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1 Introduction

Surface defects are an interesting class of non-local observables in four-dimensional gauge

theories [1]. In this paper, we consider surface defects in four-dimensional N = 2 supercon-

formal field theories of class S, which are obtained by compactifying the partially twisted

six-dimensional (2, 0) theory on a decorated Riemann surface C [2, 3]. The six-dimensional

(2, 0) theory is characterized by a Lie algebra g of ADE type. In this paper we focus on

the case of AN−1. In this case, the six-dimensional (2, 0) theory arises as the infrared limit

of the worldvolume theory on a stack of N coincident M5-branes. Surface defects in four-

dimensional theories of class S can be formed from both codimension-two and codimension-

four defects in the six-dimensional parent theory. This is summarized in table 1.

Let us first discuss codimension-two defects of the (2, 0) theory in six-dimensions,

which are labeled by embeddings ρ : su(2) → g. These defects play an important role in

the construction of theories of class S: a codimension-two defect that is inserted at a point

on the Riemann surface C and spans all four space-time dimensions corresponds to a flavor

puncture in the construction of [2, 3] — see (i) of table 1. Alternatively, wrapping the

same codimension-two defect on the whole Riemann surface C leads to a surface defect in

the four-dimensional theory — see (ii) of table 1. This class of surface defects has been

studied, for example, in [4, 5].

On the other hand, there are codimension-four defects in the (2, 0) theory in six-

dimensions, which are expected to be labeled by an irreducible representation of g, see

for example [6] and references therein. Inserting a codimension-four defect at a point on

the Riemann surface C engineers another class of surface defects in the four-dimensional

theory — see (iii) of table 1. In this paper, we study this second class of surface defects in

four-dimensional N = 2 theories of class S.

Important evidence for the classification of codimension-four defects in terms of irre-

ducible representations of g comes from the correspondence between four-sphere partition

functions of N = 2 theories of class S and correlation functions in Liouville or Toda con-

formal field theory on C [7, 8]. In this correspondence, flavor punctures are represented

by vertex operators labeled by non-degenerate and semi-degenerate representations of the

Virasoro or WN -algebra. There are also completely degenerate representations labeled by

two dominant integral weights of g, or equivalently, by two irreducible representations R1

and R2 of g. Correlation functions with additional insertions of completely degenerate

vertex operators compute the four-sphere partition function in the presence of surface de-

fects [9]. In particular, the labels R1 and R2 characterize the surface defects supported on

orthogonal two-spheres.

Inspired by the connection to degenerate vertex operators and the analytic struc-

ture of Virasoro/WN -algebra conformal blocks, the authors of reference [10] introduced a

renormalization group flow that can be used to construct the surface defects from vortex
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X C Name

(i) 4 0 flavor puncture

(ii) 2 2 surface defect

(iii) 2 0 surface defect

Table 1. Summary of the defects in the six-dimensional (2, 0) theory on X × C. X is the four

dimensional space-time and C is a decorated Riemann surface. (i) and (ii) show configurations of

codimension-two defects while (iii) shows the configuration of a codimension-four defect.

Figure 1. Schematic illustration of the renormalization group flow TUV → TIR that can be used

to introduce surface defects. The white dots represent full punctures with SU(N) symmetry while

the black dot is a simple puncture with U(1) symmetry. The red dot represents a codimension-four

defect engineering a surface defect in four dimensions.

configurations in a larger theory. Let us consider the simplest example of this procedure

illustrated in figure 1.

The starting point is a theory TIR with a full puncture encoding an SU(N) flavor

symmetry. We then form the larger theory TUV by adding a simple puncture nearby

with U(1) flavor symmetry. This corresponds to adding an additional hypermultiplet in

the bifundamental of SU(N) × SU(N) by gauging the diagonal SU(N). The extra U(1)

symmetry corresponds to the baryonic symmetry of the bifundamental hypermultiplet and

the position of the simple puncture controls the gauge coupling of the gauged SU(N).

The theories TIR and TUV are connected by a renormalization group flow that is initi-

ated by turning on a constant vacuum expectation value for the hypermultiplet scalar. By

turning on a position-dependent vacuum expectation value corresponding to a half-BPS

vortex configuration in TUV , the endpoint of the renormalization group flow is a surface

defect in the original theory TIR. These surface defects are labeled by a pair of positive

integers (r1, r2) corresponding to the vortex numbers in orthogonal two-planes. This con-

struction is analogous to the Toda construction of codimension-four surface operators [9].

Hence our working conjecture is that they give a representation of codimensions-four sur-

face defects labelled by a pair of symmetric tensor representations of g.

A concrete prescription was given in [10] to implement this renormalization group flow

at the level of the superconformal index. The superconformal index is a trace over states of a

superconformal field theory in radial quantization [11]. It is a much simpler observable than

the four-sphere partition function because it does not depend on the marginal couplings of

the theory. For previous work on the superconformal index of theories of class S see [12–16].

In full generality, the N = 2 superconformal index depends on three parameters denoted

by {p, q, t} that are associated to combinations of bosonic conserved charges commuting
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with a chosen supercharge. It also depends on flavor parameters {a1, . . . , aN}, such that∏
j aj = 1, for each global SU(N) symmetry and an additional parameter b for each U(1)

symmetry. The superconformal index is thus denoted by

I(p, q, t, aj , b, . . .) . (1.1)

The superconformal index of the theory TIR with surface defects is obtained by com-

puting a residue of the superconformal index of the theory TUV in the additional fugacity

b associated to the additional U(1) symmetry. The result is a difference operator Gr1,r2
that acts on the superconformal index of the original theory TIR by shifting the fugacities

of the SU(N) flavor symmetry. Schematically, the difference operator is defined by

Gr1,r2 · IIR(aj , . . .) ∼ Res
b=t

1
2 pr1/N qr2/N

[
1

b
IUV (aj , b, . . .)

]
, (1.2)

where the proportionality constant is discussed in section 2. The difference operator Gr1,r2
corresponds to inserting a surface defect in the original theory TIR that is labeled by the

pair (r1, r2).

In what follows we concentrate on the case r1 = 0 and simply label the difference

operators by Gr, where r ∈ Z≥0. The label r can be thought of as denoting a symmetric

tensor representation of rank r. The resulting expression for Gr is

Gr · I(aj) =
∑

∑N
k=1mk=r

N∏
j,k=1

[
mk−1∏
m=0

θ (qm+mk−mj taj/ak; p)

θ (qm−mkak/aj ; p)

]
I
(
aj 7→ q

r
N
−mj aj

)
, (1.3)

where the theta-function θ(z, p) is defined in section 2.

Following our arguments above, we expect that there exist difference operators GR
corresponding to surface defects labeled by all irreducible representations R of g. In princi-

ple, they could be constructed by starting from a theory TUV with an additional puncture

with a larger flavor symmetry. However, this would involve non-Lagrangian ingredients

and, although the index can be bootstrapped as in [10], the analytic structure needed for

this approach is not manifest.

Instead we follow the line of reasoning introduced in [17] and complete the algebra

of difference operators. For the difference operator associated to the representation R we

make an ansatz

GR · I(aj) =
∑
λ

CR,λ(p, q, t, aj) I(q−(λ,hj)aj), (1.4)

where the sum is over the weights λ of the representation R, ( , ) is the standard inner

product on the Cartan subalgebra of g, and hj are the weights of the fundamental repre-

sentation. This ansatz is compatible with what we already know about difference operators

Gr for symmetric tensor representations R = (r).

The coefficients CR,λ(p, q, t, aj) are then determined by imposing that the full set of

difference operators GR is closed under composition

GR1 ◦GR2 =
∑
R3

NR1,R2
R3(p, q, t)GR3 , (1.5)
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and forms a commutative algebra. Since the symmetric tensor representations form an

over-complete basis, there are many compatibility conditions for the system (1.5) to be

solved consistently. It is thus non-trivial that a solution exists. Nevertheless, we can find

a solution using the following method.

First, we notice that all irreducible representations in the case g = su(2) are symmetric

tensor representations, so that there are no additional difference operators. Even though

it is not obvious and requires numerous functional identities for theta-functions, the sys-

tem (1.5) can be solved uniquely in this case. The structure coefficients NR1,R2
R3(p, q, t)

turn out to be an elliptic generalization of the (q, t)-deformed Littlewood-Richardson coef-

ficients. In section 2.4.1 we give a recipe to obtain the elliptic coefficients NR1,R2
R3(p, q, t)

uniquely from the (q, t)-deformed ones.

If we then assume that for any rank of the gauge group the structure coefficients

NR1,R2
R3(p, q, t) are given by this elliptic generalization of the Littlewood-Richardson co-

efficients, the system (1.5) can be solved consistently and uniquely for all of the difference

operators GR. The coefficients CR,λ are in general sums of products of ratios of theta-

functions. Let us stress once more that the fact that we can find a consistent solution to

the system (1.5) is highly non-trivial and involves numerous identities for theta-functions.

We see this as strong evidence that a class of surface defects labeled by general irreducible

representations R of g exists.

In particular, we find that the difference operators G(1r) labeled by the rank r antisym-

metric tensor representations, can be conjugated to the Hamiltonians of the N -body elliptic

Ruijsenaars-Schneider integrable system. This is an extension of the fact, noted in [10],

that the fundamental operator in the case of A1 can be conjugated to the Hamiltonian of

the two-body elliptic Ruijsenaars-Schneider integrable system.

A microscopic definition of a large class of surface defects can be given by coupling the

four-dimensional theory to two-dimensional N = (2, 2) degrees of freedom supported on

the surface [9, 18–20]. The superconformal index in the presence of such surface defects has

been constructed recently in [21]. Thus it is natural to ask whether the surface defects intro-

duced by the operators GR can be understood in this approach. For the rank r symmetric

tensor representation, it was already noted in [21] that the two-dimensional degrees of

freedom consist of an N = (2, 2) gauge theory with gauge group U(r), coupled to N funda-

mental and N anti-fundamental chiral fields and an additional chiral field in the adjoint rep-

resentation of U(r). Using the same techniques, we find that the relevant two-dimensional

degrees of freedom for the rank r antisymmetric tensor representation are the same as

above, but without the adjoint chiral field. For other representations, it is not clear to us

whether the surface defect can be constructed by coupling to an N = (2, 2) supersymmetric

gauge theory. We make a few additional remarks about this in the discussion in section 6.

The superconformal index of N = 2 theories of class S has a dual description in

terms of a two-dimensional topological quantum field theory on the surface C [14, 15]. We

continue in this paper by showing that the difference operators GR are natural objects

in this two-dimensional TQFT. When we focus on the Macdonald slice {p = 0, q, t}, the

TQFT is given as an analytic continuation of refined Chern-Simons theory on S1×C [22].

– 5 –
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Figure 2. Sequence of dualities that maps the four-dimensional TN theory (upper-left) to the

three-dimensional star-shaped quiver theory (lower-right).

In the Macdonald limit, the operators G(1r), labeled by antisymmetric tensor repre-

sentations, can be conjugated to the so-called Macdonald operators, whose eigenfunctions

are the Macdonald polynomials PS(a, q, t) labeled by an irreducible representation S. We

find that the eigenvalue of a general, conjugated, difference operator GcR in the Macdonald

limit is given by

GcR · PS(aj , q, t) =
SR,S
S0,S

PS(aj , q, t) , (1.6)

where SR,S is an analytic continuation of the modular S-matrix of refined Chern-Simons

theory, which depends on q and t. A consequence is that the surface defect introduced

by the operator GcR is equivalent to a Wilson loop wrapping around the S1 of the three-

manifold S1 × C.

In the Macdonald limit, the structure constants NR1,R2
R3(q, t) become the (q, t)-

deformed Littlewood-Richardson coefficients and the algebra of difference operators GR
is identified with the Verlinde algebra. We expect that this Verlinde algebra has a natu-

ral interpretation in the (analytically continued) chiral boundary theory on the two-torus

boundary near a puncture of C.

We find further confirmation of the physical relevance of the difference operators GR
by reducing the superconformal index to the three-sphere partition function, following [23–

25]. In particular, we consider the dimensional reduction of the four-dimensional TN theory,

which is obtained by compactifying the six-dimensional (2, 0) theory on a three-punctured

sphere with three full punctures. The dimensionally reduced TN theory has a Lagrangian

mirror description as a star-shaped quiver theory [26]. This is illustrated in figure 2. In

particular, each full puncture of the three-punctured sphere is represented by a three-

dimensional linear quiver theory called T (SU(N)).

– 6 –
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It is expected that the surface defects introduced by the dimensional reduction of the

operators GR correspond to supersymmetric Wilson loops in the representation R for the

central node of the star-shaped quiver. This is in fact equivalent to the statement that

the partition function of the T (SU(N)) theory is an eigenfunction of the dimensionally

reduced operators G
(3d)
R . The partition function Z(x, y) of the T (SU(N)) theory depends

on two mass parameters x and y associated to the Higgs branch and the Coulomb branch

respectively, and is symmetric under x↔ y. For the case of a round four-sphere, we show

indeed that

G
(3d)
(1r)(y) · Z(x, y) = W(1r)(x)Z(x, y), (1.7)

where W(1r)(x) is a supersymmetric Wilson loop in the r-th antisymmetric tensor repre-

sentation.

For other (non-minuscule) representations we find that this is not quite correct. In

particular, the Wilson loops obey the algebra

WR1 ·WR2 =
∑
R3

NR1,R2
R3 WR3 , (1.8)

where NR1,R2
R3 are the ordinary Littlewood-Richardson coefficients, whereas the algebra

of the three-dimensional operators G
(3d)
R is not of this form. Instead, we find that when the

representation R is non-minuscule, the dimensionally reduced operators G
(3d)
R are linear

combinations of operators G̃
(3d)
S , with |S| ≤ |R|, that are dual to Wilson loop operators.1

This gives a simple invertible linear transformation on the algebra of difference operators.

Finally, by embedding the three-dimensional T (SU(N)) theory as an S-duality do-

main wall in the four-dimensional N = 2∗ theory, we interpret the dimensionally reduced

difference operators G
(3d)
R as operators that introduce ’t Hooft defects, labeled by irre-

ducible representations R, into the four-sphere partition function of the N = 2∗ theory.

Again, when the representation R is an antisymmetric tensor representation, we find perfect

agreement with both localization [27] and (in the case of the fundamental representation)

computations of Verlinde operators in Liouville/Toda conformal field theory [9, 28–30],

while for other representations we once more find an invertible linear transformation on

the algebra of operators.

The outline of this paper is as follows. In section 2 we construct the difference operators

GR by completing the algebra generated by the difference operators Gr, which are labeled

by symmetric tensor representations, and we interpret the operators GR as computing the

N = 2 superconformal index in the presence of surface defects. In section 3 we interpret the

difference operators GR in the limit p = 0 as Wilson loops wrapping the S1 in an analytic

continuation of refined Chern-Simons theory on S1×C. In section 4 we reduce the difference

operators GR to three dimensions, and interpret them as operators that describe line defects

when added to the three-sphere partition function. In section 5 we relate the dimensionally

reduced operators G
(3d)
R to operators that introduce ’t Hooft loops into the four-sphere

1We defined the partial ordering of representation by |R1| < |R2| iff the dimension of the representation

R1 is less than the dimension of R2.
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partition function of the four-dimensional N = 2∗ theory. We finish in section 6 with a

discussion of our findings. Some longer calculations are presented in appendices A, B and C.

2 Elliptic algebra of four-dimensional surface defects

2.1 The superconformal index

The superconformal index is a trace over the states of a superconformal field theory in

radial quantization, or equivalently, a twisted partition function on S1 × S3. The most

general superconformal index of four-dimensional N = 2 theories is

I = Tr(−1)F pjz−rqjw−Rtr+R
∏
j

a
fj
j , (2.1)

where the trace is taken over states of the theory in radial quantization annihilated by a

single supercharge Q̃1,−̇. Here, we are parametrizing S3 by two complex coordinates (z, w)

obeying |z|2 + |w|2 = 1, and the generators jz and jw are rotations in the orthogonal z and

w-planes respectively. The symbol r denotes the generator of the superconformal U(1)r
and R the generator of the Cartan subalgebra of SU(2)R. The fj are generators of the

Cartan subalgebra of the flavor symmetry group.

The combinations of generators appearing in the powers of (p, q, t, aj) in equation (2.1)

are those combinations that commute with the supercharge Q̃1,−̇. The letters p, q, t and

ai are fugacities for these symmetries and obey

|p|, |q|, |t|, |pq/t| < 1, |aj | = 1 , (2.2)

which ensure that the index is well-defined.

If there exists a weakly coupled Lagrangian, the superconformal index can be computed

from single-letter indices by the plethystic exponential. The basic ingredients are the single

letter indices of a half-hypermultiplet and vectormultiplet,

iH =

√
t− pq√

t

(1− p)(1− q)
,

iV = − p

1− p
− q

1− q
+

pq
t − t

(1− p)(1− q)
.

(2.3)

For example, the superconformal index of a free hypermultiplet in the bifundamental rep-

resentation of SU(N)× SU(N) is

I(aj , bj , c) = PE

iH N∑
i,j=1

(
aibjc+

1

aibjc

)
=

N∏
i,j=1

Γ
(√

t(aibjc)
±; p, q

)
,

(2.4)

where PE stands for the plethystic exponential. The parameters {ai} and {bj} are fugacities

for the SU(N)×SU(N) symmetry and c is the fugacity for the overall U(1) symmetry. The
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elliptic gamma function Γ(z; p, q) is defined as

Γ(z; p, q) =
∞∏

i,j=0

(1− z−1pi+1qj+1)

(1− zpiqj)
. (2.5)

An important operation on the superconformal index is that of gauging a global sym-

metry. Given the superconformal index I(a) of a theory with SU(N) flavor symmetry, the

superconformal index of the theory where this symmetry has been gauged is∮
∆(a) IV (a) I(a) , (2.6)

where

IV (a) = PE
[
iV

( N∑
i,j=1

ai
aj
− 1
) ]

(2.7)

is the superconformal index of an SU(N) vectormultiplet and

∆(a) =

N−1∏
j=1

daj
2πiaj

 1

N !

N∏
i 6=j

(
1− ai

aj

)
(2.8)

is the Haar measure on the maximal torus of SU(N).

2.2 Surface defects from vortices

In this section, we review the construction of the superconformal index in the presence of

a certain class of surface defects, which arise as the infinite tension limit of background

vortex configurations [10]. They are labeled by a nonnegative integer r, the vortex number,

which may be interpreted as the magnetic flux through the vortex core.

The starting point is any superconformal field theory TIR with a global flavor symmetry

SU(N). By gauging this flavor symmetry, the theory may be coupled to a hypermultiplet

in the bifundamental representation of SU(N) × SU(N). The resulting superconformal

field theory TUV has an additional baryonic U(1) symmetry acting on the bifundamental

hypermultiplet.

The two theories TIR and TUV are related by a renormalization flow initiated by turning

on a Higgs branch vacuum expectation value for the bifundamental scalar field Q. When

this expectation value is a constant, the RG flow brings us back to the theory TIR. When

the expectation value is taken to be coordinate-dependent, the theory TIR is modified along

a surface and in the low energy limit we recover the theory TIR in the presence of a surface

defect.

More precisely, we can introduce a vacuum expectation value for the baryon operator

B = detQ of the form

B(z) =
r∏
i=1

(z − zi) , (2.9)

where z is a complex coordinate in a two-plane, the degree r corresponds to the vortex

number, and the parameters zi are the positions of the vortex strings. Taking the zi = 0,
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Figure 3. The left picture illustrates the Riemann surface C corresponding to a theory TUV , which

is obtained by coupling the theory TIR to a bifundamental field. An RG flow, that is initiated by

turning on a Higgs vev for the bifundamental scalar, relates the theory TUV to the original theory

TIR with a surface defect Gr. This is illustrated on the right.

we have r coincident vortices. This construction then leads to surface defects labeled by

r ∈ Z≥0. For N = 2 superconformal field theories of class S, this construction has an

elegant interpretation in terms of the curve C — see figure 3.

This field theoretic construction of surface defects can be implemented concretely in the

superconformal index for surface defects supported on the S1×S1 defined by the locus {z =

0}. Denoting the superconformal index of TIR by IIR(aj , . . .), then the superconformal

index of TUV is

IUV (bj , c, . . .) =

∮
∆(ai) IV (ai) IH(ai, bj , c) IIR(a−1

i , . . .) . (2.10)

This has simple poles that originate from simple poles in the integrand pinching the contour.

We consider the simple poles of the integrand coming from the bifundamental hypermulti-

plet index at

ai = t
1
2 qmi

1

bσ(i)c
, (2.11)

where σ is a permutation of {1, . . . , N} and
∑

imi = r where r ∈ Z≥0. They correspond

to the chiral ring generated by derivatives of components of the bifundamental scalar field,

(∂w)miQ
σ(i)
i . For each permutation σ, these poles pinch the contour when

c = t
1
2 q

r
N , (2.12)

leading to a simple pole in the integral at this point. This pole then corresponds to the

chiral ring generated by derivatives of the baryon operator (∂w)rB where B = detQ, which

is charged only under the U(1). The residue at this pole corresponds to the index of TIR
in the presence of a surface defect obtained by giving an expectation value B = zr to the

baryon operator of TUV and flowing to the IR.

As demonstrated in [10], the residue takes the form of a difference operator Gr acting

on the superconformal index of TIR. There is one term in the operator for each distinct

set of integers {m1, . . . ,mN} such that
∑

imi = r. The precise prescription defining the

difference operator is

Gr · IIR(bi, . . .) = N IV (bi) Res
c=t

1
2 q

r
N

[
1

c
IUV(c, bi, . . .)

]
. (2.13)
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The result of the computation is

Gr · I(bi) =
∑

∑N
j=1mj=r

N∏
i,j=1

mj−1∏
m=0

θ (qm+mj−mitbi/bj ; p)

θ (qm−mjbj/bi; p)

 I (bi 7→ q
r
N
−mi bi

)
, (2.14)

where the theta-function is defined as

θ(z; p) =

∞∏
i=0

(
1− zpi

)(
1− pi+1

z

)
. (2.15)

The difference operators Gr constructed by this method are formally self-adjoint with

respect to the measure ∆(a) IV (a) used for gauging. They are labeled by a nonnega-

tive integer r ∈ Z≥0. Furthermore each term in the operator can be identified with a

weight of the r-th symmetric tensor representation of su(N). In particular, the numbers

{m1,m2, . . . ,mN} denote the number of times the integers {1, . . . , N} appear in the corre-

sponding Young tableau. Based on this observation, we associate these operators to surface

defects labeled by the symmetric tensor representations of su(N).

It is, however, expected that there exist surface defects labeled by arbitrary irreducible

representations of su(N). The necessity of such defects becomes apparent when the differ-

ence operators are composed.

2.3 Composition of difference operators

Let us now consider the composition of two difference operators, Gr1 ◦ Gr2 . This can be

given a physical interpretation by coupling the theory TIR to a single hypermultiplet Q1 in

the bifundamental representation of SU(N) × SU(N) and then to another bifundamental

hypermultiplet Q2. The resulting theory T ′UV is illustrated in figure 4. It has two additional

flavor symmetries U(1)1 and U(1)2 that act on the two bifundamental hypermultiplets Q1

and Q2 respectively.

The original theory TIR is reached by turning on constant vacuum expectation values

for both baryon operators B1 = detQ1 and B2 = detQ2 charged under the additional

flavor symmetries U(1)1 and U(1)2. In the superconformal index, this corresponds to the

residues of IUV at the simple poles c1 = t1/2 and c2 = t1/2 in the fugacities associated to

U(1)f,1 and U(1)f,2 respectively. Turning on position dependent vacuum expectation values

B1 = zr1 and B2 = zr2 corresponds to computing the residues at simple poles c1 = t1/2qr1

and c2 = t1/2qr2 . The order in which the residues are computed is irrelevant and the result

Gr1 · (Gr2 · IIR) = Gr2 · (Gr1 · IIR) , (2.16)

defines the (commutative) composition Gr1 ◦Gr2 . This construction again has an interpre-

tation in terms of the curve C for theories of class S, shown in figure 4.

2.4 The algebra of surface defects

The operators Gr constructed above do not form a closed algebra under composition and

addition. More precisely, except for su(2), the composition Gr1 ◦Gr2 cannot be decomposed
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Figure 4. The left picture illustrates the Riemann surface C corresponding to the theory T ′

UV ,

which is obtained by coupling the theory TIR to two bifundamental fields. An RG flow, that is

initiated by turning on Higgs vevs for both bifundamental scalars, relates the theory T ′

UV to the

original theory TIR with two surface defects Gr1 and Gr2 . This is illustrated on the right.

as a sum of other operators Gr3 with coefficients that are independent of the flavor fugacities

{aj} acted on by the operators.

In order to close the algebra, we need to enlarge the set of difference operators Gr.

Having identified the label r with the r-fold symmetric tensor representation of su(N), it

is natural to introduce operators GR for any irreducible representation R of su(N) and to

force them to obey the algebra

GR1 ◦GR2 =
∑
R3

NR1,R2
R3 GR3 , (2.17)

where the coefficient NR1,R2
R3 is non-zero only when the representation R3 appears in the

direct sum decomposition of the tensor product R1 ⊗ R2. Indeed, it turns out that this

determines the operators GR and the algebra coefficients NR1,R2
R3 essentially uniquely,

in a sense we explain in detail below. The closure of the algebra is a highly non-trivial

statement, however, depending on intricate theta-function identities.

Let us explain the procedure is some more detail. For each irreducible representation

R of su(N), we make an ansatz for the operator GR. The ansatz is a sum over the weights

λ of the representation R,

GR · I(ai) =
∑
λ

CR,λ(p, q, t, aj) I(q−(λ,hi)ai) (2.18)

with some unknown functions CR,λ(p, q, t, aj). Here, the bracket ( , ) denotes the standard

inner product on the Cartan subalgebra normalized so that (ei, ei) = 2 for all simple

roots. Furthermore, hi are the weights of the fundamental representation. They obey

(hi, hj) = δi,j − 1/N .

The weights of an irreducible representation R of su(N) can be represented by semi-

standard Young tableaux, that are obtained by placing a number 1, . . . , N in each box of

the Young diagram (as we review in appendix A). Each weight can be written as a sum

λ =
N∑
j=1

mj hj , (2.19)
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where mj are the filling numbers of the corresponding semi-standard Young tableau. In

particular, the weights of the r-th symmetric tensor representation are given by

λ =

N∑
j=1

mj hj , (2.20)

where the numbers mi are such that
∑

jmj = r. Since (λ, hi) = mi− r
N , the chosen ansatz

is compatible with the symmetric tensor operators Gr that we already know.

Now we substitute the coefficients CR,λ(p, q, t, aj) for the symmetric tensor operators,

as well as our ansatz for the remaining representations, into the algebra relations

GR1 ◦GR2 =
∑
R3

NR1,R2
R3 GR3 . (2.21)

We first solve these relations for the su(2) coefficients Nr1,r2 r3(p, q, t), and propose a gener-

alization for the su(N) coefficients NR1,R2
R3(p, q, t). Then we find that the remaining coef-

ficients CR,λ(p, q, t, aj) are determined uniquely. The fact that this procedure works requires

intricate theta-function identities, providing a strong self-consistency check of our ansatz.

As a preliminary step, we introduce a small normalization of the operators Gr labeled

by r-th symmetric tensor representations. We redefine the operators by multiplying them

by the factor

Nr = t−r(N−1)/2
r−1∏
i=0

θ(q−1−i, p)

θ(tqi, p)
. (2.22)

The purpose of the normalization is to render the leading algebra coefficient equal to

one. In the Schur limit {p, q, t} → {p, q, q} this normalization factor reduces to Nr →
(−1)rq−

1
2
r(r+N), in agreement with the normalization factor in [17].

2.4.1 Rank 1

A good starting point is su(2), since its irreducible representations are exhausted by r-fold

symmetric products of the fundamental representation. Thus, the algebra of difference

operators should close without introducing any new operators. In particular, we expect

that the product Gr1 ◦ Gr2 can be decomposed according to the tensor product of the

corresponding irreducible representations

Gr1 ◦Gr2 =

r1+r2∑
r=|r1−r2|

Nr1,r2r3 Gr3 , (2.23)

where we can compute the OPE coefficients Nr1,r2r3(p, q, t). Consistency of this struc-

ture demands that the coefficients Nr1,r2r3 constructed in this way are independent of the

fugacity parameter a.

For simplicity, let us first consider the Macdonald limit p→ 0. In this limit, the ratios

of theta-functions in the operators are replaced by rational functions of the remaining

variables q and t. The operators Gr become

Gr · I(ai) = Nr
∑

m1+m2=r

2∏
i,j=1

mj−1∏
m=0

(
1− qm+mj−mi tai

aj

)
(

1− qm−mj ajai
)

 I (ai 7→ q
r
N
−mi ai

)
, (2.24)

– 13 –



J
H
E
P
1
0
(
2
0
1
4
)
0
6
2

where a1 = a and a2 = a−1.

When composing any two such rational operators Gr1 and Gr2 , we indeed find that

the product Gr1 ◦ Gr2 decomposes according to the tensor product of the corresponding

irreducible representations, in such a way that the structure constants Nr1,r2r3(q, t) are

rational functions of q and t.

As mentioned above, we have normalized the difference operators such that the struc-

ture constant for the leading OPE coefficient Nr1,r2r1+r2 = 1. The remaining structure

constants can be computed straightforwardly in each case. For example, G1 ◦ G1 =

G2 +N1,1
0G0, where

N1,1
0(q, t) =

(1 + t)(1− q)
(1− qt)

. (2.25)

This is a particular case of the more general decomposition

G1 ◦Gr = Gr+1 +N1,r
r−1Gr−1, (2.26)

where

N1,r
r−1(q, t) =

(1− t2qr−1)(1− qr)
(1− tqr−1)(1− tqr)

. (2.27)

Similar formulae can be derived for any other example.

Remarkably, we observe that the structure constants Nr1,r2r(q, t) are equal to the (q, t)-

deformed Littlewood-Richardson coefficients. In other words, the operators Gr in the limit

p → 0 obey the same algebra as the Macdonald polynomials Pr(a, q, t) for su(2). (We

refer to appendix A for more details regarding Macdonald polynomials and (q, t)-deformed

Littlewood-Richardson coefficients.)

It turns out that the structure constants of the general elliptic operator algebra can

be obtained in a canonical way by “lifting” the structure constants Nr1,r2r3(q, t) of the

Macdonald algebra. This works as follows. First we express the (q, t)-deformed Littlewood-

Richardson coefficients as rational functions consisting of factors of the form (1−x), where

x is a monomial of the form qαtβ. Then we “lift” each factor to an elliptic function θ(x, p)

whose second argument is the additional parameter p. The original coefficients are obtained

in the limit p→ 0.

Note that even though there are ambiguities in writing the (q, t)-deformed Littlewood-

Richardson coefficients as rational functions of the form (1− x), such as for example in

N1,1
0(q, t) =

(1− t2)(1− q)
(1− t)(1− qt)

=
(1− 1

t2
)(1− 1

q )

(1− 1
t )(1−

1
qt)

, (2.28)

the elliptic lift

N1,1
0(p, q, t) =

θ(t2, p) θ(q, p)

θ(t, p) θ(qt, p)
. (2.29)

is uniquely defined because of the theta-function identity

θ(z−1; p) = −1

z
θ(z; p) . (2.30)
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Verifying the composition rules for the elliptic difference operators Gr now requires nu-

merous theta-function identities. For instance, checking that G1◦G1 = G2+N1,1
0(p, q, t)G0

requires
θ(t2, p)θ(q, p)

θ(t, p)θ(qt, p)
= +

θ
(
q−2, p

)
θ
(
t−1, p

)
θ
(
ta−2, p

)
θ
(
ta2, p

)
θ (q−1, p) θ (q−1a−2, p) θ (q−1a2, p) θ(qt, p)

−
θ
(
t−1, p

)
θ
(
ta−2, p

)
θ
(
tq−1a2, p

)
θ (a−2, p) θ(t, p)θ (q−1a2, p)

−
θ
(
t−1, p

)
θ
(
ta2, p

)
θ
(
tq−1a−2, p

)
θ (a2, p) θ(t, p)θ (q−1a−2, p)

,

(2.31)

which can be checked for instance by expanding around p = 0.

Similarly, when composing the fundamental operator G1 with the operator Gr for

any other irreducible representation of su(2), we find that another elliptic theta-function

identity brings the non-trivial structure constant into the form

N1,r
r−1(p, q, t) =

θ(t2qr−1, p) θ(qr, p)

θ(tqr−1, p) θ(tqr, p)
. (2.32)

In fact, for any other check we did, we find that the structure constants Nr1,r2r3 are

independent of the fugacity parameter a and can be expressed as ratios of theta-functions.

Even better, we find that they are elliptic (lifts of (q, t)-deformed) Littlewood-Richardson

coefficients, in the sense explained above.

The elliptic operators Gr thus obey an elliptic version of the Macdonald polynomial

algebra. In particular, this provides evidence for the conjecture that the surface defects

labeled by r ∈ Z≥0 are to be identified with irreducible representations of su(2).

2.4.2 Higher rank

For su(N), with N > 2, the algebra of the difference operators Gr is not closed. We

introduce a new set of operators GR labeled by irreducible representations of su(N), and

identify the difference operators Gr with the operators G(r) labeled by the rank r symmet-

ric tensor representation.2 We systematically find expressions for the novel operators by

imposing the algebra

GR1 ◦GR2 =
∑
R3

NR1,R2
R3 GR3 , (2.33)

where we assume that the coefficientsN R3
R1,R2

(p, q, t) are given by the elliptic (lifts of (q, t)-

refined) Littlewood-Richardson coefficients, which can be found uniquely for any triple of

representations R1, R2 and R3.

In the rank 2 and 3 cases, we have explicitly computed a large set of elliptic difference

operators GR, and performed ample consistency checks amongst them. These computa-

tions reveal several structures amongst the difference operators, and we are to make some

proposals for general N . Let us give a few examples here.

2We label by (`1, . . . , `N−1) the representation associated to the Young diagram whose j-th row has

length `j .
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First, consider the composition of two operators each labeled by the fundamental repre-

sentation, G(1) ◦G(1). This representation (1)⊗ (1) decomposes into the symmetric tensor

(2) and the antisymmetric tensor (1, 1) representations. The coefficient of the operator

G(2) labeled by the symmetric tensor representation is one, following from our choice of

normalization. Choose the coefficient

N(1),(1)
(1,1)(p, q, t) =

θ(q, p) θ(t2, p)

θ(t, p) θ(qt, p)
(2.34)

to be the uplift of the corresponding (q, t)-deformed Littlewood-Richardson coefficient. The

difference operator G(1,1) labeled by the rank-two antisymmetric tensor representation of

su(N) can then be determined from the equation

G(1) ◦G(1) = G(2) +
θ(q, p) θ(t2, p)

θ(t, p) θ(qt, p)
G(1,1) . (2.35)

By this method, we find that the elliptic difference operator G(1,1) for the antisymmetric

tensor representation is given by

G(1,1) · I(ai) = t−1
∑
j1<j2

∏
k 6={j1,j2}

θ
(
t
qaj1/ak, p

)
θ
(
t
qaj2/ak, p

)
θ (ak/aj1 , p) θ (ak/aj2 , p)

I
(
q

2
N
−δi,{j1,j2}ai

)
. (2.36)

The term in the sum labeled by j1 < j2 corresponds to the weight λ = hj1 + hj2 in the

antisymmetric tensor representation (1, 1).

Next, we determine the difference operator G(2,1) from the equation

(
G(2) ◦G(1)

)
· I = G(3) · I +

θ(q2, p) θ(qt2, p)

θ(qt, p) θ(q2t, p)
G(2,1) · I , (2.37)

where

N(2),(1)
(2,1)(p, q, t) =

θ(q2, p) θ(qt2, p)

θ(qt, p) θ(q2t, p)
(2.38)

is the elliptic lift of the (q, t)-deformed Littlewood-Richardson coefficient N(2),(1)
(2,1)(q, t).

We verify that the difference operator G(2,1) can indeed be written as a sum over the

weights λ =
∑

imihi with
∑

imi = 3, i.e. as a sum over the weights in the representation

labeled by the Young diagram (2, 1). These weights can be divided into two groups. The

weights {mi1 = mi2 = mi3 = 1} occur with multiplicity two, whereas the weights {mj1 =

2, mj2 = 1} occur with multiplicity one.

We then expand the resulting operator to lowest order in p, read off its elliptic lift and

check this in an expansion in p. For instance, for su(3) we find that

G(2,1) · I(a1, a2, a3) =
∑
σ∈S3

C210(aσ(1), aσ(2), aσ(3)) I
(
aσ(1)

q
, aσ(2), qaσ(3)

)
+ C111(a1, a2, a3) I

(
a1, a2, a3

)
.

(2.39)
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The first group of terms in this sum correspond to weights λ = 2hσ(1)+hσ(2) that occur with

multiplicity one. These terms are given by a single product over ratios of theta-functions:

C210(aσ(1), aσ(2), aσ(3)) = t−2
θ
(
taσ(1)
qaσ(2)

, p
)
θ
(
taσ(1)
qaσ(3)

, p
)
θ
(
taσ(2)
qaσ(3)

, p
)
θ
(
taσ(1)
q2aσ(3)

, p
)

θ
(
aσ(2)
aσ(1)

, p
)
θ
(
aσ(3)
aσ(1)

, p
)
θ
(
aσ(3)
aσ(2)

, p
)
θ
(
qaσ(3)
aσ(1)

, p
) . (2.40)

The last term corresponds to the weight λ = h1 + h2 + h3, which occurs with multiplicity

two. Its contribution is given by

C111(a1, a2, a3) = −t−3 θ (t, p) θ
(
q2t, p

)
θ (q−1, p) θ (qt2, p)

×

 ∑
σ∈S3

θ
(
taσ(1)
aσ(2)

, p
)
θ
(
taσ(2)
aσ(1)

, p
)
θ
(
taσ(1)
aσ(3)

, p
)
θ
(
taσ(2)
aσ(3)

, p
)
θ
(
taσ(3)
qaσ(1)

, p
)
θ
(
taσ(3)
qaσ(2)

, p
)

θ
(
aσ(1)
qaσ(2)

, p
)
θ
(
aσ(2)
qaσ(1)

, p
)
θ
(
aσ(3)
aσ(1)

, p
)
θ
(
qaσ(1)
aσ(3)

, p
)
θ
(
aσ(3)
aσ(2)

, p
)
θ
(
qaσ(2)
aσ(3)

, p
)

+
θ(1

t , p)
2 θ(q3, p)

θ(q, p)2 θ( 1
qt2
, p)

θ( ta1a2 , p) θ(
ta2
a1
, p) θ( ta1a3 , p) θ(

ta2
a3
, p) θ( ta3a1 , p) θ(

ta3
a2
, p)

θ( a1qa2 , p) θ(
a2
qa1
, p) θ( qa3a1 , p) θ(

qa1
a3
, p) θ( qa3a2 , p) θ(

qa2
a3
, p)

)
. (2.41)

The last term in this expression is invariant itself under permutations of a1, a2 and a3, the

first six terms permute into each other.

Continuing this strategy, one can systematically find the elliptic difference operators

for any given representation R and perform consistency checks on it. We have explicitly

computed all su(3) and su(4) difference operators labeled by Young diagrams with up to

four boxes. From these results we infer that the difference operator G(1r), corresponding

to the rank r antisymmetric representation of su(N), is given by

G(1r) · I(ai) = tr(r−N)/2
∑
|I|=r

∏
j∈I
k/∈I

θ( tqaj/ak, p)

θ(ak/aj , p)
I
(
q
r
N
−δi,Iai

)
, (2.42)

where the summation is over subsets I ⊂ {1, . . . , N} of length |I| = r and where the

symbol δi,I is one if i ∈ I and zero if i /∈ I. As we will show in more detail in the

next section, these operators are related by conjugation to the Hamiltonians of the elliptic

Ruijsenaars-Schneider model.

2.5 Properties of difference operators

Let us summarize a few properties of the resulting difference operators GR:

• They are formally self-adjoint respect to the vectormultiplet measure ∆(a) IV (a) on

the unit circle |a| = 1.

• The composition GR1 ◦GR2 is commutative.

• The difference operators GR obey the algebra

GR1 ◦GR2 =
∑
R3

NR1,R2
R3 GR3 , (2.43)

where the coefficients NR1,R2
R3 are elliptic lifts of the (q, t)-deformed Littlewood-

Richardson coefficients.
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• They can be expanded as

GR · I(ai) =
∑
λ

CR,λ(p, q, t, aj) I(q−(λ,hi)ai),

where the summation is over weights λ in the representation R.

While we have not found a closed expression for the coefficients CR,λ(p, q, t, aj), it may be

useful to point out the following structures:

• For general values of the fugacities, CR,λ 6= CR′,λ when λ is a weight of two different

representations R and R′. Only in the Schur limit q = t do the coefficients CR,λ
depend only on the weight λ.

• The coefficients CR,λ are given by a single ratio of theta-functions when the weight

λ occurs in the representation R with multiplicity one. If λ occurs with higher

multiplicity the coefficient CR,λ is a sum of ratios of theta-functions.

• If λ and λ′ are in the same Weyl orbit, the coefficients CR,λ and CR,λ′ are related by

a permutation of fugacities ai.

• If λ is in the Weyl orbit of the highest weight in the representation R, the coefficient

CR,λ does not contain theta-functions that are independent of the fugacities aj .

• If λ is not in the Weyl orbit of the highest weight in the representation R, the

coefficient CR,λ does contain a ratio of such theta-functions that are independent of

aj . This ratio can be obtained as an elliptic lift of the corresponding coefficient for

the Macdonald polynomial PR(q, t).

We also note that the elliptic lift of the (q, t)-deformed Littlewood-Richardson coeffi-

cients NR1,R2
R3(p, q, t) have the same number of terms in the numerator and denominator.

Moreover, when q = t these terms all cancel each other. This implies that the elliptic

algebra reduces to the Schur algebra when q = t. In this limit all coefficients CR,λ(p, q, t)

reduce to a single product Cλ(q) depending only on the weight λ as found previously in [17].

2.6 Two-dimensional worldvolume theory

So far, we have constructed an algebra of operators GR that compute the superconformal

index in the presence of a set of surface defects labeled by irreducible representations R

of su(N). The operators G(r), labeled by symmetric tensor representations, were found

in an infinite tension limit of two-dimensional half-BPS vortices. The operators for the

remaining representations were obtained in a canonical way by completing the algebra.

An alternative and more direct way to define surface defects is by coupling to two-

dimensional degrees of freedom on the supported surface. For instance, consider a two-

dimensional N = (2, 2) gauge theory with flavor symmetry group SU(N). This two-

dimensional theory can be coupled to the four-dimensional theory by gauging the 2d flavor

symmetry using the restriction of a 4d dynamical or background SU(N) vectormultiplet
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Figure 5. Linear quiver description of N = 2 superconformal QCD. The flavor symmetry group of

each set of N hypers is enhanced to U(N). This splits into an SU(N) plus a diagonal U(1) flavor

symmetry group.

to the surface S. A large class of half-BPS surface defects defined in this way have been

studied in [19, 20].

The superconformal index of four-dimensional linear N = 2 quiver theories in the

presence of such surface defects can be found by combining the two-dimensional elliptic

genus with the four-dimensional superconformal index [21]. Let us consider this combined

index in a few examples of surface defects in N = 2 superconformal QCD, i.e. a four-

dimensional SU(N) gauge theory coupled to 2N hypermultiplets.

Before introducing surface defects, let us remind ourselves that N = 2 superconformal

QCD has a dual description as a degeneration limit of a Riemann surface with two simple

and two full punctures. Equivalently, its matter content can be read off from a linear

quiver, see figure 5. The manifest global symmetry in this presentation is

SU(N)A × SU(N)B ×U(1)A ×U(1)B .

If we denote the corresponding fugacities by (ai, bi, x, y), the superconformal index of su-

perconformal QCD is ∫
∆(zj) IV (zj) IH(z−1

j , ai, x) IH(zj , bi, y) . (2.44)

Notice that we could have equivalently considered the same theory with a U(N) gauge

group, since the center of mass U(1) decouples in the IR.

Let us now add two-dimensional degrees of freedom to the four-dimensional supercon-

formal QCD theory with gauge group U(N). We give two examples whose 2d-4d quiver

descriptions are shown in figure 6.

As a first example, we consider a two-dimensional N = (2, 2) gauge theory with gauge

group U(r) coupled to N fundamental and N anti-fundamental chiral fields. The two-

dimensional flavor symmetry group is thus U(N)f ×U(N)a. We couple the N fundamental

chirals to the U(N) gauge symmetry, and the N anti-fundamental chirals to the SU(N)B×
U(1)B global symmetry, as described in [21]. The resulting quiver is illustrated on top in

figure 6. The superconformal index of the resulting 2d-4d system is∫
∆(zj) IV (zj) IH(z−1

j , ai, x) (Or · IH(zj , bi, y)) , (2.45)

where the operator Or acts as

Or · I(zi) =
∑
|I|=r

∏
j∈I
k/∈I

θ( tqzj/zk, p)

θ(zk/zj , p)
I
(
q−δi,Izi

)
(2.46)
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Figure 6. On top (bottom): 2d-4d quiver description of a fully antisymmetric (symmetric) surface

defect in N = 2 superconformal QCD.

on the fugacities zi of the U(N) gauge symmetry.

The terms in the above expression are in one-to-one correspondence with the
(
N
r

)
Higgs

branch vacua of the two-dimensional theory, in which certain components of the chiral

fields get a vacuum expectation value. Each term in equation (2.47) can be interpreted as

computing the index of the 2d-4d system in one of these vacua.

The operator Or agrees with the elliptic difference operator G(1r) labeled by the anti-

symmetric tensor representation (1r) of rank r up to an overall fractional shift by q
r
N . Since

the shifts zi 7→ q−δi,Izi do not preserve the condition
∏
j zj = 1, the fugacities zj should

really be interpreted as U(N) (instead of SU(N)) fugacities. To find the exact operators

G(1r), however, we would need to find a system that couples the same two-dimensional

degrees of freedom to a 4d theory with genuine SU(N) symmetry groups. This is for in-

stance required to understand surface defects in the four-dimensional TN theory, whose

flavor symmetry groups cannot be enlarged to U(N).

As a second example, we add a chiral field in the adjoint representation to the two-

dimensional N = (2, 2) theory that we considered before. The quiver description can be

found on the bottom of figure 6. The presence of the adjoint field drastically changes the

vacuum structure, which is mirrored in the expression for the superconformal index. The

index of the 2d-4d system is the same as before, except that the operator Or now acts as

Or · I(zi) =
∑

∑N
j=1mj=r

N∏
i,j=1

mj−1∏
m=0

θ (qm+mj−mitzi/zj , p)

θ (qm−mjzj/zi, p)

 I (q−mi zi) . (2.47)

This expression coincides with the operator G(r) associated to the symmetric representation

(r) of rank r, as was already noted in [21], except that the fractional shift q
r
N is again

missing.

– 20 –



J
H
E
P
1
0
(
2
0
1
4
)
0
6
2

For the symmetric as well as the antisymmetric tensor representations the two-

dimensional degrees of freedom on the surface defect introduced by the operators GR,

can thus be identified with certain two-dimensional N = (2, 2) gauge theories, up to some

shifts.

It would be interesting to observe whether the S2 partition function of these N = (2, 2)

theories can be obtained from Toda correlators with degenerate vertex operators labeled

by highest weights of the symmetric and antisymmetric tensor representations. This has

been demonstrated for the fundamental representation in [31] (see also [18, 32]).

3 Two-dimensional TQFT and Verlinde algebra

In this section we identify the difference operators GR with local operators in a topological

quantum field theory (TQFT) of the Riemann surface C. In the case p = 0, this can be iden-

tified with an analytic continuation of refined Chern-Simons theory on S1×C and the rele-

vant local operators arise from Wilson loops in the representation R and wrapping the S1.

3.1 TQFT structure of the superconformal index

Recall that for any superconformal field theory of class S the superconformal index is

independent of marginal couplings and hence of the complex structure of the Riemann

surface C. This suggests that the superconformal index of these theories has a dual

description as a two-dimensional TQFT on the Riemann surface C [12]. In the Schur

limit (when p → 0 and q = t), the TQFT has been identified as q-deformed Yang-Mills

theory on C in the zero area limit [14], or equivalently as an analytic continuation of

Chern-Simons theory on C × S1. This picture can be extended to the Macdonald limit

(p→ 0) when the superconformal index has a dual description as an analytic continuation

of refined Chern-Simons theory on C × S1 [22].

In order to verify the above relation, it is necessary to extract a certain function K(a)

from the superconformal index for each SU(N) flavor puncture. In what follows, we define

the normalized index I(n) through the equation

I(a, b, . . .) = (K(a)K(b) · · · ) I(n)(a, b, . . .) , (3.1)

where

K(a) =

N∏
i 6=j

Γ(tai/aj , p, q) . (3.2)

The normalized index I(n) is now gauged using the measure

∆(n)(a) = K(a)∆(a) =
1

N !

(
(p, p)(q, q)

Γ(t, p, q)

)N−1 ∏
i 6=j

Γ(tai/aj , p, q)

Γ(ai/aj , p, q)
. (3.3)

The difference operators ḠR acting on the normalized index are thus obtained by

conjugation

ḠR =
1

K(a)
(GR ·K(a)) . (3.4)
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This conjugation leaves the algebra of difference operators unchanged. After a long, yet

straightforward, computation we find that the conjugated operators for the fully symmetric

representations R = (r) are given by

Ḡ(r) · I(n)(ai) = Nr
∑

∑N
j=1mj=r

N∏
i,j=1

mj−1∏
m=0

θ (tqmai/aj , p)

θ (qm−miai/aj , p)
I(n)

(
q
r
N
−miai

)
(3.5)

while those for the fully antisymmetric representations R = (1r) are

Ḡ(1r) · I(n)(ai) = tr(r−N)/2
∑
|I|=r

∏
k∈I
j /∈I

θ (taj/ak, p)

θ (aj/ak, p)
I(n)(q

r
N
−δi,Iai) , (3.6)

where the summation is over all subsets I ⊂ {1, 2, . . . , N} of length r. Comparing

with (2.14) and (2.42) noting the reflection property θ(z, p) = θ(p/z, p) we see that the

effect of the conjugation is simply to interchange t↔ pq/t. In summary, we have found that

ḠR(p, q, t, a) = GR

(
p, q,

pq

t
, a
)
. (3.7)

Remarkably, the conjugated antisymmetric tensor operators Ḡ(1r) are precisely the Hamil-

tonians of the elliptic Ruijsenaars-Schneider model, extending the observation made in [10].

We will assume that the difference operators ḠR admit a complete set of eigenfunctions

{ψS(ai)}, indexed by irreducible representations S of su(N), which are orthogonal with

respect to the measure ∆(n)(a) and have non-degenerate eigenvalues ES(R). In fact, the

eigenfunctions are determined by the fully antisymmetric operators Ḡ(1r). With the help

of these eigenfunctions {ψS(ai)} the TQFT structure of the superconformal index can be

made very explicit [10].

Consider for instance the sphere with three maximal punctures. The corresponding

four-dimensional conformal field theory is known as TN . It has at least SU(N)3 flavor

symmetry. Write the normalized superconformal index of the TN theory as

I(n)(ai, bi, ci) ,

where the parameters ai, bi and ci are three sets of fugacities dual to the maximal torus of

the SU(N) flavor symmetries. This superconformal index can be expanded in terms of the

set of eigenfunctions {ψS(ai)} as

I(n)(ai, bi, ci) =
∑

S1,S2,S3

CS1,S2,S3 ψS1(ai)ψS2(bi)ψS3(ci) , (3.8)

where CS1,S2,S3 are the structure constants of the two-dimensional TQFT. If we impose that

acting with any one of the operators Ḡ(1r) gives the same result, and assume that the eigen-

values are non-degenerate then the superconformal index is in fact diagonal in this basis

I(n)(ai, bi, ci) =
∑
S

CS ψS(ai)ψS(bi)ψS(ci) . (3.9)
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Figure 7. The superconformal index can be written as a TQFT correlator. This correlator is

diagonal in the eigenfunctions ψS(ai) of the difference operators GR.

This is illustrated in figure 7 for the case of a sphere with three punctures. As explained

in [10], the constants CS can be found by comparing two degeneration limits of the N + 1

punctured sphere with N − 1 maximal and two minimal punctures.

In the remainder of this section we will restrict ourselves to the Macdonald slice

(p, q, t) = (0, q, t). In this limit, the antisymmetric difference operators Ḡ(1r) turn into

the Macdonald operators

Ḡ(1r) · I(n)(ai) = tr(r−N)/2
∑
|I|=r

∏
k∈I
j /∈I

(1− qaj/ak, p)
(1− aj/ak, p)

I(n)(q
r
N
−δi,Iai) (3.10)

while the normalized vectormultiplet measure becomes

∆(n)(a) =
∏
i 6=j

(1− tai/aj , q)
(1− ai/aj , q)

(3.11)

and coincides with the standard Macdonald measure.

The operators Ḡ(1r) are self-adjoint with respect to this measure on the unit circle

|a| = 1 and their common eigenfunctions are the Macdonald polynomials PS(ai; q, t), which

are labeled by irreducible representations of su(N). They are by construction orthogonal

with respect to the measure ∆(n)(a) and are normalized such that

PS(ai; q, t) = χS(ai) +
∑
T<S

cS,T (q, t)χT (ai) . (3.12)

In this equation, the cS,T are rational functions of q and t that are uniquely fixed by ensuring

that PS(ai; q, t) is an eigenfunction of the Macdonald operators Ḡ(1r) for r = 1, . . . , N − 1.

In this limit the structure constants CS are given by

CS =
1

S0,S
, (3.13)

where SR,S is an analytic continuation of the modular S-matrix of refined Chern-Simons

theory.
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3.1.1 Operator algebra from Macdonald polynomials

The Macdonald polynomials obey

PS1 · PS2 =
∑
S

NS1,S2
S3PS3 , (3.14)

where NS1,S2
S3 are the (q, t)-deformed Littlewood-Richardson coefficients. Remarkably, we

have found that the conjugated difference operators ḠR obey the same algebra. Let us try

to understand this fact.

Consider for instance the case N = 2. The eigenvalues of the difference operators Ḡr
can be computed from explicit formulae that we have found. By experimentation, we find

that they are given by

Ḡr1 · Pr2(a) =
Sr1,r2
S0,r2

Pr2 , (3.15)

where Sr1,r2 is an analytic continuation of the modular S-matrix of refined Chern-Simons

theory (see appendix A for the construction of this quantity). This formula can be proven

by a lengthy computation using the residue construction, in which the eigenvalue is given by

Res
a=t

1
2 q

r1
2

1
aPr2(a)

Res
a=t

1
2

1
aPr2(a)

=
Sr1,r2
S0,r2

. (3.16)

This S-matrix is known to obey the (q, t)-deformed Verlinde formula

Sr1,s · Sr2,s = S0,s

∑
r

Nr1,r2rSr,s . (3.17)

Let us now act with the composition of the operators Ḡr1 and Ḡr2 on the Macdonald

polynomial Ps and apply the refined Verlinde formula

(Ḡr1 ◦ Ḡr2) · Ps =
Sr1,s
S0,s

Sr2,s
S0,s

Ps

=
∑
r

Nr1,r2r
Sr,s
S0,s

Ps

=
∑
r

Nr1,r2rḠr · Ps .

(3.18)

Since the Macdonald polynomials form a complete basis of symmetric functions, we find

that the structure constants of the difference operator algebra are indeed the (q, t)-deformed

Littlewood-Richardson coefficients.

Similarly, we have verified that the generalized difference operators ḠR, labeled by

irreducible representations R of su(N), satisfy the eigenvalue equation

ḠR1 · PR2 =
SR1,R2

S0,R2

PR2 (3.19)

in the Macdonald slice.
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3.2 Wilson loops in refined Chern-Simons theory

In the Macdonald slice the superconformal index is dual to an analytic continuation of the

refined Chern-Simons theory on S1×C. Similar to the discussion in [17] we can identify the

surface defect operators ḠR in this refined Chern-Simons theory as the Wilson loop operator

OR = TrR P exp

(
i

∮
S1

A

)
(3.20)

in the representation R wrapping the S1. This is of course a local operator from the

perspective of the two-dimensional TQFT on C, in accordance with our expectations from

six-dimensional engineering.

Correlation functions of this operator are independent of its position on C and simply

insert a ratio SR,S/S0,S in the sum over representations S is any correlator. For example,

inserting the operator OR in a correlator on the three-punctured sphere is computed as

〈OR〉0,3 =
∑
S

PS(a1)PS(a2)PS(a3)

SS,0

SR,S
S0,S

, (3.21)

where SS,R is an analytic continuation of the modular S-matrix of refined Chern-Simons

theory. Hence inserting the local operator OR in a TQFT correlation function is equivalent

to acting on any of the punctures with the difference operator ḠR.

Moreover, from the (q, t)-deformed Verlinde formula

SR1,S · SR2,S = S0,S

∑
R

NR1,R2
RSR,S (3.22)

we derive the operator product expansion

OR1 · OR2 =
∑
R

NR1,R2
ROR , (3.23)

where NR1,R2
R are the analytically continued (q, t)-deformed Littlewood-Richardson co-

efficients. Thus in the Macdonald limit, the algebra of the difference operators GR is

equivalent to the Verlinde algebra in refined Chern-Simons theory on S1 × C.

The general superconformal index could be taken to define a (p, q, t)-deformed Yang-

Mills theory on C, whose structure constants are given in terms of the eigenfunctions

ψR(ai; p, q, t) of the elliptic difference operators. The difference operators satisfy an alge-

bra whose structure constants NR1,R2
R3 are elliptic functions. It would be fascinating to

understand this theory.

4 Algebra of three-dimensional line defects

In section 2, we constructed the superconformal index of N = 2 theories on S1×S3 in the

presence of certain surface defects supported on S1×S1. These surface defects were labeled

by an irreducible representation R of su(N) and could be added to any superconformal

theory with an SU(N) flavor symmetry. In this section, we consider the reduction of the
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four-dimensional superconformal index to a partition function on a squashed three-sphere

S3, following [23–25]. In this limit, the surface defects become codimension-two defects in

the three-dimensional theory wrapping an S1 ⊂ S3.

For four-dimensional theories of class S, upon dimensionally reducing on S1 the theory

flows to an N = 4 superconformal field theory in three-dimensions. Moreover, this has

a mirror description in terms of a star-shaped quiver theory [26]. It is expected that the

surface defects introduced by the difference operators GR become supersymmetric Wilson

loops in representation R for the central node of this star-shaped quiver upon dimensional

reduction. We demonstrate this explicitly for antisymmetric tensor representations

R = (1r) and the case of a round three-sphere. For non-minuscule representations R,

however, we find that the difference operators GR introduce a linear combination of

Wilson loops in irreducible representations S with |S| ≤ |R|.

4.1 From superconformal index to 3d partition function

The four-dimensional superconformal index on S1 × S3 can be reduced to a partition

function on the squashed three-sphere S3, as demonstrated in [23–25]. This limit is taken

by parametrizing the fugacities by

p = e−βb
−1
, q = e−βb , t = e−βε , aj = e−iβxj , (4.1)

with β > 0 and then taking the limit β → 0+. Here we have introduced the convenient

notation ε = q
2 + im where q = b+ b−1.

The real parameter b > 0 encodes the geometry of the three-sphere, defined by the

embedding

b−2|z|2 + b2|w|2 = 1 (4.2)

into C2 with complex coordinates (z, w). The parameters xi with
∑N

i=1 xi = 0 are real mass

parameters for the global SU(N) symmetry that is inherited by the three-dimensional

theory. It is convenient to repackage the components xj into a vector x such that

xj = (x, hj). In addition, the real parameter m gives a mass to the adjoint chiral multiplet

inside the background N = 4 vectormultiplet, breaking the supersymmetry to N = 2 in

three dimensions.

Let us consider two important examples. Firstly, the three-dimensional limit (4.1) of

the superconformal index of a free hypermultiplet is given by

ZH(x) = Sb

( ε
2
± ix

)
. (4.3)

Secondly, the superconformal index of an SU(N) vectormultiplet combined with the Haar

measure becomes the partition function of a three-dimensional N = 4 vectormultiplet

ZV (x) =

N∏
i<j

2 sin
(
iπb±xij

)
K(x) (4.4)

where

K(x) =
1

Sb(ε∗)

N∏
i,j=1

Sb(ε
∗ + ixij) (4.5)
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where we have denoted ε∗ = q
2 − im. Note that K(x) is the contribution from the N = 2

adjoint chiral multiplet inside the three-dimensional N = 4 vectormultiplet and cancel

in pairs in the limit m → 0. We use the double sine function that obeys the difference

equation Sb(x + b±) = 2 sin(πb±x)Sb(x) and the reflection property Sb(x)Sb(q − x) = 1.

Further properties of this special function can be found in appendix C.

Let us now consider the three-dimensional limit of the difference operators GR that

introduce surface defects into the four-dimensional N = 2 theory. The three-dimensional

limit can be evaluated using the fact that the ratio of theta-functions with a common

second argument reduces to a ratio of sine-functions,

θ
(
eαρ, eβρ

)
θ (eγρ, eβρ)

ρ→0−−−→ sin (πα/β)

sin (πγ/β)
. (4.6)

Let us first consider the difference operator G(1) labeled by the fundamental represen-

tation of su(N). In four dimensions this operator is given by

G(1) · I(ai, . . .) =
N∑
j=1

N∏
k 6=j

θ( tqaj/ak, p)

θ(ak/aj , p)
I
(
q

1
N
−δk,iai, . . .

)
(4.7)

up to some overall t-dependent factor. Applying the above formula to each term, we find

that the three-dimensional limit of the fundamental difference operator G(1) acts on the

three-dimensional partition function Z(x, . . .) as

G
(3d)
(1) · Z(x, . . .) =

N∑
j=1

N∏
k 6=j

sinπb (ε∗ − ixjk)
sinπb (−ixjk)

Z (x+ ibhj , . . .) , (4.8)

where we use the shorthand xjk = xj − xk. We also recall that the weights hi obey

(hi, hj) = δij − 1/N .

Let us now extend this computation to the rank r antisymmetric tensor representation

(1r) of su(N). In section 2 we found that up to a power of t the corresponding difference

operator is

G(1r) · I(ai) =
∑
|I|=r

∏
j∈I
k/∈I

θ( tqaj/ak, p)

θ(ak/aj , p)
I
(
q
r
N
−δi,Iai

)
, (4.9)

where the summation is over subsets I ⊂ {1, . . . , N} of length |I| = r and where the symbol

δi,I is one if i ∈ I and zero if i /∈ I. In the three-dimensional limit, we obtain the operator

G
(3d)
(1r) · Z(x) =

∑
|I|=r

∏
j∈I
k/∈I

sinπb (ε∗ − ixjk)
sinπb (−ixjk)

Z

x+ ib
∑
j∈I

hj

 , (4.10)

acting on the squashed three-sphere partition function Z(x). Similar computations can

be performed for the four-dimensional difference operators GR corresponding to any irre-

ducible representation R of su(N).
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Figure 8. Left: star-shaped quiver corresponding to the mirror of the three-dimensional TN theory.

Right: linear quiver description of the three-dimensional T (SU(N)) theory.

The dimensionally reduced operators G
(3d)
R have similar properties to their four-

dimensional ancestors. The adjoint operator of G
(3d)
R with respect to the three-dimensional

N = 4 vectormultiplet measure (4.4) on RN−1,

〈f1, f2〉 =

∫ dN−1x

N !

N∏
i<j

2 sin
(
iπb±xij

)
K(x)

 · f1(x)f2(x) , (4.11)

is given by the operator G
(3d)
R∗ for the conjugate representation R∗. Furthermore, the opera-

tors G
(3d)
R generate a commutative algebra that can be derived by applying the limit (4.1) to

the general structure constants NR1,R2
R3(p, q, t) that we found in the four-dimensional case.

Finally, in section 3.1 we pointed out that the four-dimensional difference operators

with the replacement t → pq/t were related by a similarity transformation. In the three-

dimensional limit, this corresponds to m → −m or quivalently ε → ε∗. Thus, either by

direct computation or by taking the three-dimensional limit of the the result in section 3.1

we find that

G
(3d)
R (x) =

1

K(x)
· Ḡ(3d)

R (x) · K(x) (4.12)

where the operator Ḡ
(3d)
R (x) is related to G

(3d)
R (x) by the replacement ε → ε∗ and K(x) is

the partition function of an adjoint N = 2 chiral multiplet inside an N = 4 vectormultiplet.

A consequence is that the eigenfunctions of the two sets of operators are proportional.

4.2 Wilson loops in 3d star-shaped quivers

Since the dimensional reduction is performed along a circle on which the surface defect is

supported, we expect that the difference operators (4.8) and (4.10) introduce defects in

the three-dimensional theory supported on the circle |z|2 = b2. In the following we will

perform indirect checks of this prediction by exploiting three-dimensional mirror symmetry

to relate these defects to supersymmetric Wilson loops.

Upon dimensional reduction, a four-dimensional N = 2 theory of class S flows to

an N = 4 superconformal field theory in three dimensions, which is related by mirror

symmetry to a star-shaped quiver gauge theory [26]. For example, the mirror of the three-

dimensional reduction of the TN theory is given by a star-shaped quiver with three legs,
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shown in figure 8. More generally, each full puncture in four dimensions gives rise to one

copy of the linear quiver illustrated on the right in figure 8. The corresponding field theory

is known as the T (SU(N)) theory [33, 34]. This theory contains N = 4 vectormultiplets

for the gauge groups U(1), . . . ,U(N − 1). These gauge groups are coupled linearly through

U(k)−U(k+1) bifundamental hypermultiplets. Lastly, there are N hypermultiplets in the

fundamental representation of the largest gauge group U(N − 1).

The T (SU(N)) theory has manifest SU(N) Higgs branch symmetry acting on the N

hypermultiplets whose mass parameters are denoted by the vector x. In addition, we can

introduce N − 1 Fayet-Illiopoulos parameters t1, . . . , tN−1, which are mass parameters for

the topological U(1) symmetries associated to each node of the quiver. Let us express

these parameters in terms of a new vector y such that tk = yk − yk+1. Let us denote

the partition function of T (SU(N)) by Zε(x, y). This is expected to be invariant under

exchanging x ↔ y and ε ↔ ε∗. This symmetry reflects an enhancement of the Coulomb

branch symmetry to LSU(N) in the infrared, as well as the presence of mirror symmetry

exchanging SU(N)↔ LSU(N).

The partition function of any three-dimensional theory of class S with full punctures

can then be constructed according to the star-shaped quiver description. For example, the

partition function of the three-dimensional mass-deformed TN theory is given by

ZTN (x, y, z) =

∫
dN−1w

N !
ZV (w) Zε(w, x)Zε(w, y)Zε(w, z) , (4.13)

where ZV (w) is the partition function of an N = 4 vectormultiplet. This multiplet is used

to gauge the diagonal combination of SU(N) Higgs branch symmetries.

Let us consider the action of the three-dimensional operators on the partition function

Z(x, y, z). Similar as in four dimensions, the result should be independent of which punc-

ture we act on. This condition is guaranteed if the partition function of each quiver tail

T (SU(N)) is an eigenfunction of the operator G
(3d)
(1r) . We will now show that in fact we have

G
(3d)
(1r)(y) · Zε(x, y) = W(1r)(x)Zε(x, y) , (4.14)

where

W(1r)(x) =
∑

j1<...<jr

e−2πb(xj1+···+xjr ) (4.15)

is the expectation value of a supersymmetric Wilson loop in the rank r antisymmetric

representation of the SU(N) flavor symmetry3 with mass parameter x.

But let us first remark that equation (4.14) tells us that introducing a background

defect in the T (SU(N)) theory for the Coulomb branch symmetry, through the operator

G
(3d)
(1r)(y), is equivalent to introducing a background Wilson loop W(1r)(x) for the Higgs

branch symmetry. This means that mirror symmetry interchanges the defects introduced

by the operators G
(3d)
(1r) and supersymmetric Wilson loops in the r-th antisymmetric rep-

resentation of SU(N). In the context of the mirror description of the three-dimensional

3Recall that Wilson loops are labeled by irreducible representations of the gauge group. Here we use

that each irreducible representation R of su(N) corresponds to an irreducible representation R of SU(N),

and vice versa.
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TN theory, the operators G
(3d)
(1r) therefore introduce a dynamical Wilson loop for the central

node of the star-shaped quiver theory.

4.2.1 T (SU(2))

We first show equation (4.14) in complete generality for the partition function of the mass

deformed T (SU(2)) theory on a squashed three-sphere. This partition function is given by

Zε(x, y) =
1

Sb(ε∗)

∫
dzQ(x, z) e4πiyz , (4.16)

where

Q(x, z) =
Sb
(
ε∗

2 ± ix− iz
)

Sb
(
q − ε∗

2 ± ix− iz
) , (4.17)

x is the SU(2) mass parameter and y the FI parameter and the contour is given by z ∈
R + iε with ε > 0. Note that the N = 2 mass deformation m in the hypermultiplet

contribution appears with the opposite sign compared to equation (4.3). The reason is

that after dimensional reduction, there is a mirror symmetry required to reach the star-

shaped quiver description.

It is expected that the partition function has the following properties

Zε(x, y) = Zε(−x, y) = Zε(x,−y)

Zε(x, y) = Zε∗(y, x)

G
(3d)
(1) (y)Zε(x, y) = W(1)(x)Zε(x, y),

(4.18)

where

G
(3d)
(1) (x) =

sinπb (ε∗ − 2ix)

sinπb(−2ix)
e
ib
2
∂x +

sinπb (ε∗ + 2ix)

sinπb(2ix)
e−

ib
2
∂x (4.19)

is the fundamental difference operator (4.8) when N = 2, and W(1)(x) = e2πbx + e−2πbx is

the fundamental Wilson loop expectation value.

The first line of equation (4.18) represents the enhancement of the Higgs and Coulomb

branch symmetry to SU(2)×LSU(2) in the infrared. The second line illustrates the mirror

symmetry of the mass-deformed T (SU(2)) theory. These properties were demonstrated

in [35]. Here we would like to prove the final line of equation (4.18). Using mirror symmetry

this line is equivalent to

Ḡ
(3d)
(1) (x)Zε(x, y) = W(1)(y)Zε(x, y) , (4.20)

where Ḡ
(3d)
(1) (x) is obtained from G

(3d)
(1) (x) by the replacement m → −m. Let us prove the

intertwining property in this equivalent form.

As a preliminary step, we derive a few properties of the function Q(x, z) defined in

equation (4.17). From the difference equation and the reflection property obeyed by the

double sine function Sb(x), it is straightforward to show that

eib∂zQ(x, z) =
sinπb( ε

∗

2 ± ix− iz)
sinπb(q − ε∗

2 ± ix− iz)
Q(x, z) (4.21)
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and

e
ib
2
∂xQ(x, z) = e−

ib
2
∂z

[
sinπb( ε

∗

2 − ix− iz)
sinπb(q − ε∗

2 − ix− iz)
Q(x, z)

]
(4.22)

e−
ib
2
∂xQ(x, z) = e−

ib
2
∂z

[
sinπb( ε

∗

2 + ix− iz)
sinπb(q − ε∗

2 + ix− iz)
Q(x, z)

]
, (4.23)

where we have used the notation ε = q
2 + im. Using these results we can now compute the

action of the difference operator Ḡ
(3d)
(1) (x) on this function,

Ḡ
(3d)
(1) (x) · Q(x, z) = e−

ib
2
∂z

[
sinπb (ε− 2ix)

sinπb(−2ix)

sinπb( ε
∗

2 − ix− iz)
sinπb(q − ε∗

2 − ix− iz)

+
sinπb (ε+ 2ix)

sinπb(2ix)

sinπb( ε
∗

2 + ix− iz)
sinπb(q − ε∗

2 + ix− iz)

]
Q(x, z)

= e−
ib
2
∂z

[
1 +

sinπb( ε
∗

2 ± ix− iz)
sinπb(q − ε∗

2 ± ix− iz)

]
Q(x, z)

= (e
ib
2
∂z + e−

ib
2
∂z)Q(z, x) .

(4.24)

In going from the first to the second line we have applied a simple trigonometric identity.

Armed with this result, we now consider the action of the difference operator Ḡ
(3d)
(1) (x)

on the full partition function (4.16) of the T (SU(2)) theory. The difference operator can be

brought inside the integral to act on Q(x, z) as in equation (4.24). By shifting the contour

of integration by z → z ± ib
2 , we find

Ḡ
(3d)
(1) (x) · Zε(x, y) =

1

Sb(
q
2 − im)

∫
dz
[
(e

ib
2
∂z + e−

ib
2
∂z)Q(x, z)

]
e4πiyz

=
1

Sb(
q
2 − im)

∫
Q(x, z)

[
(e

ib
2
∂z + e−

ib
2
∂z) e4πiyz

]
= W(1)(y)Zε(x, y) .

(4.25)

Using the analytic structure of the double sine function Sb(x), it is straightforward to check

that no poles are crossed in shifting the contours provided the mass are real. Now, applying

mirror symmetry we have

G
(3d)
(1) (y)Zε(x, y) = W(1)(x)Zε(x, y) , (4.26)

which is the required result.

An important consequence of this result, together with the similarity transforma-

tion (4.12) relating the operators G
(3d)
(1) and Ḡ

(3d)
(1) , is that the partition function of mass

deformed T (SU(2)) theory obeys

Zε∗(x, y) = K(y)Zε(x, y) (4.27)

which is rather non-obvious from the integral representation.
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4.2.2 T (SU(N))

Let us now consider equation (4.14) for the general T (SU(N)) theory. In this case, we

simplify the problem and prove a weaker result by taking the limit ofN = 4 supersymmetry

(m = 0) and a round three-sphere (b = 0).

In this limit, the operators for the fully antisymmetric representations are given by

G
(3d)
(1r) · Z(x) = (−1)r(N−r)

∑
j1<···<jr

Z(x+ i(hj1 + · · ·+ hjr)) . (4.28)

Hence, up to a sign, the operators are simply a sum of shift operators with coefficient 1

with the shifts determined by the weights of the representation (1r).

Furthermore, the zero mode integrals in the partition function of the T (SU(N)) theory

can be performed explicitly [36, 37]. The result is4

Z(x, y) =

∑
ρ∈SN (−1)ρe2πi

∑N
j=1 xρ(j)yj∏

i<j 2 sinhπ(xi − xj) 2 sinhπ(yi − yj)
, (4.29)

where the summation in the numerator is over the Weyl group SN of permutations of

{1, . . . , N}. Mirror symmetry x↔ y in this case follows from the identity∑
ρ∈SN

(−1)ρe2πi
∑N
j=1 xρ(j)yj =

∑
ρ∈SN

(−1)ρe2πi
∑N
j=1 xjyρ(j) . (4.30)

Thus there is a vast simplification in the limit b = 1 and m = 0.

Let us now act with the operator G
(3d)
(1r) on the partition function Z(x, y). First, note

that each term in the operator G
(3d)
(1r) leaves the denominator invariant up to a factor

(−1)r(N−r) which cancels the overall sign in the operator. Thus we can concentrate on the

numerator of Z(x, y) and find

G
(3d)
(1r)(y) ·

∑
ρ∈SN

(−1)ρe2πi
∑N
j=1 yρ(j)xj =

∑
|I|=r

∑
ρ∈SN

(−1)ρe2πi
∑N
k=1 yρ(k)xke−2π

∑
ρ(i)∈I xi

 . (4.31)

Imposing the condition
∑N

i=1 xi = 0 leads to vanishing overall background shifts.

Label the subsets I ⊂ {1, . . . , N} with |I| = r by I` for 1 ≤ ` ≤ Nr =
(
N
r

)
. Furthermore

split SN into ZNr ⊗ (SN−r ⊗ Sr), where S(N−r) ⊗ Sr gives all the permutations satisfying

ρ(I`) = I for fixed I and `, and ZNr gives the different choices of ` (or I). Since this

splitting is an isomorphism,5 we can write the sum over all ρ ∈ SN as a double sum over

sets I with |I| = r and permutations in SN−r ⊗ Sr preserving ρ(I`) = I. With that in

mind, we can rewrite the above as

G
(3d)
(1r)(y) ·

∑
ρ∈SN

(−1)ρe2πi
∑N
j=1 yρ(j)xj =

Nr∑
`=1

e
−2π

∑
i∈I`

xi
∑
|I|=r

∑
ρ∈SN
ρ(I`)=I

(−1)ρe2πi
∑N
k=1 yρ(k)xk ,

(4.32)

4Here we drop the subscript m on the partition function of T (SU(N)) because we have set m = 0.
5Any ρ ∈ SN can be uniquely characterized by ρ(σ(I`)) = π(I) for a unique I` or I and σ ∈ Sr, π ∈ SN−r

permutations of I, ZN \ I respectively.
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which is equal to the Wilson loop vacuum expectation value W(1r)(x) times the numerator

of Z(x, y). The eigenvalue of the operator G
(3d)
(1r) acting on the full partition function

Z(x, y) is thus precisely the localization expression for a supersymmetric Wilson loop in

the antisymmetric representation (1r) of SU(N).

4.3 Three-dimensional algebra

In the above, we have shown that the defect operator G
(3d)
(1r) is dual to a Wilson loop in the

rank r antisymmetric representation of SU(N) under mirror symmetry. This turns out not

to be the case for non-minuscule representations.

One immediate way to see this is the following. Denote the operator that is exactly

dual to a Wilson loop in the representation R by G̃
(3d)
R . The operators G̃

(3d)
R must obey

the algebra

G̃
(3d)
R1
◦ G̃(3d)

R2
=
∑
R1

NR1,R2
R3 G̃

(3d)
R3

, (4.33)

where NR1,R2
R3 are the (plain) Littlewood-Richardson coefficients. Indeed, the super-

symmetric Wilson loops are characters and hence obey this algebra. Instead, the elliptic

Littlewood-Richardson coefficients NR1,R2
R3(p, q, t) reduce in general to non-integer coef-

ficients in three dimensions.

For example, let us consider SU(2) and the composition of two operators in the fun-

damental representation. In the three-dimensional limit we find that

G
(3d)
(1) ◦G

(3d)
(1) = G

(3d)
(2) +

(
1

2 cos (πb2)− 1
− 1

)
G

(3d)
(0) . (4.34)

Since G̃
(3d)
(1) = G

(3d)
(1) and G̃

(3d)
(0) = G

(3d)
(0) = 1, we read off from equation (4.33) that

G̃
(3d)
(2) = G

(3d)
(2) +

(
1

2 cos (πb2)− 1
− 2

)
G

(3d)
(0) . (4.35)

The operator G̃
(3d)
(2) that is dual to a Wilson loop thus differs from the difference operator

G
(3d)
(2) by lower order contributions.

In general, the relation between the operators G
(3d)
R appearing in the vortex construc-

tion and the operators G̃
(3d)
R that are exactly dual to Wilson loops in the three-dimensional

limit is given by

G̃
(3d)
R = G

(3d)
R +

∑
|S|<|R|

cS G
(3d)
S . (4.36)

Even though the difference operators G
(3d)
R are thus not exactly dual to Wilson loops, this

is merely an invertible linear transformation on the algebra that these operators obey.

The original basis of operators GR appears to be more fundamental from a four-

dimensional perspective, since in the limit p → 0 they are precisely dual to Wilson loop

operators in refined Chern-Simons theory on S1 × C. On the other hand, in the three-

dimensional limit, the basis G̃
(3d)
R seems more fundamental since it is dual to a basis of

Wilson loop operators in the star-shaped quiver theories.
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5 ’t Hooft loops in the four-dimensional N = 2∗ theory

In this section, we realize the mass-deformed theory T (SU(N)) on a squashed three-sphere

as an S-duality domain wall in four-dimensional N = 2∗ theory on an ellipsoid, as described

in [35, 38]. We then use this observation to interpret the three-dimensional difference

operators G
(3d)
R as operators that introduce supersymmetric ’t Hooft loops in the N = 2∗

theory partition function on a four-sphere.

The four-dimensional N = 2∗ theory can also be obtained by compactifying the six-

dimensional (2, 0) theory of type AN−1 on a torus with a simple puncture. A consequence

of this construction is that via the AGT correspondence [7, 8], the four-sphere partition

function of the N = 2∗ theory can also be computed as a correlation function in Liouville

or Toda CFT on the punctured torus. The difference operators G
(3d)
R can then be inter-

preted as Verlinde loop operators that act on suitably normalized Virasoro or WN -algebra

conformal blocks on a punctured torus.

5.1 Four-sphere partition function

The exact partition function of N = 2 supersymmetric gauge theories on an ellipsoid

has been computed by supersymmetric localization in [39], extending the computation of

Pestun for the round four-sphere S4 [40]. The ellipsoid geometry can be embedded into

five-dimensional Euclidean space as

x2
0 +

1

b2
(x2

1 + x2
2) + b2(x2

3 + x2
4) = 1 , (5.1)

where b ∈ R≥0 is a real parameter. The equator {x0 = 0} is identified with the squashed

three-sphere geometry considered in the previous section by setting z = x1 + ix2 and

w = x3 + ix4.

Let us concentrate on the N = 2∗ theory and denote the real hypermultiplet mass

parameter by m and the complexified gauge coupling by τ . The result of the localization

computation can be written as a matrix integral

ZS4
b
(m, τ) =

∫
da
∣∣Z(a,m; τ)

∣∣2 (5.2)

over a real slice of the Coulomb branch. In this integral Z(a,m; τ) is the Nekrasov partition

function for the four-dimensional N = 2∗ theory in the Omega-background R4
ε1,ε2 , with

equivariant parameters ε1 = b and ε2 = b−1 [41, 42]. It can be split into a classical, 1-loop

and instanton piece as

Z(a,m; τ) := Zcl(a; τ)Z1−loop(a,m)Zinst(a,m; τ) . (5.3)

In this paper we advertise an alternative factorization of the ellipsoid partition function

ZS4
b
. We find it insightful to rewrite the matrix integral 5.2 in the form (for a derivation

of this representation see appendix C)

ZS4
b
(m; τ) =

∫
daµ(a)

∣∣G(a,m; τ)
∣∣2 , (5.4)
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where

µ(a) =
∏
e>0

2 sinh (πb(e, a)) 2 sinh
(
πb−1(e, a)

)
(5.5)

is the Haar measure times the partition function of a three-dimensional N = 2 vectormul-

tiplet on the squashed three-sphere at the equator {x0 = 0}.
We expect that the factorization (5.4) has the following interpretation [29]. We can cut

the ellipsoid into two half-spheres {x0 > 0} and {x0 < 0} and impose Dirichlet boundary

conditions on the fields in the N = 2∗ theory at the boundary {x0 = 0}. This decouples

the dynamics on both half-spheres. Restricting the gauge transformations to the identity

on the boundary, leaves a flavor symmetry group SU(N) acting on the values of the fields

at x0 = 0. We can reconstruct the partition function of an ellipsoid by inserting a three-

dimensional N = 2 SU(N) vectormultiplet on the boundary {x0 = 0} and gauging the

diagonal SU(N) symmetry. We thus claim that G(a,m; τ) in the matrix integral (5.4) is

the partition function of N = 2∗ theory on the upper half of the ellipsoid {x0 > 0} with

Dirichlet boundary conditions, and similarly for G(a,m; τ) on the lower half {x0 < 0}.
Note that G(a,m; τ) can be split into classical, one-loop and instanton contributions

just like the Nekrasov partition function in (5.3). Whereas we take its classical and in-

stanton contributions to be the same as those of Z(a,m; τ), i.e. Gcl(a; τ) ≡ Zcl(a; τ) and

Ginst(a,m; τ) ≡ Zinst(a,m; τ), the one-loop factor G1−loop is not canonically determined.

We claim that it is fixed by imposing Dirichlet boundary conditions on the half-sphere, in

such a way that

G1−loop(a,m) =

∏
w∈adj

Γb
( q

2 + i(a,w) + im
)

∏
e>0

Γb(q + i(a, e))Γb(q − i(a, e))
, (5.6)

where q = b + b−1 and Γb(x) is the Barnes’ double gamma function. The numerator

contains the contribution from the vectormultiplet and the denominator that from the

adjoint hypermultiplet with mass m in the N = 2∗ theory.

Let us mention that via the AGT correspondence, in the case N = 2, this choice is

equivalent to a commonly used normalization of Virasoro conformal blocks in Liouville

theory, as described for example in [28]. For this choice of normalization, we will show that

the expectation values of ’t Hooft loop operators in theN = 2∗ theory are given by acting on

G(a,m; τ) with the three-dimensional difference operators G
(3d)
R , constructed in section 4.

5.2 S-duality domain wall

The three-dimensional theory T (SU(N)) appears as an S-duality domain wall between two

four-dimensional N = 4 SYM theories with gauge groups SU(N) and LSU(N) respectively

and equal holomorphic gauge coupling τ [33, 34]. Furthermore, the mass deformation m of

the domain wall theory can be identified with the canonical mass deformation of the bulk

theory to N = 2∗ by giving a mass to the adjoint N = 2 hypermultiplet.

On the ellipsoid S4
b , one can introduce the S-duality domain wall at the equator

{x0 = 0} in a way that preserves half of the supersymmetries of the bulk [29]. As
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Figure 9. Left: the ellipsoid partition function in the presence of an S-duality domain wall can be

constructed by gluing in the domain wall partition function Z(a, a′,m) in between the half-sphere

partition functions G(a,m; τ) and G(a′,m; τ), while gauging their flavor symmetries. Right: the

same ellipsoid partition function can be constructed by gluing the half-sphere partition functions

G(a,m; τ) and G(a,−m;− 1
τ ).

above, let us assume that the normalized function G(a,m; τ) corresponds to the partition

function of the N = 2∗ theory with gauge group SU(N) on {x0 < 0} with Dirichlet

boundary conditions for the vectormultiplet, and similarly that G(a′,m; τ) corresponds to

the partition function of the N = 2∗ theory with gauge group LSU(N) on {x0 > 0}. Let us

also denote the partition function of the T (SU(N)) theory on the squashed three-sphere

at the equator {x0 = 0} by Z(a, a′,m), where a and a′ are mass parameters for the

SU(N)× LSU(N) global symmetry as in section 4. Then the combined partition function

in the presence of the S-duality domain wall is∫
da da′ µ(a)µ(a′)G(a,m; τ)Z(a, a′,m)G(a′,m; τ) , (5.7)

where µ(a)µ(a′) is the partition function of three-dimensional N = 2 vectormultiplets on

the equator {x0 = 0} that gauge the symmetry SU(N)× LSU(N) (see figure 9).

Another interpretation of the same domain wall is as a Janus domain wall interpolating

between holomorphic gauge coupling τ for {x0 < 0} and −1/τ for {x0 > 0}. The two

pictures are related by an S-duality transformation of the theory on {x0 > 0}. Another way

of saying this is that the partition function Z(a, a′,m) should be an S-duality kernel relating

the functions G(a,m; τ) and G(a,−m;−1/τ) through the measure dµ(a). This statement

is rather hard to check in field theory because there is in general no closed expression for

the G(a,m; τ). In appendix B, however, we demonstrate this explicitly in the limit m = 0

and b = 1 and explain some of the subtleties involved in making this statement precise.

On the other hand, in the context of the AGT correspondence, it has been checked

in [35, 38] that the partition function Z(a, a′,m) on a squashed three-sphere of the T (SU(2))

theory is precisely equal to the S-duality kernel of a normalized conformal block in Liouville
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theory [43] under the relevant identification of parameters. We are not aware of a similar

computation for N > 2 and Toda theory.

5.3 Supersymmetric loop operators

Since we can embed the mass-deformed T (SU(N)) theory as a domain wall in the

four-dimensional N = 2∗ theory on an ellipsoid, it is natural to think that supersymmetric

loop operators in the two theories on {x < 0} and {x > 0} are related. In particular, one

can introduce a loop operator on one hemisphere and push it through the domain wall

to find another loop operator on the other hemisphere. For an S-duality wall one expects

that this process turns a Wilson loop operator in the four-dimensional N = 2∗ theory into

a ’t Hooft loop operator.

Let us briefly summarize a few facts that are known about supersymmetric loop oper-

ators on the four-sphere. The four-sphere partition function can for instance be enriched

with Wilson and ’t Hooft loop operators. To preserve half of the supersymmetries such

loop operators should be supported on the circle

x0 = cos ρ

x1 = b sin ρ cosϕ

x2 = b sin ρ sinϕ

x3 = x4 = 0 ,

(5.8)

where 0 < ϕ < 2π and 0 < ρ < π, or alternatively supported on the circle obtained by

interchanging b↔ b−1 and {x1, x2} ↔ {x3, x4}. The support of the loop operator lies in the

squashed three-sphere at the equator {x0 = 0} when ρ = π/2. However, the expectation

value of the loop operator is independent of ρ.

Wilson loops. Supersymmetric Wilson loops in the four-dimensional N = 2∗ theory are

labeled by irreducible representations of the gauge group G. The expectation values of

supersymmetric Wilson loops on the ellipsoid have been computed in [39].

The expectation value for a supersymmetric Wilson loop in the irreducible represen-

tation R around a circle in the (x1, x2)-plane is obtained by inserting the factor

WR(a) =
∑
w∈R

e−2πb(w,a) (5.9)

into the matrix integral. For example, for a rank r antisymmetric tensor representation of

SU(N) we insert the factor

W(1r)(a) =
∑

{j1<...<jr}

e−2πb (aj1+···+ajr ) . (5.10)

The expectation value for supersymmetric Wilson loops in the (x3, x4)-plane is obtained

by replacing b→ b−1.

Sometimes it is convenient to normalize the above expression by dividing by the quan-

tum dimension dimq R of the representation, where q = eiπb
2
, but we will not do this here.

– 37 –



J
H
E
P
1
0
(
2
0
1
4
)
0
6
2

’t Hooft loops. A supersymmetric ’t Hooft loop is defined by computing the path inte-

gral in the presence of a singular boundary condition along a circle that preserves half of

the supersymmetries. The boundary condition is specified by the image of an abelian ’t

Hooft monopole under a homomorphism ρ : U(1)→ G, with gauge transformations acting

by conjugation on ρ. These configurations are classified by irreducible representations R

of the Langlands dual LG [44].

The expectation values of supersymmetric ’t Hooft loop operators in theN = 2∗ theory

on the round four-sphere have been computed in [27]. It was found that the expectation

value can be expressed as (where now b = 1)∫
daZ(a,m; τ) (TR · Z(a,m; τ)) , (5.11)

where TR is a difference operator that acts on the Coulomb branch parameters a. The

difference operator takes the general form

TR · Z(a) =
∑
ν

Cν(a,m)Z(a+ iν) , (5.12)

where the sum is taken over the weights ν of the representation R.

For the antisymmetric tensor representations R = (1r) the coefficients Cν(a,m) only

receive one-loop contributions. In this case

Cν(a,m) =
∏
j∈I
k/∈I

[
sinhπ(ajk −m) sinhπ(−ajk −m)

sinhπ(ajk) sinhπ(−ajk)

]1/2

, (5.13)

where we have denoted the weights of the r-th antisymmetric tensor representation by

ν =
∑

j∈I hj for I = {j1 < . . . < jr}. For general representations R there are additional

non-perturbative monopole bubbling contributions to the coefficients Cν(a,m).

Here, we want to re-express the expectation value of the ’t Hooft operator in terms of

a difference operator T̃R acting on the half-sphere partition function G(a,m; τ) in the case

b = 1. In other words, the expectation value of the ’t Hooft loop is given by∫
daµ(a)G(a,m; τ)

(
T̃R · G(a,m; τ)

)
. (5.14)

The difference operator T̃R is related to TR by conjugating with the one-loop factor that

relates the Nekrasov partition function Z(a,m; τ) to the half-sphere partition function

G(a,m; τ). Later it will be important that T̃R is self-adjoint with respect to the measure

µ(a)da.

In appendix C, we perform this conjugation explicitly for the antisymmetric tensor

representations to find

T̃(1r) · G(a) =
∑
|I|=r

∏
j∈I
k/∈I

sinπ(−iajk − im)

sinπ(iajk)
G

a+ i
∑
j∈I

hj

 . (5.15)

Remarkably, this difference operator is in agreement with the difference operators G
(3d)
(1r) (=

G̃
(3d)
(1r)) that introduce codimension-two defects in the T (SU(N)) theory by acting on the

three-dimensional partition function Z(a, a′,m), in the limit b→ 1.
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5.4 Intertwining Wilson and ’t Hooft loops

Let us now explain why the difference operators G
(3d)
R are related to ’t Hooft operators T̃ .

We consider the four-sphere partition function in the presence of both an S-duality wall and

a supersymmetric loop operator. Recall that on the lower half-sphere {x0 < 0} we have the

gauge group SU(N) for which the Wilson loops are labelled by irreducible representations

of SU(N). On the upper half-sphere {x0 > 0}, we have the gauge group LSU(N) for which

the ’t Hooft operators are labelled by irreducible representations of SU(N).

Thus, let us now consider an ’t Hooft loop labelled by an irreducible representation of

SU(N) inserted at some point ρ > π/2 in the upper half-sphere {x0 > 0}. The expectation

value of this system takes the form∫
da da′ µ(a)µ(a′)G(a,m; τ)Z(a, a′,m)

[
T̃(1r)(a

′) · G(a′,m; τ)
]
, (5.16)

where for simplicity we focus on antisymmetric tensor representations.

Now, the expectation value is independent of the position ρ. Thus we can imagine

moving the ’t Hooft loop through the S-duality domain wall to some point ρ < π/2 in

the region {x0 < 0}. According to the transformation of loop operators under S-duality,

it should become a Wilson loop in the antisymmetric tensor representation R = (1r). At

the level of the partition function, since the operator T̃(1r)(a
′) is self-adjoint with respect

to the measure µ(a′), we can bring it to act on Z(a, a′,m). Provided that Z(a, a′,m) is

an eigenfunction such that

T̃(1r)(a
′) · Z(a, a′,m) = W(1r)(a)Z(a, a′,m) , (5.17)

we find∫
da da′ µ(a)µ(a′)G(a,m; τ)Z(a, a′,m)

[
T̃(1r)(a

′) · G(a′,m; τ)
]

=

∫
da da′ µ(a)µ(a′)G(a,m; τ)

[
T̃(1r)(a

′) · Z(a, a′,m)
]
G(a′,m; τ)

=

∫
da da′ µ(a)µ(a′)

[
W(1r)(a)G(a,m; τ)

]
Z(a, a′,m)G(a′,m; τ),

(5.18)

which is the expectation value of an S-duality domain wall together with a Wilson loop in

the representation (1r) at some point ρ < π/2. Thus compatibility with S-duality demands

that Z(a, a′,m) intertwines ’t Hooft loops and Wilson loops according to equation (5.17).

See figure 10. In section 4 we have argued that three-dimensional mirror symmetry

requires Z(a, a′,m) to obey the same relation with respect to the three-dimensional limit

of the surface defect operators G
(3d)
(1r) . Thus the corresponding operators should agree.

Above we checked that this is indeed the case for a round four-sphere.

Let us now make some comments on non-minuscule representations R. Since Wilson

loop operators labeled by R are defined by a trace over the representation R, they obey

the character algebra

WR1 ◦WR2 =
∑
R3

NR1,R2
R3 WR3 , (5.19)
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Figure 10. A ’t Hooft loop operator TR can be moved through the S-duality domain wall to obtain

a Wilson loop operator WR.

where NR1,R2
R3 are the standard Littlewood-Richardson coefficients. In particular, they

can be generated from Wilson loops labeled by fully antisymmetric tensor representations

by composition and addition/subtraction.

Therefore, we can define a new set of operators T̂R by taking T̂(1r) ≡ T̃(1r), or equiva-

lently T̂(1r) ≡ G
(3d)
(1r) , for antisymmetric representations and imposing the character algebra

T̂R1 ◦ T̂R2 =
∑
R3

NR1,R2
R3 T̂R3 . (5.20)

The resulting operators T̂R automatically transform in the expected way under S-duality,

and it is natural to expect that these operators encode the expectation value of ’t Hooft

loops for general representations.

However, we emphasize that the T̂R do not seem to correspond to the expectation value

of a ’t Hooft loop with magnetic weight given by the highest weight of the representation

R, when the representation is non-minuscule. For example, for SU(2) the ’t Hooft loop

whose magnetic weight is double that of the ’t Hooft loop of minimal charge is given

by T1 ◦ T1 rather than T1 ◦ T1 − T0. This is again an invertible linear transformation

on the algebra of the operators. In this case, the origin of the basis transformation is a

natural resolution of the Bogomolnyi moduli space that arises for representations with non-

perturbative monopole bubbling effects [27]. Once again, we emphasize that the simplest

and unambiguous operators are those in antisymmetric tensor representations.

5.5 Verlinde operators in Toda CFT

All we have discussed so far in this section can also be framed in the language of Liouville

or Toda conformal field theory. This approach has the benefit that, at least for the ’t

Hooft loop in the fundamental representation, we can compute the required operator for

general squashing parameter b.

Let us briefly review aspects of this correspondence. For the N = 2∗ theory with gauge

group SU(N), the ellipsoid partition function is related to a Liouville or type AN−1 Toda

correlator on the punctured torus with an insertion of a semi-degenerate primary field. The

parameters on both sides of the correspondence are related as follows:
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Figure 11. The four-sphere partition function of the N = 2∗ theory is equal to a Toda correlation

function on the punctured torus with a semi-degenerate vertex operator Vµ, with momentum µ,

inserted at the puncture.

1. The geometric parameter b is a dimensionless coupling in the conformal field theory

and gives the central charge c = (N − 1)(1 +N(N + 1)q2), where q = b+ b−1.

2. The holomorphic gauge coupling τ is the complex structure parameter of the punc-

tured torus.

3. The mass m of the adjoint hypermultiplet is encoded in the momentum of the semi-

degenerate primary field,

µ = N
(q

2
+ im

)
ωN−1 . (5.21)

Choosing a pants decomposition, the correlation function of the primary field on the

punctured torus can be written as an expansion in Liouville orWN -algebra conformal blocks∫
dαC(µ, α, 2Q− α)F(α, µ; τ)F(α, µ; τ) , (5.22)

where the integral is over non-degenerate momenta α = Q + ia, with a ∈ RN−1 and

Q = qρ, where ρ is the Weyl vector of AN−1.

The conformal blocks F(a, µ; τ) are normalized to contain the classical and instanton

contributions to the Nekrasov partition function. The three-point function C(µ, α, 2Q−α)

is proportional (up to an m-dependent piece that can be absorbed in the normalization

of the primary field) to the modulus squared of the 1-loop contribution | G1−loop |2 times

the measure µ(a). The meromorphic function G(a,m; τ) that we introduced earlier

corresponds to a convenient normalization of the conformal block F(α, µ; τ) that absorbs

the three-point functions. This is an extension to higher rank of a frequently used

normalization in Liouville theory [28].

Loop operators in the four-dimensional gauge theory are realized as Verlinde operators

in the dual conformal field theory [9, 28]. The Verlinde operators act on the space of

Virasoro or WN -algebra conformal blocks by transporting a chiral primary field around

a simple closed curve C on the Riemann surface. The operators constructed in this way

depend only on the homotopy class of the curve C up to a choice of ‘framing’ that will not

be important here.

If we choose the pants decomposition of the punctured torus determined by the A-cycle

in figure 11, a supersymmetric Wilson loop in N = 2∗ theory in the rank r antisymmetric
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tensor representation corresponds to transporting a degenerate chiral primary with momen-

tum η = −bωj around that A-cycle. The resulting expression changes from the original

conformal block by the factor

WCFT
(1r) =

∑
{j1<...<jr}

e−2πb (aj1+···+jr) , (5.23)

which is in agreement with the localization computation.

An ’t Hooft loop in the r-th fundamental representation corresponds to transporting

the same chiral primary around the B-cycle of the punctured torus. This Verlinde operator

has been computed directly in Toda theory for the fundamental representation in [30].

Acting on the conformal blocks F(α, µ; τ), the operator is given by

TCFT
(1) · F(α) =

N∑
j=1

N∏
k 6=j

Γ(ibajk)Γ (bq + ibajk)

Γ
(
bq
2 + ibajk − ibm

)
Γ
(
bq
2 + ibajk + ibm

)F(α− bhj) , (5.24)

where α = Q+ ia is the momentum around the loop that defines the pants decomposition.

To construct an operator that acts on the normalized conformal blocks G(a,m; τ),

we have to conjugate by the one-loop contribution (5.6). In appendix C we perform this

conjugation to find

T̃CFT
(1) · G(a) =

N∑
j=1

N∏
k 6=j

sinπb
( q

2 − iajk − im
)

sinπb (−iajk)
G (a+ ibhj) , (5.25)

which is precisely equal to the three-dimensional operator G
(3d)
(1) for any real b (see equa-

tion (4.10)). This provides another check on the relation of the difference operators G
(3d)
R

to the ’t Hooft loop operators for the fundamental representation.

6 Discussion

In this paper we generated an algebra of difference operators GR acting on theN = 2 super-

conformal index, labeled by irreducible representations R of SU(N). Generalizing the argu-

ments of [10], we claim that these difference operators represent half-BPS surface defects in

four-dimensionalN = 2 theories of class S. We discussed several arguments in favour of this

claim. Most importantly, we emphasized that it is highly non-trivial that we indeed man-

aged to consistently close the algebra, and that the difference operators have a natural inter-

pretation in various dual frames. Let us mention a few open questions and interesting links.

A microscopic gauge theory understanding of these defects is unfortunately still lack-

ing, either in terms of a defect description or alternatively as a description of the two-

dimensional degrees of freedom living on the support of the defect. We did find a two-

dimensional field theory description in two extreme cases: fully antisymmetric and fully

symmetric representations. It is however not at all clear that there exists a Lagrangian

description for the two-dimensional degrees of freedom living on the support of the surface

defect for a generic representation R.
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Figure 12. Left: UV curve of the theory TUV, obtained by gluing a three-punctured sphere with

two full punctures and one hook-shaped puncture to the UV curve of the theory TIR. Right: a

renormalization group flow connects TUV to TIR with a possibly general surface defect GR.

The operators GR can be written as a sum of weights in the representation R, which in

the field theory description of the defect should have the interpretation as a sum over vacua.

In case a weight λ appears with multiplicity one in the representation R, the contribution

to GR is a single ratio of theta-function and seems likely to have an interpretation as the

contribution to the superconformal index in a vacuum characterized by λ. When the weight

λ appears with higher multiplicity, however, the contribution to GR is a sum of such ratios

and is less likely to have such an interpretation.

A similar structure can be observed from the perspective of the AGT correspondence.

In particular, reference [31] has demonstrated that a ratio of Toda correlation functions

involving a degenerate momentum µ = −bh1 captures the two-sphere partition function

of the N = (2, 2) theory that we have associated to the surface defect labelled by the

fundamental representation. However, for representations with multiple weight contribu-

tions, the Toda three-point function with degenerate insertions (see [45, 46]) do not appear

to have the structure of one-loop contributions to the two-sphere partition function of an

N = (2, 2) theory.

As briefly mentioned in the introduction and main text, we expect that there is an

alternative method to find the difference operators GR. Instead of coupling the theory

TIR to a bifundamental hypermultiplet, corresponding to adding a puncture with U(1)

symmetry, one could add a puncture with a larger flavor symmetry group. This generically

involves coupling TIR to a non-Lagrangian theory corresponding to a sphere with two full

punctures and one intermediate puncture. An example is illustrated in figure 12. The

superconformal index for TUV should then contain a larger spectrum of residues. One

might expect any difference operator GR to originate from such a residue computation.

Again, this is analogous to the Toda perspective, where non-maximal flavor punctures

correspond to insertions of semi-degenerate vertex operators. By analytic continuation

correlation functions of such operators have poles, whose residues correspond to reductions

to a completely degenerate vertex operator. If we insert a semi-degenerate vertex operator

that corresponds to a simple U(1) puncture, we can only access completely degenerate

vertex operators with momentum α = −bλ1 − b−1λ2, where λ1 = r1ω1 and λ2 = r2ω2 are

the highest weights of two symmetric tensor representations. To find completely degenerate
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vertex operators with generic weights λ1 and λ2, one must insert a generic semi-degenerate

vertex operator, corresponding to a generic flavor puncture.

The difference operators GR are elliptic generalizations of the Macdonald operators.

Although these operators have not been constructed mathematically for all representa-

tions R (as far as we know), the elliptic Ruijsenaars-Schneider difference operators have

been related to exterior powers of the vector representation of the elliptic quantum group

Eτ,η(glN ) [47]. It would be very interesting to interpret this connection to elliptic quantum

groups physically. This relation could appear naturally when interpreting the difference

operators GR in terms of a three-dimensional topological field theory on C × S1.

In the Macdonald limit p = 0 we have found that the difference operators correspond

to Wilson loops in an analytic continuation of refined Chern-Simons theory on C×S1 (see

section 3). The particular ratio of modular S-matrices that appears in the operator product

expansion of the GR, suggests that when we take a Wilson loop operator close to a puncture

on C, it can be interpreted as a Verlinde loop operator on the boundary torus. For example,

taking the Schur limit t = q, and replacing q → exp (2πi/(k +N)) in the modular S-matrix,

we would recover the modular S-matrix elements for characters of integrable representations

of the affine current algebra ŝu(N)k. However, for the superconformal index it is important

that we have an analytic continuation of this statement to |q| < 1.

In the dimensional reduction of the four-dimensional superconformal index to a three-

dimensional partition function, we found that the difference operators GR are related to

operators that introduce line defects. For theories of class S, there is a mirror description as

a star-shaped quiver and we showed that the difference operators introduce Wilson loops for

the central node of the quiver, at least in the case of antisymmetric tensor representations.

For non-minuscule representations, we found that there is some mixing.

It would be interesting and important to understand these line defects in three-

dimensions from first principles by localization. For the fully symmetric and anti-symmetric

tensor representations, we expect this could be done by coupling to a supersymmetric

quantum mechanics on a circle, in a similar spirit to [21] but in one dimension lower. On

the other hand, we expect that the rank-r anti-symmetric tensor operator has another

description as a monodromy defect breaking the gauge group to S(U(r) × U(N − r)),

which might also be used to perform an exact localization computation by extending the

computations of [48, 49] for abelian monodromy defects.
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A Macdonald polynomials and the refined S-matrix

A.1 Group theory

The finite dimensional irreducible representations of AN are in one-to-one correspondence

with dominant integral weights,

λ =

N−1∑
i=1

λi ωi

whose Dynkin labels (λ1, λ2, . . . , λN−1) are nonnegative integers. Equivalently, irreducible

representations are labeled by partitions (`1, `2, . . . , `N ) where `1 ≥ `2 ≥ . . . ≥ `N = 0,

such that

`i = λi + λi+1 + . . .+ λN−1 . (A.1)

Each partition is associated to a Young diagram whose i-th row has length `i. For instance,

the following diagram

corresponds to the partition (4, 2, 2, 0). The partition labels (`1, `2, . . . , `N ) are related to

the components of the weight in the orthogonal basis

ωi = ε1 + · · ·+ εi −
i

N

N∑
j=1

εj (A.2)

where

λ =

N∑
i=1

κiεi , κi = `i −
1

N

N−1∑
j=1

j(`j − `j+1) . (A.3)

The states in a given irreducible representation are in one-to-one correspondence with

semi-standard Young tableaux. They are obtained by filling the boxes of a Young diagram

with the numbers {1, . . . , N}, such that the numbers are non-decreasing from left to right

and strictly increasing from top to bottom. Finally, to each semi-standard Young tableau,

we attach the labels (n1, . . . , nN ), where ni denotes the number of times that i appears in

the semi-standard tableau. As an example below we include a few semi-standard tableaux

for the adjoint 8 representation of SU(3) with their corresponding labels.

1 1
2

1 2
3

1 3
2

2 2
3

(2, 1, 0) (1, 1, 1) (1, 1, 1) (0, 2, 1)

A.2 Schur polynomials and the modular S-matrix

Introduce coordinates aj , for j = 1, . . . , N , obeying
∏N
i=1 ai = 1. For aj = eiθj they are

coordinates on the maximal torus of SU(N). The Schur polynomials form a basis of sym-

metric functions in the variables {a1, . . . , aN} labeled by irreducible representations. The
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Schur polynomial of the irreducible representation λ labeled by the partition (`1, . . . , `N )

is given by the determinant formula

χλ(a) =
det a`i+N−ij

det aN−ij

. (A.4)

An important property of the Schur polynomials is that they are orthonormal with respect

to the inner product on the space of symmetric functions

〈f, g〉 =

∫
∆(a)f(a)g(a−1) (A.5)

where

∆(a) =
1

N !

N−1∏
i=1

dai
2πiai

∏
i 6=j

(
1− ai

aj

)
. (A.6)

is the Haar measure and the integration is over the maximal torus of SU(N). Products of

Schur polynomials decompose according to the tensor product of the irreducible represen-

tations

χλ1(a)χλ1(a) =
∑
µ

Nλ1,λ2
µ χµ(a) (A.7)

where Nλ1,λ2
µ are the Littlewood-Richardson numbers.

In order to construct the modular S-matrix we introduce the Weyl weight ρ, which is

the highest weight of the adjoint representation of SU(N). Its components in the Dynkin

basis are ρ = (1, 1, . . . , 1). In the orthogonal basis mentioned above,

ρ =

(
N − 1

2
,
N − 3

2
, . . . ,

1−N
2

)
, (A.8)

and we will denote these components by ρj = (N−2j+1)/2. Now consider two irreducible

representations λ and λ′ with components κi and κ′i in the orthogonal basis. Then the

modular S-matrix is given by

Sλλ′ = S00 χλ(qρ1 , . . . , qρN )χλ̄′(q
ρ1+κ1 , . . . , qρN+κN ) , (A.9)

where λ̄′ denotes the complex conjugate representation of λ′. We will not need the overall

normalization S00.

A.3 Macdonald polynomials and the refined S-matrix

The Macdonald polynomials are symmetric polynomials in the variables {a1, . . . , aN} that

depend on two additional complex parameters q and t. The Macdonald polynomials are

labeled by irreducible representations λ of SU(N) and reduce to the corresponding Schur

polynomials when q = t.

The Macdonald polynomial labeled by the irreducible representation λ is

Pλ(a, q, t) = χλ(a) +
∑
µ<λ

cλ,µ(q, t)χµ(a) (A.10)
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where cλ,µ(q, t) are rational functions of q and t that are uniquely determined by ensuring

Pλ(a, q, t) is a simultaneous eigenfunctions of the difference operators

Gr = tr(1−N)
∑

I⊂{1,...,N}
|I|=r

∏
i∈I,j /∈I

tai − aj
ai − aj

TI , r = 1, . . . , N − 1 (A.11)

where

TI : ai →

{
q1−1/Nai if i ∈ I
q−1/Nai if i /∈ I .

(A.12)

Here we have included a background shift by q−1/N compared to the standard Macdonald

difference operators in order to preserve the condition
∏N
i ai = 1 relevant for SU(N). For

example, the first few Macdonald polynomials for SU(2) are

P0(a, q, t) = 1

P1(a, q, t) = χ1(a)

P2(a, q, t) = χ2(a) +
q − t
1− qt

P3(a, q, t) = χ3(a) +
(q − t)(1 + q)

1− tq2
χ1(a)

P4(a, q, t) = χ4(a) +
(q − t)(1− q3)

(1− q)(1− q3t)
χ2(a) +

q(q − t)(1 + q2)(1− t)
(1− q2t)(1− q3t)

.

(A.13)

The difference operators are self-adjoint with respect to the inner product

〈f, g〉 =

∫
∆q,t(a)f(a)g(a−1) , ∆q,t(a) =

1

N !

N−1∏
i=1

dai
2πiai

∏
i 6=j

(ai/aj ; q)

(tai/aj ; q)
(A.14)

where (a; q) =
∏∞
i=0(1−qia) is the q-Pochhammer symbol, and consequently, the Macdon-

ald polynomials are non-degenerate and orthogonal with respect to the same measure. In

order to obtain functions orthonormal with respect to the measure, a normalization factor

must be included.

The product of Macdonald polynomials decomposes according to the tensor product

of irreducible representations

Pλ1(a, q, t)Pλ2(a, q, t) =
∑
µ

Nλ1,λ2
µ(q, t)Pµ(a, q, t) (A.15)

where the Nλ1,λ2
µ(q, t) are rational functions in q and t.

Analogous to the modular S-matrix, the refined S-matrix is given by

Sλλ′ = S00 Pλ(tρ1 , . . . , tρN )Pλ̄′(t
ρ1qκ1 , . . . , tρN qκN ) . (A.16)

It is then an easy exercise to check that the ratios SR,S/S0,S are indeed the eigenvalues of

the difference operators GR in the Macdonald limit, namely

GR · PS(ai, q, t) =
SR,S
S0,S

PS(ai, q, t) . (A.17)
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B S-duality kernel

Instead of merely inserting a three-dimensional N = 2 vectormultiplet on the three-

dimensional boundary {x0 = 0}, we could also glue in the three-dimensional mass-deformed

linear quiver theory T (SU(N)). In fact, its N = 4 variant was introduced as an S-dual of

the Dirichlet boundary condition in the four-dimensional N = 4 theory with gauge group

SU(N) [34, 50].

It is thus natural to expect that the mass-deformed T (SU(N)) theory encodes the field

theory degrees of freedom on a so-called S-duality domain wall in the N = 2∗ theory. Such

a domain wall is defined so that the four-dimensional theories on either side are related

by the transformation S : (τ,m) → (−1/τ,−m). In this appendix we will verify that this

is indeed the case if we assume that Gb is the partition function on the half-sphere with

Dirichlet boundary conditions.

Before introducing the S-duality domain wall, let us briefly consider the ellipsoid

partition function ZS4
b

of the N = 2∗ theory with gauge group SU(N). The AGT

correspondence relates this to a Toda correlator on the once-punctured torus. We thus

expect that the ellipsoid partition function transforms as a modular form. More precisely,

it should transform as [51]

ZS4
b
(−m;−1/τ) = |τ |2∆(m)ZS4

b
(m; τ) , (B.1)

with modular weight

∆(m) =
N(N − 1)

2

(
Q2

4
+m2

)
. (B.2)

This modular property of the ellipsoid partition function is guaranteed if the half-

sphere partition function Gb transforms as

Gb(−m, a;−1/τ) = (−iτ)∆(m)

∫
da′ µb(a

′)Zb(ai, a′,m)Gb(m, a′; τ) , (B.3)

where we integrate over a real slice of the Coulomb branch (just like in all matrix integrals in

the remainder of this section). The integration kernel Zb(a, a′,m) must obey two important

properties. First, it must obey the symmetry

Zb(a, a′,m) = Zb(a′, a,−m) .

Second, it must be a unitary with respect to the measure µb(a) da, in the sense that∫
daµb(a)Zb(a′, a,m)Zb(a, a′′,−m) = µb(a

′) δ(a′, a′′) . (B.4)

Now consider the ellipsoid partition function with the insertion of an S-duality domain

wall. Assuming that Gb is the half-sphere partition function of the N = 2∗ theory with

Dirichlet boundary conditions, the S-duality partition function on the squashed four-sphere

should be given by∫
daµ(a)Gb(m, a; τ)Gb(−m, a;−1/τ)

=

∫
daµ(a)

∫
da′ µ(a′)Gb(m, a; τ)Zb(a, a′,m)Gb(m, a′; τ) . (B.5)
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Consequently, Zb(a, a′,m) should encode the gauge degrees of freedom localized on the

domain wall. Specifically, we expect that Zb(a, a′,m) is the partition function of the mass-

deformed T (SU(N)) theory on a squashed three-sphere.

In this context, the symmetry Zb(a, a′,m) = Zb(a′, a,−m) is equivalent to three-

dimensional mirror symmetry. The unitary property (B.4) follows because the partition

function Zb(a, a′,m) is an eigenfunction of the self-adjoint operator G
(3d)
R with respect to

the measure µb(a) da (see equation (4.11)).

Indeed, let us denote the integral (B.4) by

I(a′, a′′) =

∫
daµb(a)Zb(a′, a,m)Zb(a, a′′,−m) . (B.6)

The self-adjoint operator G
(3d)
R (a′) can act inside this integrand in either direction, which

must lead to the same answer. Consequently we find(
WR(a)−WR(a′′)

)
I(a, a′′) = 0 , (B.7)

where WR(a) is the expectation value of a Wilson loop in the representation R. This

implies that the integral vanishes if a 6= a′′ modulo Weyl transformations.

B.1 Example

Let us check the above transformation properties of the half-sphere partition function Gb
on the round four-sphere, when b = 1, and in the N = 4 limit, when m→ 0.

First, we compute the explicit expression for Gb=1(τ,m, ai) for gauge group SU(N).

Its one-loop contribution (5.6) simplifies to the formula

G1−loop(m, ai) =
1√
2π

∏
i<j

πaij
sinh(πaij)

, (B.8)

where aij = ai − aj with the constraint that
∑N

i=1 ai = 0. Its classical contribution times

its instanton contribution is given by

Gcl(ai; τ)Ginst(ai; τ) = e−πiτ(
∑N
i=1 a

2
i )m(τ)1−N . (B.9)

This can be argued as follows. If the gauge group would be U(N), the instanton contribu-

tion would be Ginst = 1 [52]. For gauge group SU(N), however, one must first divide by

the U(1) factor. We can find this U(1) factor by comparing with the q = exp(τ)-expansion

of the Toda conformal block

F(ai; τ) = q∆(ai)− c
24

∑
k

qkFk . (B.10)

In particular, using the known expressions for the Toda central charge c and the momentum

∆(ai), we can verify the classical contribution to Gcl Ginst for any N . Furthermore, we can

match the full expressions in an expansion of the instanton parameter q for N = 2, 3.
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Putting the pieces together, we have

Gb=1(ai; τ) = e−πiτ(
∑N
i=1 a

2
i ) 1√

2π

∏
i<j

πaij
sinh(πaij)

m(τ)1−N . (B.11)

After performing (N − 1) Gaussian integrals we expect to find the partition function

ZS4
b=1

(τ) ∼ 1

|m(τ)|2(N−1) Im(τ)(N2−1)/2
, (B.12)

which has the expected transformation

ZS4
b=1

(
−1

τ

)
= |τ |N(N−1)ZS4

b=1
(τ) (B.13)

under S-duality. We have indeed verified this for N = 2, 3. In the above, we have used

µb=1(a) =
∏
i<j 4 sinh(πaij)

2 and ∆(0) = N(N−1)
2 .

We can also check that the three-sphere partition function

Zb=1(ai, a
′
i) =

∑
ρ∈SN (−1)ρe2π

∑N
j=1 aρ(j)a

′
j∏

i<j 2 sinhπ(aij) 2 sinhπ(a′ij)
, (B.14)

is the S-duality kernel for the half-sphere partition function Gb=1(τ, ai). This is again a

matter of performing Gaussian integrals and using the modular property of the η-function.

In particular, for N = 2, 3 we explicitly verified that∫
da′i µb=1(a′i)Zb=1(ai, a

′
i)Gb=1(a′i; τ) ∼ (−iτ)

−N(N−1)
2 Gb=1(ai;−1/τ) .

This completes the argument and gives some evidence that Gb is indeed the half-sphere

partition function with Dirichlet boundary conditions.

C Factorization of Toda 3-point function

Let us briefly review some properties of special functions we need in order to manipulate

one-loop contributions. As in the main text, b ∈ R>0 is a real parameter and we define

q ≡ b+ b−1.

The double gamma function Γb(x) is a meromorphic function of x characterized by the

functional equation

Γb(x+ b) =
√

2π bbx−
1
2 Γb(x)/Γ(bx) (C.1)

where Γ(x) is the Euler gamma function and its value Γb(q/2) = 1. We will also need the

double sine function, which is a meromorphic function that can be defined in terms of the

double gamma function by the formula Sb(x) ≡ Γb(x)/Γb(q− x). The double sine function

is characterized by the functional equation

Sb(x+ b) = 2 sin(πbx)Sb(x) . (C.2)
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We will furthermore need the function Υb(x)−1 = Γb(x)Γb(q − x) which is entire analytic.

A more complete discussion of the properties of these functions can be found, for example,

in [53].

Let us begin by considering the three-point function C(α, 2Q − α, ν) in AN−1 Toda

theory corresponding to the trivalent vertex in the pants decomposition of a torus with

a simple puncture. The momentum in the internal channel α = Q + ia, with a ∈ R, is

non-degenerate and describes a delta-function normalizable state, while the momentum

ν = N(q/2 + im)ωN−1, with m ∈ R, is semi-degenerate. Substituting these momenta into

the more general result of [45, 46] we find that

C(α, 2Q− α, ν) = f(m)

N∏
i<j

Υb (iaij) Υb (−iaij)

N∏
i,j=1

Υb

( q
2 + iaij + im

) (C.3)

where aij = ai − aj . The proportionality factor f(m) is independent of the internal pa-

rameter a. Since we will be concerned with difference operators acting only on the internal

parameter a, we will not need to know the details of f(m) and it will be omitted whenever

convenient in what follows.

The complete correlation function on a torus with simple puncture is∫
daC(α, 2Q− α, µ)F(α, µ; τ)F(α, µ; τ) (C.4)

where F(α, µ; τ) are the WN -algebra conformal blocks. This correlation function computes

the ellipsoid partition function of the four-dimensional N = 2∗ theory on an ellipsoid, with

the parameters identified as in the main text.

We now consider two different ways of factorizing the three-point function and ab-

sorbing it into the WN -algebra conformal blocks. The first way is chosen to maximally

simplify the expressions for the Verlinde operators and we expect that this corresponds

to a half-sphere partition function of N = 2∗ theory with Dirichlet boundary conditions

for the vectormultiplet. The second way corresponds to computing the Nekrasov partition

function of the N = 2∗ theory with deformation parameters ε1 = b and ε2 = b−1.

Renormalized conformal blocks

Let us express the Toda three-point function in terms of double gamma functions

and manipulate the answer into a convenient factorized form. For the hypermultiplet

contribution, we have

N∏
i,j=1

Υb

(q
2

+ iaij + im
)−1

=
N∏

i,j=1

Γb

(q
2

+ iaij + im
)

Γb

(q
2
− iaij − im

)

=

∣∣∣∣∣∣
N∏

i,j=1

Γb

(q
2

+ iaij + im
) ∣∣∣∣∣∣

2

.

(C.5)
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For the vectormultiplet contribution

N∏
i<j

Υb (iaij) Υb (−iaij) =
N∏
i 6=j

1

Γb (iaij) Γb (q − iaij)

=

N∏
i 6=j

Γb(q + iaij)

Γb(iaij)

N∏
i 6=j

1

Γb (q + iaij) Γb (q − iaij)

=
∏
i<j

Sb(q + iaij)

Sb(iaij)

∣∣∣∣∣∣
N∏
i 6=j

1

Γb (q + iaij)

∣∣∣∣∣∣
2

= µ(a)

∣∣∣∣∣∣
N∏
i<j

1

Γb (q + iaij) Γb(q − iaij)

∣∣∣∣∣∣
2

,

(C.6)

where

µ(a) =
∏
i<j

2 sinh (πbaij) 2 sinh
(
πb−1aij

)
(C.7)

is the 3d partition function of an N = 2 vectormultiplet on a squashed three-sphere [54],

which is identified here with the equator {x0 = 0}.
As described in the main text, we can now absorb the three-point function into the

WN -algebra conformal blocks, by defining new renormalized blocks

G(a,m; τ) =

N∏
i,j=1

Γb
( q

2 + iaij + im
)

N∏
i<j

Γb (q + iaij) Γb(q − iaij)
F(a,m; τ) (C.8)

such that the correlation function becomes∫
daµ(a)| G(a,m; τ) |2 (C.9)

We believe that the renormalized conformal block G(a,m; τ) correspond to the partition

function on the upper half-sphere {x0 > 0} with Dirichlet boundary conditions for the

vectormultiplet at the equator. Thus, in order to transform between Verlinde operators

acting on F(a,m; τ) and those acting on G(a,m; τ) we have to conjugate by the factor in

equation (C.8).

Let us concentrate on the Verlinde operator corresponding to the fundamental ’t Hooft

loop. Acting on the unnormalized conformal blocks, the difference operator has been

computed in [30]. The result is given by

N∑
j=1

 N∏
k 6=j

Γ (ibakj)

Γ
(
bq
2 + ibakj − ibm

) Γ (bq + ibakj)

Γ
(
bq
2 + ibakj + ibm

)
∆j (C.10)

where we have introduced the notation ∆j : a → a + ibhj . Now, by patient and repeated

application of the functional equation for the double gamma function, we find
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[ N∏
i,j=1

Γb
( q

2 + iaij + im
)

N∏
i<j

Γb (q + iaij) Γb(q − iaij)

]
∆j

[ N∏
i,j=1

Γb
( q

2 + iaij + im
)

N∏
i<j

Γb (q + iaij) Γb(q − iaij)

]−1

=

N∏
k 6=j

Γ
(
qb
2 + ibakj + ibm

)
Γ
(

1− qb
2 − ibakj + ibm

) Γ (1− ibakj)
Γ (bq + ibakj)

. (C.11)

We can immediately see that two sets of gamma functions the second line will cancel

against the same gamma functions in the unnormalized operator in (C.10). The remain-

ing gamma functions combine to give only trigonometric functions for the renormalized

operator,

N∑
j=1

 N∏
k 6=j

Γ (ibakj) Γ (1− ibakj)

Γ
(
bq
2 + ibakj − ibm

)
Γ
(

1− qb
2 − ibakj + ibm

)
∆j

=

N∑
j=1

 N∏
k 6=j

sinπb
( q

2 + iakj − im
)

sinπb (iakj)

∆j (C.12)

as claimed in the main text. With patient bookkeeping, the same computation can be

performed for the difference operators in any other completely antisymmetric tensor rep-

resentation.

Nekrasov partition function

For comparison with the exact computation of an ’t Hooft loop on the four-sphere in [27],

it is necessary to consider another factorization of the Toda three-point function. In this

factorization the difference operators act on the Nekrasov partition function Z(a,m; τ),

with ε1 = b and ε2 = b−1, which we named as in the main text.

Thus we now express the three-point function as

C(α, 2Q− α, µ) = f(m) | Z1−loop(a,m; τ) |2, (C.13)

where

Z1−loop(a,m; τ) =


N∏
i<j

Υb (iaij) Υb (−iaij)

N∏
i,j=1

Υb

( q
2 + iaij + im

)


1/2

(C.14)

are the one-loop contributions to the Nekrasov partition function and f(m) is independent

of the internal momentum a as before. The classical and instanton contributions to the

Nekrasov partition function are encoded in the WN -algebra conformal blocks. Thus, up to

the factor f(m), the complete Toda correlator can be expressed∫
da | Z(a,m; τ) |2 (C.15)
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in agreement with the exact computation of the partition function of the N = 2∗ theory

on an ellipsoid in [39].

To obtain difference operators acting on the Nekrasov partition function, it is easier at

this stage to start from the relationship to the renormalized WN -algebra conformal blocks.

In fact, from the relationship between the double gamma, the double sine functions and

upsilon functions, we find that

Z(a,m; τ) =


N∏
i<j

Sb(q + iaij)Sb(q − iaij)

N∏
i,j=1

Sb(
q
2 + iaij + im)


1/2

G(a,m; τ) . (C.16)

Now, using the functional equation for the double sine function, we compute
N∏
i<j

Sb(q + iaij)Sb(q − iaij)

N∏
i,j=1

Sb(
q
2 + iaij + im)


1/2

∆j


N∏
i<j

Sb(q + iaij)Sb(q − iaij)

N∏
i,j=1

Sb(
q
2 + iaij + im)


−1/2

=

 N∏
k 6=j

sinπb
( q

2 + iakj + im
)

sinπb(iakj)

sinπb
( q

2 + iakj − im
)

sinπb(q + iakj)

1/2

.

(C.17)

Thus, combining with equation (C.12), we conjecture that the fundamental ’t Hooft

loop operator acting on the Nekrasov partition function with ε1 = b and ε2 = b−1 has the

general form

k∑
j=1

 N∏
k 6=j

sinπb
( q

2 + iakj + im
)

sinπb
( q

2 + iakj − im
)

sinπb (iakj) sinπb(q + iakj)

1/2

∆j . (C.18)

This agrees with the exact computation of the fundamental ’t Hooft loop operator in the

case of a round four-sphere b = 1 [27]. Again, with patient bookkeeping the same conclusion

can be reached for ’t Hooft loops labeled by any antisymmetric tensor representation.
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