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Abstract

A family of sets is intersecting if any two sets in the family intersect. Given a graph G
and an integer r ≥ 1, let I(r)(G) denote the family of independent sets of size r of G. For

a vertex v of G, let I(r)v (G) denote the family of independent sets of size r that contain v.
This family is called an r-star and v is its centre. Then G is said to be r-EKR if no
intersecting subfamily of I(r)(G) is bigger than the largest r-star, and if every maximum
size intersecting subfamily of I(r)(G) is an r-star, then G is said to be strictly r-EKR. Let
µ(G) denote the minimum size of a maximal independent set of G. Holroyd and Talbot
conjectured that if 2r ≤ µ(G), then G is r-EKR, and it is strictly r-EKR if 2r < µ(G).

This conjecture has been investigated for several graph classes, but not trees (except
paths). In this note, we present a result for a family of trees. A depth-two claw is a tree
in which every vertex other than the root has degree 1 or 2 and every vertex of degree 1
is at distance 2 from the root. We show that if G is a depth-two claw, then G is strictly
r-EKR if 2r ≤ µ(G) + 1, confirming the conjecture of Holroyd and Talbot for this family.

Hurlbert and Kamat had conjectured that one can always find a largest r-star of a
tree whose centre is a leaf. Baber and Borg have independently shown this to be false.
We show that, moreover, for all integers n ≥ 2 and d ≥ 3, there exists a positive integer r
such that there is a tree where the centre of the largest r-star is a vertex of degree n at
distance d from every leaf.
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1. Introduction

In this paper, we consider graph-theoretic versions of the following famous result of
Erdős, Ko and Rado [8]; the extremal case was characterized by Hilton and Milner [11].
A family of sets is said to be intersecting if any two sets in the family intersect.

EKR Theorem (Erdős, Ko, Rado [8]; Hilton, Milner [11]) Let n and r be positive
integers, n ≥ r, let S be a set of size n and let A be an intersecting family of subsets of
S each of size r. If n ≥ 2r, then

|A| ≤
(
n− 1

r − 1

)
.
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Moreover, if n > 2r the upper bound is attained only if the sets in A contain a fixed
element of S.

Throughout this paper, graphs are simple and undirected. Let Kn denote the com-
plete graph on n vertices, and let K1,n denote a claw. An independent set in a graph is
a set of pairwise non-adjacent vertices. Let µ(G) denote the minimum size of a maximal
independent set of G.

Given a graph G and an integer r ≥ 1, let I(r)(G) denote the family of independent

sets of G of cardinality r. For a vertex v of G, let I(r)v (G) be the subset of I(r)(G)
containing all sets that contain v. This is called an r-star (or just star) and v is its
centre. We say that G is r-EKR if no intersecting family A ⊆ I(r)(G) is larger than
the biggest r-star, and strictly r-EKR if every intersecting family that is not an r-star is
smaller than the largest r-star of I(r)(G).

The EKR Theorem can be seen as a statement about the maximum size of an inter-
secting family of independent sets of size r in the empty graph on n vertices. We quickly
obtain another formulation of the EKR Theorem by noting that an independent set of
the claw that contains more than one vertex contains only leaves.

Theorem 1.1. Let n and r be positive integers, n ≥ r. The claw K1,n is r-EKR if
n ≥ 2r and strictly r-EKR if n > 2r.

There exist EKR results for several graph classes. The reader is referred to [3] and
the references therein. The following was conjectured by Holroyd and Talbot [14].

Conjecture 1.1 (Holroyd, Talbot [14]). Let r be a positive integer and let G be a graph.
Then G is r-EKR if µ(G) ≥ 2r and strictly r-EKR if µ(G) > 2r.

This conjecture appears difficult to prove or disprove. The most important breakthrough
is a a result of Borg [2] that addresses a uniform version of Chvátal’s conjecture [6] and
confirms Conjecture 1.1 for every graph G satisfying µ(G) ≥ 3

2 (r − 1)2(3r − 4) + r. The
conjecture is also known to be true for many graph classes such as the disjoint union of
complete graphs each of order at least two, powers of paths [13] and powers of cycles [18].
See [5, 10, 12, 14, 15] for further examples.

A usual technique to prove results of this kind is to find the centre of the largest
r-star of a graph and this will prove useful to us. In this vein, Hurlbert and Kamat [15]
conjectured the following for the class of trees.

Conjecture 1.2 (Hurlbert, Kamat [15]). Let n and r be positive integers, n ≥ r. If T
is a tree on n vertices, then there is a largest r-star of T whose centre is a leaf.

They proved Conjecture 1.2 for 1 ≤ r ≤ 4 [15]. The conjecture does not, however,
hold for any r ≥ 5. This was shown independently by Baber [1] and Borg [4] who gave
counterexamples in which the largest r-star is centred at a vertex whose degree is 2.
Moreover, mindful of Conjecture 1.1, we remark that in the counterexample G in [1], the
value of r does not exceed µ(G)/2, while in the counterexample G in [5], 5 ≤ r ≤ µ(G).

1.1. Results

We consider a family of trees called depth-two claws. A depth-two claw has one vertex
that is its root. Every other vertex has degree 1 or 2 and every leaf is at distance 2 from
the root. We are now ready to state our first result.
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Theorem 1.2. Let r be a positive integer and let G be a depth-two claw. Then G is
strictly r-EKR if µ(G) ≥ 2r − 1.

Theorem 1.2 confirms (and is stronger than) Conjecture 1.1 for depth-two claws.
Our second result concerns the problem of trying to find the centre of a largest r-star

of a tree. We show that it can, in some sense, be located anywhere within a tree.

Theorem 1.3. Let n and d be positive integers, n ≥ 2, d ≥ 3. Then there exists a
positive integer r such that there is a tree where the centre of the largest r-star is a vertex
of degree n and at distance d from every leaf.

In the remaining sections we prove Theorems 1.2 and 1.3.

2. Depth-two Claws

In this section, we prove Theorem 1.2. We shall need two auxiliary results.

Theorem 2.1 (Meyer [17]; Deza and Frankl [7]). Let n, r and t be positive integers,
n ≥ r, t ≥ 2, and let G be the disjoint union of n copies of Kt. Then G is r-EKR and
strictly r-EKR unless r = n and t = 2.

For a family A of sets and a non-negative integer s, the s-shadow of A, denoted ∂sA,
is the family ∂sA = {S : |S| = s,∃A ∈ A, S ⊆ A}.

Lemma 2.1 (Katona [16]). Let a and b be non-negative integers and let A be a family
of sets of size a such that |A ∩A′| ≥ b ≥ 0 for all A,A′ ∈ A. Then |A| ≤ |∂a−bA|.

The proof of Theorem 1.2 is inspired by a proof of the EKR theorem [9]. To the best of
our knowledge, the proof is the first to make use of shadows in the context of graphs.

Proof of Theorem 1.2. Let c be the root of G and let n be the number of leaves of G.
Note that n = µ(G) so n ≥ 2r − 1. Let A ⊆ I(r)(G) be any intersecting family. Define
a partition B = {A ∈ A : c 6∈ A} and C = {A ∈ A : c ∈ A}.

Notice that each vertex in each member of B is either a leaf or the neighbour of a leaf.
For B ∈ B, let MB be the set of r leaves that each either belongs to B or is adjacent to
a vertex in B. We say that MB represents B. Let M = {MB : B ∈ B}. Note that each
member of M might represent many different members of B. In fact, consider M ∈ M.
It can represent any independent set that, for each leaf ` ∈ M , contains either ` or its
unique neighbour. There are 2r such sets but they can be partitioned into complementary
pairs so, as B is intersecting, the number sM of members of B that M represents is at
most 2r−1. We also note that M is intersecting (since B is intersecting). We have that

|B| =
∑

M∈M
sM ≤

(
n− 1

r − 1

)
2r−1, (1)

where the inequality follows from Theorem 2.1.
For B ∈ B, let NB be the set of n − r leaves that neither belong to B nor are

adjacent to a vertex in B. Notice that MB and NB partition the set of leaves. Let
N = {NB : B ∈ B}. For any pair B1, B2 ∈ B, we know that MB1

and MB2
intersect, so

|MB1
∪MB2

| ≤ 2r − 1. The leaves not in this union are members of both NB1
and NB2
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and there are at least n − (2r − 1) ≥ 0 of them. Thus we can apply Lemma 2.1 to N
with a = n− r, b = n− (2r − 1) to obtain

|N | ≤ |∂r−1N|. (2)

Notice that, by definition, ∂r−1N is a collection of sets of r−1 leaves each of which is, for
some B ∈ B, a subset of NB , and so is disjoint to MB and certainly does not intersect B.

Let us try to bound the size of C. Each C ∈ C contains a distinct set of r − 1 leaves.
We know this set must intersect every member of B so it cannot be a member of ∂r−1N .
Thus we find

|C| ≤
(

n

r − 1

)
− |∂r−1N|. (3)

We apply (2) to (3) and note that |N | = |M| to obtain

|C| ≤
(

n

r − 1

)
− |M|,

whence

|A| = |B|+ |C| ≤
∑

M∈M
sM +

(
n

r − 1

)
− |M|. (4)

If |M| >
(
n−1
r−1
)
, then combining (1) and (4) gives us

|A| ≤
(
n− 1

r − 1

)
2r−1 +

(
n

r − 1

)
− |M|

<

(
n− 1

r − 1

)
2r−1 +

(
n

r − 1

)
−
(
n− 1

r − 1

)
=

(
n− 1

r − 1

)
2r−1 +

(
n− 1

r − 2

)
. (5)

However, if |M| ≤
(
n−1
r−1
)
, then the upper bound in (5) can possibly be attained since

combining again (1) and (4) and recalling that sM ≤ 2r−1 for each M ∈M gives us

|A| ≤ |M|2r−1 +

(
n

r − 1

)
− |M| ≤

(
n− 1

r − 1

)
2r−1 +

(
n− 1

r − 2

)
. (6)

We are now ready to show that G is strictly r-EKR. If r = n then r = 1 so the
result trivially holds. Suppose r < n. Then, by Theorem 2.1, equality holds in (1) and
therefore also in (6) only if B is an r-star centred at a leaf x or a neighbour y of a leaf.

It follows easily that C = ∅ if A = I(r)y (G); thus A = I(r)x (G) as desired.

Remark. We demonstrate that if G is a depth-two claw with n leaves, then G is not
n-EKR by describing an intersecting family that is larger than the largest n-star. Let
c be the root of G and let G′ = G − c, a graph containing n copies of K2 each of
which contains one leaf of G. Clearly G′ contains 2n independent sets of size n which
can be partitioned into complementary pairs. Let B be a family of 2n−1 independent
sets of size n formed by considering each complementary pair and choosing either the
one that contains the greater number of leaves of G, or, if they each contain half the
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leaves, choosing one arbitrarily. Notice that B is intersecting but is not a star. Let
C = {C ∈ I(n)(G) : c ∈ C}. Clearly, |C| =

(
n

n−1
)

= n and for each pair C ∈ C, B ∈ B,
we have that C ∩ B 6= ∅. Thus if A = B ∪ C, then A is intersecting, maximal and
|A| = |B|+ |C| = 2n−1 + n. Thus A has one more element than the largest n-star in G.

The above remark together with Theorem 1.2 motivates the following conjecture.

Conjecture 2.1. Let n and r be positive integers, n > r, and let G be a depth-two claw
with n leaves. Then G is r-EKR.

3. Centres of Largest r-stars in Trees

An elongated claw has one vertex that is its root. Every other vertex has degree 1
or 2 (it is possible that the root also has degree 1 or 2). A vertex of degree 1 is called a
leaf. A path from the root to a leaf is a limb.

In this section, we prove Theorem 1.3. To do this, we need to define a family of trees.
Let n, k and a be positive integers. A (k, a)-claw is an elongated claw with k limbs
each of length a. The tree Tn,k,a contains, as induced subgraphs, n disjoint (k, a)-claws,
and one further vertex, the root of Tn,k,a, that is joined by an edge to the root of each
(k, a)-claw. Figure 1 shows T 5,2,3 as an example. We note that Baber [1] and Borg [4]
showed that Conjecture 1.2 is false by considering T 2,k,2.

Figure 1: T 5,2,3

The key to proving Theorem 1.3 is to show that, for certain values, the largest r-star
of Tn,k,a is centred at its root. Let Iroot(Tn,k,a) be the family of independent sets of
Tn,k,a that contain its root, and let Ileaf(Tn,k,a) be the number of independent sets of
Tn,k,a that contain a particular leaf (note that, by symmetry, the size of this family does
not depend on which leaf we choose). Notice that in these definitions, we are considering
independent sets of all possible sizes. In Lemma 3.3, we will think of |Iroot(Tn,k,a)| and
|Ileaf(Tn,k,a)| as sequences indexed by k with fixed n and a.

First we need some further definitions and lemmas. Let a be a non-negative integer.
Let Pa denote the path on a vertices. Let F (a) denote the number of independent sets
in Pa (notice that the empty set is an independent set of any graph). We state without
proof two simple observations.

Lemma 3.1. F (0) = 1, F (1) = 2 and, for a ≥ 2, F (a) = F (a−1)+F (a−2). Moreover,
for a ≥ 3, each vertex of degree 1 in Pa belongs to more independent sets than each vertex
of degree 2.
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We notice that (Fa) is, of course, the Fibonacci sequence (without the initial term).
We now prove a simple result about (k, a)-claws that we will use later.

Lemma 3.2. Let n, k and a be positive integers, let b be a non-negative integer and let
G be a graph that contains n − 1 disjoint (k, a)-claws. The number of independent sets
of G that each contain the roots of at least b of the (k, a)-claws is

n−1∑
i=b

(
n− 1

i

)
F (a− 1)ikF (a)(n−1−i)k.

Proof. Note that a (k, a)-claw with its root removed is k disjoint copies of Pa and so the
claw contains F (a)k independent sets that do not include the root. Similarly it contains
F (a−1)k independent sets that do include the root (in this case one considers the graph
obtained when the root and its neighbours are removed). This kind of argument recurs
many times in this section; we use it first to complete the proof of the lemma.

Each summand is the number of independent sets that contain exactly i of the roots:
the three factors count the number of ways of choosing i claws (whose roots will be in the
independent set), the number of independent sets in those chosen claws (given that their
roots are included) and the number of independent sets in the unchosen claws (given
that their roots are not included). Then the sum is over the possible values of i.

For a vertex v in a graph, we denote by N(v) the set of vertices that are adjacent to
v. For a graph G and a subset V of vertices in G, let G− V denote the graph obtained
from G by deleting the vertices in V together with their incident edges.

Lemma 3.3. Let a and n be positive integers, n ≥ 2, a ≥ 2. Then

|Iroot(Tn,k,a)|
|Ileaf(Tn,k,a)|

→ F (a− 1) + F (a− 2)

2F (a− 2)
as k →∞.

Proof. Let x be the root of Tn,k,a and let y be one of its leaves. We note that as k is not
fixed, we are concerned with finding properties not of a specific graph, but of the family
of graphs Tn,k,a for fixed n and a. So we might have written xk and yk to indicate that
when we choose a particular vertex, we must first fix which graph in the family we are
looking at. For simplicity, we avoid this explicit notation throughout.

Some notation to improve readability: let I(x) = |Iroot(Tn,k,a)| and I(y) = |Ileaf(Tn,k,a)|,
and let I(x, y) be the number of independent sets that contain both x and y.

We can say immediately that

I(x, y) = F (a− 2)F (a)nk−1 (7)

as we just need to count the independent sets in the graph obtained from Tn,k,a when
x and y and their neighbours are removed and this graph contains nk − 1 copies of
Pa and one copy of Pa−2. Let I ′(x) and I ′(y) be the number of independent sets that
contain x but not y, and y but not x, respectively; that is I(x) = I ′(x) + I(x, y) and
I(y) = I ′(y)+I(x, y). Let Tx = Tn,k,a−(N(x)∪{x, y}) and Ty = Tn,k,a−(N(y)∪{x, y}).
So I ′(x) is the number of independent sets in Tx and I ′(y) is the number of independent
sets in Ty. As Tx consists of nk− 1 disjoint copies of Pa and one copy of Pa−1, we have

I ′(x) = F (a− 1)F (a)nk−1. (8)
6



Evaluating I ′(y) will require a little more work. Notice that Ty contains n−1 disjoint
(k, a)-claws and one elongated claw C that has k − 1 limbs of length a and one limb of
length a− 2. Let R be the set of roots of the (k, a)-claws and let c denote the root of C.
We define a partition of the independent sets of Ty:

• S1 is the family of independent sets that do not contain any member of R nor c.

• S2 is the family of independent sets that contain c.

• S3 is the family of independent sets that do not contain c but intersect R.

So S1 contains independent sets of Ty − (R ∪ {c}), a graph that consists of nk − 1
disjoint copies of Pa and one copy of Pa−2. Thus we have, using also (7),

|S1| = F (a− 2)F (a)nk−1 = I(x, y). (9)

We will need the following observation:

|S1|
I ′(x)

=
F (a− 2)

F (a− 1)
. (10)

Next to find the size of S2 we must count the number of independent sets in Ty −
(N(c) ∪ {c}), a graph that contains k − 1 copies of Pa−1, n− 1 disjoint (k, a)-claws and
one copy of Pa−3 (if a ≥ 3), or one copy of Pa−2, the null graph, (if a = 2). Thus, noting
that F (a− 3) ≤ F (a− 2), we have

|S2| ≤ F (a− 2)F (a− 1)k−1
n−1∑
i=0

(
n− 1

i

)
F (a− 1)ikF (a)(n−1−i)k

where the sum is the number of independent sets in n − 1 disjoint (k, a)-claws (by
Lemma 3.2 with b = 0). Noting as before that F (a − 2) < F (a − 1) and that, for
all i,

(
n−1
i

)
≤
(

n−1
b(n−1)/2c

)
, we obtain

|S2| ≤ F (a− 1)k
n−1∑
i=0

(
n− 1

b(n− 1)/2c

)
F (a− 1)ikF (a)(n−1−i)k

= F (a− 1)kF (a)(n−1)k
n−1∑
i=0

(
n− 1

b(n− 1)/2c

)(
F (a− 1)

F (a)

)ik

≤ F (a− 1)kF (a)(n−1)k
n−1∑
i=0

(
n− 1

b(n− 1)/2c

)
.

So we can write

|S2| ≤ c2F (a− 1)kF (a)(n−1)k (11)

where c2 is a constant that does not depend on k.
Let us note now that, using (8) and (11), we have

|S2|
I ′(x)

≤ c2
F (a)

F (a− 1)

(
F (a− 1)

F (a)

)k
.
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Hence, since for a ≥ 2, F (a− 1) < F (a),

|S2|
I ′(x)

→ 0 as k →∞. (12)

And from (9) and (11), we have

|S2|
|S1|

≤ c2
F (a)

F (a− 2)

(
F (a− 1)

F (a)

)k
.

Hence

|S2|
|S1|

→ 0 as k →∞. (13)

To determine the size of S3, we must count the number of independent sets in Ty−{c},
a graph that contains one copy of Pa−2, k− 1 copies of Pa and n− 1 disjoint (k, a)-claws
that contain the root of at least one of the (k, a)-claws. Thus we have

|S3| = F (a− 2)F (a)k−1
n−1∑
i=1

(
n− 1

i

)
F (a− 1)ikF (a)(n−1−i)k

where the sum is the number of independent sets in n−1 disjoint (k, a)-claws that include
at least one of the roots (by Lemma 3.2 with b = 1). Reasoning as before, we find

|S3| ≤ F (a)k
n−1∑
i=1

(
n− 1

b(n− 1)/2c

)
F (a− 1)ikF (a)(n−1−i)k

= F (a)nk
n−1∑
i=1

(
n− 1

b(n− 1)/2c

)(
F (a− 1)

F (a)

)ik

≤ F (a)nk
n−1∑
i=1

(
n− 1

b(n− 1)/2c

)(
F (a− 1)

F (a)

)k
.

Thus we obtain

|S3| ≤ c3F (a− 1)kF (a)(n−1)k (14)

where c3 is a constant that does not depend on k. Comparing (11) and (14), we see that
the same arguments used to obtain (12) and (13) give us

|S3|
I ′(x)

→ 0 as k →∞, (15)

|S3|
|S1|

→ 0 as k →∞. (16)

We combine (10), (12) and (15) to find

I ′(y) + I(x, y)

I ′(x)
=

2|S1|
I ′(x)

+
|S2|
I ′(x)

+
|S3|
I ′(x)

→ 2F (a− 2)

F (a− 1)
as k →∞.
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And from (13) and (16), we have

I ′(y) + I(x, y)

I(x, y)
=

2|S1|
|S1|

+
|S2|
|S1|

+
|S3|
|S1|

→ 2 as k →∞.

Using these last two observations, we can complete the proof:

I(x)

I(y)
=

I ′(x)

I ′(y) + I(x, y)
+

I(x, y)

I ′(y) + I(x, y)

→ F (a− 1)

2F (a− 2)
+

1

2
=
F (a− 1) + F (a− 2)

2F (a− 2)
as k →∞.

The next lemma will also be used in the proof of Theorem 1.3.

Lemma 3.4. Let r be a positive integer, and let G be an elongated claw. Then there is
a largest r-star of G whose centre is a leaf.

Proof. Let v be a vertex of G that is not a leaf, and let L be the limb of G that contains
v (if v is the root, then L can be any limb). Let x be the leaf of L. We find an

injection f from I(r)v (G) to I(r)x (G) which proves that |I(r)x (G)| ≥ |I(r)v (G)| and the
lemma immediately follows.

Let w be the unique neighbour of x. Let A ∈ I(r)v (G).

1. If x ∈ A, then let f(A) = A.

2. If x 6∈ A and w 6∈ A, then let f(A) = A\{v} ∪ {x}.
3. If x 6∈ A and w ∈ A, then let X = {x = x1, x2, . . . , xm = v} be the set of vertices

in L from x towards v. Let A ∩X = {xi1 , . . . , xij} = Y for some m > j ≥ 1. Let
Z = {xi1−1, . . . , xij−1}. Observe that |Y | = |Z| and x ∈ Z since w ∈ Y . Then let
f(A) = (A ∪ Z)\Y .

To prove that f is injective we consider distinct A1, A2 ∈ I(r)v (G). If f(A1) and f(A2)
are defined by the same case (of the three above), then it is clear that f(A1) and f(A2)
are distinct. When they are defined by different cases, we simply note that in the first
f(A) always contains v, in the second f(A) contains neither v nor any of its neighbours,
and in the third f(A) contains a neighbour of v.

We note that Lemma 3.4 confirms Conjecture 1.2 for elongated claws.

Remark. The property of Lemma 3.4 is a much weaker version of the degree sort prop-
erty ; graphs have this property if the size of an r-star centred at u is at least the size
of an r-star centred at v whenever the degree of u is less than that of v. Hurlbert and
Kamat [15] observed that depth-two claws have this property. We note that not all
elongated claws possess it. For example, consider an elongated claw with three limbs of
lengths 1, 2 and 3. Then the 4-star centred at the neighbour of the root in the limb of
length 3 has size 2, but the 4-star centred at the leaf of the limb of length 2 has size 1. It
remains to determine which elongated claws — or, more generally, which trees — have
the degree sort property. We might also ask which trees have the following weaker prop-
erty: if i < j, then the size of the largest r-star of all those stars centred at vertices of
degree i is at least the size of the largest r-star of all those centred at vertices of degree j.
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Proof of Theorem 1.3. In the family of trees Tn,k,d−1, the root vertex has degree n and
is at distance d from every leaf. By Lemma 3.3, for sufficiently large k,

|Iroot(Tn,k,d−1)| > |Ileaf(Tn,k,d−1)|.

As Iroot(Tn,k,d−1) and Ileaf(Tn,k,d−1) are each the (disjoint) union, over all positive
integers r, of r-stars centred at, respectively, the root and the leaf, there must be some r
for which the r-star centred at the root is strictly larger than that centred at the leaf.

The theorem will follow if we can show that for any positive integer r, for any tree
Tn,k,d−1, and for any vertex w that is neither the root nor a leaf, the r-star centred at
w is no larger than an r-star centred at a leaf.

Let x be the root of Tn,k,d−1. Let C be the component of Tn,k,d−1−{x} that contains
w and let D be the union of the other components. Noting that C is an elongated claw,
let y be the leaf of the limb that contains w (or any limb if w is the root of C). Let
R(w) and R(y) be the number of independent sets of Tn,k,d−1 of size r that include x and
contain, respectively, w and y. Similarly let S(w) and S(y) be the number of independent
sets that contain, respectively, w and y, but that do not include x. For v ∈ {w, y}, we
can write

S(v) =

r∑
i=0

|I(i)v (C)| × number of independent sets of size r − i in D.

By Lemma 3.4, |I(i)y (C)| ≥ |I(i)w (C)| for all i, and, as the second term in the product
does not depend on v, we have that S(y) ≥ S(w).

Now we consider independent sets of size r that contain x. These can be bijectively
matched with independent sets of size r−1 in Tn,k,d−1−(N(x)∪{x}); this graph contains
nk copies of Pd−1. If w is the root of C it is not in this graph, and in this case R(w) = 0
and we are done. In all other cases, w and y belong to the same copy of Pd−1 which we
denote P . Let Q denote the union of the other paths. For v ∈ {w, y},

R(v) =

r∑
i=0

|I(i)v (P )| × number of independent sets of size r − i in Q.

As y is a vertex of degree 1 in P , by Lemma 3.1, v = y maximises |I(i)v (P )|. Again, the
second term does not depend on v so R(y) ≥ R(w) and the proof is complete.

3.1. Further Counterexamples

Let us finally remark that one can define a much broader class of trees with the
property that the largest r-stars are not centred at leaves (which therefore provides
further counterexamples to Conjecture 1.2) by, for example, taking copies of Tn,k,a and
adding an additional root vertex joined to the root of each Tn,k,a — and this process
of duplicating and joining (via a new root) can be repeated ad infinitum. Moreover, it
does not, in fact, matter which trees are used to initialize this process: if the number of
copies made is large enough a graph where the largest r-stars are not centred at leaves
is obtained. This does not ultimately add anything to the result stated in Theorem 1.3
so we omit further details.
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