
Bernstein - Bézier based finite elements for efficient

solution of short wave problems

A. El Kacimi1, O. Laghrouche2, M.S. Mohamed2, and J. Trevelyan3

1Laboratory of Modeling and Combinatorial, FP Safi, Cadi Ayyad University, Morocco
2Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS, UK

3Department of Engineering, Durham University, Durham DH1 3LE, UK

Abstract

In this work, the Bernstein-Bézier Finite Element Method (BBFEM) is implemented to solve
short wave problems governed by the Helmholtz equation on unstructured triangular mesh grids.
As for the hierarchical Finite Element (FE) approach, this high order FE method benefits from
the use of static condensation which is an efficient tool for reducing the total number of degrees
of freedom and bandwidth of high order FE global matrices. The performance of BBFEM with
static condensation (BBFEMs) is assessed via three benchmark problems and compared to that
of the Partition of Unity Finite Element Method (PUFEM) in terms of accuracy, conditioning
and memory requirement. Numerical results dealing with problems of Hankel sources interfer-
ence and wave scattering by a rigid cylinder on quasi-uniform mesh grids indicate that BBFEMs
is able to achieve a better accuracy but PUFEM is slightly better conditioned when the wave
is not well resolved. However, with a sufficient wave resolution, BBFEMs is better conditioned
than PUFEM. Results from L-shaped domain problem, with non quasi-uniform mesh grids,
show that the conditioning of BBFEMs remains reasonable while PUFEM with large numbers
of enriching plane waves on mesh grids locally well resolved leads to ill-conditioning.
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1 Introduction

The Helmholtz equation describes many wave problems in the frequency domain including wave
propagation, guiding, radiation and scattering. Owing to its ability in handling complex geome-
tries, material heterogeneity and anisotropy, the Finite Element Method (FEM) plays a key role in
a wide range of applications in acoustics, optics and electromagnetics, such as radar cross section
prediction, acoustic noise control and seismic wave propagation. However, designing an efficient and
reliable approximation method for wave problems at high frequency, where the pollution error dom-
inates the overall error of the FE solution, remains a crucial issue. With low order conventional
FE, the method requires many nodal points per wavelength to achieve an acceptable accuracy,
and hence yields prohibitively large computational costs. The works [1–3] have clearly shown the
challenging issues that are confronted when the finite element is used for solving the Helmholtz
equation. Related studies dealing with the dispersion behaviour of hp-FEM and high order Dis-
continuous Galerkin (DG) methods can be found in [4, 5].
With the aim to reduce the pollution effect, high order methods have been developed to cope with
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frequency limitation and high resolution requirement of low order methods. These include polyno-
mial based methods relying on the use of high order shape functions such as Lobatto, Bernstein
and Hermite polynomials or spectral elements. Assessment of various polynomial shape functions,
including Lagrange Gauss-Lobatto, integrated Legendre and Bernstein polynomials, for interior
acoustic problems in [6] have shown the advantage of high order polynomials in reducing the pollu-
tion error and the good performance of Bernstein polynomials when combined with Krylov subspace
solvers. It was concluded, however, that the stability of Krylov subspace methods deteriorates as
the polynomial order increases. Comparison studies with an emphasis on conditioning indicate
that high order elements based on Bernstein polynomials lead to low conditioning for the Laplace
operator [7]. The studies also indicate that condensed hierarchic finite elements lead to stiffness
matrices with better condition number than that of Gauss-Lobatto based spectral elements [8]. The
above mentioned investigations show that the choice of the polynomial FE basis is critical to the
stability and efficiency of the FE procedure. From a computational viewpoint, hierarchical basis
are often preferred when using the p-adaptivity. In fact, it is not required to reconstruct the entire
basis when the polynomial order is increased. High-order Lobatto polynomials were successfully
developed for two dimensional Helmholtz problems and three-dimensional acoustic applications
in [9, 10] and extended to the convected Helmholtz equation in [11]. A comparison study of the
performance of high order continuous and DG methods for two dimensional scattering problems
was performed in [12]. Related work dealing with complexity analysis in solving the resulting linear
systems is carried out in [13].
Another alternative to reduce the pollution effect has been the use of wave-based methods. The
common idea in these approaches is to include a priori knowledge about the wave behaviour in the
numerical scheme. For Helmholtz problems, this is usually achieved by incorporating plane waves or
Bessel functions locally in the approximated solution. These methods include the partition of unity
method [15–18], the generalised finite element method [21, 22], the variational theory of complex
rays [29] and other methods based on a DG framework such as the least-squares method [14], the
ultra weak variational formulation [19, 20] and the discontinuous enrichment method [23, 24]. For
comparative studies of the performance of such methods see [30, 31]. Other enrichment methods
relying on the DG framework are the oscillated FE polynomials [25] and the stable DG method [26].
Note that these methods differ from each other by the way inter-element continuity is enforced.
Wave based methods were also developed within the framework of the boundary element method
such as the partition of unity boundary element method [27] or the isogeometric wave-enriched
boundary element method [28].
The use of wave based methods is generally justified by the fact that the enriching wave functions
are solutions of the underlying equations and hence lead to better accuracy results compared to
polynomial based methods. A comparative study in [9] dealing with two-dimensional Helmholtz
problems shows that high order polynomial methods lead to comparable accuracy provided by wave-
based methods, or even better accuracy in some cases. Results obtained by the Spectral Element
Method (SEM) based on high order Lagrangian shape functions with Chebyshev-Gauss-Lobatto
nodal distribution were compared against PUFEM results in [32]. The case involving evanescent
waves indicates that SEM is able to achieve good accuracy but with a higher discretization level
compared to PUFEM.
Bernstein polynomials are widely used in the field of computer aided geometric design and com-
puter graphics. However, their use in the finite element community is generally investigated to a
lesser extent. Besides the works [6, 7] mentioned previously, simplicial Bernstein-Bézier FEs have
recently been studied in [42,43] with emphasis on fast procedures for evaluating mass and stiffness
matrices. Closely related studies in [44,45] show that high order Bernstein-Bézier FEs over simpli-
cial domains, hexahedra and pyramids, can yield optimal complexity for the standard FE spaces.
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The present work focuses on the implementation and performance of high order Bernstein-Bézier
FEs for solving Helmholtz problems on unstructured mesh grids. This high order scheme is con-
structed from the six-noded triangular element, where the mid-side nodes are used to represent
the edge degrees of freedom of Bernstein-Bézier elements. To carry out a fair comparison against
PUFEM, the resulting global matrices from both methods are assembled using coordinate storage
format and the same sparse direct solver is used for the solution of the corresponding linear sys-
tems. These of course require additional work on the PUFEM code that previously uses a steering
vector to locate global matrix entries and a profile matrix solver [46]. Three benchmark problems
are dealt with to provide a detailed comparison of these two higher-order methods in terms of
accuracy, conditioning and memory requirement.
The outline of the paper is as follows: After introducing the model problem in Section 2, detailed
descriptions of PUFEM and BBFEM are presented in Section 3. An overview of the solution
method is given in Section 4. In section 5, the benchmark problems and measures of performance
are described, followed by a comparison study of the performance of both higher-order methods.
Finally some concluding remarks are drawn in Section 6.

2 The model problem

For the sake of simplicity, we restrict ourselves to the following model problem governed by the
Helmholtz equation

−k2u−∆u = 0 in Ω (1)

∇u · n+ iku = g in Γ, (2)

where Ω is a bounded domain in R2, with a Lipschitz continuous and piecewise smooth boundary
Γ, n is the outer normal unit vector to Γ, g is a boundary data in L2(Γ), k > 0 is the wavenumber
and i is the imaginary unit.
Multiplying Equation (1) by a test function v, integrating by parts over Ω and taking into account
(2), yields the weak form of (1)-(2):

−k2
∫
Ω
uv̄ dΩ +

∫
Ω
∇u · ∇v̄ dΩ + ik

∫
Γ
uv̄ dΓ =

∫
Γ
gv̄ dΓ, ∀v ∈ H1(Ω), (3)

where v̄ is the complex conjugate of the test function v. Sound-soft (resp. sound-hard) boundary
condition, where u (resp. ∇u · n) is prescribed at a part of the boundary Γ may be used, and
an absorbing boundary or the Sommerfeld radiation condition may also be included in the case
of exterior domains. It is worth noting that PUFEM has been successfully implemented with
exact and approximate non-reflecting boundary conditions in [33]. To avoid additional sources
of numerical error in modeling an unbounded domain or curved boundary, when a high order
discretisation method is performed, a Robin boundary condition (2) is introduced to impose the
exact solution. Existence and uniqueness results for the variational problem (3) can be established
by using Fredholms alternative theorem [34] and continuation arguments [35].

3 High order discretisations

As usually done in FEM, the domain Ω is partitioned into a set of non-overlapping finite elements Te.
The discretisation parameter of the mesh grid is denoted by h. Since practical wave problems may
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involve domains with curved boundaries, the finite elements considered in this study are six-noded
triangles. Let T̂ be the reference element defined by

T̂ = {ξ = (ξ1, ξ2) : 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1− ξ1}. (4)

The geometry is described by the mapping x = Φe(ξ) between the global coordinates x = (x1, x2)
and the local coordinates ξ = (ξ1, ξ2):

Φe(ξ) =
∑
i

λi(ξ)(2λi(ξ)− 1)qi + 4
∑
i<j

λi(ξ)λj(ξ)qij , (5)

where qi and qij are the nodes of Te and λi, i = 1, · · · , 3 are the barycentric coordinates relative

to the reference element T̂ given by,

λ1(ξ) = ξ1, λ2(ξ) = ξ2 and λ3(ξ) = 1− ξ1 − ξ2. (6)

The important point to notice here is that the mapping Φe becomes affine if the nodes qij are

exactly the mid-points
qi+qj

2 .
The following subsections describe the high order dicretisation schemes used in this paper.

3.1 BBFEM approximation

In order to introduce Bernstein polynomials, multi-index notations are introduced. A d-dimensional
multi-index α in Zd

+ is a d-tuple α = (α1, α2, · · · , αd) of non-negative integers. The order of a multi-

index α, written |α| is given by |α| =
∑
i=1,d

αi. For a given pair α, β in Zd
+, their sum and difference

are defined component-wise by

α± β = (α1 ± β1, α2 ± β2, · · · , αd ± βd).

The factorial of a multi-index is defined by α! =
∏
i=1,d

αi!. The binomial and multinomial coefficients

are defined by (
α
β

)
=

α!

(β −α)!
,

(
|α|
α

)
=

|α|!
α

,

respectively. For ξ ∈ Rd, the power is defined by ξα =
∏
i=1,d

ξαi
i . Let us denote by Pp(T̂ ) the space

of polynomials of total degree at most p. The Bernstein polynomials of degree p ∈ Z+ associated
with the reference element T̂ , are defined by

Bp
α(ξ) =

(
p
α

)
λα(ξ), with α ∈ Ip

2 , (7)

where λ(ξ) = (λ1(ξ), λ2(ξ), λ3(ξ)) and Ip
2 is the index set

Ip
2 = {α ∈ Z3

+ : |α| = p}. (8)

Bernstein polynomials have many interesting properties: They form a basis of the space Pp(T̂ ), are
non-negative and form a partition of unity on T̂ . The BBFEM solution uh is sought element-wise
under the B-form

uh(x) =
∑
α∈Ip

2

uαB
p
α(ξ). (9)
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The properties of bivariate polynomials defined on a triangle and written in the B-form are ad-
dressed in [36]. These cover practical aspects related to the efficient evaluation of polynomials,
their derivatives, integrals and inner products.
At the element level, a numbering scheme of the local DoF should be used. For example, in the
case of a polynomial order p = 4, the numbering adopted here is illustrated in Figure 1.

Figure 1: Numbering scheme of the local degrees of freedom.

Vertex nodes have only one degree of freedom , namely, 1, 5 and 9, respectively. The mid-point
nodes (or the edges) possess p− 1 = 3 DoF. For instance, DoF attached to the edge (q̂1q̂3) are 10,

11 and 12. The element interior DoF 13, 14 and 15 have cardinality (p−2)(p−1)
2 = 3 and interact

only with the element itself and its nodes.
As for the classical H1-conforming p-FEM with hierarchical shape functions, the local Bernstein
shape functions given by (7) can be classified into three categories, which are the vertex, edge, and
bubble functions. The above structure of the local DoF is well adapted to a six-nodes triangular
mesh grid. For a polynomial order p ≥ 3, the number of DoF per element is given by

ne
dof = 3 + 3(p− 1) +

(p− 2)(p− 1)

2
. (10)

Bernstein polynomials provide a completely natural basis for non-uniform order polynomial ap-
proximation [37], where different polynomial orders may be attached to vertices, edges and the
element interior. The C0 conformity of BBFEM is ensured by matching edge modes of a similar
shape, based on a global orientation of the FE edges (see [38,39] for further details).
The global numbering convention used here consists in numbering all nodes first, where the mid-
points are used for the global edges, followed by the interior modes. This scheme is more suited
for the static condensation, which consists in removing interior modes from the resulting discrete
algebraic system during the assembling process. Once the solution related to the vertex and edge
modes is known, the solution for the interior modes can be recovered by solving small linear alge-
braic systems at an elemental level. This technique is very efficient in reducing the total DoF and
bandwidth of hp FE matrices.
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3.2 PUFEM approximation

Here, a brief description of PUFEM is given. The six-noded local shape functions of the reference
element T̂ defined by (4), which form a partition of unity, are enriched by using plane waves. The
PUFEM solution is defined on an element Te by

uh =
∑
i

mi∑
l=1

uli exp
(
ikx · dl

i

)
φi +

∑
i<j

mi,j∑
l=1

uli,j exp
(
ikx · dl

i,j

)
φi,j , (11)

where φi = λi(ξ)(2λi(ξ) − 1), φi,j = 4λi(ξ)λj(ξ), i = σe(i) and σe is the element mapping from
local to global node numbers. For simplicity, the unit plane wave directions dl

i and dl
i,j attached to

vertex and mid-point nodes, respectively, are chosen to be uniformly distributed on the unit circle.
The unknowns are here the wave amplitudes uli and uli,j . When a uniform enrichment by plane
waves is used, i.e., mi = mi,j for all nodes of the mesh grid, the parameter m is used for referring
to the common number of plane waves. At the element level, DoF are numbered in a natural way
as illustrated in Figure 2 and the C0 conformity of PUFEM is ensured.

Figure 2: Numbering scheme of the local degrees of freedom (case m = 6 shown).

The relative hp-FE error for Helmholtz problems in the H1-seminorm, on a uniform hp-mesh,
is bounded by [2]

|u− uh|1
|u|1

≤ C1

(
kh

2p

)p

+ C2k

(
kh

2p

)2p

, (12)

where the constants C1 and C2 are independent of kh. The first term on the right hand side in (12)
scales as the best approximation error. The second term is linked to the numerical pollution. It is
clearly seen from (12) that the overall error is dominated by this last term at high wave numbers.
Moreover, the pollution effect for p ≥ 2 is significantly reduced if kh

2p is small enough.
Suppose Ω is a simply connected bounded Lipschitz domain, star-shaped with respect to a ball

and that the exterior angle of Ω is bounded below by λπ, where 0 < λ < 1. Then, for any solution
u ∈ Hs(Ω), with s > 1, of the homogeneous Helmholtz equation, the following approximation
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property holds [40]

inf
um∈W (m)

∥u− um∥1 ≤ C

(
ln2m

m

)λ(s−1)

∥u∥s, (13)

where the constant C depends only on Ω, s and k. Here, Hs(Ω) is the usual Sobolev space of real
order s, endowed with its norm ∥ · ∥s and W (m) is the space spanned by m plane waves, chosen
uniformly distributed on the unit circle. Estimate (13) does not give an idea about the stability
of PUFEM. However, as it is well known from numerical experiments, this method performs very
well at a high wavenumber, for multi-wavelength sized elements.

4 Solution method

The approximation of the weak form (3) by either BBFEM or PUFEM yields the following algebraic
linear system

Au = b, (14)

with A is a ndof×ndof sparse, complex symmetric matrix and b is the right-hand side column vector
of Cndof , where ndof is the total number of DoF, and u is the unknown column vector of DoF. Let
us point out that the unconjugated formulation was used in PUFEM to guarantee the symmetry
of A.
The global matrix A and the right-hand side b entries are evaluated by assembling , in (symmetric)
coordinate format, the element contribution Ae and be. The element matrix has the following form

Ae = −k2M e +Ke + ikSe. (15)

Denoting by φe the column vector of the local shape functions, the element mass and stiffness
matrices in (15) can be written as

M e =

∫
T̂
φeφ

⊤
e det(Je) dξ (16)

Ke =

∫
T̂

[
J−1

e ∇φe

] [
J−1

e ∇φe

]⊤
det(Je)dξ. (17)

The element matrix Se and right hand side be are evaluated as

Se =

∫ 1

0
φeφ

⊤
e J

Γ
e dt (18)

be =

∫ 1

0
gφeJ

Γ
e dt. (19)

Here Je =
(
DΦe
Dξ

)⊤
denotes the Jacobian matrix, t is the parameter describing the edge para-

metric curve Γ̂e = Φ−1
e (Γe), where Γe is a physical edge lying on the Robin boundary, and

JΓ
e =

√
x′21(t) + x′22(t), with the prime denoting the derivative with respect to t.

The element integrals in expressions (16)-(19) are evaluated using high order Gauss-Legendre in-
tegration scheme. A large number of quadrature points will be needed, because of the presence
of high order polynomials and highly oscillating wave functions in the integrands of BBFEM and
PUFEM, respectively. It is worthwhile noting that for elements with straight edges the mapping Φe
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becomes affine, as previously mentioned, and analytical integration rules for BBFEM integrands as
discussed in [43, 44] may be used. For PUFEM integrands, the approach developed in [41] can be
extended to the six-noded element. In the presence of curved elements and/or varying coefficients,
the order of quadrature has to be increased to further capture the variation of the Jacobian and
involved coefficients. Fast quadrature procedures, based on the use of collapsed coordinates, which
take advantage of sum factorisation, are investigated in [43,44], but they are not used in this work.

5 Numerical examples

In this section, benchmark problems and measures of performance of BBFEM and PUFEM are
described. Then a comparison study on the performance of both high order methods is carried out
in terms of accuracy, conditioning and memory requirements.

5.1 Description of the benchmark tests

Three benchmark problems are considered to assess the performance of BBFEM and PUFEM in
terms of convergence, conditioning and memory requirements. These numerical tests involve ana-
lytical solutions enforced by using the Robin boundary condition (2). Examples of these solutions
are depicted for illustration purpose in Figure 3.

Figure 3: Examples of analytical solutions of the three benchmark problems, with ka = 20π: Hankel
sources (left), wave scattering (middle) and L-shaped domain (right).

The first benchmark problem deals with the interference of four radial sound sources placed
at different locations. The computational domain Ω has an annular shape with inner and outer
radii R and R + a, respectively. The sound sources are located at s1 = (0,−0.5), s2 = (0.5, 0),
s3 = (0, 0.5) and s4 = (−0.5, 0), and the analytical solution is given as the following sum of Hankel
functions of first kind and order zero

ua =
∑
i=1,4

H0(k|x− si|2), (20)

where | · |2 is the usual l2 norm. A sequence of ten mesh grids were used for this benchmark. The
coarse mesh grid M1 of Figure 4 which has a mesh size h = 0.75a/2 is gradually refined by using a
global refinement factor fn = 0.75a/n, with n = 4, 6, · · · , 18, 20.
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Figure 4: Typical unstructured mesh grids: M1, h = 0.75a/2 (left), M1/2, h = 0.75a/4 (middle)
and Mf , h = 0.75a/20 (right).

The second benchmark problem concerns the scattering of a horizontal plane wave by a rigid
circular cylinder of unit radius a, centered at the origin. The computational domain Ω is the same
as the one previously considered in the first benchmark, and the analytical solution is given by

ua = −
∞∑

m=0

ϵmim
J′m(ka)

H′
m(ka)

Hm(kr) cos(mθ), (21)

where (r, θ) denotes the polar coordinates system, ϵ0 = 1, ϵm = 2 for m ≥ 1, Jm and Hm are
respectively the Bessel and Hankel functions of the first kind and order m. The infinite expansion
involved in (21) is truncated and a finite number of terms, denoted Nt, is chosen such that Nt ≃ ka.
It is well known that the performance of high order methods deteriorates substantially with the
presence of non-smooth solutions. Both high order FE [51] and wave based [9, 55] methods fail to
achieve a fast convergence. The specific case examined here is a non-smooth wave problem due to
a re-entrant corner. The analytical solution is given by

ua = Jα(kr) sin(αθ), 0 ≤ θ ≤ π

α
,

where α = 2/3 and Jα is the Bessel function of the first kind, with a non integer order α. Since α < 1,
the first derivatives of ua have a singularity at the origin. In contrast with the previous benchmarks,
where analytical regularity holds, the Helmholtz solution of the L-shape domain problem has only
Hα+1−ϵ(Ω) regularity (for any ϵ > 0) [47]. For such type of problems, the convergence rate of high
order methods deteriorates. To alleviate this issue, local quasi-uniform meshing with refinement
around the re-entrant corner is used. References on alternative approaches, such as geometrical
mesh refinement, conformal mappings and enrichment methods, with basis functions including the
form of singularity, can be found in [38].
Four mesh grids are used for this benchmark problem (see Figure 5). The mesh gridML

1 is gradually
refined by a factor of 1/10 around the re-entrant corner (0, 0).
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Figure 5: Typical unstructured non quasi-uniform mesh grids of the L-shaped domain: ML
i (left),

i = 1, · · · , 4.

5.2 Measures of Performance

The benchmarks described above depend on a number of parameters; namely, the wavenumber k,
the mesh size h, the polynomial order p and the number of plane waves m. When keeping the mesh
grid fixed, q-refinement refers to the increase or the decrease of either p or m. The wave resolution
is measured by

τλ = λ

√
ndof

|Ω|
, (22)

where |Ω| is the surface area of Ω. The indicator τλ represents the number of DoF per wavelength
λ. Let us point out that when BBFEMs (with static condensation) is used, the internal bubble
degrees of freedom are not included in ndof. The accuracy of the numerical solution is assessed by
the following relative L2 error

ε2 =
∥uh − ua∥0

∥ua∥0
× 100%, (23)

where ∥·∥0 is the usual norm of L2(Ω). Both BBFEM and PUFEM yield a sparse linear system, with
a symmetric complex valued matrix. The resulting linear system is solved by using the multi-frontal
sparse direct solver MUMPS [48], interfaced with METIS package [49] to reduce the bandwidth
and the extra fill-in of the global matrix. To assess the cost of the solution processing, the following
outputs provided by MUMPS are reported:

• The number nnz of non-zero entries in the global matrix.

• The number nf of entries in factors.

• The space in MBytes needed during the factorisation step.

Although high order methods lead to a high level of accuracy, computing the solution of their
associated linear systems can be challenging, because of the specific sparsity pattern and large
bandwidth of the resulting global matrix.
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Figure 6: Examples of sparsity pattern of the global matrices before and after METIS based
reordering: PUFEM (left), BBFEMs (middle), BBFEM (right).

Sparsity patterns of Figure 6 were obtained for a mesh grid of a square domain consisting of 4
elements and 13 nodal points, with m = p = 4. It is obvious that PUFEM has a denser sparsity
pattern compared to BBFEM and BBFEMs. Moreover, with the help of static condensation, the
total number of DoF needed in BBFEM is significantly reduced. The advantage of reordering in
reducing the bandwidth is clearly seen.
When a sparse direct solver is used, the numerical pivoting may lead to significant extra fill-in. To
investigate this issue, the percentage of fill-in in the global matrix defined by

pf =
nf

n2
dof − nnz

× 100% (24)

is introduced. Another useful indicator is the condition number of the resulting linear system, it is
also provided by MUMPS solver and is given by

κA,b =
| |A| |A−1| |x̂|+ |A−1| |b| |∞

|x̂|∞
, (25)

where x̂ is the calculated solution, | · |∞ is the usual l∞ norm, |A| = (|Aij |) and |b| = (|bi|). Further
details on the above condition estimate can be found in [50].

5.3 Interference of Hankel sources

For this problem, dealing with the interference of Hankel sources, two types of analysis are carried
out. In the first analysis, the polynomial order p for BBFEM and the number m of approximating
plane waves are increased. In the second analysis, the influence of the mesh size h is considered.

5.3.1 Convergence and conditioning analysis: q-refinement

First, a comparison study of BBFEM and BBFEMs is presented. The numerical experiments are
performed on the coarse mesh gridM1 (see Figure 4), at fixed wavenumbers ka = 10π and ka = 15π,
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by increasing the polynomial order p. The relative L2 error ε2 and the condition number κA,b are
plotted against p in Figure 7, for the wavenumber ka = 10π.
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Figure 7: The L2 error (left) and condition number (right) versus p; h = 0.75a/2 and ka = 10π.

It is observed on Figure 7(a) that BBFEM and BFFEMs lead to similar convergence results.
Moreover, the relative L2 error of both schemes decays exponentially, provided the order p is
below a prescribed upper bound. As expected for high order methods, the condition number grows
exponentially with the polynomial order p (see Figure 7(b)). At a first glance, it is expected to
obtain a low condition number, when static condensation is performed, but the results of Figure
7(b) show that the condition number of BBFEMs is higher than that of BBFEM by one order of
magnitude. With further increase of the polynomial order, p > 16, the effect of ill-conditioning is
clearly seen with a slow decay of the relative L2 error of BBFEM and its deterioration when static
condensation is used. These results indicate that this procedure which involves the inversion of the
block matrix

Be = −k2
∫
T̂
φb

eφ
b⊤
e det(Je) dξ +

∫
T̂

[
J−1

e ∇φb
e

] [
J−1

e ∇φb
e

]⊤
det(Je) dξ, (26)

may suffer from ill-conditioning for high polynomial orders. Note that Be is nearly singular if k2

is an eigenvalue of the Dirichlet Laplacian operator. Here φb
e is the column vector of bubble local

shape functions. Following an idea developed in [57], a rule to avoid a breakdown of condensation
may be obtained. For simplicity, suppose Te is a triangle with straight edges. Using Pólya’s
inequality [58]

µ1|Te| ≥
4π2

√
3
, (27)

which gives a lower bound on the first Dirichlet eigenvalue, and the fact that µh
1 ≥ µ1 and |Te| ≤ h2,

a sufficient condition to avoid a breakdown of condensation is

kh ≪ 2π

√
1√
3
≃ 1.52π. (28)

This ill-conditioning issue is very pronounced for high polynomial order p with a poor grid reso-
lution on a coarse mesh, where the discrete resonant frequencies of Be have cardinality equal to
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(p − 2)(p − 1)/2. In practice, as the polynomial order increases, the computational cost of elimi-
nating and recovering bubble degrees of freedom grows substantially and may dominate the overall
computational cost of the solution process. Moreover, the computational cost of the full BBFEM
use, without condensation, is noticeable because the order of the bubble block matrices scales as
p2 and yields a global matrix with a large bandwidth. Therefore, it is believed that BBFEMs may
guarantee a trade off between efficiency and accuracy, provided a moderate polynomial order is
used. In 3D applications, where the order of the bubble block matrices scales super-linearly as p3,
static condensation can be efficiently performed in parallel to mitigate the computational burden
related to the elimination and recovery of condensed degrees.

Similar numerical experiments are conducted by further increasing the wavenumber ka to 15π
and using mesh grid M1/2, whose elements may contain up to h/λ ≃ 2.81 wavelengths. Results of
Figure 8(a) exhibit the same trend shown previously. However, the exponential rate of decay of
the L2 error is lower, compared with the case of Figure 7(a). This is not surprising because, for a
fixed grid resolution, the polynomial order has to be further increased as the wavenumber increases
to achieve a given accuracy. Although the condition number of BBFEMs is comparable to that of
BBFEM, with some low amplitude peaks (see Figure 8(b)), the accuracy of BBFEMs deteriorates
for large polynomial orders. An in-depth investigation of the bubble matrix Be spectrum may
help to understand the behaviour of the conditioning of BBFEMs with respect to the wavenumber,
polynomial order and element mesh size.
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Figure 8: The L2 error (left) and condition number (right) versus p; h = 0.75a/2 and ka = 15π.

Next, the performance of BBFEMs is compared against PUFEM in terms of convergence rate,
conditioning and memory requirement. The same parameters for the mesh grid and wavenumber
are used. At a fixed mesh size h = 0.75a/2 and wavenumber ka, the polynomial order p and number
m of plane waves are increased. In Figure 9, the condition number κA,b and number nnz of non
zero entries in the global matrix are plotted against the L2 error ϵ2, for the wavenumber ka = 10π.
In the preasymptotic region, i.e., ϵ2 ≥ 0.1%, both BBFEMs and PUFEM lead to a comparable
level of the conditioning while, on the contrary, the conditioning of PUFEM is up to four orders
of magnitude larger than that of BBFEMs in the asymptotic region (see Figure 9(a)). A notable
saving is also achieved, in term of the number of non zero entries in the global matrix of BBFEMs
(see Figure 9(b)).
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Figure 9: The condition number (left) and number of non zero entries nnz (right) against the L2

error; h = 0.75a/2 and ka = 10π.

In the same manner, numerical experiments are carried out for the wavenumber ka = 15π.
Results of Figure 10 exhibit similar trends for the convergence rate and conditioning. Compared
with the previous case (Figure 9(a)), the results show a decrease of the condition number by two
orders of magnitude in the asymptotic region. In fact, this was expected as the condition number
decreases with the wavenumber. Again, a notable saving in the number of non zero entries is also
achieved in the global matrix of BBFEMs. In contrast to PUFEM, the ill-conditioning issue related
to static condensation with a high polynomial order restricts the use of BBFEMs for tackling wave
problems with multi-wavelength sized elements, where a further increase of the polynomial order
is needed to improve the wave resolution.
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Figure 10: The condition number (left) and number of non zero entries nnz (right) against the L2

error, for a mesh size h = 0.75a/2; ka = 15π.

5.3.2 Convergence and conditioning analysis: h-refinement

The approach adopted in this study is inspired from [9]. BBFEMs is compared against PUFEM, for
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fixed polynomial orders and numbers of enriching plane waves by varying the mesh resolution, for
the wavenumbers ka = 25π and ka = 50π, where the pollution error may affect the accuracy. The
numerical experiments are performed on the sequence of mesh grids from M1 to Mf (see Figure
4). The L2 error and condition number are plotted against the number τλ of DoF per wavelength,
in Figure 11, for the wavenumber ka = 25π. The polynomial order p and number m of enriching
plane waves are indicated on each curve. As expected, both methods lead to a low number of DoF
per wavelength as the polynomial order or the number of plane waves increase. For instance, to
achieve an engineering accuracy of around 1%, using PUFEM, it is better to use a relatively coarse
mesh and take a large number of plane waves, m = 12, which leads to τλ ⋍ 4, while a finer mesh
grid with a low number of plane waves, m = 4, requires τλ ⋍ 8. However, BBFEMs requires only
τλ ⋍ 2 with a polynomial order p = 12 (see Figure 11(a)). It is also observed from Figure 11(a)
that BBFEMs enters the asymptotic regime with a low number of DoF per wavelength and has a
better algebraical decay rate compared to that of PUFEM. A fast increase of the condition number
of PUFEM with respect to the number of DoF per wavelength is observed in Figure 11(b), while
it remains below an upper bound with BBFEMs. The effect of ill-conditioning on the accuracy of
PUFEM is also seen with a further increase of both grid resolution and number of plane waves.
This problem is commonly known in PUFEM to be related to the use of a large number of enriching
wave functions on small size elements compared to the wavelength [56]. However, the conditioning
of PUFEM when the wave is not sufficiently well resolved is better. It is worth noticing that with
a poor grid resolution, resonant frequencies may affect the conditioning of the bubble matrices Be

and consequently it also affects the conditioning of the condensed global matrix.
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Figure 11: The L2 error (left) and condition number (right) against τλ; ka = 25π. Solid lines
(PUFEM), dashed lines (BBFEMs).

Results for the wavenumber ka = 50π are illustrated in Figure 12. They show a similar trend
of the L2 error decay with respect to τλ to that seen for the case of ka = 25π (see Figure 12(a)).
Moreover, a decrease of the condition number of both schemes with the wavenumber ka is clearly
observed in Figure 12(b), compared to the results of Figure 11(b). Unless a high accuracy solution
is sought, the conditioning of PUFEM is clearly better. Similar observations were made in [9],
with high order Lobatto polynomials and wave based methods.
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Figure 12: The L2 error (left) and condition number (right) against τλ; ka = 50π. Solid lines
(PUFEM), dashed lines (BBFEMs).

Here the performance of PUFEM and BBFEMs in term of memory requirements is further
examined. Figure 13 shows the required factorisation memory in MBytes to achieve a prescribed
accuracy, for different polynomial orders. For the sake of clarity, results corresponding to m = p = 6
are not included. It is obvious that high order methods require less memory than low order ones
to achieve a given accuracy. Moreover, compared to PUFEM, BBFEMs yields significant saving in
term of factorisation memory.
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Figure 13: Factorisation memory versus the L2 error. Solid lines: PUFEM; dashed lines: BBFEMs

5.4 Wave scattering by a rigid cylinder

The numerical experiments in this benchmark problem are performed on the same sequence of grad-
ually refined mesh grids depicted in Figure 4. Once again, BBFEMs is assessed against PUFEM,
in the same way followed in Subsection 5.3.2, with the wavenumbers ka = 25π and ka = 50π. For
these values of ka about of Nt = 87 and Nt = 175 modes are included, respectively, in the wave
scattering analytical solutions. Figures 14 and 15 show the L2 error and condition number versus
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the number τλ of DoF per wavelength. Similar trends of the L2 error decay and condition number
increase with respect to τλ can be observed, compared to the results of the previous benchmark
problem, and the overall conclusions are:

• The L2 error decay of BBFEMs is better compared to that of PUFEM.

• PUFEM yields a low condition number with a poor grid resolution.

• For a well resolved solution, the conditioning of BBFEMs stays acceptable, while that of
PUFEM grows significantly.
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Figure 14: The L2 error (left) and condition number (right) against τλ; ka = 25π. Solid lines:
PUFEM; dashed lines: BBFEMs
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Figure 15: The L2 error (left) and condition number (right) against τλ; ka = 50π. Solid lines:
PUFEM; dashed lines: BBFEMs

5.5 L-shaped domain problem

The problem of wave scattering at corners has been dealt with by several authors. Its solution
presents a singularity and the proposed solution models have been enriched by fractional order
Bessel functions emanating from the corners [59–62].
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The numerical experiments in this test problem are performed on the four mesh grids depicted
in Figure 5. First, results using a uniform q-refinement are presented. It is worth noticing that the
number τλ of DoF per wavelength cannot be used as an indicator for this benchmark test, as the
mesh grid is not quasi-uniform. Figure 16 shows the L2 error and condition number against the
number nnz of non zero entries in the global matrix, for the wavenumber ka = 10π. It is observed
from Figure 16(a) that with both methods the fast decay of the L2 error is lost. Moreover, the
accuracy of the two schemes cannot be further enhanced with a low grid resolution around the
corner, even if the polynomial order or the number of enriching plane waves are increased. This
behaviour is expected for problems with non-smooth solutions, where the error due to the singularity
predominates the overall numerical error (see [38,51]). It is also observed that the accuracy of both
methods improves by a local h-refinement around the corner, but an adaptive choice of the number
of enriching wave functions is needed within PUFEM to avoid the high level of conditioning (see
Figure 16(a)) related to the use of a large number of plane waves on small size elements, compared
to the wavelength.
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Figure 16: The L2 error (left) and condition number (right) versus the number of non zero entries
nnz in the global matrix; k = 10π. Solid lines: PUFEM; dashed lines: BBFEMs

Now, numerical results using a non uniform q-refinement are given. The adopted approach here
is based on a priori information indicator, which is the local wave resolution defined by

rTe =
hTe

λqTe

, (29)

where hTe is an element mesh size and qTe refers to the largest polynomial order or the number
of plane waves attached to a triangular element Te. Initially, a fixed refinement parameter q0Te

is
chosen. In the finer region of the mesh grid, where the preasymptotic condition

hTe

λ
≤ 1

10
(30)

holds, the number qTe is set equal to 2. This means that the element mesh size hTe is at least
one order of magnitude smaller than the wavelength λ. When PUFEM is adopted, the carried out
numerical experiments indicate that for an element Te such that 1

10 <
hTe
λ ≤ 1, the parameter qTe can

be increased in a linear way from 2 to the value q0Te
used in the coarse region, by keeping rTe ≃ 1

20 ,
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i.e. the same ratio of the preasymptotic condition. More precisely, in the region n
10 <

hTe
λ ≤ n+1

10 ,
with 1 ≤ n ≤ 9, the parameter qTe is chosen such that

qTe =
1

rTe

hTe

λ
≃ 20× n

10
= 2n. (31)

In the case where the integer n >
q0Te
2 , the rule (31) is not used and the parameter qTe is set equal

to q0Te
. Let us point out that the polynomial order of BBFEMs still contributes in improving the

overall error outside the preasymptotic region so that only the rule (30) is considered. Regarding
conformity, it is automatically fulfilled for PUFEM and BBFEMs, as the polynomial order and
number of enriching plane waves are attached to vertex and edge elements.
Comparison results for PUFEM in terms of the L2 error and condition number against the number
nnz of non zero entries are shown in Figure 17, for the wavenumber ka = 20π with q0Te

= 14. In
a similar way, comparison results for BBFEMs are depicted in Figure 18, where PUFEM(A) and
BBFEMs(A) refer to the same schemes with a non uniform q-refinement.
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Figure 17: The L2 error (left) and condition number (right) versus nnz; k = 10π. Solid lines:
BBFEMs (uniform q-refinement); dashed lines: BBFEMs(A) (non uniform q-refinement, with m =
14)

The advantage of non uniform q-refinement for BBFEMs in reducing the total number of DoF
is seen in Figure 17(a) and Figure 17(b), as the grid resolution around the corner is increased, while
the accuracy and conditioning remain practically unchanged. Within PUFEM, in addition to the
significant reduction of the total number of DoF, there is an improvement of both conditioning and
accuracy as it can be seen in Figure 18(a) and Figure 18(b). A method to achieve a fast convergence
rate for such adaptive procedures consists to use geometrically refined meshes, with an appropriate
p-adaptivity [52–54].
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Figure 18: The L2 error (left) and condition number (right) versus nnz: k = 10π. Solid lines:
PUFEM (uniform p-refinement); dashed lines: PUFEM(A) (non uniform q-refinement, with p = 14)

Significant extra fill-in is observed, particularly when solving the L-shaped domain problem
using PUFEM, on non quasi-uniform mesh containing small size elements, compared to the wave-
length, around the re-entrant corner. This is examined for both methods and Table 1 shows the
percentage pf of fill-in for different mesh grids, computed from expression (24), for the wavenumber
ka = 20π with and without q-enrichment, and the number of plane waves m = 14. As the grid
resolution increases around the corner, Table 1 indicates an increase of the extra fill-in by up to
10%. This issue which may lead to memory resources limitation problem, when using a direct
sparse solver based on LU factorisation, is often characterised by a high level of conditioning as it
is shown previously. Similarly, results obtained with BBFEMs, for the wavenumber ka = 20π and
polynomial order p = 14, are reported in Table 2. In contrast to PUFEM, the extra fill-in issue is
not very pronounced when using BBFEMs, as it can be observed from Table 2.

PUFEM PUFEM (A)

Mesh grids ndof nnz nf pf [%] ndof nnz nf pf [%]

ML
1 4,046 303,177 688,513 4.28 4,046 303,177 688,513 4.28

ML
2 10,402 807,723 3,388,470 3.15 10,129 770,552 3,144,931 3.08

ML
3 19,026 1,494,507 19,611,104 5.44 13,307 901,599 4,373,165 2.48

ML
4 28,910 2,281,881 80,948,557 9.71 14,853 927,986 4,805,137 2.18

Table 1: Percentage of fill-in in the global matrix before and after applying non uniform q-refinement
for PUFEM; m = 14 and ka = 20π.
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BBFEMs BBFEMs (A)

Mesh grids ndof nnz nf pf [%] ndof nnz nf pf [%]

ML
1 2,785 94,513 215,123 2.81 2,785 94,513 215,123 2.81

ML
2 7,283 254,516 810,367 1.53 7,283 254,516 810,367 1.53

ML
3 13,395 472,518 1,710,529 0.95 11,679 404,232 1,378,016 1.01

ML
4 20,401 722,473 2,812,589 0.67 12,661 418,831 1,497,450 0.93

Table 2: Percentage of fill-in in the global matrix before and after applying non uniform q-refinement
for BBFEMs; p = 14 and ka = 20π.

The benefit of using non uniform q-refinement is well illustrated based on a simple indicator.
This motivates the investigation of efficient adaptive methods and/or a posteriori indicators, in
order to provide an automatic choice of the polynomial order and elements mesh size for a given
wavenumber, leading to a better accuracy with a reduced total number of DoF.

6 Conclusions

In this work, numerical aspects of BBFEM on unstructured triangular mesh grids are investigated.
This high order scheme has been compared against PUFEM to assess its performance based on
three benchmark problems. The key technique to obtain a good performance from BBFEM is the
use of static condensation. A surprising outcome of this comparative study was that the condi-
tioning of PUFEM was found to be acceptable and slightly better when the wave pattern is not
well resolved. However, as the wave resolution increases the conditioning of PUFEM deteriorates.
Furthermore, BBFEM with static condensation is able to provide good quality results. In gen-
eral, it can be concluded that high order methods are more accurate and effective in coping with
the pollution effect than low order methods. The results of benchmark tests have highlighted the
benefit of BBFEM in reducing memory requirements and its flexibility in dealing with non-smooth
problems by using local h-refinement. PUFEM, however, requires an adaptive approach to alleviate
the ill-conditioning and extra fill-in issues.
An important question for future investigation is to determine an alternative FE formulation allow-
ing numerical dissipation to enhance the stability of static condensation in order to allow a further
increase of the polynomial order and hence tackle the case of multi-wavelength sized elements. It
would also be useful to develop efficient adaptive methods and/or a posteriori indicators, such as
those devised for FE Helmholtz problems in [10,63], to render BBFEM more competitive for wave
problems with varying and eventually discontinuous wavenumber, where non quasi-uniform mesh
grids are needed. In 3D Helmholtz applications, it is expected to obtain similar trends when com-
paring PUFEM and BBFEMs in terms of conditioning and accuracy. Finally, it is worth noticing
that there are closed form expressions for the evaluation of the mass and stiffness element matrices,
involving Bernstein polynomials, over a simplex. In the presence of simplices with curved edges
and/or variables coefficients, fast and efficient quadratures available in the literature [43,44] can be
used.
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