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Abstract

We employ a free energy lattice Boltzmann method to study the dynamics of a
ternary fluid system consisting of a liquid drop driven by a body force across a regularly
textured substrate, infused by a lubricating liquid. We focus on the case of partial
wetting lubricants and observe a rich interplay between contact line pinning and viscous
dissipation at the lubricant ridge, which become dominant at large and small apparent
angles respectively. Our numerical investigations further demonstrate that the relative
importance of viscous dissipation at the lubricant ridge depends on the drop to lubricant

viscosity ratio, as well as on the shape of the wetting ridge.

Introduction

Liquid Infused Surfaces (LIS) are liquid repellent surfaces constructed by infusing a lubricant

2

into textured substrates,'? as illustrated in Fig. 1. Drops placed on LIS move very easily



under small perturbations and will shed away at a small tilting angle, regardless of their
surface tensions.®* These surfaces can also be designed to withstand high pressure and self-
heal from physical damages,® which distinguish them from other liquid repellent surfaces
such as superhydrophobic surfaces.®

LIS are relatively easy to fabricate. The primary requirements are a rough solid substrate
with strong affinity toward the lubricant, and the drop needs to be immiscible to the lubri-
cant.® These advantageous features have given rise to many potential industrial applications,
such as to reduce energy consumption in fluid transports,” to simplify cleaning and mainte-
nance processes,® to prevent damage due to fouling,® and to annihilate product leftover for
smart liquid packaging.'® For many of these applications, efficient and effective control of
the drop dynamics on LIS is required, yet to date such control remains poorly understood.

Compared to the more commonly studied cases of smooth and superhydrophobic sur-
faces, ™% the main distinguishing feature of LIS is the presence of the infusing lubricant,
forming a ridge as shown in Fig. 1. Thus the central aim of this work is to shed light on the
role of the lubricant ridge in the dynamics of drops on LIS.

Based on thermodynamic arguments, Smith et al. showed that a liquid drop placed on
LIS may invade the corrugation and replace the infusing lubricant, or it can sit on top of the
corrugation with the lubricant present underneath the drop.!” If the lubricant is perfectly
wetting the substrate, the drop and the corrugated surface is separated by a thin film, and
no pinning of the contact lines take place. However, closer inspection employing confocal
microscopy revealed that this case is unlikely for a number of common lubricants, as they
form in contact to the solid with a small but finite contact angle.!™!® As such, on one hand,
the surface roughness helps to contain the lubricant; on the other hand, it is also the source
of contact line pinning and contact angle hyeteresis.

The presence of lubricant meniscus also introduces competing dissipation mechanisms
acting on a drop as it moves across LIS. For example, Keiser et al. have highlighted that

viscous dissipation may occur predominantly in the drop or in the lubricant depending on the



Figure 1: (a) Rendering of a quasi 3D setup of an LIS system where a drop is sitting on a
textured substrate infused with a lubricant. (b) Magnification of the lubricant ridge. 7q,
Vg, and 74 are the drop-gas, lubricant-gas, and drop-lubricant surface tensions; 6,4, 6,4, and 6,
are the Neumann angles of the drop, gas and lubricant; 65" and 6{," are the drop-lubricant
and lubricant-gas contact angles assuming a Cassie-Baxter approximation.

ratio between the drop and lubricant viscosities.'? However, most studies to date consider

0°,'1%19 and the impact of the shape of the

only drops with apparent contact angles close to 9
lubricant meniscus on drop mobility remain unexplored. To cover such gaps, here we will
investigate these variations systematically using the lattice Boltzmann simulation method.
In particular, we focus on the interplay between the contact line pinning induced by the
surface corrugation and the viscous dissipation in the lubricant and drop phases.

The manuscript is organised as follows. In the Numerical Method section, we introduce
the computational model employed and the simulation setup. In Results and Discussion we
simulate drops on LIS in mechanical equilibrium and characterise their apparent angles in
the first subsection. In the second subsection we study the motion of drop moving across
LIS, comparing our results with the experimental data available in literature. We further

elucidate the role of the lubricant ridge on drop motion for a large range of wetting and

apparent angles. Finally, we summarise and discuss our results in the Conclusion section.



Numerical Method

Ternary free-energy lattice-Boltzmann method

To simulate liquid drops on LIS, we employ a ternary fluid model able to account for three

bulk fluids (drop, gas and lubricant), their fluid-fluid interfacial tensions, and the fluid in-

teractions with a solid substrate. The free energy is given by?2% 22
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By construction the first term in Eq. 1 corresponds to a double well potential. Taken
separately, each double well potential has minima at concentrations C,, = 0 (fluid component
m is absent) and C,,, = 1 (fluid component m is present). In our simulations, we initialise
the system such that 32 _, C,, = 1 at any point in the simulation box, with three physically
meaningful bulk states corresponding to the drop (C = [1,0,0]), the gas (C = [0, 1,0]) and
the lubricant (C = [0, 0, 1]) phases.

The second term in Eq. 1 is related to the energy penalty at an interface between two
fluid phases. The interfacial tension between fluid phases m and n, v, (m,n = 1,2,3 and

m # n), can be tuned by the r,, parameters via?!

(8%
Vmn = 6(5771 + Kvn)a (2)

where a = \/(FG/m + K!)/(Km + Ky) 1S @ parameter we can tune to vary the interface width.
Typically we choose @ = 1 in our simulations.
The h,, parameters in the last term of Eq. 1 allow us to quantify the fluid-solid surface

energies and correspondingly the contact angle of fluid m on a solid surface in the presence



of fluid n, 6,,,. The contact angle 6,,, is given by?!

cosf,, = M7 (3)

fymn

where each solid-liquid tension -, include contribution from both majority and minority

phases, expressed by the integrals I and J respectively
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For ternary fluid systems in contact with an ideal flat substrate only two out of the three
contact angles are independent. For example, if 615 and 3, are specified, the remaining

contact angle, f3;, is determined by the Girifalco-Good relation?3

732 COS O35 — 712 COS 012
Y31

cos Bz, =

Any choice of the h,, parameters fulfills Eq. 4.

In our approach, we apply variable transformations from C', C5 and Cj3 to three equivalent
order parameters, p = C7 + Cy + C3, ¢ = C; — (s, and ¢ = C3. For simplicity, here we
have set the density p = 1 everywhere. This “equal density" approximation is suitable for
small Reynolds number (Re), which is the case in this work. At large Re, inertia becomes
important, and the density ratios between the fluid components must be taken into account.?!

In terms of these order parameters, the equations of motion of the system are described by

the continuity, Navier-Stokes and two Cahn-Hilliard equations

Op + V - (p¥) = 0, (5)



O(pD) +V - (pT @ T) = -V - P+ V- [n(Vv+VvT)], (6)
0+ V - (60) = MyV2pug, (7)

Op + YV - (Y1) = MV, (8)

where ¢ is the fluid velocity, and 7 is the fluid viscosity that generally depends on the local
order parameters ¢ and ¢. The latter allows us to set different viscosities for the drop,
lubricant, and gas components. The thermodynamic properties of the system, described in
the free energy model in Eq. 1, enter the equations of motion via the chemical potentials, p, =
dF/éq, (¢ = ¢ and v), and the pressure tensor, P, defined by 03P.p = ¢Oatiy + 10upty. To
solve the equations of motion, Eq. 5 - 8, we employ the ternary lattice Boltzmann algorithm
described in Ref. 21. More general details on the lattice Boltzmann method, including how

it recovers the continuum equations of motion, can be found in Ref. 25-27.

Simulation setup

The majority of simulations are performed in a quasi three-dimensional simulation box, as
shown in Fig. 1. The dimension of the simulation box is 400 x 10 x 150 L.B units with the top
surface bounded by a flat wall. The bottom solid surface is textured with a row of square
posts of height h = 10 LB units, width w = 5 LB units, and periodicity p = 10 LB units. A
periodic boundary condition is applied in the other two directions.

This quasi three-dimensional setup has the advantage of reducing the computational cost
when compared to a full 3D simulation, while capturing the key 3D features. In the case of
LIS, it preserves the essential feature of allowing the lubricant to flow in between the surface
texture underneath the liquid drop. This setup has been successfully employed to study drop
dynamics on flat and superhydrophobic surfaces. '4:25:28
The lubricant phase is initialised to fill the space between the posts and an additional

layer of two lattice nodes on top of them, in order to allow the formation of a lubricant ridge

at the two sides of the drop. To make sure the lubricant imbibes the bottom surface, the



lubricant-drop contact angle 6,4 and the lubricant-gas contact angle ¢;, have to be smaller
than the critical angle 6. for hemi-wicking. From thermodynamic considerations it can be
shown that cosf, = (1 — ¢5)/(r — ¢s), where ¢ and r are respectively the solid fraction
and roughness factor of the surface pattern.?*3% The texture employed in this work gives
¢, = 0.25 and r = 3, which leads to 0. ~ 74°.

A hemispherical drop with radius R = 60 LB units is placed on top of the posts and is
then allowed to reach equilibrium before a body force is introduced to mobilise the drops.
Unless stated otherwise, we set the horizontal and the vertical components of body force to
be equal, such that G, = —G,.. This choice corresponds to an experimental setup where the
substrate is tilted at an angle of 45°. Adding a downward body force ensures the drop to
remain attached to the substrate, especially when it has a large apparent angle. We find the
steady state velocity of the drops to be insensitive to the value of GG, as long as the drop size
is smaller than the capillary length, R < [, = \/m . 'To characterise the drop mobility,
we will take advantage of two dimensionless parameters, the Bond number Bo = R*G, /74,
and the capillary number Ca = 14V, /749, where v44, 14, and V, are the drop-gas surface

tension, drop viscosity and drop velocity parallel to the solid surface.

Results and Discussion

Drop morphologies in mechanical equilibrium

In this subsection we will demonstrate that our ternary lattice Boltzmann approach can

accurately simulate drop morphologies in mechanical equilibrium on LIS. For a liquid drop

Y

placed on an ideal smooth surface, the material contact angle, 6,,,

is given by the Young’s
law, which arises from the force balance between the interfacial tensions at the three-phase

contact line:

cos B, = Jsg — Vsd 9)

Yd g



where 54, V54, and 74, are the solid-gas, solid-drop and drop-gas interfacial tensions respec-
tively. Here we employ the superscript Y to distinguish the material contact angle from the
effective contact angle under the Cassie-Baxter approximation (superscript C'B).

For a drop placed on LIS, the solid-gas-drop contact line does not exist, and thus Eq. 9
does not represent a physically meaningful condition. In this study we focus on the case
where the lubricant is partially wetting the solid (6, 6,4 > 0) and does not cloak the drop.
As such, there are three alternative three-phase lines (see Fig. 1(b)): drop-lubricant-gas,
drop-lubricant-solid, gas-lubricant-solid. It is worth noting that there exist other wetting
states on LIS, where the lubricant may cloak the solid corrugations and/or the droplet.!”
These cases are a subject for future study and will not be considered here.

To characterise how much the drop spreads on LIS, it is useful to introduce the notion
of an apparent contact angle. As illustrated in Fig. 2 (top left), the apparent angle can be
defined with respect to the horizontal plane at the drop-lubricant-gas triple line. In the limit
of small but finite lubricant ridge, we have recently shown that the apparent angle need to

satisfy the following relation:3!

sin y[cos 0% — cos(0q — Oupp)] (1 APdg) (10)
sin Oq[cos 0% — cos(Oapp +0,)] AP, )
Here 057 is the averaged wettability expressed by the Cassie-Baxter contact angle,?
cos 058 = g cos0ls+ (1 — o), (11)

which accounts for the fact that the drop and gas phases lie on top of a composite solid-
lubricant interface. The quantity AP,,/AP,, is the ratio between the Laplace pressures at
the drop-gas and lubricant-gas interfaces. Since the Laplace pressure is given by AP,z =
2908/ Rap, where R,g is the mean radius of curvature for the af interface, AP,,/AP,, is

directly related to the size ratio between the lubricant ridge and the drop. In the strict limit



of vanishing lubricant ridge, AP,;,/AF,; — 0, Eq. 10 can be simplified to

Yig cB _ d CB
oy = —— COs 07 — — cos 0,7 12
T lg Vg 1d (12)

cos 6

The main advantage of Eq. 12 is that all variables on the right hand side are material
parameters which can be measured independently. In contrast, the value of AP;,/AP,, in
Eq. 10 is usually not known a priori. However, it can be inferred from analysing the shape

of the lubricant ridge.
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Figure 2: Comparison between 6,,, obtained from our simulations against the predicted
values from both the full solution (Eq. 10) and the vanishing lubricant ridge approximation
(Eq. 12). The top left inset illustrates how 6,,, is calculated at the drop-lubricant-gas triple
line.

In Fig. 2, we compare the apparent angle, 0,,,, calculated from our LB simulations once
mechanical equilibrium is reached, against both the full solution in Eq. 10 and the vanishing
lubricant ridge approximation in Eq. 12. The range of apparent angles are obtained by
varying the surface tensions 7,4, 744 and 7,4, as well as the lubricant’s material contact angles
6}, and 6};. For comparison against the full solution (Eq. 10), we compute APy,/AP;, by

measuring the radii of curvature of the drop-gas and lubricant-gas interfaces once mechanical



equilibrium is reached in our simulations. In cases where the lubricant overfills the posts, we
find it is more appropriate to set QgB = 0 in Eq. 10, since there is no contact between the
gas and the solid. In all cases considered here, we have contact between the solid and the
droplet.

The calculated apparent angles in our LB simulations are in very good agreement with the
full solution. When compared against the vanishing lubricant ridge approximation (Eq. 12),
the calculated values of the apparent angle has a systematic deviation by several degrees.
This deviation is expected since the size of the lubricant ridge in our simulations is not
negligible compared to the drop size. Nonetheless, Eq. 12 remains a good first estimate for
predicting the apparent angle of drops on liquid infused surfaces, and the accuracy improves

the smaller the lubricant meniscus is compared to the drop size.

Translational Drop Mobility
Variation in the ratio between drop and lubricant viscosities

Recent experiment by Keiser et al. suggests that there is a crossover between bulk drop
and lubricant ridge dominated dissipation regimes, as the drop to lubricant viscosity ratio
is varied.!'® Here we aim to reproduce this crossover behaviour to demonstrate that our LB
simulation can correctly capture the dynamics of drops moving across LIS.

We introduce a surface patterning, surface tensions, and a body force such that ¢, = 0.25,
Bupp = 93°, and Bo = 0.115 to mimic the experimental setup in'? (¢5 = 0.23, ,,, = 90°, and
Bo = 0.115). The time averaged velocities of the drop’s centre of mass from our simulations
are reported by the blue plus symbols in Fig. 3. The viscosity of water (about 50 times
larger than the viscosity of air), n,.f = 50n, = 1 mPa.s, is taken as the reference viscosity.
We have also scaled the drop velocity by V,..r, taken to be the drop velocity V, when the
drop viscosity is 74 = 9yey. For comparison, the experimental data from Keiser et al. ' are
shown as red asterisks in Fig. 3.

For large drop viscosity, viscous dissipation lies predominantly inside the drop. In this
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Figure 3: Comparison between our simulation results against experimental data by Keiser
et al.' Here the lubricant viscosity is fixed at 1, = 107,.;, while the drop viscosity is varied.
The reference viscosity 7, in the experiment is water viscosity (1 mPa.s). To ensure correct
viscosity ratio between the drop and the air phases, we set 7,y = 507, in our simulations.
Vyer is drop velocity when 7 = 7yey.
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Figure 4: (a) Drop mobility on smooth surface (black dots) and LIS (red triangles, green
diamonds, and blue squares) plotted against 0p,. Oy is the wetting angle of the lubricant
phase (6, = 6}; = 0ue). The drop mobility is represented by the capillary number Ca.
(b) and (d) drop mobility versus time for the cases indicated in panel (a). The capillary
number Ca increases and decreases periodically due to pinning-depinning events. (c¢) and
(e) drop mobility for cases indicated in panel (a) as a function of Bo — Bo.. Bo is the Bond
number. The insets show the critical Bond number, Bo,., at which the drops start moving
under external body force.
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regime, as the drop viscosity is lowered, the drop velocity increases as V' oc 119 until it
eventually plateaus to V,, >~ V,..;. Both in simulations and experiments, the crossover occurs
approximately at ng ~ 27;. Below this value of drop viscosity, viscous dissipation in the
lubricant ridge becomes dominant compared to dissipation in the drop. In this regime, the
drop velocity has a strong dependence on the lubricant viscosity, while the drop viscosity
has virtually no effect.

There are a number of differences between the experiments in Ref. 19 and our numerical
setup. Firstly, our simulations are in quasi 3-D, rather than full 3-D. Secondly, the size of
the lubricant ridge compared to the drop size is larger than that in experiments. Thirdly,
we have considered partial wetting lubricant, 6,,.; = 45°, whereas the experiments were done
using a complete wetting lubricant, 6,.; = 0°. Nonetheless, it is clear from Fig. 3 that the
crossover between bulk drop and lubricant ridge dominated dissipation regimes is a robust

phenomenon, which our simulations can accurately capture.

Variation in apparent and wetting angles

Previously we numerically verified the crossover between viscous friction in the bulk drop
and in the lubricant ridge. The similarity between experiments and numerical simulations
is valid despite the fact we employed partial wetting lubricants, which involve also pinning
and depinning effects. Here we will focus on the role of lubricant wettability on the drop
mobility, in particular on the interplay between contact line pinning and viscous friction.
As a reference case, we first consider a drop moving on a flat surface as illustrated in
the top-left inset of Fig. 4(a). The viscosity of the drop is set to be 7y = 501, to mimic
a water drop in a dry air environment. A constant body force with Bo = 0.211 is then
applied to mobilise the drop so that the drop moves and reaches a steady state velocity. The
results obtained for drops on a smooth surface are represented by black dots in Fig. 4(a) as
a function of the contact angle. For a smooth surface, we identify 6, = 6} . Tn agreement

with previous studies, the steady state capillary number of the drop increases monotonically
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with 0,,,, 2% due to the decrease in wedge dissipation at the contact line.

Let us now consider the equivalent setup for drops on LIS, as illustrated in the bottom-
right inset of Fig. 4(a). The lubricant viscosity 7, is set to be the same as the drop viscosity,
m = nqg = 50n,. To reduce the number of parameters to be explored in our simulations, we
will assume a symmetric wetting condition for the lubricant, where 9}; =0, = Oper-

For a given 0, we systematically vary the drop apparent angle, 0,,,, by tuning the
fluid-fluid surface tensions, and consequently the Neumann angles, 6;, 6, and 6,. In Fig. 4(a)
we compare the drop mobility, quantified as the time-averaged capillary number Ca for
Ouwer = 30° (red triangles), 6, = 45° (green diamonds), and 6, = 60° (blue squares).
Similar to the smooth surface case, the drop mobility increases monotonically with the
apparent angle, but the magnitude of the C'a is generally smaller than for a smooth surface.
Interestingly, when comparing the three datasets for different 6,.;, we observe that, while
for larger 6,,, drops with smaller 6,,; move faster than those with larger 60,,, this ordering
is reversed for lower 6,,,. The presence of these two regimes (for lower 6, and larger 0,,,)
is persistent for different values of Bo, n, and n,.

We hypothesise this ordering inversion is due to a shift in the relative importance between
viscous dissipation and contact line pinning at the lubricant ridge. To better characterise
the pinning-depinning effects during drop motion, we plot the instantaneous C'a associated
to the drop’s centre of mass, as a function of time for three drops with 0,,, ~ 110° and
Oupp ~ 45° respectively in Figs. 4(b) and 4(d). We observe that the instantaneous Ca
oscillates periodically, which is due to pinning-depinning events as the drop moves across the
periodic LIS pattern (see ESI video). For both large (Fig. 4(b)) and small (Fig. 4(d)) Oupp,
the oscillations with larger amplitude are always observed for higher 6,.;. At the same time,
the amplitude of the oscillations is generally smaller for 6,,, ~ 45° than for 60,,, ~ 110°,
which implies a less pronounced effect of pinning and depinning.

To further assess the relative importance of pinning versus viscous dissipation, we explore

the relation between the driving force and the drop velocity for both cases of 0,,, ~ 110°
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(Fig. 4(c)) and 0,y ~ 45° (Fig. 4(e)). Assuming a linear approximation, the relation between
Ca, Bo and Bo, can be expressed as Ca = (Bo—Bo.)/3.173%3 Bo,, the largest Bond number
at which the drop remains stationary, is a measure of contact line pinning, or alternatively,
contact angle hysteresis. [ is a function of the shapes of the drop and lubricant meniscus,
and it is related to their rate of viscous dissipation.

Considering Ca as a function of (Bo — Bo,.), our data show an important difference
between the large and small apparent angle drops. For large apparent angles (Fig. 4(c)), all
the curves practically overlap onto a master curve. The variations in the results for 6,,.; = 30°
(red triangles), 45° (green diamonds), and 60° (blue squares) can be captured by differences
in the value of the critical Bond number, Bo., as shown in the inset. This indicates that
the ordering observed in Fig. 4(a) for large 0,,, is determined by contact line pinning. The
prefactor [ is the same for the three datasets in Fig. 4(c), which suggest that the rate of
viscous dissipation is on average the same once the reduction in the effective driving force
due to pinning forces is taken into account.

In contrast, for small apparent angles (Fig. 4(e)), the datasets do not overlap onto a
master curve. The critical Bond number, Bo,, is also essentially the same — any differences
observed are within the error of the measurements — for the three 6,.. used. These two
observations suggest that, for low 60,,,, contact line pinning plays a minor role. The variations
in Ca vs (Bo — Bo,) for the three datasets in 6, further imply that viscous dissipation is
larger for the more wetting lubricant. Inspection of the drop morphologies supports this
observation. We find that, for large 0,,,, the lubricant ridges have similar shape, regardless
of O,et. In contrast for low 6, the ridge shape is broader for lower 6, (ESI document,
SFig. 1 and SFig. 2).

To further corroborate this hypothesis, we ran three additional sets of simulations, where
pinning and depinning is inhibited by replacing the topography with a flat substrate, as
shown in Fig. 5. The three sets correspond to 0, = 30° (red triangles), 0, = 45° (green

diamonds), and 6. = 60° (blue squares). The amount of lubricant in both the front and
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Figure 5: (a) In the absence of contact line pinning, drops with higher 6,,.; always move faster.
(b) Comparison of drop shapes with the same 6,,, but different 6,,.; and correspondingly
meniscus aspect ratio AR,,. (c) Definition of AR,,. (d) Drop mobility against AR, for
different 0,,,. The lines are the best fit results to Eq. 15. V,..; is taken to be the velocity of
drop R in panel (a).

back ridge is the same for all cases. Accordingly, once pinning is removed, drops with higher
Ower always move faster irrespective of 6,,,, showing the same ordering that we obtain only
for low 6,,, in Fig. 4(a).

Fig. 5(a) compares the morphologies of drops B and D indicated in Fig. 5(c). The two
drops have an almost identical shape and 6,,,, but their lubricant ridge shapes and mobilities
are different. For drop B, 0, is smaller, and therefore the meniscus is broader. We can
characterise the meniscus shape by its aspect ratio, defined as AR,, = h,,/l,,, where h,, and
I, are its height and length respectively, see Fig. 5(b).

We now propose a scaling argument to explain how the drop mobility depends on the

lubricant ridge aspect ratio. We balance the rate of energy injected by the applied body

force with the total rate of energy dissipation in the drop and lubricant,
Vo~ [ [9oidAa+m [ 190l (13)
Here F'is the total force acting on the drop. We also recall that the simulations in Fig. 5 are
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two-dimensional simulations; thus the terms on the right hand side are integrated over the
drop and the lubricant ridge area. Taking |Vo|; ~ V,/R and |Vv|; ~ V,/h,, as the typical
velocity gradient in the drop and lubricant meniscus, as well as AAy ~ R? and AA; ~ h,,1,,

as the typical scales for the cross-sectional area of the drop and the lubricant, we have

F~ adndvx + alanrlm/hmu (14)
F

V, ~ . 15

agnq + o /AR, (15)

where oy and «a; are positive, dimensionless fitting parameters. Eq. 15 shows that a smaller
AR, results in a larger energy dissipation in the lubricant meniscus, which in turn leads to
the lower mobility of the drop.

In Fig. 5(d), we consider drops A, B and C indicated in Fig. 5(c), and increase their
AR,, by tuning 6,.,. We keep all other variables in the simulations the same, including the
body force, the fluid surface tensions, the lubricant and drop viscosities, and the total drop
and lubricant cross-sectional area. The data points in Fig. 5(d) correspond to simulation
results, while the lines correspond to the best fit results to Eq. 15, where we have fitted ay
and «; separately for each dataset. Consistent with our scaling argument, for all of the three
datasets in Fig. 5(d), drop mobility increases monotonically with AR,,.

Taking advantage of the results in Fig. 5, we can robustly conclude that the ordering
observed in Fig. 4(a) for small 6, is due to variations in viscous dissipation at the lubricant
ridge. For the present choice of viscosities 7, = 1y = 50n,, the crossover between pinning
and meniscus viscous friction dominated regimes in Fig. 4(a) occurs at 6,,, ~ 70°. In ESI
SFig. 3, we take the limit where the lubricant viscosity is very low, equal to the gas viscosity.
In this case viscous dissipation at the lubricant is weak compared to that in the drop. As
expected, for low apparent angle 0,,,, we then observe that the drop mobilities remain very

similar as we vary the wetting angle 6.
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Conclusions

In this work we have employed a computational method, based on the free energy lattice
Boltzmann approach, to study drop dynamics on LIS. We show that the drop apparent angle
on LIS can be captured accurately. Despite differences compared to typical experiments,
namely the cylindrical geometry and the relatively larger size of the lubricant ridge, the drop
mobility computed from our simulations shows a remarkable agreement with the experiments

by Keiser et al.,!?

as the drop and lubricant viscosity ratio is varied. Furthermore we have
considered the more complex case of partially wetting lubricants, and revealed a rich interplay
between contact line pinning and viscous friction. Specifically, we have shown that for large
apparent angles contact line pinning dominates, and drops with more wetting lubricants
move faster. In contrast, for small apparent angles viscous friction in the lubricant ridge
dominates. The magnitude of the viscous dissipation is determined by the shape of the
lubricant ridge, and as such, drops in LIS with less wetting lubricants move faster.

To our best knowledge this is the first simulation study of drops on LIS that accounts for
the full dynamics of the fluid flows. The lattice Boltzmann method we have employed here is
versatile, and there are a number of avenues of future numerical work. In this work we have
assumed a LIS substrate textured with a regular periodic pattern of pillars, while many LIS
substrates are constructed experimentally using irregular topographies.®!'%!8:34 The impact
of random roughness on the drop dynamics will be investigated in a forthcoming study. It
has also been pointed out that drainage of the infusing lubricant is a major source of failure

for LIS technology.?*3% As such, our approach is suitable for investigating how the surface

topographies can be designed to minimise the loss of lubricant during drop motion.
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Caption:

Drop mobility on liquid infused surface is affected by contact line pinning
and viscous dissipation at the meniscus. The two factors dominate at
high and low drop apparent angles respectively.
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