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Bases for cluster algebras from orbifolds
with one marked point

İlke Çanakçı & Pavel Tumarkin

Abstract We generalize the construction of the bangle, band and bracelet bases for cluster
algebras from unpunctured orbifolds to the case where there is only one marked point on the
boundary.

1. Introduction
Cluster algebras were introduced by Fomin and Zelevinsky [11] in the context of
canonical bases. A cluster algebra is a commutative ring with a distinguished set of
generators (cluster variables), which are grouped into overlapping finite collections of
the same cardinality (clusters) connected by local transition rules (mutations).

An important problem in cluster algebra theory is a construction of good bases.
In [14] Musiker, Schiffler and Williams constructed two types of bases (bangle basis
B◦ and bracelet basis B) for cluster algebras originating from unpunctured surfaces [8,
9, 10] with principal coefficients [12]. A band basis Bσ was introduced by D. Thurston
in [16]. All the three bases are parametrized by collections of mutually non-intersecting
arcs and closed loops, and the expansion of any basis element in any cluster is a
Laurent polynomial with non-negative coefficients [14, 16].

In [7], Felikson and Tumarkin generalized the constructions of all the three bases to
cluster algebras originating from unpunctured orbifolds with orbifold points of weight
1/2: these are counterparts of surface cluster algebras in the non-skew-symmetric
case [5]. However, although the bases can be easily defined for any such orbifold, the
proof in [7] required the orbifold to have at least two boundary marked points.

The main goal of this note is to remove the assumption on the number of marked
points. Namely, we prove the following theorem.

Theorem 5.2. Let A(O) be the cluster algebra with principal coefficients associated to
an unpunctured orbifold O with exactly one marked point on its boundary. Then the
bangles B◦, the bands Bσ, and the bracelets B are bases of the cluster algebra A(O).
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Figure 1. Flip of a pending arc τ ′, its unfolding and the correspond-
ing snake graph Gτ .

The proof mainly follows the one of [1, Theorem 2] where the authors proved a
similar statement for cluster algebras from unpunctured surfaces with exactly one
marked point. In particular, the main ingredient is the following result.

Theorem 4.1. The Laurent polynomial associated to the essential loop around the
boundary in an unpunctured orbifold with one marked point belongs to the cluster
algebra A(O).

To prove Theorem 4.1, we use snake graph calculus [2, 3, 4]. One of the features of
our proof is that, unlike [1], we do not require the coefficients to be invertible.

The paper is organized as follows. In Section 2, we introduce snake and band graphs
associated to curves in a triangulated unpunctured orbifold with orbifold points of
weight 1/2. Section 3 is devoted to show that the Laurent polynomial associated to
the essential loop around the boundary lies in the cluster algebra when the genus
is 1. Section 4 generalizes the result of Section 3 to arbitrary genus, and finally in
Section 5 we show that Laurent polynomials associated to all essential loops belong to
the cluster algebra and hence give bases for cluster algebras associated to unpunctured
orbifolds with 1 marked point on their boundary.

2. Snake graphs associated to triangulations of orbifolds
In this section, we generalize the snake graph formula of [13, 14] to the case of un-
punctured orbifolds. For the basics on triangulations of orbifolds, the reader is referred
to [5, Section 4].

The authors of [13] associate snake graph and band graph to every arc (may
have self-crossings) and essential loop in the surface, respectively, and give an ex-
plicit formula for Laurent polynomials in the cluster algebra corresponding to these
curves. This expansion formula is parametrized by perfect matchings of snake and
band graphs, see Section 3.1 in [13].

We first show that the cluster variable associated to a pending arc τ ′ with local
configuration given in Figure 1 can be given as an instance of [13] expansion formula.
Let τ be the pending arc corresponding to the mutation (flip) of τ ′. We consider an
unfolding as in Figure 1 (see [6]) and associate the corresponding snake graph Gτ .

The exchange relation corresponding to the mutation of the pending arc τ ′ coincides
with the perfect matching formula, that is

xτxτ ′ = x2
a + x2

b ,

where x2
a is the associated weight of the perfect matching with two vertical edges

of Gτ and x2
b is the associated weight of the perfect matching with two horizontal

edges of Gτ in the [13] formula. This expansion formula can be extended for arcs
and closed loops in orbifolds (with non-empty boundary) without any alterations
using unfoldings [6]. Namely, the procedure of assigning a snake graph to an arc is
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Figure 2. Initial triangulation for the surface with several orbifold points.

the following: we take a connected component of a lift of the arc in any unfolding,
take the corresponding snake graph in the obtained surface cluster algebra, and then
specialize variables to get a snake graph for the initial arc. This is always possible
since an unfolding exists for any orbifold with non-empty boundary [5]. Assigning a
band graph to a closed (or semi-closed) loop requires a bit more accuracy: we need an
existence of such a lift γ′ of the loop γ in the unfolding that the Laurent polynomial
of γ is obtained from the one of γ′ by a specialization of variables. This is the case
when the number of connected components of γ′ is equal to the degree of the covering
giving rise to the unfolding. However, such an unfolding always exists in view of [7,
Lemma 4.7], so the same procedure as for arcs holds for band graphs as well.

We can summarize the generalizations of the snake and band graphs for unpunc-
tured orbifolds as follows.

Definition 2.1. Let O be an unpunctured orbifold with orbifold points of weight 1/2
with a triangulation T . Let γ be either an arc or a closed (or semi-closed) loop on O.
To associate a snake (or band) graph to γ with respect to T , we proceed as below.

(1) If γ is an arc, we take a connected component of a lift of γ in any unfolding,
take the corresponding snake graph in the obtained surface cluster algebra, and
then specialize variables to get a snake graph for the initial arc. See Figure 1
for an example of the tile in the snake graph corresponding to a crossing of a
pending arc in T .

(2) If γ is a closed or semi-closed loop, we take a particular unfolding of O such
that for any lift γ′ of γ in the unfolding the Laurent polynomial of γ is obtained
from the one of γ′ by a specialization of variables. Now, we take the band
graph of any lift γ′ in the obtained surface cluster algebra, and then specialize
variables.

3. Genus 1 case
The aim of this section is to prove the following theorem.

Theorem 3.1. Let O be an unpunctured orbifold of genus 1 and A(O) be its associated
cluster algebra with principal coefficients. The Laurent polynomial associated to the
essential loop around the boundary belongs to the cluster algebra A(O).

Proof. We choose a particular triangulation T of the orbifold O of genus 1 with
exactly one marked point on its boundary given in Figure 2. Let L be the Laurent
polynomial associated to the closed loop around the boundary. We want to show L is
in the cluster algebra A(O).We will show this by applying resolutions and grafting of
snake and band graphs associated to the arcs indicated in Figure 3. We refer to [15,
Section 3] for the background on the snake and band graphs, and to [4, Sections 3,6]
for the snake graph calculus tools we use.
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Figure 3. Snake graphs associated to the arcs U and V for surfaces
with one orbifold point (top) and for a surface with many orbifold
points (bottom).

We will abuse notation and denote arcs in the orbifold and the corresponding
Laurent polynomials of these arcs by the same capital letter.

In Figure 4, we explicitly indicate each grafting or self-grafting of snake and band
graphs associated to smoothings of crossings indicated in Figure 5. Note that, for the
sake of simplicity, these identities are considered only when the surface has precisely
one orbifold point. We also remark that identities given in Figure 4 are valid in the
associated cluster algebraA(O) when considered with trivial coefficients. We use snake
graph calculus to lift these identities to cluster algebras with principal coefficients.
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Figure 4. First line: grafting at B; second line: grafting at B, self-
grafting at 4, self-grafting at 5, respectively.

Algebraic Combinatorics, Vol. 2 #3 (2019) 358



Bases for cluster algebras from orbifolds with one marked point

2 2

1

4
5 6

3 = +

= + + ++

2 2 2 2

1

1

1

5 56
6

3
3

1

1

4 4

Figure 5. Geometric realization of the identities given in Figure 4
in terms of arcs in the surface. Step 1: smoothing of the crossing
of the arcs V (green) and U (red), Step 2: smoothings of the three
self-crossing arcs simultaneously.

Comparing snake graphs associated to the arcs U and V when the surface has one
orbifold point and when it has several orbifold points (Figure 3), one can observe that
the corresponding snake graphs associated to the arc U is exactly the same for both
surfaces, and the snake graph associated to V differs by a zig-zag piece corresponding
to the crossings of the arcs 7, 8, . . . , n when the surface has several orbifold points.
Therefore, the identities in terms of snake graphs will be similar when there are several
orbifold points in the surface, which can be recovered by replacing every zig-zag snake
subgraph 5, 6, 3 by the zig-zag snake graph 5, 6, 7, . . . , n, 3.

More precisely, the identity in Figure 5 translates to
UV = L+ (y4X + x5)(y5Y + y5ỹx4)

where ỹ =
∏
i tile in GQ

yi and the curve Q, indicated in Figure 5, is obtained by
smoothing U and V (notice that the second configuration of the bottom line of Fig-
ure 5 corresponds to zero). In particular, if the genus is 1 then ỹ = y1y2y

2
3y5y6.

Therefore, in order to show that the essential loop around the boundary is in
the cluster algebra, namely L ∈ A(O), it is sufficient to show y4X ∈ A(O) and
y5Y ∈ A(O). These are given in Lemma 3.2. �

Lemma 3.2.With the notation in Theorem 3.1, the following hold.
(1) y4X ∈ A(O),
(2) y5Y ∈ A(O).

Proof. The proof is given by successively applying snake graph calculus to some chosen
crossing arcs. For simplicity, we explicitly indicate each step in Figure 6 where we
consider the triangulation of the orbifold with one orbifold point. The general case is
given in exactly the same steps by considering the triangulation of the orbifold as in
Figure 2 and the identities in terms of snake graphs carried out in a similar way as
discussed in the proof of Theorem 3.1.

The identities in the cluster algebra with principal coefficients corresponding to
smoothings of crossings of the arcs in Figure 6 are indicated in Figure 7. This proves
y4X ∈ A(O).

Similarly, we show y5Y ∈ A(O) in Figure 8 when the surface has one orbifold point
and the geometric realization of these identities are given in Figure 9. �
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Figure 6. Geometric realization of the identities given in Figure 7
in terms of arcs in the surface. Step 1: smoothing of the crossing of
the arcsW (green) andW ′ (red); step 2: smoothing of a self-crossing;
step 3: grafting with 1, smoothing of a self-crossing.

1
3 5 B 4 2B

=
1
3 5 4 2

2

2

+ y1y3y5
2 1

=
1
3 5 4

• •

• •
1 + y4

5 3
1 2

B
+ y1y3y5

2 1

= y1 3 5 4 + 5 + y4
1
2

• •

• •
B

+ y1y2y3 5


+ y1y3y5 2 1

Figure 7. First line: grafting at B; second line: smoothing of a self-
crossing; third line: grafting with 1 and a self-grafting, respectively.

4. Arbitrary genus case
In this section, we show the Laurent polynomial associated to the essential loop around
the boundary belongs to the cluster algebra with principal coefficients for orbifolds of
arbitrary genus and with exactly one marked point on their boundary.

Throughout this section, we work with the triangulation given in Figure 10 and
proceed as in Section 3. The arcs U and V and the resolution of the crossing of these
arcs are indicated in Figure 11.

Theorem 4.1. Let O be an unpunctured orbifold of arbitrary genus with exactly one
boundary marked point, and let A(O) be its associated cluster algebra with princi-
pal coefficients. The Laurent polynomial associated to the essential loop around the
boundary belongs to the cluster algebra A(O).
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Figure 9. Geometric realization of the identities given in Figure 8
in terms of arcs in the surface. Step 1: smoothing of the crossing of
the arcs Z (green) and Z ′ (red); Step 2: smoothing of a self-crossing;
Step 3: grafting with the arc 2 and smoothing of a self-crossing.

Proof. The initial triangulation (Figure 10) and the arcs U and V (Figure 11) are
chosen in a way that the identities in terms of snake graph calculus corresponding
to smoothings of the crossings of U and V are locally similar to the genus one case.
We also choose labels for the initial triangulation to reflect this occurrence. Indeed,
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Figure 11. The arcs U and V for higher genus.

the arcs U and V cross in the triangle bounded by the arcs 4, 5 and the boundary
arc as in the genus one case. The arcs X and Y obtained in the process of smoothing
the crossing between U and V are given in Figure 12 (compare with Figure 5). Snake
graphs associated to the arcs U, V,X, Y and L will have longer zig-zag subgraphs
corresponding to the crossings of these arcs with the triangulation of the surface;
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Figure 12. The closed curves X and Y for higher genus.

however, this will again give rise to an identity in the cluster algebra parametrized by
the arcs U, V,X, Y and L. Namely,

UV = L+ (y4X + x5)(y5Y + y5ỹx4)
where ỹ =

∏
i tile in GQ

yi and the curve Q is obtained by smoothing U and V as in
genus 1 case. The result then follows by Lemma 4.2 below. �

Lemma 4.2.With the notation of Theorem 4.1, the following hold.
(1) y4X ∈ A(O),
(2) y5Y ∈ A(O).

Proof. With the choice of initial triangulation given in Figure 10, these elements are
shown to be in the cluster algebra by following the same steps as in Lemma 3.2 for
genus one case. �

5. Proof of the main theorem
First, we prove the following statement.

Lemma 5.1. The Laurent polynomial associated to any loop or a semi-closed loop in
an unpunctured orbifold with one marked point belongs to the cluster algebra A(O).

Proof. The proof for loops is identical to the one of [1, Lemma 4]. One can also note
using snake graphs calculus that the coefficient of the loop around the boundary in
the appropriate relation is equal to one.

For a semi-closed loop (i.e. a geodesic connecting two orbifold points), we can
take its small neighborhood and a loop enclosing it, see Figure 13. Then the Laurent
polynomial of this loop belongs to the cluster algebra as shown above. Now note
that this Laurent polynomial is equal to the Laurent polynomial associated to the
semi-closed loop (as they have the same geodesic representative, see [7, Remark 5.7]).

 

Figure 13. A semi-closed loop γ and its small perturbation γ′.
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�

We can now prove our main result.

Theorem 5.2. Let A(O) be the cluster algebra with principal coefficients associated to
an unpunctured orbifold O with exactly one marked point on its boundary. Then the
bangles B◦, the bands Bσ, and the bracelets B are bases of the cluster algebra A(O).

Proof. According to [7, Section 6.2], Bσ and B can be obtained from bangles B◦ by a
unimodular linear transformation, which means it is sufficient to prove the statement
for B◦ only. Elements of B◦ are products of Laurent polynomials associated to mu-
tually compatible arcs, loops and semi-closed loops. According to Lemma 5.1, all the
elements of B◦ belong to A(O). The linear independence is proved in [7, Section 8],
the number of boundary points is irrelevant for the proof. �

Remark 5.3.One can note that all the properties of the bases B◦, Bσ and B and
their elements proved in [7] remain intact for the case of one boundary point (as the
proofs did not use the assumption on the number of marked points). For example,
this concerns geometric presentations of g-vectors in [7, Section 8], and the positivity
of the bracelets basis B (i.e. B has positive structure constants).
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