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Abstract

Discrete-time and continuous-time models with time-to-build do not possess the same

dimension. In this paper we address the dimensionality issue by revising the way time-to-

build is traditionally measured when transforming the economic dynamics from discrete to

continuous time. We propose our new procedure as an alternative approach which allows

for a unifying theory of the two classes of economic growth models. Interestingly enough,

discrete-time models admit a change in stability for a value of the time-to-build parameter

where their continuous counterpart admits an Hopf bifurcation.

Keywords: Discrete and continuous-time; time-to-build, mixed functional differential equa-

tions.
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1 Introduction

The dimensionality of a continuous-time neoclassical growth model switches from finite to infinite

as soon as capital takes time to become productive. In fact, the presence of the time-to-build

parameter, J > 0, pins down a system of mixed functional differential equations in capital and

consumption, whose associated characteristic equation is transcendental in the complex field,

and it has an infinite of roots.

On the contrary, in its discrete-time version, the time-to-build assumption simply increases

the order of the dynamical system describing the economy by a factor 2J , with J an integer

multiple of the chosen calendar time unit, and thus it remains finite. In particular, the char-

acteristic equation associated to a neoclassical growth model (as in Kydland and Prescott [18]

among others) is algebraic of corresponding degree.

Our objective is to propose a procedure which preserves the time-to-build structure of capital

in the passage from discrete-time to continuous-time and, in doing so, explains the change in

dimensionality. To this purpose, we need to be careful in assigning the time-to-build parameter

its appropriate measure. In fact, with regard to the problem of the nature of time in neoclassical

growth models, we maintain a sort of agnostic point of view, thus not entering the debate on

the “proper” dimension the time variable must be given in any particular economic setting. Our
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focus remains, instead, on the study of the morphological differences that the model’s dynamics

may exhibit when written by choosing a continuous vs. a discrete time approach. In this respect

the transformation issue - namely the problem of deriving the “correct” continuous counterpart

of an assigned discrete time dynamics, and vice versa - is particularly relevant to us, and will

deserve a specific attention further on.

Since the early contributions on the relation between discrete and continuous-time models

(see May [20], Foley [12], and Turnovsky [21], among others), the conventional procedure to

move from discrete-time to continuous-time has been to re-scale all the key equations describing

the economy along any subinterval [t, t+ h] and let the period length, h , tend to zero; then the

discrete-time capital equation Kt+1 = f(Kt) is usually re-written as

∆h(Kt) = Kt+h −Kt = h∆1(Kt+1) = h(f(Kt)−Kt)

and computing the limit of the ratio ∆h(Kt)/h for h→ 0 one obtains

K̇(t) = f(K(t))−K(t)

By doing so, the continuous-time version has the same dimensionality as its discrete counterpart.

However the two economies, as described by the two versions of the model, are de facto very

different: capital becomes productive immediately in continuous-time while it took one period

(for example one quarter) in discrete-time. This difference emerges as a consequence of the way

the time-to-build is measured. In the above explained procedure it coincides with the period

length, or using a more updated terminology the time-to-build parameter is measured in terms

of frequency of decision making (see Anagnostopoulos and Giannitsaru [1]).1 Then the time-

to-build structure of capital is lost as the length of the period goes to zero or equivalently the

frequency of decision making goes to infinite. On the other hand, there is no economic reason

according to which an increase in the frequency of decisions should, all else equals, change the

time-to-build structure of capital: rephrasing the well known example of Bohm Bawerk [5], a

ship cannot be built in a day even if the agents take their decisions continuously.2

In this paper we try to overcome this question, and at the same time to clarify the dimen-

sionality issue, by proposing an alternative way of measuring the time-to-build parameter in

terms of period length units.3 This is done in Section 2, while we study, in Section 3, how this

new measure may lead to differences in the qualitative and quantitative dynamic behavior of the

economy when we compare the continuous with the discrete-time case. The main qualitative

difference emerges when the time-to-build is equal to one period length; in fact the former shows

damping output fluctuations in front of monotonic convergence of the latter. On the other hand

the two dynamics are very similar, as soon as the time-to-build parameter is an integer multiple

of period length h by a factor greater than one. Interestingly enough, we show that the dis-

crete time model changes its stability properties when its continuous counterpart has an Hopf

1To some extent, we share with these authors the distinction between calendar time and frequency of decision

making, but the “objective” of our research is substantially different. In particular it refers to models with

time-to-build which are explicitly excluded by their analysis.
2See also Licandro and Puch [19] on this point.
3A similar measurement issue was pointed out by Burmeister and Turnovsky [11] in their attempt to find the

continuous-time version of a discrete-time model with adaptive expectation.
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bifurcation.4

Finally, at the end of Section 3, we also show that the amplitude of the damping fluctuations

in output can be significantly larger in the continuous-time version with respect to its discrete-

time counterpart. This last result is one more step in understanding the importance of the

time-to-build assumption as a source of output fluctuations (e.g. Wen [22]).

2 Description of the Economy

2.1 Calendar time, market period and time-to-build.

Let us consider an infinite-horizon economy where the investment and consumption decisions of

a representative agent are taken along a discrete sequence of dates:

t, t+ h, t+ 2h, t+ 3h, ... = {t+ sh}s∈N

where t ∈ R is fixed initial time and the period length, h represents the minimum time interval

separating two different and not simultaneous economic decisions. We assume h to be an integer

sub-multiple of a chosen calendar time unit T , that is

h =
1

m
in T units

with m ∈ N an integer number.

Now we introduce time-to-build as a basic feature of the economy, and admit any investment

to yield new capital after a fixed time delay, whose length is equal to J when measured in calendar

time units. By assuming the time-to-build delay, J , to be a multiple of the period length h we

may write:

α · h = J

with α ∈ N an integer number. Combining the two expressions, we may easily observe that

J =
α

m
in T units

with α
m ∈ Q a rational number. We remark that the integer parameter α, whose value represents

the measure of J in terms of period units h, will be particularly relevant later when we will show

that the dynamics describing the discrete-time version of our model adds up to a difference

equations system of order 2α.

As an example, choose the calendar time unit T = 1 year, the period length h spanning two

months, and a time-to-build value J of two and a half years. With reference to the symbols

above one easily computes: h = 1
6T , m = 6, J = 15h = 15/6T = 2.5T .

In this context, the decisions’ frequency increases as the period length h decreases. As h

becomes smaller and smaller and converge to zero, we eventually arrive to a limit representation

of the model, where the decisions are taken continuously. We call this limit case the continuous-

time version of the model. It is also worth noting that, for any given J , the integer ratio α = J
h

will diverge to infinity, because any investment will yield new capital after an infinite number

of periods, whenever their length h tends to zero.5

4The proposed procedure to move correctly from discrete to continuous time can be easily extended to vintage

capital models (e.g. Boucekkine et al. [6], and [7]).
5Regarding this convergence-divergence procedure we stress that it will not depend on the specific form given

to the converging sequence {hk}.

3



2.2 From discrete to continuous-time

The capital accumulation equation of a neoclassical growth model with time-to-build and with

a constant return to scale Cobb-Douglas production function, is

Kt+J+sh = AhK
a
t+shL

1−a
t+sh + (1− δh)Kt+J+sh−h − Ct+sh (1)

where the depreciation rate of capital has been re-scaled as well as the technology parameter, the

latter to capture the production Yt+sh within the interval (t+ sh, t+ (s+ 1)h). The dimension

of the equation (1) is mJ which corresponds to the number of economic decisions which can be

taken between t and t+ J .

To complete the description of the economy we also assumed as in Hansen [15] an instan-

taneous utility function in consumption and labor which allows for indivisible labor supply.

After re-scaling the inter-temporal preference discount factor, the social planner problem for

this economy can be written as

max

∞∑
s=0

βsh[logCt+sh −BLt+sh] (2)

subject to the capital accumulation equation (1), given the (constant) initial conditions of capital

Ki = K̄, with i = t, t+ h, t+ 2h, . . . , t+ αh = t+ J

From the Lagrangian, the first order conditions with respect to Ct+sh, Lt+sh, and Kt+sh+J

are

βsh
1

Ct+sh
= µt+sh (3)

βshB = µt+sh(1− a)AhK
a
t+shL

−a
t+sh (4)

µt+sh = µt+sh+JaAhK
a−1
t+shL

1−a
t+sh + µt+sh+h(1− δh) (5)

where µt+sh is the Lagrangian multiplier. These first order conditions hold for any s ∈ N
and any t ∈ R+ ∪ {0}. Moreover the following intra-temporal substitution condition between

consumption and leisure and the Euler equation can be derived easily by (3), (4), and (5):

BCt+sh = (1− a)AhK
a
t+shL

−a
t+sh (6)

Ct+sh+h

Ct+sh
= βh

[
β
J
h
−1

h

Ct+sh+h

Ct+J+sh
aAhK

a−1
t+shL

1−a
t+sh + 1− δh

]
(7)

It is worth noting that the dimension of this discrete-time model is always finite and equal

to 2α.

Definition 1 An optimal equilibrium path of the economy is any sequence {Ct+sh}∞s=1,{Lt+sh}∞s=1,

and {Kt+sh+J}∞s=1, which satisfies equations (1), (6), and (7) plus the initial history of capital

and the transversality condition limt+sh→∞ µt+shKt+sh = 0 for any choice of s ∈ N, and any

t ∈ R+ ∪ {0}.

Finally, in order to deduce a continuous-time counterpart from the previous discrete-time

dynamical model, we study equations (1), (6) and (7) as the parameter h shrinks to zero.
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Proposition 1 Assume the flow variables to be constant within a period and a linear re-scaling

of the parameters. Then the continuous-time counterpart of equations (1), (6) and (7) is

K̇(t+ J) = AK(t)aL(t)1−a − δK(t+ J)− C(t) (8)

BC(t) = (1− a)AK(t)aL(t)−a (9)

Ċ(t)

C(t)
=

[
C(t)

C(t+ J)
e−ρJaAK(t)a−1L(t)1−a − δ − ρ

]
(10)

Proof. See Appendix

Remark 1 The procedure used to move to continuous time is theoretically consistent since equa-

tion (10) coincides with the Euler equation we would have obtained by

max

∫ ∞
0

[logC(t)−BL(t)]e−ρtdt

subject to the capital accumulation equation (8).

Remark 2 The dimension of the continuous time model becomes infinite since

2α = 2
J

h
→ +∞ as h→ 0

Then the dimension of the model in continuous-time is always infinite as also appears clear

from equations (8), (9), and (10) which form a system of mixed functional differential equations,

while the dimension of the same model in discrete-time is always finite and equal to 2α. This

difference in the dimensionality is not puzzling anymore and is coherent with the procedure used

to move from discrete to continuous-time.

Remark 3 All the results obtained in this section can be easily extended to a more general

framework with a neoclassical utility function and a neoclassical production function.

Remark 4 The model setup, formed by expressions (1) and (2), contains all the specifications

of time-to-build generally used by the literature under the assumptions of Proposition 1; in fact

a) If h = 1, the model describes an economy with gestation lags in production as in Kydland

and Prescott ;

b) If h → 0, the model describes an economy with gestation lags as defined by Kalecki [17]

and also recently used in growth models (e.g. Asea and Zak [2], and Bambi et al.[4]).

3 Transitional Dynamics

The transitional dynamics of the discrete-time model are studied under the assumptions of
Proposition 1. Our local analysis starts with a linearization around the unique steady state
(C∗,K∗) with

C∗ =
A(1− a)

B

aβ J
h
h (1 + ρh)

ρ+ δ

 a
1−a

and K∗ =

[
aβ

J
h
h (1 + ρh)

]
C∗

A(ρ+ δ)− δ
[
aβ

J
h
h (1 + ρh)

]
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of the system of equations (1), (6), and (7). After some boring algebra, we obtain

k̃t+sh − k̃t+sh−h
h

=
δ + ρ

a
β

1−J
h

h k̃t+sh−J − δk̃t+sh−h +

[
ρ+ δ

a2
β
−J
h

h − δ
]
c̃t+sh−J (11)

c̃t+sh+h − c̃t+sh
h

=
ρ+ δ

1− δh
c̃t+sh −

ρ+ δ

a(1− δh)
c̃t+sh+J (12)

where x̃ indicates the deviation of the variable x = logX with X = C, K from its steady

state value x∗. The characteristic equation associated to this system is the product of the

characteristic equation of the homogeneous part of (11) and (12):[
$α −$α−1

h
− δ + ρ

a
β1−α
h + δ$α−1

]
︸ ︷︷ ︸

=∆h
k($)

·
[
$ − 1

h
+

ρ+ δ

a(1− δh)
$α − ρ+ δ

1− δh
$

]
︸ ︷︷ ︸

=∆h
c ($)

= 0 (13)

where $ indicates a generic root of the polynomial ∆h
k($) ·∆h

c ($) whose order is 2α = 2mJ .6

If half of the roots of this polynomial are outside the unit circle then the Blanchard-Kahn [10]

condition for a unique equilibrium path is respected. However this condition can be verified

only numerically when the polynomial degree is sufficiently high.7 For example, when h = 1

quarter and the other parameters’ values are chosen as in the Kydland and Prescott’s quarterly

calibration (a = 0.36, δ = 0.025, and ρ = 0.01 to yield a return on capital of 1.625% when J = 4)

we find, for an initial 1% deviation of initial capital from the steady state, saddle-path stability

with consumption converging monotonically while capital converging by damping fluctuations

On the contrary, the local dynamics of the economy can be analytically derived in continuous-

time. By linearizing the system (8), (9), and (10) around the steady state we obtain

˙̃
k(t) =

δ + ρ

a
eρJ k̃(t− J)− δk̃(t)−

[
δ + ρ

a2
eρJ − δ

]
c̃(t− J) (14)

˙̃c(t) = (δ + ρ)c̃(t)− δ + ρ

a
c̃(t+ J) (15)

whose characteristic equation is[
λ− δ + ρ

a
eρJe−λJ + δ

]
︸ ︷︷ ︸

=∆k(λ)

·
[
z +

ρ+ δ

a
ezJ − (ρ+ δ)

]
︸ ︷︷ ︸

=∆c(z)

= 0 (16)

where λ and z indicate a generic root of the transcendental equations ∆k(λ) and ∆c(z) respec-

tively.8 It is worth noting that the system (14), (15) and the characteristic equation (16) are

the continuous-time counterpart of the system (11) (12) and its characteristic equation, (13),

which might well be alternatively obtained by computing the limit of the latter as h→ 0. The

change in dimensionality is now clear since the 2α-degree polynomial becomes the transcendental

equation, (16), having infinite roots as h→ 0.

6The characteristic equation (13) was obtained by searching solution of the form c̃t+sh = c̃0$
s and k̃t+sh =

$s+αk̃−α.
7For example the geometrical method proposed by Grandmont & al., [13] for investigating the stability of a

dynamical system can be applied in our case only when mJ ≤ 1.
8The distinction between λ and z is not essential but it will become useful in the proof of Proposition 2 in

order to find the equilibrium path of consumption and capital.
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From an application of the D-Subdivision method (see for example Bambi [3]) we can learn

a lot of information on the spectrum of eigenvalues of ∆k(λ) = 0 and ∆c(z) = 0. In particular

under the assumption that J ∈ (0, J̄), with J̄ the unique real root of J = 3aπ
2(δ+ρ)e

−ρJ , the

former has one positive real root, λv̂, and infinite many complex conjugate roots, λv = xv +

iyv, with negative real part, while the latter has one negative real root, ẑ, and infinite many

complex conjugate roots with positive real part. Taking into account these results the following

proposition can be proved:

Proposition 2 The equilibrium of the economy is locally determinate when J ∈ (0, J̄). More-

over the optimal path of consumption converges monotonically while the optimal path of capital

by damping fluctuations. Their functional forms are respectively

c̃(t) = c0e
ẑt with c0 = (ẑ − λv̂)h′(λv̂)nv̂ (17)

k̃(t) =

(
nv̂ − 2

+∞∑
v=1

c0Φ1,v

)
eẑt + 2

+∞∑
v=1

[(ςv + c0Φ1,v) cos yvt− (ωv + c0Φ2,v) sin yvt] e
xvt (18)

where nv = ςv + iωv indicate the eigenvector associated to the eigenvalue λv with v 6= v̂, while

Φ1,v and Φ2,v are constants. Moreover persistent endogenous fluctuations raise when J = J̄

through an Hopf-bifurcation.9

Proof. See Appendix

Comparing these results with those in the discrete framework with m = 1, we have also

verified numerically that the change in stability in discrete-time arrives at J0 with J0 =]J̄ [ where

]x[ indicates the smallest integer not less than or equal to x.10 It is also worth noting that for J =

2 the discrete-time model has always damping “improper oscillations” in capital because of the

presence of two negative and lower than one real roots,11 and for J = 1 monotonic convergence.

This discrepancy with the continuous-time case is due to the fact that the fluctuations arrive at

a frequency lower than 1 and then cannot be captured by the discrete-time model when m = 1.

More generally, monotonic convergence in discrete-time emerges as soon as J = h. These results

on stability have been verified for different parameterizations and summarized in the next table.

Finally we have studied if a reduction of the number of decisions, m, within a calendar-time

unit, assumed to be a quarter, may positively affect the amplitude of the output fluctuations

under the same calibration of the parameters and the initial condition of capital as before.

To this purpose, we have first calculated the output deviations from its steady state value for

different choices of m at some specific calender dates x. More precisely we have computed

ỹm(x) with m = 1, 20, 100, 300 and x = J, J + 1, J + 2, J + 3, 2J with J = 4 quarters. The last

choice has been made to focus on the time interval where the highest peak takes place. Then

we have found the percentage deviations D(m,x) = ỹm(x)−ỹ1(x)
y1(x) · 100 for the values of m and x

previously indicated and reported them in Figure 1. What emerges is that increasing the number

of operations within a calendar time unit leads to a higher output volatility. More precisely the

amplitude percentage difference may be up to 6% higher when we compare the discrete-time

9The Hopf bifurcation emerges because at J = J̄ the real part of two conjugate complex roots changes its sign.
10See also Bosi and Ragot [8] on the preservation of stability properties and bifurcations in the case of dis-

cretization of continuous-time models.
11The term “improper oscillations” is also used in Gandolfo [14], page 18, to distinguish this type of oscillations

from the trigonometric oscillations.

7



discrete-time continuous-time continuous-time

(period length h) (J 6= h→ 0) (J = h→ 0)

Local Stability

No Output Fluctuations J = h never always

Damping Output Fluctuations h < J < J0 0 < J < J̄ never

Persistent Output Fluctuationsc J = J0 =]J̄ [ J = J̄ never

Local Instability

Explosive Output Fluctuations J > J0 = h J > J̄ never

c The condition indicate the change from local stability to local instability which in continuous-time arrives

through an Hopf bifurcation.

model with m = 1 to the continuous-time model with m =∞.12 Intuitively, this result emerges

because the agents can increasingly smooth their consumption path as the number of decisions

within a calendar-time unit increases and by doing so the output will result more and more

volatile.

J J+1 J+2 J+3 2J
5%

5.2%

5.4%

5.6%

5.8%

6%

6.2%

x

D
(m

,x
)

 

 
m=20
m=100
m=300
m=∞

Figure 1: Number of economic decisions, m, per unit of calendar time and its effect at different

dates, x, on the output volatility, D(m,x).

12The continuous-time capital path (18) is approximated by computing the first 2000 roots around the imaginary

axis using the Lambert function (see for more details Jarlebring and Damm [16]).
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Appendix

Proof of Proposition 1. Firstly, the flow variable consumption is re-scaled by assuming a

constant rate of change through each unit of period length h:

Ct+sh =

∫ t+(s+1)h

t+sh
C(t+ sh, v)dv = hC(t+ sh)

Following the terminology used in Turnovsky [21], C(t+sh, v) indicates the planned (finite) con-

sumption rate for time v, chosen at time t+sh, while Ct+sh indicates the cumulated consumption

of the representative agent over the interval [t+ sh, t+ (s+ 1)h].

Secondly, the instantaneous rate of production is assumed to be constant over any calendar

time unitary interval. Hence the technological coefficients Ah and A - which appear into the

functions measuring, respectively, the economy cumulated output along any period length h and

the economy cumulated output along a calendar unitary interval - will be related by the simple

linear condition Ah = hA.

Finally a linear re-scaling of the other parameters leads to δh = hδ, and βh = 1
1+ρh .13

Then equations (1), (6) and (7) can be rewritten taking into account these two assumptions

and their continuous counterpart, namely (8), (9), and (10), can be easily obtained as h shrinks

to zero.

Proof of Proposition 2.

The spectrum of roots of the system is given by the union of the spectrum of roots of hk(λ),

and hc(z). Since the system is recursively solvable, it is possible to write any solution of (15)

using the finite Laplace transform method developed in Belmann and Cooke ([9], pp 197-205):

c̃(t) = lim
`→∞

∑
zm∈C`

ame
zmt (19)

where the contour C`, with ` = 1, 2, . . ., cuts the negative and positive imaginary axis to the

points −y`, and y`, respectively. Moreover am is the residue of the root zm and depends on the

boundary (initial) condition of consumption. Then the general convergent solution of consump-

tion can be obtained by ruling out all the roots with positive real part, imposing am = 0 ∀m 6= m̂,

and then rewriting (19) as

c̃(t) = am̂e
ẑt (20)

with ẑ the negative real root of hc(z). On the other hand, the spectrum of hk(λ) is characterized

by one positive real root and all the other complex conjugates and with negative real part when

J ∈
(
0, J̄

)
. The general solution of capital (Belmann and Cooke [9], and Bambi [3]) is

k̃(t) =

∞∑
v

nve
λvt −

∫ t

0
c(s)

∞∑
v

eλv(t−s)

h′λv
ds (21)

=
∞∑
v

nve
λvt −

∫ t

0
am̂e

ẑs
∞∑
v

eλv(t−s)

h′λv
ds (22)

=

∞∑
v

(nv + Pv)e
λvt −

∞∑
v

Pve
ẑt (23)

13It is worth noting that the parameters δ, ρ, β and their period length correspondents δh, ρh, βh are related

by the conditions: δh = 1− (1− δ)h, ρh = (1 + ρ)h− 1, and βh = βh. Hence, hδ and hρ are, respectively, the first

order approximations of the functions δh(δ) and ρh(ρ) in a neighborhood of zero, for any given h.
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where nv is the residue of the root λv, and Pv = am̂
(λv−ẑ)h′(λv) . Moreover capital convergence

requires that am̂ = c0 with

c0 = (ẑ − λv̂)h′(λv̂)nv̂ (24)

which is the unique condition to rule out the divergent solution induced by λv̂ and to make the

transversality conditions hold. Then the optimal path of consumption is monotonic.

On the other hand, (18) can be obtained applying several properties of complex numbers on

(23). After imposing am̃ = c0, the solution of capital writes

k̃(t) =
∞∑
v 6=v̂

(nv + Pv)e
λvt −

∞∑
v

Pve
ẑt (25)

where as shown in Bellman and Cooke [9] the residues are

nv =
k̄ + k̄(λv + δ)

∫ 0
−J e

−λvsds

1 + JΛe−λvJ
=
k̄
[
1 + (λv + δ)

(
− 1
λv

)
(1− eλvJ)

]
1 + JΛe−λvJ

(26)

with k̃(t) = k̄ ∈ R+ in t ∈ [−J, 0], and Λ = δ+ρ
a eρJ .

Now let us call ςv = Re(nv), ωv = Im(nv), λ = x+ iy and λ̄ its conjugate, we rewrite

∑
v

Pv = −nv̂ + c0

∞∑
v 6=v̂

(
1

(z̃ − λv)h′(λv)
+

1

(z̃ − λ̄v)h′(λ̄v)

)
(27)

which, after some algebra and taking into account the relation λ̄e−λ̄J + λe−λJ = 2[x cos yJ +

y sin yJ ]e−xJ , becomes ∑
v

Pv = −nv̂ + 2c0

∞∑
v 6=v̂

Φ1,v (28)

with

Φ1,v =
(ẑ − xv)(1 + JΓe−xvJ cos yvJ)− JΓyve

−xvJ sin yvJ

(ẑ2 − 2z̃xv + x2
v + y2

v)(1 + J2Γ2e−2Jxv + 2JΓe−xvJ cos yvJ)
(29)

Now let’s study the second piece of the solution of capital, namely∑
v 6=v̂

(nv + Pv)e
λvt =

∑
v 6=v̂

(
nve

λvt + n̄ve
λ̄vt
)

+
∑
v 6=v̂

(
Pve

λvt + P̄ve
λ̄vt
)

(30)

= 2
∑
v 6=v̂

[ςv cos yvt+ ωv sin yvt] e
−xvt +

∑
v 6=v̂

(
Pve

λvt + P̄ve
λ̄vt
)

(31)

which after some algebra and taking into account the trigonometric relations cos(a + b) =

cos a cos b− sin a sin b and sin(a+ b) = sin a cos b+ cos a sin b becomes∑
v 6=v̂

(nv + Pv)e
λvt = 2

∑
v 6=v̂

[(ςv + c0Φ1,v) cos yvt− (ωv + c0Φ2,v) sin yvt] e
xvt (32)

where

Φ2,v =
yv + JΓe−xvJ [(ẑ − xv) sin yvJ + yv cos yvJ ]

(ẑ2 − 2z̃xv + x2
v + y2

v)(1 + J2Γ2e−2Jxv + 2JΓe−xvJ cos yvJ)
(33)
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