateral and hexahedral cells and has

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

SYMBOLIC MANIPULATION OF TENSOR PRODUCT ELEMENTS S27

no support for simplices or triangular prisms. DUNE PDELab [12] contains low-order
Raviart–Thomas elements on quadrilaterals and hexahedra but only supports scalar-
valued elements on triangular prisms. Nektar++ [16] uses tensor-product elements
extensively and supports a wide range of geometric cells but is restricted to scalar-
valued finite elements. MFEM [1] supports Raviart–Thomas and Nédélec elements
of the first kind, though it has no support for triangular prisms. NGSolve [42, 43]
contains many, possibly all, of the exterior-calculus-inspired tensor-product elements
that we can create on triangular prisms and hexahedra. However, it does not support
elements such as the Nédélec element of the second kind [33] on these cells, which do
not fit into the exterior calculus framework.

This paper is structured as follows: In section 2, we provide the mathematical
details of product finite elements. In section 3, we describe the software extensions
that allow such elements to be represented and numerically tabulated. In section 4,
we present numerical experiments that make use of these elements, within Firedrake.
Finally, in section 5 and section 6, we give some limitations of our implementation
and other closing remarks.

1.1. Summary of contributions.
• The description and implementation of a symbolic algebra on existing scalar-

and vector-valued finite elements. This allows for the creation of scalar-
valued continuous and discontinuous tensor-product elements, and vector-
valued curl- and div-conforming tensor product elements in 2D and 3D.

• Certain vector-valued finite elements on quadrilaterals, triangular prisms, and
hexahedra are completely unavailable in other major packages, and some
elements we create have no previously published implementation.

• The tensor-product element structure is captured symbolically at runtime.
Although we do not take advantage of this at present, this could later be
exploited to automate the generation of low-complexity algorithms through
sum-factorization and similar techniques.

2. Mathematical preliminaries. This section is structured as follows: In sub-
section 2.1, we give the definition of a finite element that we work with. In subsec-
tion 2.2, we briefly define the sum of finite elements. In subsection 2.3, we discuss
finite element spaces in terms of their intercell continuity. In subsection 2.4 and
subsection 2.5, which form the main part of this section, we define the product of
finite elements and state how these products can be manipulated and combined to
produce elements compatible with finite element exterior calculus. Up to this point,
our exposition uses the language of scalar and vector fields as our existing software
infrastructure uses scalars and vectors, and we believe this makes the paper accessible
to a wider audience. However, we end this section with subsection 2.6, which briefly
restates subsection 2.4 and subsection 2.5 in terms of differential forms. These provide
a far more natural setting for the underlying operations.

2.1. Definition of a finite element. We will follow Ciarlet [18] in defining a
finite element to be a triple (K, P , N) where

• K is a bounded domain in Rn, to be interpreted as a generic reference cell
on which all calculations are performed,

• P is a finite-dimensional space of continuous functions on K, typically some
subspace of polynomials, and

• N = {n1, . . . , ndimP } is a basis for the dual space P ′—the space of linear
functionals on P—where the elements of the set N are called nodes.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S28 MCRAE, BERCEA, MITCHELL, HAM, AND COTTER

Let Ω be a compact domain which is decomposed into a finite number of non-
overlapping cells. Assume that we wish to find an approximate solution to some PDE,
posed in Ω, using the finite element method. A finite element together with a given
decomposition of Ω produces a finite element space.

A finite element space is a finite-dimensional function space on Ω. There are
essentially two things that need to be specified to characterize a finite element space:
the manner in which a function may vary within a single cell, and the amount of
continuity a function must have between neighboring cells.

The former is related to P ; more details are given in subsection 2.3.2. A basis
for P is therefore very useful in implementations of the finite element method. Often,
this is a nodal basis in which each of the basis functions Φ1, . . . ,ΦdimP vanish when
acted on by all but one node:

(1) ni(Φj) = δij .

Basis functions from different cells can be combined into basis functions for the
finite element space on Ω. The intercell continuity of these basis functions is related
to the choice of nodes, N . This is the core topic of subsection 2.3.

2.2. Sum of finite elements. Suppose we have finite elements U = (K,PA, NA)
and V = (K,PB , NB), which are defined over the same reference cell K. If the inter-
section of PA and PB is trivial, we can define the direct sum U ⊕ V to be the finite
element (K,P,N), where

P := PA ⊕ PB ≡ {fA + fB | fA ∈ PA, fB ∈ PB},(2)

N := NA ∪NB .(3)

2.3. Sobolev spaces, intercell continuity, and Piola transforms. Finite
element spaces are a finite-dimensional subspace of some larger Sobolev space, de-
pending on the degree of continuity of functions between neighboring cells. We will
consider finite element spaces in H1, H(curl), H(div), and L2.

A brief remark: it is clear that these Sobolev spaces have some trivial inclusion
relations; H1 is a subspace of L2, H(div) and H(curl) are both subspaces of [L2]d,
where d is the spatial dimension, and [H1]d is a subspace of both H(div) and H(curl).
However, in what follows, when we make casual statements such as V ⊂ H(div), it
is implied that V 6⊂ [H1]d; i.e., we have made the strongest statement possible. In
particular, we will use L2 to denote a total absence of continuity between cells.

2.3.1. Geometric decomposition of nodes. The set of nodes N , from the
definition in subsection 2.1, is used to enforce the continuity requirements on the
“global” finite element space. This is done by associating nodes with topological
entities of K—vertices, facets, and so on. When multiple cells in Ω share a topological
entity, the cells must agree on the value of any degree of freedom associated with that
entity. This leads to coupling between any cells that share the entity. The association
of nodes with topological entities is crucial in determining the continuity of finite
element spaces; this is sometimes called the geometric decomposition of nodes.

For H1 elements, functions are fully continuous between cells and must therefore
be single-valued on vertices, edges, and facets. Nodes are first associated with vertices.
If necessary, additional nodes are associated with edges, then with facets, and then
with the interior of the reference cell.

For H(curl) elements, which are intrinsically vector-valued, functions must have
continuous tangential component between cells. The component(s) of the function

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

SYMBOLIC MANIPULATION OF TENSOR PRODUCT ELEMENTS S29

tangential to edges and facets must therefore be single-valued. Nodes are first asso-
ciated with edges until the tangential component is specified uniquely. If necessary,
additional nodes are associated with facets, and then with the interior of the reference
cell.

For H(div) elements, which are also intrinsically vector-valued, functions must
have continuous normal component between cells. The component of the function
normal to facets must therefore be single-valued. Nodes are first associated with
facets. If necessary, additional nodes are associated with the interior of the cell.

L2 elements have no continuity requirements. Typically, all nodes are associated
with the interior of the cell; this does not lead to any continuity constraints.

2.3.2. Piola transforms. For functions to have the desired continuity on the
global mesh, they may need to undergo an appropriate mapping from reference to
physical space. Let ~X represent coordinates on the reference cell and ~x represent
coordinates on the physical cell; for each physical cell there is some map ~x = g(~X).

For H1 or L2 functions, no explicit mapping is needed. Let f̂(~X) be a function
defined over the reference cell. The corresponding function f(~x) defined over the
physical cell is then

(4) f(~x) = f̂ ◦ g−1(~x).

We will refer to this as the identity mapping.
However, if we wish to have continuity of the normal or tangential component of

the vector field in physical space, (4) does not suffice. H(div) and H(curl) elements
therefore use Piola transforms to map functions from reference space to physical
space. We will use J to denote Dg(~X), the Jacobian of the coordinate transformation.
H(div) functions are mapped using the contravariant Piola transform, which preserves
normal components,

(5) ~f(~x) =
1

det J
J ~̂f ◦ g−1(~x),

while H(curl) functions are mapped using the covariant Piola transform, which pre-
serves tangential components,

(6) ~f(~x) = J−T ~̂f ◦ g−1(~x).

2.4. Product finite elements. In this section, we discuss how to take the
product of a pair of finite elements and how this product element may be manipulated
to give different types of intercell continuity. We will label our constituent elements U
and V , where U := (KA, PA, NA) and V := (KB , PB , NB), following the notation of
subsection 2.1. We begin with the definition of the product reference cell, which
is straightforward. However, the spaces of functions and the associated nodes are
intimately related; hence the discussion of these is interleaved.

2.4.1. Product cells. Given reference cells KA ⊂ Rn and KB ⊂ Rm, the refer-
ence product cell KA ×KB can be defined straightforwardly as follows:
(7)
KA×KB :=

{
(x1, . . . , xn+m) ∈ Rn+m | (x1, . . . , xn) ∈ KA, (xn+1, . . . , xn+m) ∈ KB

}
.

The topological entities of KA×KB correspond to products of topological entities
of KA and KB . If we label the entities of a reference cell (in Rn, say) by their
dimension, so that 0 corresponds to vertices, 1 to edges, . . . , n− 1 to facets and n to
the cell, the entities of KA ×KB can be labeled as follows:

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S30 MCRAE, BERCEA, MITCHELL, HAM, AND COTTER

(0, 0): vertices of KA ×KB—the product of a vertex of KA with a vertex of KB

(1, 0): edges of KA ×KB—the product of an edge of KA with a vertex of KB

(0, 1): edges of KA ×KB—the product of a vertex of KA with an edge of KB

...
(n-1, m): facets of KA ×KB—the product of a facet of KA with the cell of KB

(n, m-1): facets of KA ×KB—the product of the cell of KA with a facet of KB

(n, m): cell of KA ×KB—the product of the cell of KA with the cell of KB

It is important to distinguish between different types of entities, even those with the
same dimension. For example, if KA is a triangle and KB is an interval, the (2, 0)
facets of the prism KA ×KB are triangles while the (1, 1) facets are quadrilaterals.

2.4.2. Product spaces of functions: Simple elements. Given spaces of
functions PA and PB , the product space PA ⊗ PB can be defined as the span of
products of functions in PA and PB :

(8) PA ⊗ PB := span {f · g | f ∈ PA, g ∈ PB} ,

where the product function f · g is defined so that

(9) (f · g)(x1, . . . , xn+m) = f(x1, . . . , xn) · g(xn+1, . . . , xn+m).

In the cases we consider explicitly, at least one of f or g will be scalar-valued, so the
product on the right-hand side of (9) is unambiguous. A basis for PA ⊗ PB can be
constructed from bases for PA and PB . If PA and PB have nodal bases

(10)
{

Φ
(A)
1 ,Φ

(A)
2 , . . .Φ

(A)
N

}
,
{

Φ
(B)
1 ,Φ

(B)
2 , . . .Φ

(B)
M

}
,

respectively, a nodal basis for PA ⊗ PB is given by

(11) {Φi,j , i = 1, . . . , N, j = 1, . . . ,M} ,

where

(12) Φi,j := Φ
(A)
i · Φ(B)

j , i = 1, . . . , N, j = 1, . . . ,M ;

the right-hand side uses the same product as (9).
While this already gives plenty of flexibility, there are cases in which a different,

more natural, space can be built by further manipulation of PA⊗PB . We will return
to this after a brief description of product nodes.

2.4.3. Product nodes: Geometric decomposition. Recall that the nodes
are a basis for the dual space (PA⊗PB)′, and that the intercell continuity of the finite
element space is related to the association of nodes with topological entities of the
reference cell.

Assuming that we know bases for P ′A and P ′B , there is a natural basis for (PA⊗PB)′

which is essentially an outer (tensor) product of the bases for P ′A and P ′B . Let ni,j

denote a “product” of n
(A)
i , the ith node in NA, with n

(B)
j , the jth node in NB—

typically the evaluation of some component of the function. If n
(A)
i is associated

with an entity of KA of dimension p and n
(B)
j is associated with an entity of KB of

dimension q, then ni,j is associated with an entity of KA ×KB with label (p, q).
This geometric decomposition of nodes in the product element is used to moti-

vate further manipulation of PA ⊗ PB to produce a more natural space of functions,
particularly in the case of vector-valued elements.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

SYMBOLIC MANIPULATION OF TENSOR PRODUCT ELEMENTS S31

2.4.4. Product spaces of functions: Scalar- and vector-valued elements
in 2D and 3D. In 2D, we take the reference cells KA and KB to be intervals, so the
product cell KA × KB is 2D. Finite elements on intervals are scalar-valued and are
either in H1 or in L2. We will consider the creation of 2D elements in H1, H(curl),
H(div), and L2. A summary of the following is given in Table 1.

H1: The element must have nodes associated with vertices of
the reference product cell. The vertices of the reference product
cell are formed by taking the product of vertices on the intervals.
The constituent elements must therefore have nodes associated
with vertices and so must both be in H1.

H(curl): The element must have nodes associated with edges of
the reference product cell. The edges of the reference product
cell are formed by taking the product of an interval’s vertex
with an interval’s interior. One of the constituent elements
must therefore have nodes associated with vertices, while the
other must only have nodes associated with the interior. Taking
the product of an H1 element with an L2 element gives a scalar-
valued element with nodes on the (0, 1) facets, for example.

To create an H(curl) element, we now multiply this scalar-
valued element by the vector (0, 1) to create a vector-valued
finite element (if we had taken the product of an L2 element
with an H1 element, we would multiply by (1, 0)). This gives
an element whose tangential component is continuous across all
edges (trivially so on two of the edges). In addition, we must use
an appropriate Piola transform when mapping from reference
space into physical space.

H(div): We create a scalar-valued element in the same way as
in the H(curl) case, but multiplied by the “other” basis vector
(for H1 × L2, we choose (−1, 0); the minus sign is useful for
orientation consistency in unstructured quadrilateral meshes;
for L2 ×H1, (0, 1)). This gives an element whose normal com-
ponent is continuous across all edges, and again, we must use
an appropriate Piola transform when mapping from reference
space into physical space.

Note that the scalar-valued product elements we produce above are perfectly legiti-
mate finite elements, and it is not compulsory to form vector-valued elements from
them. Indeed, we use such a scalar-valued element for the example in subsection 4.2.
However, the vector-valued elements are generally more useful and fit naturally within
Finite Element Exterior Calculus, as we will see in subsection 2.5.

L2: The element must only have nodes associated with the
interior of the reference product cell. The constituent elements
must therefore only have nodes associated with their interiors
and so must both be in L2.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S32 MCRAE, BERCEA, MITCHELL, HAM, AND COTTER

Table 1
Summary of 2D product elements.

Product (1D × 1D) Components Modifier Result Mapping
H1 ×H1 f × g (none) fg identity
H1 × L2 f × g (none) fg identity
H1 × L2 f × g H(curl) (0, fg) covariant Piola
H1 × L2 f × g H(div) (−fg, 0) contravariant Piola
L2 ×H1 f × g (none) fg identity
L2 ×H1 f × g H(curl) (fg, 0) covariant Piola
L2 ×H1 f × g H(div) (0, fg) contravariant Piola
L2 × L2 f × g (none) fg identity

In 3D, we take KA ⊂ R2 and KB to be an interval, so the product cell KA ×KB

is 3D. Finite elements on a 2D reference cell may be in H1, H(curl), H(div), or L2.
Elements on a one-dimensional (1D) reference cell may be in H1 or L2. We will
consider the creation of 3D elements in H1, H(curl), H(div), and L2. A summary of
the following is given in Table 2.

Note: In the following pictures, we have taken the 2D cell to be a triangle. How-
ever, the discussion is equally valid for quadrilaterals.

H1: As in the 2D case, this is formed by taking the product of
two H1 elements.

H(curl): The element must again have nodes associated with
edges of the reference product cell. There are two distinct ways
of forming such an element, and in both cases a suitable Piola
transform must be used to map functions from reference to
physical space.

Taking the product of an H1 2D element with an L2 1D element
produces a scalar-valued element with nodes on (0, 1) edges.
If we multiply this by the vector (0, 0, 1), this results in an
element whose tangential component is continuous on all edges
and faces.

Alternatively, one may take the product of anH(div) orH(curl)
2D element with an H1 1D element. This produces a vector-
valued element with nodes on (1, 0) edges. The product natu-
rally takes values in R2, since the 2D element is vector-valued
and the 1D element is scalar-valued. However, an H(curl) el-
ement in 3D must take values in R3. If the 2D element is in
H(curl), it is enough to interpret the product as the first two
components of a 3D vector. If the 2D element is in H(div), the
2D product must be rotated by 90 degrees before being trans-
formed into a 3D vector.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

SYMBOLIC MANIPULATION OF TENSOR PRODUCT ELEMENTS S33

Table 2
Summary of 3D product elements.

Product (2D × 1D) Components Modifier Result Mapping
H1 ×H1 f × g (none) fg identity
H1 × L2 f × g (none) fg identity
H1 × L2 f × g H(curl) (0, 0, fg) covariant Piola

H(curl)×H1 (fx, fy)× g (none) (fxg, fyg)† *
H(curl)×H1 (fx, fy)× g H(curl) (fxg, fyg, 0) covariant Piola
H(div)×H1 (fx, fy)× g (none) (fxg, fyg)† *
H(div)×H1 (fx, fy)× g H(curl) (−fyg, fxg, 0) covariant Piola
H(curl)× L2 (fx, fy)× g (none) (fxg, fyg)† *
H(curl)× L2 (fx, fy)× g H(div) (fyg,−fxg, 0) contravariant Piola
H(div)× L2 (fx, fy)× g (none) (fxg, fyg)† *
H(div)× L2 (fx, fy)× g H(div) (fxg, fyg, 0) contravariant Piola
L2 ×H1 f × g (none) fg identity
L2 ×H1 f × g H(div) (0, 0, fg) contravariant Piola
L2 × L2 f × g (none) fg identity

The elements marked with † are of little practical use; they are 2-vector valued but are defined over
3D domains. No mapping has been given for these elements; the Piola transformations from a 3D

cell require all three components to be defined.

H(div): The element must have nodes associated with facets
of the reference product cell. As with H(curl), there are two
distinct ways of forming such an element, and suitable Piola
transforms must again be used.

Taking the product of an L2 2D element with an H1 1D ele-
ment gives a scalar-valued element with nodes on (2, 0) facets.
Multiplying this by (0, 0, 1) produces an element whose normal
component is continuous across all facets.

Taking the product of an H(div) or H(curl) 2D element with
an L2 1D element gives a vector-valued element with nodes on
(1, 1) facets. Again, the product naturally takes values in R2.
If the 2D element is in H(div), it is enough to interpret the
product as the first two components of a 3D vector-valued el-
ement whose third component vanishes. If the 2D element is
in H(curl), the product must be rotated by 90 degrees before
transforming.

L2: As in the 2D case, both constituent elements must be in
L2.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S34 MCRAE, BERCEA, MITCHELL, HAM, AND COTTER

2.4.5. Consequences for implementation. The previous subsections moti-
vate the implementation of several mathematical operations on finite elements. We
will need an operator that takes the product of two existing elements; we call this
TensorProductElement. This will generate a new element whose reference cell is
the product of the reference cells of the constituent elements, as described in subsec-
tion 2.4.1. It will also construct the product space of functions PA⊗PB , as described
in subsection 2.4.2, but with no extra manipulation (e.g., expanding into a vector-
valued space). The basis for PA ⊗ PB is as defined in (11) and (12). The nodes are
topologically associated with topological entities of the reference cell, as described in
subsection 2.4.3.

To construct the more complicated vector-valued finite elements, we introduce
additional operators HCurl and HDiv which form a vector-valued H(curl) or H(div)
element from an existing TensorProductElement. This will modify the product space
as described in subsection 2.4.4 by manipulating the existing product into a vector of
the correct dimension (after rotation, if applicable), and setting an appropriate Piola
transform. We will also need an operator that creates the sum of finite elements; this
already exists in UFL under the name EnrichedElement and is represented by +.

2.5. Product finite elements within finite element exterior calculus.
The work of Arnold, Falk, and Winther [7, 8] on finite element exterior calculus pro-
vides principles for obtaining stable mixed finite element discretizations on a domain
consisting of simplicial cells: intervals, triangles, tetrahedra, and higher-dimensional
analogues. In full generality, this involves de Rham complexes of polynomial-valued
finite element differential forms linked by the exterior derivative operator. In 1D, 2D,
and 3D, differential forms can be naturally identified with scalar and vector fields,
while the exterior derivative can be interpreted as a standard differential operator
such as grad, curl, or div. The vector-valued element spaces only have partial conti-
nuity between cells: they are in H(curl) or H(div), which have been discussed already.
The element spaces themselves were, however, already well known in the existing finite
element literature for their use in solving mixed formulations of the Poisson equation
and problems of a similar nature.

Arnold, Boffi, and Bonizzoni [6] generalize finite element exterior calculus to cells
which can be expressed as geometric products of simplices. They also describe a
specific complex of finite element spaces on hexahedra (and, implicitly, quadrilaterals).
When these differential forms are identified with scalar- and vector-valued functions,
they correspond to the scalar-valued Qr, its discontinuous counterpart DQr, and
various well-known vector-valued spaces as introduced in Brezzi, Douglas, and Marini
[14], Nédélec [32], and Nédélec [33]. Within finite element exterior calculus, there are
element spaces which cannot be expressed as a tensor product of spaces on simplices
(see, for example, Arnold and Awanou [5]), but we are not considering such spaces in
this paper.

Finite element exterior calculus makes use of de Rham complexes of finite element
spaces. In 1D, the complex takes the form

(13) U0

d
dx−→ U1,

where U0 ⊂ H1 and U1 ⊂ L2. In 2D, there are two types of complexes, arising due to
two possible identifications of differential 1-forms with vector fields:

(14) U0
∇⊥

−→ U1
∇·−→ U2,

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

SYMBOLIC MANIPULATION OF TENSOR PRODUCT ELEMENTS S35

where U0 ⊂ H1, U1 ⊂ H(div), and U2 ⊂ L2, and

(15) U0
∇−→ U1

∇⊥·−→ U2,

where U0 ⊂ H1, U1 ⊂ H(curl), and U2 ⊂ L2. In 3D, the complex takes the form

(16) U0
∇−→ U1

∇×−→ U2
∇·−→ U3,

where U0 ⊂ H1, U1 ⊂ H(curl), U2 ⊂ H(div), and U3 ⊂ L2.
Given an existing 2D complex (U0, U1, U2) and a 1D complex (V0, V1), we can

generate a product complex on the 3D product cell:

(17) W0
∇−→W1

∇×−→W2
∇·−→W3,

where

W0 := U0 ⊗ V0,(18)

W1 := HCurl(U0 ⊗ V1)⊕ HCurl(U1 ⊗ V0),(19)

W2 := HDiv(U1 ⊗ V1)⊕ HDiv(U2 ⊗ V0),(20)

W3 := U2 ⊗ V1,(21)

with W0 ⊂ H1,W1 ⊂ H(curl),W2 ⊂ H(div),W3 ⊂ L2 (compare with the complex
given in (16)). The vector-valued spaces are direct sums of “product” spaces that
have been modified by the HCurl or HDiv operator.

Similarly, taking the product of two 1D complexes produces a product complex
on the 2D product cell in which the vector-valued space is in either H(div) or H(curl).

2.6. Product complexes using differential forms. This section summarizes
Arnold, Boffi, and Bonizzoni [6] by restating the results of subsection 2.4 and subsec-
tion 2.5 in the language of differential forms, which can be considered a generalization
of scalar and vector fields.

In 3D, 0-forms and 3-forms are identified with scalar fields, while 1-forms and
2-forms are identified with vector fields. In 2D, 0-forms and 2-forms are identified
with scalar fields. 1-forms are identified with vector fields, but this can be done in
two different ways since 1-forms and (n-1)-forms coincide. This results in two possible
vector fields, which differ by a 90-degree rotation. In 1D, both 0-forms and 1-forms
are conventionally identified with scalar fields.

Let KA ⊂ Rn, KB ⊂ Rm be domains. Suppose we are given de Rham subcom-
plexes on KA and KB ,

(22) U0
d−→ U1

d−→ · · · d−→ Un, V0
d−→ V1

d−→ · · · d−→ Vm,

where each Uk is a space of (polynomial) differential k-forms on KA and each Vk is
a space of differential k-forms on KB . The product of these complexes is a de Rham
subcomplex on KA ×KB :

(23) (U ⊗ V)0
d−→ (U ⊗ V)1

d−→ · · · d−→ (U ⊗ V)n+m,

where, for k = 0, 1, . . . , n+m,

(24) (U ⊗ V)k :=
⊕
i+j=k

(Ui ⊗ Vj).

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S36 MCRAE, BERCEA, MITCHELL, HAM, AND COTTER

Note that (U ⊗ V)k is a space of (polynomial) k-forms on KA ⊗ KB and can
hence be interpreted as a scalar or vector field in two or three spatial dimensions. It
can be easily verified that the definitions in (23) and (24) gives rise to (17) in 3D,
for example. The discussion in subsection 2.4.2 and subsection 2.4.4 on the product
of function spaces can be summarized by the definition of ⊗ on the right-hand side
of (24), along with the definition of the standard wedge product of differential forms.
It is clear that much of the apparent complexity of the HDiv and HCurl operators
introduced in subsection 2.4 arises from working with scalars and vectors rather than
introducing differential forms!

3. Implementation. The symbolic operations on finite elements, derived in
the previous section, have been implemented within Firedrake [36, 35]. Firedrake is
an automated system for the portable solution of partial differential equations using
the finite element method. Firedrake has several dependencies. Some of these are
components of the FEniCS Project [27]:
FIAT FInite element Automatic Tabulator [22, 23], for the construction and tabu-

lation of finite element basis functions.
UFL Unified Form Language [4, 2], a domain-specific language for the specification

of finite element variational forms.
Firedrake also relies on PyOP2 [37] and COFFEE [30].

The changes required to effect the generation of product elements were largely
confined to FIAT and UFL, while support for integration over product cells is included
in Firedrake’s form compiler. We begin this section with more detailed expositions
on FIAT and UFL. We discuss the implementation of product finite elements in
subsection 3.3. We talk about the resulting algebraic structure in subsection 3.4. We
finish by discussing the new integration regions in subsection 3.5.

3.1. FIAT. This component is responsible for computing finite element basis
functions for a wide range of finite element families. To do this, it works with an ab-
straction based on Ciarlet’s definition of a finite element, as given in subsection 2.1.
The reference cell K is defined using a set of vertices, with higher-dimensional geomet-
rical objects defined as sets of vertices. The polynomial space P is defined implicitly
through a prime basis: typically an orthonormal set of polynomials, such as (on tri-
angles) a Dubiner basis, which can be stably evaluated to high polynomial order. The
set of nodes N is also defined; this implies the existence of a nodal basis for P , as
explained previously.

The nodal basis, which is important in calculations, can be expressed as linear
combinations of prime basis functions. This is done automatically by FIAT; details
are given in [22]. The main method of interacting with FIAT is by requesting the
tabulated values of the nodal basis functions at a set of points inside K—typically
a set of quadrature points. FIAT also stores the geometric decomposition of nodes
relative to the topological entities of K.

3.2. UFL. This component is a domain-specific language, embedded in Python,
for representing weak formulations of PDEs. It is centered around expressing mul-
tilinear forms: maps from the product of some set of function spaces {Vj}ρj=1 into
the real numbers which are linear in each argument, where ρ is 0, 1, or 2. Addition-
ally, the form may be parameterized over one or more coefficient functions and is not
necessarily linear in these. The form may include derivatives of functions, and the
language has extensive support for matrix algebra operations.

We can assume that the function spaces are finite element spaces; in UFL, these

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

SYMBOLIC MANIPULATION OF TENSOR PRODUCT ELEMENTS S37

are represented by the FiniteElement class. This requires three pieces of information:
the element family, the geometric cell, and the polynomial degree. A limited amount
of symbolic manipulation on FiniteElement objects could already be done: the UFL
EnrichedElement class is used to represent the ⊕ operator discussed in subsection 2.2.

3.3. Implementation of product finite elements. To implement product fi-
nite elements, additions to UFL and FIAT were required. The UFL changes are purely
symbolic and allow the new elements to be represented. The FIAT changes allow the
new elements (and derivatives thereof) to be numerically tabulated at specified points
in the reference cell.

As discussed in subsection 2.4.5, we implemented several new element classes in
UFL. The existing UFL FiniteElement classes have two essential properties: the
degree and the value shape. The degree is the maximal degree of any polynomial
basis function; this allows determination of an appropriate quadrature rule. The
value shape represents whether the element is scalar-valued or vector-valued and, if
applicable, the dimension of the vector in physical space. This allows suitable code
to be generated when doing vector and tensor operations.

For TensorProductElements, we define the degree to be a tuple; the basis func-
tions are products of polynomials in distinct sets of variables. It is therefore ad-
vantageous to store the polynomial degrees separately for later use with a product
quadrature rule. The value shape is defined according to the definition in subsec-
tion 2.4.2 for the product of functions. For HCurl and HDiv elements, the degree is
identical to the degree of the underlying TensorProductElement. The value shape

needs to be modified: in physical space, these vector-valued elements have dimension
equal to the dimension of the physical space.

The secondary role of FIAT is to store a representation of the geometric de-
composition of nodes. For product elements, the generation of this was described in
subsection 2.4.3. The primary role is to tabulate finite element basis functions, and
derivatives thereof, at specified points in the reference cell. The tabulate method
of a FIAT finite element takes two arguments: the maximal order of derivatives to
tabulate, and the set of points.

Let Φi,j(x, y, z) := Φ
(A)
i (x, y)Φ

(B)
j (z) be some product element basis function; we

will assume that this is scalar-valued to ease the exposition. Suppose we need to
tabulate the x-derivative of this at some specified point (x0, y0, z0). Clearly

(25)
∂Φi,j
∂x

(x0, y0, z0) =
∂Φ

(A)
i

∂x
(x0, y0)Φ

(B)
j (z0).

In other words, the value can be obtained from tabulating (derivatives of) basis func-
tions of the constituent elements at appropriate points. It is clear that this extends
to other combinations of derivatives, as well as to components of vector-valued basis
functions. Further modifications to the tabulation for curl- or div-conforming vector
elements are relatively simple, as detailed in subsection 2.4.4.

3.4. Algebraic structure. The extensions described in subsection 3.3 enable
sophisticated manipulation of finite elements within UFL. For example, consider
the following complex on triangles, highlighted by Cotter and Shipton [19] as being
relevant for numerical weather prediction:

(26) P2 ⊕ B3
∇⊥

−→ BDFM2
∇·−→ DP1.

Here, P2⊕B3 denotes the space of quadratic polynomials enriched by a cubic “bubble”
function, BDFM2 represents a member of the vector-valued Brezzi–Douglas–Fortin–

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S38 MCRAE, BERCEA, MITCHELL, HAM, AND COTTER

Listing 1
Construction of a complicated product complex in UFL.

U0_0 = FiniteElement("P", triangle , 2)

U0_1 = FiniteElement("B", triangle , 3)

U0 = EnrichedElement(U0_0 , U0_1)

U1 = FiniteElement("BDFM", triangle , 2)

U2 = FiniteElement("DP", triangle , 1)

V0 = FiniteElement("P", interval , 1)

V1 = FiniteElement("DP", interval , 0)

W0 = TensorProductElement(U0 , V0)

W1_h = TensorProductElement(U1, V0)

W1_v = TensorProductElement(U0, V1)

W1 = EnrichedElement(HCurl(W1_h), HCurl(W1_v))

W2_h = TensorProductElement(U1, V1)

W2_v = TensorProductElement(U2, V0)

W2 = EnrichedElement(HDiv(W2_h), HDiv(W2_v))

W3 = TensorProductElement(U2 , V1)

Marini element family [15] in H(div), and DP1 represents the space of discontinuous,
piecewise-linear functions. Suppose we wish to take the product of this with some
complex on intervals, such as

(27) P2

d
dx−→ DP1.

This generates a complex on triangular prisms:

(28) W0
∇−→W1

∇×−→W2
∇·−→W3,

where

W0 := (P42 ⊕ B43)⊗ P2,(29)

W1 := HCurl((P42 ⊕ B43)⊗DP1)⊕ HCurl(BDFM42 ⊗ P2),(30)

W2 := HDiv(BDFM42 ⊗DP1)⊕ HDiv(DP41 ⊗ P2),(31)

W3 := DP41 ⊗DP1;(32)

we have marked the elements on triangles by 4 for clarity. Following our extensions
to UFL, the product complex may be constructed as shown in Listing 1. Some of
these elements are used in the example in subsection 4.2.

3.5. Support for new integration regions. On simplicial meshes, Firedrake
supports three types of integrals: integrals over cells, integrals over exterior facets,
and integrals over interior facets. Integrals over exterior facets are typically used
to apply boundary conditions weakly, while integrals over interior facets are used
to couple neighboring cells when discontinuous function spaces are present. The
implementation of the different types of integral is quite elegant: the only difference
between integrating a function over the interior of the cell and over a single facet is
the choice of quadrature points and quadrature weights. Note that Firedrake assumes
that the mesh is conforming; hanging nodes are not currently supported.

On product cells, all entities can be considered as a product of entities on the
constituent cells. We can therefore construct product quadrature rules, making use

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

SYMBOLIC MANIPULATION OF TENSOR PRODUCT ELEMENTS S39

of existing quadrature rules for constituent cells and facets thereof. In addition, we
split the facet integrals into separate integrals over “vertical” and “horizontal” facets.
This is natural when executing a computational kernel over an extruded unstructured
mesh and may be useful in geophysical contexts where horizontal and vertical motions
may be treated differently.

4. Numerical examples. In this section, we give several examples to demon-
strate the correctness of our implementation. Quantitative analysis is performed
where possible, e.g., demonstration of convergence to a known solution at expected
order with increasing mesh resolution. Tests are performed in both two and three
spatial dimensions. We make use of Firedrake’s ExtrudedMesh functionality. In 2D,
the cells are quadrilaterals, usually squares. In 3D, we use triangular prisms, though
we can also build elements on hexahedra.

When referring to standard finite element spaces, we follow the convention in
which the number refers to the degree of the minimal complete polynomial space
containing the element, not the maximal complete polynomial space contained by
the element. Thus, an element containing some, but not all, linear polynomials is
numbered 1 rather than 0. This is the convention used by UFL and is also justified
from the perspective of finite element exterior calculus.

4.1. Vector Laplacian (3D). We seek a solution to

(33) −∇(∇ · ~u) +∇× (∇× ~u) = ~f

in a domain Ω, with boundary conditions

~u · ~n = 0,(34)

(∇× ~u)× ~n = 0(35)

on ∂Ω, where ~n is the outward normal. A näıve discretization can lead to spurious
solutions, especially on nonconvex domains, but an accurate discretization can be
obtained by introducing an auxiliary variable (see, for example, Arnold, Falk, and
Winther [8]):

σ = −∇ · ~u,(36)

∇σ +∇× (∇× ~u) = ~f.(37)

Let V0 ⊂ H1, V1 ⊂ H(curl) be finite element spaces. A suitable weak formulation
is as follows: find σ ∈ V0, ~u ∈ V1 such that

〈τ, σ〉 − 〈∇τ, ~u〉 = 0,(38)

〈~v,∇σ〉+ 〈∇ × ~v,∇× ~u〉 = 〈~v, ~f〉(39)

for all τ ∈ V0, ~v ∈ V1, where we have used angled brackets to denote the standard
L2 inner product. The boundary conditions have been implicitly applied, in a weak
sense, through neglecting the surface terms when integrating by parts.

We take Ω to be the unit cube [0, 1]3. Let k, l, and m be arbitrary. Then

(40) ~f = π2

 (k2 + l2) sin(kπx) cos(lπy)
(l2 +m2) sin(lπy) cos(mπz)
(k2 +m2) sin(mπz) cos(kπx)



c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S40 MCRAE, BERCEA, MITCHELL, HAM, AND COTTER

10-1100

∆x

10-3

10-2

10-1

100

101

L
2

 n
or

m
 o

f e
rr

or

Q1 σ
N1E1 u
Q2 σ
N1E2 u
Q3 σ
N1E3 u

Fig. 1. The L2 error between the computed and “analytic” solution is plotted against ∆x for
the 3D problem described in subsection 4.1. The dotted lines are proportional to ∆xn, for n from 1
to 4, and are merely to aid comprehension.

produces the solution

(41) ~u =

 sin(kπx) cos(lπy)
sin(lπy) cos(mπz)
sin(mπz) cos(kπx)

 ,

which satisfies the boundary conditions.
To discretize this problem, we subdivide Ω into triangular prisms whose base is

a right-angled triangle with short sides of length ∆x and whose height is ∆x. We use
the Qr prism element for the H1 space, and the degree-r Nédélec prism element of
the first kind for the H(curl) space, for r from 1 to 3. We take k, l, and m to be 1, 2,

and 3, respectively. We approximate ~f by interpolating the analytic expression onto a
vector-valued function in Qr+1. The L2 errors between the calculated and “analytic”
solutions for varying ∆x are plotted in Figure 1. This is done for both ~u and σ; the
so-called analytic solutions are approximations which are formed by interpolating the
genuine analytic solution onto nodes of Qr+1.

4.2. Gravity wave (3D). A simple model of atmospheric flow is given by

(42)
∂~u

∂t
= −∇p+ bẑ,

∂b

∂t
= −N2~u · ẑ, ∂p

∂t
= −c2∇ · ~u,

along with the boundary condition ~u · ~n = 0, where ~n is a unit normal vector. The
prognostic variables are the velocity, ~u, the pressure perturbation, p, and the buoyancy
perturbation, b. The scalars N and c are (dimensional) constants, while ẑ represents
a unit vector opposite to the direction of gravity. These equations are a reduction of,
for example, (17)–(21) from Skamarock and Klemp [45], in which we have neglected
the constant background velocity and the Coriolis term and have rescaled θ by θ0/g
to produce b.

Given some 3D product complex as in (17), we seek a solution with ~u ∈ W 0
2 ,

b ∈W v
2 , and p ∈W3. W 0

2 is the subspace of W2 whose normal component vanishes on

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

SYMBOLIC MANIPULATION OF TENSOR PRODUCT ELEMENTS S41

the boundary of the domain. W v
2 denotes the “vertical” part of W2: if we write W2

as a sum of two product elements HDiv(U1 ⊗ V1) and HDiv(U2 ⊗ V0), then W v
2 is the

scalar-valued product U2⊗V0, as constructed in Listing 1. This combination of finite
element spaces for ~u and b is analogous to the Charney–Phillips staggering of variables
in the vertical direction [17].

A semidiscrete form of (42) is the following: find ~u ∈ W 0
2 , b ∈ W v

2 , p ∈ W3 such
that for all ~w ∈W 0

2 , γ ∈W v
2 , φ ∈W3〈
~w,
∂~u

∂t

〉
− 〈∇ · ~w, p〉 − 〈~w, bẑ〉 = 0,(43) 〈
γ,
∂b

∂t

〉
+N2 〈γ, ~u · ẑ〉 = 0,(44) 〈

φ,
∂p

∂t

〉
+ c2 〈φ,∇ · ~u〉 = 0.(45)

It can be easily verified that the original equations, (42), together with the bound-
ary condition lead to conservation of the energy perturbation

(46)

∫
Ω

1

2
|~u|2 +

1

2N2
b2 +

1

2c2
p2 dx.

The three terms can be interpreted as kinetic energy (KE), potential energy (PE),
and internal energy (IE), respectively. The semidiscretization given in (43)–(45) also
conserves this energy. If we discretize in time using the implicit midpoint rule, which
preserves quadratic invariants [25], then the fully discrete system will conserve energy
as well.

We take the domain to be a spherical shell centered at the origin. Its inner radius,
a, is approximately 6371km, and its thickness, H, is 10km. The domain is divided into
triangular prism cells with side-lengths of the order of 1000km and height 1km. We
take N = 10−2s−1 and c = 300ms−1. The simulation starts at rest with a buoyancy
perturbation and a vertically balancing pressure field given by

(47) b =
sin(π(|~x| − a)/H)

1 + z2/L2
, p = −H

π

cos(π(|~x| − a)/H)

1 + z2/L2
;

L is a horizontal length-scale, which we take to be 500km. We use a timestep of the
1920s and run for a total of 480,000s.

To discretize this problem, we use the product elements formed from the BDFM2

complex on triangles and the P2–DP1 complex on intervals; these were constructed in
subsection 3.4. The initial conditions are interpolated into the buoyancy and pressure
fields. The energy is calculated at every time step; the results are plotted in Figure 2.
The total energy is conserved to roughly one part in 1.4 × 108, which is comparable
to the linear solver tolerances.

4.3. DG advection (2D). The advection of a scalar field q by a known divergence-
free velocity field ~u0 can be described by the equation

(48)
∂q

∂t
+∇ · (~u0q) = 0.

If q is in a discontinuous function space, V , a suitable weak formulation is

(49)

〈
φ,
∂q

∂t

〉
= 〈∇φ, q ~u0〉 −

∫
Γext

φq̃ ~u0 · ~nds −
∫

Γint

JφKq̃ ~u0 · ~ndS

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S42 MCRAE, BERCEA, MITCHELL, HAM, AND COTTER

0 100000 200000 300000 400000 500000
t

0

1

2

3

4

5

6

7

en
er

gy

1e20

PE
KE
IE
total

Fig. 2. Evolution of energy for the simulation described in subsection 4.2. The components are
the potential energy, PE, the kinetic energy, KE, and the internal energy, IE. The choice of spatial
and temporal discretizations leads to exact conservation of total energy up to solver tolerances; this
is indeed observed. The event at approximately t = 320,000s corresponds to the zonally symmetric
gravity wave reaching the poles of the spherical domain.

for all φ ∈ V , where the integrals on the right-hand side are over exterior and interior
mesh facets, with ds and dS appropriate integration measures. ~n is the appropriately
oriented normal vector, and q̃ represents the upwind value of q, while JφK represents
the jump in φ. We assume that, on parts of the boundary corresponding to inflow,
q̃ = 0. This example will therefore demonstrate the ability to integrate over interior
and exterior mesh facets.

We discretize (49) in time using the third-order three-stage strong-stability-preserv-
ing Runge–Kutta scheme given in [44]. We take Ω to be the unit square [0, 1]2. Our
initial condition will be a cosine hill

(50) q =

{
1
2

(
1 + cos

(
π |~x− ~x0|

r0

))
, |~x− ~x0| < r0,

0 otherwise,

with radius r0 = 0.15, centered at ~x0 = (0.25, 0.5). The prescribed velocity field is

(51) ~u0(~x, t) = cos

(
πt

T

)(
sin(πx)2 sin(2πy)
− sin(πy)2 sin(2πx)

)
,

as in LeVeque [26]. This gives a reversing, swirling flow field which vanishes on the
boundaries of Ω. The initial condition should be recovered at t = T . Following [26],
we take T = 3

2 .
To discretize this problem, we subdivide Ω into squares with side-length ∆x. We

use DQr for the discontinuous function space, for r from 0 to 2, which are products
of 1D discontinuous elements. We initialize q by interpolating the expression given in
(50) into the appropriate space. We approximate ~u0 by interpolating the expression
given in (51) onto a vector-valued function in Q2. The L2 errors between the initial
and final q fields for varying ∆x are plotted in Figure 3.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

SYMBOLIC MANIPULATION OF TENSOR PRODUCT ELEMENTS S43

10-410-310-210-1

∆x

10-5

10-4

10-3

10-2

10-1

L
2

 n
or

m
 o

f e
rr

or

DQ0

DQ1

DQ2

Fig. 3. The L2 error between the computed and “analytic” solution is plotted against ∆x for
the problem described in subsection 4.3. The dotted lines are proportional to ∆x and ∆x2 and are
merely to aid comprehension. The DQ0 simulations converge at first order for sufficiently small
values of ∆x. The DQ1 simulations converge at second order, as expected. The cosine bell initial
condition has a discontinuous second derivative, which inhibits the DQ2 simulations from exceeding
a second-order rate of convergence.

5. Limitations and extensions. There are several limitations of the current
implementation, which leaves scope for future work. The most obvious is that the
quadrature calculations are relatively inefficient, particularly at high order. The prod-
uct structure of the basis functions can be exploited to generate a more efficient im-
plementation of numerical quadrature. This can be done using the sum-factorization
method, which lifts invariant terms out of the innermost loop. In the very simplest
cases, direct factorization of the integral may be possible. Such operations could have
been implemented within Firedrake’s form compiler. However, this would mask the
underlying issue—that FIAT, which is supposed to be wholly responsible for produc-
ing the finite elements, has no way to communicate any underlying basis function
structure. Work is underway on a more sophisticated layer of software that returns
an algorithm for performing a given operation on a finite element, rather than merely
an array of tabulated basis functions.

Firedrake has recently gained full support for nonaffine coordinate transforma-
tions. In the previous version of the form compiler, the Jacobian of the coordinate
mapping was assumed to be constant across each cell. This is satisfactory for simplices,
since the physical and reference cells can always be linked by an affine transforma-
tion. However, this statement does not hold for quadrilateral, triangular prism, or
hexahedral cells. Firedrake now evaluates the Jacobian at quadrature points. This
functionality is also necessary for accurate calculations on curvilinear cells, in which
the coordinate transformation is quadratic or higher-order. This allows, for example,
more faithful representations of a sphere or spherical shell, extending the work done
in [41].

6. Conclusion. This paper presented extensions to the automated code gener-
ation pipeline of Firedrake to facilitate the use of finite element spaces on nonsimplex

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S44 MCRAE, BERCEA, MITCHELL, HAM, AND COTTER

Table 3
Examples of the construction of standard finite element spaces. In the left-hand column, we

use the notation of the Periodic Table of the Finite Elements [9] where possible.

Element Cell Construction?

Qr (also written Qr,r) quadrilateral Pr ⊗ Pr

RTCEr, Raviart–Thomas
“edge” element†

quadrilateral HCurl(Pr ⊗DPr−1)⊕ HCurl(DPr−1 ⊗ Pr)

Nédélec “edge” element of
the second kind‡

quadrilateral HCurl(Pr ⊗DPr)⊕ HCurl(DPr ⊗ Pr)

RTCFr, Raviart–Thomas
“face” element [39]

quadrilateral HDiv(Pr ⊗DPr−1)⊕ HDiv(DPr−1 ⊗ Pr)

Nédélec “face” element of
the second kind‡

quadrilateral HDiv(Pr ⊗DPr)⊕ HDiv(DPr ⊗ Pr)

DQr (discontinuous Qr) quadrilateral DPr ⊗DPr

Pr,r
†† triangular prism P4r ⊗ Pr

Nédélec “edge” element of
the first kind‡‡

triangular prism HCurl(P4r ⊗DPr−1)⊕ HCurl(RTE4r ⊗ Pr)

Nédélec “edge” element of
the second kind [33]

triangular prism HCurl(P4r ⊗DPr)⊕ HCurl(BDME4r ⊗ Pr)

Nédélec “face” element of
the first kind‡‡

triangular prism HDiv(RTF4r ⊗DPr−1)⊕ HDiv(DP4r−1 ⊗ Pr)

Nédélec “face” element of
the second kind [33]

triangular prism HDiv(BDMF4r ⊗DPr)⊕ HDiv(DP4r ⊗ Pr)

DPr,r triangular prism DP4r ⊗DPr

Qr (also written Qr,r,r) hexahedra Q�
r ⊗ Pr

NCEr, Nédélec “edge” el-
ement of the first kind [32]

hexahedra HCurl(Q�
r ⊗DPr−1)⊕ HCurl(RTCE�

r ⊗ Pr)

Nédélec “edge” element of
the second kind [33]

hexahedra HCurl(Q�
r ⊗DPr)⊕ HCurl(N2CE�

r ⊗ Pr)

NCFr, Nédélec “face” ele-
ment of the first kind [32]

hexahedra HDiv(RTCF�
r ⊗DPr−1)⊕ HDiv(DQ�

r−1 ⊗ Pr)

Nédélec “face” element of
the second kind [33]

hexahedra HDiv(N2CF�
r ⊗DPr)⊕ HDiv(DQ�

r ⊗ Pr)

DQr hexahedra DQ�
r ⊗DPr

†: This is a curl-conforming analogue of the usual Raviart–Thomas quadrilateral element [39].
‡: These are the quadrilateral reductions of the hexahedral Nédélec elements of the second kind [33].
††: This denotes the element with polynomial degree r in the first two variables, and polynomial

degree r in the third variable separately.
‡‡: These are the prism equivalents of the tetrahedral and hexahedral Nédélec elements [32].

?: RTE and RTF refer to the Raviart–Thomas edge and face elements on triangles. BDME and
BDMF refer to the Brezzi–Douglas–Marini [14] edge and face elements on triangles. N2CE and

N2CF refer to the Nédélec elements of the second kind that we construct on quadrilaterals.

cells in 2D and 3D. A wide range of finite elements can be constructed, including,
but not limited to, those listed in Table 3. The examples made extensive use of the
recently added extruded mesh functionality in Firedrake; a related paper detailing
the implementation of extruded meshes has been submitted [13].

All numerical experiments given in this paper were performed with the following
versions of software, which we have archived on Zenodo: Firedrake [31], PyOP2 [38],
TSFC [21], COFFEE [29], UFL [3], FIAT [40], PETSc [46], and PETSc4py [20]. The
code for the numerical experiments can be found in the supplement to the paper
(M102116 01.zip [local/web 7.73KB]).

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

M102116_01.zip
http://epubs.siam.org/doi/suppl/10.1137/15M1021167/suppl_file/M102116_01.zip

SYMBOLIC MANIPULATION OF TENSOR PRODUCT ELEMENTS S45

REFERENCES

[1] MFEM Team, MFEM: Modular Finite Element Methods, http://mfem.org.
[2] M. S. Alnæs, UFL: A finite element form language, in Automated Solution of Differential

Equations by the Finite Element Method, Lect. Notes Comp. Sci. Eng. 84, Springer, New
York, 2012, pp. 303–338, doi:10.1007/978-3-642-23099-8 17.

[3] M. S. Alnæs, A. Logg, A. T. T. McRae, G. N. Wells, M. E. Rognes, L. Mitchell,
M. Homolya, K. B. Ølgaard, A. Bergersen, J. Ring, D. A. Ham, C. Richardson, K.-
A. Mardal, J. Blechta, F. Rathgeber, G. Markall, C. J. Cotter, L. Li, M. Liertzer,
M. Albert, J. Hake, and T. Airaksinen, UFL: The Unified Form Language, 2016,
doi:10.5281/zenodo.46250.

[4] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, Unified form lan-
guage: A domain-specific language for weak formulations of partial differential equations,
ACM Trans. Math. Software, 40 (2014), 9, doi:10.1145/2566630.

[5] D. N. Arnold and G. Awanou, Finite element differential forms on cubical meshes, Math.
Comp., 83 (2014), pp. 1551–1570, doi:10.1090/S0025-5718-2013-02783-4.

[6] D. N. Arnold, D. Boffi, and F. Bonizzoni, Finite element differential forms on curvilin-
ear cubic meshes and their approximation properties, Numer. Math., (2014), pp. 1–20,
doi:10.1007/s00211-014-0631-3.

[7] D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calcu-
lus, homological techniques, and applications, Acta Numer., 15 (2006), pp. 1–155,
dx.doi.org/10.1017/S0962492906210018.

[8] D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus: From Hodge
theory to numerical stability, Bull. Amer. Math. Soc. (N.S.), 47 (2010), pp. 281–354,
doi:10.1090/S0273-0979-10-01278-4.

[9] D. N. Arnold and A. Logg, Periodic table of the finite elements, SIAM News, (November)
2014; also available online from http://femtable.org.

[10] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout,
W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith,
and H. Zhang, PETSc Users Manual, Tech. report ANL-95/11 - Revision 3.5, Argonne
National Laboratory, Lemont, IL, 2014, http://www.mcs.anl.gov/petsc.

[11] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Tur-
cksin, and T. D. Young, The deal. II library, version 8.2, Arch. Numer. Software, 3
(2015), doi:10.11588/ans.2015.100.18031.

[12] P. Bastian, F. Heimann, and S. Marnach, Generic implementation of finite element methods
in the Distributed and Unified Numerics Environment (DUNE), Kybernetika, 46 (2010),
pp. 294–315.

[13] G.-T. Bercea, A. T. T. McRae, D. A. Ham, L. Mitchell, F. Rathgeber, L. Nardi, F. Lu-
porini, and P. H. J. Kelly, A Numbering Algorithm for Finite Element on Extruded
Meshes which Avoids the Unstructured Mesh Penalty, preprint, arxiv.org/abs/1604.05937
[cs.MS], 2016.

[14] F. Brezzi, J. Douglas, Jr., and L. D. Marini, Two families of mixed finite ele-
ments for second order elliptic problems, Numer. Math., 47 (1985), pp. 217–235,
doi:10.1007/BF01389710.

[15] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput.
Math. 15, Springer-Verlag, New York, 1991.

[16] C. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. D.
Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied,
C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R. Kirby, and S. Sherwin, Nektar++: An
open-source spectral/ hp element framework, Comput. Phys. Comm., 192 (2015), pp. 205–
219, doi:10.1016/j.cpc.2015.02.008.

[17] J. G. Charney and N. A. Phillips, Numerical integration of the quasi-geostrophic equa-
tions for barotropic and simple baroclinic flows, J. Meteorology, 10 (1953), pp. 71–99,
doi:10.1175/1520-0469(1953)010%3C0071:NIOTQG%3E2.0.CO;2.

[18] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North–Holland, Amsterdam,
1978.

[19] C. J. Cotter and J. Shipton, Mixed finite elements for numerical weather prediction, J.
Comput. Phys., 231 (2012), pp. 7076–7091, doi:10.1016/j.jcp.2012.05.020.

[20] L. Dalcin, L. Mitchell, J. Brown, P. E. Farrell, M. Lange, B. Smith, D. Karpeyev,
N. O. Collier, M. Knepley, D. A. Ham, S. W. Funke, A. Ahmadia, T. Hisch, M. Ho-
molya, J. C. Alastuey, A. N. Riseth, G. Wells, and J. Guyer, PETSc4py: The Python
Interface to PETSc, Zenodo, 2016, doi:10.5281/zenodo.46222.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

http://mfem.org
http://dx.doi.org/10.1007/978-3-642-23099-8_17
http://dx.doi.org/10.5281/zenodo.46250
http://dx.doi.org/10.1145/2566630
http://dx.doi.org/10.1090/S0025-5718-2013-02783-4
http://dx.doi.org/10.1007/s00211-014-0631-3
http://dx.doi.org/10.1017/S0962492906210018
http://dx.doi.org/10.1090/S0273-0979-10-01278-4
http://femtable.org
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.11588/ans.2015.100.18031
http://arxiv.org/abs/1604.05937
http://arxiv.org/abs/1604.05937
http://dx.doi.org/10.1007/BF01389710
http://dx.doi.org/10.1016/j.cpc.2015.02.008
http://dx.doi.org/10.1175/1520-0469(1953)010%3C0071:NIOTQG%3E2.0.CO;2
http://dx.doi.org/10.1016/j.jcp.2012.05.020
http://dx.doi.org/10.5281/zenodo.46222

S46 MCRAE, BERCEA, MITCHELL, HAM, AND COTTER

[21] M. Homolya and L. Mitchell, TSFC: The Two Stage Form Compiler, Zenodo, 2016,
doi:10.5281/zenodo.46217.

[22] R. C. Kirby, Algorithm 839: FIAT, a new paradigm for computing finite element basis func-
tions, ACM Trans. Math. Softw., 30 (2004), pp. 502–516, doi:10.1145/1039813.1039820.

[23] R. C. Kirby, FIAT: Numerical construction of finite element basis functions, in Automated
Solution of Differential Equations by the Finite Element Method, Lect. Notes Comput. Sci.
Eng. 84, Springer, New York, 2012, pp. 247–255, doi:10.1007/978-3-642-23099-8 13.

[24] R. C. Kirby and A. Logg, A compiler for variational forms, ACM Trans. Math. Softw., 32
(2006), pp. 417–444, doi:10.1145/1163641.1163644.

[25] B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge University Press,
Cambridge, UK, 2005, Ch. 12, doi:10.1017/CBO9780511614118.

[26] R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow,
SIAM J. Numer. Anal., 33 (1996), pp. 627–665, doi:10.1137/0733033.

[27] A. Logg, K.-A. Mardal, and G. N. Wells, Automated Solution of Differential Equations by
the Finite Element Method, Lect. Notes Comput. Sci. Eng. 84, Springer, Heidelberg, 2012,
doi:10.1007/978-3-642-23099-8.

[28] A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, FFC: The FEniCS form com-
piler, in Automated Solution of Differential Equations by the Finite Element Method, Lect.
Notes Comput. Sci. Eng. 84, Springer, Heidelberg, 2012, pp. 227–238, doi:10.1007/978-3-
642-23099-8 11.

[29] F. Luporini, L. Mitchell, M. Homolya, F. Rathgeber, D. A. Ham, M. Lange,
G. Markall, and F. Russell, COFFEE: A Compiler for Fast Expression Evaluation,
Zenodo, 2016, doi:10.5281/zenodo.46218.

[30] F. Luporini, A. L. Varbanescu, F. Rathgeber, G.-T. Bercea, J. Ramanujam, D. A.
Ham, and P. H. J. Kelly, Cross-loop optimization of arithmetic intensity for finite el-
ement local assembly, ACM Trans. Architecture Code Optim., 11 (2015), pp. 57:1–57:25,
doi:10.1145/2687415.

[31] L. Mitchell, F. Rathgeber, D. A. Ham, M. Homolya, A. T. T. McRae, G.-T. Bercea,
M. Lange, C. J. Cotter, C. T. Jacobs, F. Luporini, S. W. Funke, A. Kalogirou,
H. Büsing, T. Kärnä, H. Rittich, E. H. Mueller, S. Kramer, G. Markall, P. E.
Farrell, A. N. Riseth, J. Chang, and G. McBain, Firedrake: An Automated Finite
Element System, Zenodo, 2016, doi:10.5281/zenodo.46221.

[32] J. C. Nédélec, Mixed finite elements in R3, Numer. Math., 35 (1980), pp. 315–341,
doi:10.1007/BF01396415.

[33] J. C. Nédélec, A new family of mixed finite elements in R3, Numer. Math., 50 (1986), pp. 57–
81, doi:10.1007/BF01389668.

[34] K. B. Ølgaard and G. N. Wells, Optimisations for quadrature representations of finite
element tensors through automated code generation, ACM Trans. Math. Softw., 37 (2010),
pp. 8:1–8:23, doi:10.1145/1644001.1644009.

[35] F. Rathgeber, Productive and Efficient Computational Science through Domain-Specific Ab-
stractions, Ph.D. thesis, Imperial College London, London, 2014.

[36] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. McRae, G.-T.
Bercea, G. R. Markall, and P. H. J. Kelly, Firedrake: Automating the finite element
method by composing abstractions, submitted.

[37] F. Rathgeber, G. R. Markall, L. Mitchell, N. Loriant, D. A. Ham, C. Bertolli,
and P. H. Kelly, PyOP2: A high-level framework for performance-portable simulations
on unstructured meshes, in SC Companion: High Performance Computing, Networking
Storage and Analysis, IEEE Computer Society, Los Alamitos, CA, 2012, pp. 1116–1123,
doi:10.1109/SC.Companion.2012.134.

[38] F. Rathgeber, L. Mitchell, F. Luporini, G. Markall, D. A. Ham, G.-T. Bercea, M. Ho-
molya, A. T. T. McRae, H. Dearman, C. T. Jacobs, G. Boutsioukis, S. W. Funke,
K. Sato, and F. Russell, PyOP2: Framework for Performance-Portable Parallel Com-
putations on Unstructured Meshes, Zenodo, 2016, doi:10.5281/zenodo.46219.

[39] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic
problems, in Mathematical Aspects of Finite Element Methods, Springer, New York, 1977,
pp. 292–315, doi:10.1007/BFb0064470.

[40] M. E. Rognes, A. Logg, M. Homolya, D. A. Ham, N. Schlömer, J. Blechta, A. Berg-
ersen, J. Ring, C. J. Cotter, L. Mitchell, G. Wells, F. Rathgeber, R. Kirby, L. Li,
M. S. Alnæs, A. T. T. McRae, and M. Liertzer, FIAT: The Finite Element Automated
Tabulator, Zenodo, 2016, doi:10.5281/zenodo.46220.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

http://dx.doi.org/10.5281/zenodo.46217
http://dx.doi.org/10.1145/1039813.1039820
http://dx.doi.org/10.1007/978-3-642-23099-8_13
http://dx.doi.org/10.1145/1163641.1163644
http://dx.doi.org/10.1017/CBO9780511614118
http://dx.doi.org/10.1137/0733033
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1007/978-3-642-23099-8_11
http://dx.doi.org/10.1007/978-3-642-23099-8_11
http://dx.doi.org/10.5281/zenodo.46218
http://dx.doi.org/10.1145/2687415
http://dx.doi.org/10.5281/zenodo.46221
http://dx.doi.org/10.1007/BF01396415
http://dx.doi.org/10.1007/BF01389668
http://dx.doi.org/10.1145/1644001.1644009
http://dx.doi.org/10.1109/SC.Companion.2012.134
http://dx.doi.org/10.5281/zenodo.46219
http://dx.doi.org/10.1007/BFb0064470
http://dx.doi.org/10.5281/zenodo.46220

SYMBOLIC MANIPULATION OF TENSOR PRODUCT ELEMENTS S47

[41] M. E. Rognes, D. A. Ham, C. J. Cotter, and A. T. T. McRae, Automating the solution
of pdes on the sphere and other manifolds in FEniCS 1.2, Geosci. Model Development, 6
(2013), pp. 2099–2119, doi:10.5194/gmd-6-2099-2013.

[42] J. Schöberl, C ++11 Implementation of Finite Elements in NGSolve, preprint, Institute for
Analysis and Scientific Computing, TU Wien, Vienna, Austria, 2014; available online at
http://www.asc.tuwien.ac.at/preprint/2014/asc30x2014.pdf.

[43] J. Schöberl and S. Zaglmayr, High order Nédélec elements with local complete sequence prop-
erties, COMPEL: The International Journal for Computation and Mathematics in Electri-
cal and Electronic Engineering, 24 (2005), pp. 374–384, doi:10.1108/03321640510586015.

[44] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-
capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471, doi:10.1016/0021-
9991(88)90177-5.

[45] W. C. Skamarock and J. B. Klemp, Efficiency and accuracy of the Klemp-Wilhelmson time-
splitting technique, Monthly Weather Review, 122 (1994), pp. 2623–2630, http://dx.doi.
org/10.1175/1520-0493(1994)122〈2623:EAAOTK〉2.0.CO;2.

[46] B. Smith, S. Balay, M. Knepley, J. Brown, L. C. McInnes, H. Zhang, P. Brune,
J. Sarich, D. Karpeyev, L. Dalcin, S. Zampini, M. Adams, V. Minden, V. Eijkhout,
V. S. Mahadevan, T. Isaac, K. Rupp, S. Han, M. Lange, D. Meiser, X. Zhou, B. Aa-
gaard, D. May, T. Munson, E. M. Constantinescu, D. Ghosh, L. Mitchell, P. Sanan,
and B. A. Bourdin, PETSc: Portable, Extensible Toolkit for Scientific Computation, Feb.
2016, doi:10.5281/zenodo.46181.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

http://dx.doi.org/10.5194/gmd-6-2099-2013
http://www.asc.tuwien.ac.at/preprint/2014/asc30x2014.pdf
http://dx.doi.org/10.1108/03321640510586015
http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://dx.doi.org/10.1175/1520-0493(1994)122<2623:EAAOTK>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1994)122<2623:EAAOTK>2.0.CO;2
http://dx.doi.org/10.5281/zenodo.46181

	Introduction
	Summary of contributions

	Mathematical preliminaries
	Definition of a finite element
	Sum of finite elements
	Sobolev spaces, intercell continuity, and Piola transforms
	Geometric decomposition of nodes
	Piola transforms

	Product finite elements
	Product cells
	Product spaces of functions: Simple elements
	Product nodes: Geometric decomposition
	Product spaces of functions: Scalar- and vector-valued elements in 2D and 3D
	Consequences for implementation

	Product finite elements within finite element exterior calculus
	Product complexes using differential forms

	Implementation
	FIAT
	UFL
	Implementation of product finite elements
	Algebraic structure
	Support for new integration regions

	Numerical examples
	Vector Laplacian (3D)
	Gravity wave (3D)
	DG advection (2D)

	Limitations and extensions
	Conclusion
	References

