IMPROVED LINEAR PROGRAMMING METHODS FOR
CHECKING AVOIDING SURE LOSS

NAWAPON NAKHARUTAI, MATTHIAS C. M. TROFFAES, AND CAMILA C. S. CAIADO

ABSTRACT. We review the simplex method and two interior-point methods
(the affine scaling and the primal-dual) for solving linear programming prob-
lems for checking avoiding sure loss, and propose novel improvements. We
exploit the structure of these problems to reduce their size. We also present
an extra stopping criterion, and direct ways to calculate feasible starting points
in almost all cases. For benchmarking, we present algorithms for generating
random sets of desirable gambles that either avoid or do not avoid sure loss.
We test our improvements on these linear programming methods by measur-
ing the computational time on these generated sets. We assess the relative
performance of the three methods as a function of the number of desirable
gambles and the number of outcomes. Overall, the affine scaling and primal-
dual methods benefit from the improvements, and they both outperform the
simplex method in most scenarios. We conclude that the simplex method is not
a good choice for checking avoiding sure loss. If problems are small, then there
is no tangible difference in performance between all methods. For large prob-
lems, our improved primal-dual method performs at least three times faster
than any of the other methods.

1. INTRODUCTION

In statistical modelling, we often face issues such as limited structural informa-
tion about dependencies, lack of data, limited expert opinion, or even contradicting
information from different experts. Various authors [16] 17, 4], [T1] have argued
that these issues can be handled by modelling our beliefs using sets of desirable
gambles. A gamble represents a reward (e.g. monetary) that depends on an uncer-
tain outcome. We can model our beliefs about this outcome by stating a collection
of gambles that we are willing to accept. Such set is called a set of desirable gam-
bles. Through duality, every set of desirable gambles is mathematically equivalent
to a set of probability distributions.

If there are no combinations of desirable gambles that result in a certain loss, then
we say that our set of desirable gambles avoids sure loss [16],[17]. To verify whether
a set of desirable gambles avoids sure loss, we can solve a linear programming
problem [I4], p. 151].

Linear programs for checking avoiding sure loss have been studied for instance
in [I5, O]. However, these studies focus on forming linear programs and do not
mention which algorithms we should use. In the early ’90s, Walley [14, p. 551]
mentioned that Karmarkar’s method can be considered for solving large linear pro-
grams. However, nowadays Karmarkar’s method is considered obsolete in favour of
other interior point methods such as affine scaling and primal-dual methods [1].
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The simplex method is one of the oldest and simplest methods, and the affine
scaling method is an improved version of Karmarkar’s method, whilst the primal-
dual method is currently considered one of the best general purpose methods. In
previous work, we presented an initial comparative study of these three methods
for checking avoiding sure loss [8]. In that study, we slightly reduced the size of the
problems and proposed two improvements: an extra stopping criterion to detect
unboundedness more quickly, and a direct way to calculate feasible starting points.
There, we also quantified the impact of these improvements [8, Fig. 1], for the
primal-dual method.

In this paper, our main goal is to elaborate on the improvements in [8], and to
further develop efficient algorithms for checking avoiding sure loss. In particular,
we study also the dual of each linear program, and we generalise the process to find
feasible starting points. We also discuss in detail the advantages and disadvantages
of each method for checking avoiding sure loss. For benchmarking, we provide
a variety of algorithms for generating sets of desirable gambles. In a simulation
study, we generate random sets of desirable gambles and assess the impact of our
improvements. In addition, we provide proofs for all relevant results, including
some that were stated without proof in [§].

The paper is organised as follows. Section [2| gives a brief outline of avoiding
sure loss and coherence. Section [3|studies several linear programming problems for
checking avoiding sure loss, and we slightly reduce the size of these linear program-
ming problems. Section[]reviews the simplex, the affine scaling and the primal-dual
algorithms, and studies how we can improve these algorithms to check avoiding sure
loss. Sections [5] and [6] present some algorithms for generating random sets of desir-
able gambles. Section[7]compares the efficiency of our improved methods. Section g
concludes the paper.

2. DESIRABLE GAMBLES AND LOWER PREVISIONS

In this section, we explain desirable gambles, lower previsions, avoiding sure
loss, coherence, and natural extension [14]. We also introduce the notation used
throughout.

2.1. Avoiding sure loss. Let ) be a finite set of uncertain outcomes. A gamble
is a bounded real-valued function on Q. Let £(Q2) denote the set of all gambles on
Q. Let D be a finite set of gambles that a subject decides to accept; we call D the
subject’s set of desirable gambles. The desirability axioms essentially state that a
non-negative combination of desirable gambles should not produce a sure loss [14]
§2.3.3]. In that case, we say that D avoids sure loss.

Definition 1. [7], §5.7.1] A set D C L(Q) is said to avoid sure loss if for all
neN, allX,...;\, >0, and dll f1,..., fn €D,

(1) max (Z )\ifi(w)> > 0.
i=1

We can also model uncertainty via acceptable buying (or selling) prices for gam-
bles. A lower prevision P is a real-valued function defined on some subset of £((2).
We denote the domain of P by dom P. Given a gamble f € dom P, we interpret
P(f) as a subject’s supremum buying price for f.
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Definition 2. [T]], §2.4.2] A lower prevision P is said to avoid sure loss if for all
neN, allX,...;\, >0, and all f1,...,f, € dom P,

(2) max (Z Ai [filw) = P(fi)]) > 0.

weN

Any lower prevision P induces a conjugate upper prevision P on —dom P =

{—f: f € dom P}, defined by P(f) = —P(—f) for all f € —dom P [14], §2.3.5].
P(f) represents a subject’s infimum selling price for f. P is said to be self-conjugate
when dom P = —dom P and P(f) = P(f) for all f € dom P. We simply call a

self-conjugate lower prevision P a prevision and write it as P [11l p. 41].

2.2. Coherence. Coherence is another rationality condition for lower previsions
and is stronger than avoiding sure loss. Coherence requires that the subject’s
supremum buying prices for gambles cannot be increased by considering any finite
non-negative linear combination of other desirable gambles [I4], §2.5.2]. In section
we will use coherent lower previsions to generate sets of desirable gambles that
avoids sure loss.

Definition 3. [T, §2.5.4] A lower prevision P is said to be coherent if for all
neN, all \g,..., A\, >0 and all fo,..., f, € dom P,

(3) sup (Z Ailfi(w) = P(fi)] = Aol fo(w) — P(fo)]) = 0.

weN i—1

Next, we give some examples of coherent lower previsions. The lower prevision
given by P(f) :=inf f for all f € £(Q) is coherent, and is called the vacuous lower
prevision [I4] §2.3.7]. Previsions that avoid sure loss are also coherent:

Theorem 1. [T, p.87] A prevision P is coherent if and only if it avoids sure loss
(as a lower prevision,).

The expectation of f associated with the probability mass function p is given by
(4) Ey(f) =Y pw)f(w).
weN

An expectation operator is coherent as well.

Generating probability mass functions is easy (see algorithm |1 further), and we
can use them to generate other coherent lower previsions via lower envelopes and
convex combinations:

Definition 4. [71], p. 60] Let T be a non-empty collection of lower previsions defined
on a common domain K. A lower prevision Q is called the lower envelope of I' if

(5) Q) = jnt P(f) for all f € K.

Theorem 2. [T1, p. 61] If all lower previsions in T' are coherent, then the lower
envelope of I is also coherent.

We define the unit simplex as the set of all probability mass functions:

(6) A(Q) = {pERQ:pEOand Zp(w):l}.

weN
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Its extreme points are the {0, 1}-valued probability mass functions [I4, §3.2.6]. The
credal set of a lower prevision P is defined by

(7) Mp :={p € A(Q):Vf edom P, Ey(f) = P(f)}.

Mp completely determines P if P is coherent and there is a one-to-one correspon-
dence between coherent lower previsions on £(£2) and closed convex subsets of A(£2)
[11, p. 79]. Moreover, it suffices to consider the set of extreme points ext Mp of
Mp [14, p. 145):

Theorem 3. (adapted from [T}, p. 146]) Let P be a coherent lower prevision. Then
for every f € dom P, there is a p € ext Mp such that P(f) = E,(f).

When ext M p is finite, then P is called polyhedral. We can construct a polyhedral
lower prevision as follows. Let M be a finite set of probability mass functions on
Q. A polyhedral lower prevision is then given by [2, §9.2.1]

8 E = min E,(f).

(8) Ey(f) = min Ey(f)

Theorem 4. [1j], p. 79] Let P, and P, be lower previsions on the same domain.
Let 0 < § < 1. If P, and P, are coherent, then so is (1 — §)P, + 0P,.

Let Py be a coherent prevision on £(2) and let 0 < § < 1. The lower prevision
defined on all f € £(f2) by

(9) P(f) =1 —=0)R(f)+dinf f
is called a linear-vacuous mizture [14, §2.9.2], and is coherent by theorem
2.3. Natural extension. The natural extension of a set of desirable gambles D is

defined as the smallest set of gambles which includes all finite non-negative combi-
nations of gambles in D and all non-negative gambles [I1], § 3.7]:

Definition 5. [T1l, p. 32] The natural extension of a set D C L(RQ) is:

(10) SD = {90+Z>\19190 ZO,TLEN, gla"'7gn€D7 A177ATLZO}

=1

From this natural extension, we can derive a supremum buying price for any
gamble f:

Definition 6. For any set D C L(Q) and f € L(Q), we define:
Ep(f) =sup{aeR: f—acép}

11 n
(11) :sup{aeR:f—azz:)\ifi,neN,fiED,)\iEO}.
i=1
Note that we can derive a set of desirable gambles from P as follows [T1] p. 42]:

(12) Dp={g—p:gcdomP and u < P(g)}.

Putting this all together, we can define the natural extension of P:
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Definition 7. [T/, §3.1.1] Let P be a lower prevision. The natural extension of P
is a lower prevision defined on all f € L(Q) and given by:

(13) Ep(f) = Ep,(f)

= sup{a eER: f-a> Zn:)\i(fi —P(f;)),neN, fedomP, \; > 0}-

i=1

3. LINEAR PROGRAMMING

In this section, we briefly review linear programming, and we study several linear
programming problems for checking avoiding sure loss.

3.1. Linear programming problems. Any problem of minimising or maximising
a linear function, called the objective function, subject to linear constraints, is called
a linear program, and can always be written in the form of eq. (]E[), with dual given

in eq. @:
(P) min cTz subject to Az =b, >0
(D) max bTy subject to ATy +t=rc, t >0, y free

where A € R"™*™ has rank m, m < n, and z, ¢, t, b, and y are vectors with
dimensions as expected (so z, ¢, t € R™ and b, y € R™). We call eq. (]E) the primal
problem and eq. @ the dual problem. They have the same solution [4 p. 59], so
we can solve either one of them.

A solution is called feasible if it satisfies all constraints. The primal problem is
called unbounded if for all A € R, there is a feasible solution x such that ¢Tx < . A
feasible solution that achieves the optimal value of the objective function is called
an optimal solution. A basis is a collection of m of the n variables that correspond
to m linearly independent columns of A. A variable in the basis is called a basic
variable; otherwise it is called a mon-basic variable. A basic feasible solution is a
feasible solution such that all of the n — m non-basic variables are zero. The basic
feasible solutions are precisely the extreme points of the feasible region.

A linear programming problem is called degenerate if it has basic feasible solu-
tions with n —m 4 1 or more zero elements [d, p. 22]. If all basic feasible solutions
are zero (this happens when b = 0), we say that the problem is fully degenerate.
In this case, the feasible region is a cone, and therefore has only one extreme point,
namely, the origin. As we will see later, one way to check avoiding sure loss is
to solve a fully degenerate problem. The following lemma is useful for finding the
optimal value of a fully degenerate problem.

Lemma 1. (A generalised version of [13, p. 42, exercise 3.4].) The linear pro-
gramming problem

(14) min ¢z
(15) subject to  Ax >0

either has optimal value equal to zero, or is unbounded below.

Lemma ] shows that, for fully degenerate problems, if there is a feasible solution
x such that ¢Tx < 0, then the problem is unbounded. Therefore, in our algorithms,
we can stop early as soon as we find a negative value.
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3.2. Linear programming for checking avoiding sure loss. We now present
some linear programming problems for checking avoiding sure loss. The problems
(P1) and (D1) in theorem [5| are similar to the linear programming problems dis-
cussed for lower previsions in (author?) [14, p. 175].

Theorem 5. The set D = {f1,..., fn} avoids sure loss if and only if the optimal
value of (P1) is zero:

(Pla) (P1) min  «

(P1b) subject to  Vw € (: Z filw)hi —a <0
i=1

(Plc) Vi: X\ >0 (« free),

or, equivalently, if and only if its dual problem, (D1), has a feasible solution:

(D1la) (D1) max 0

(D1b) subject to Vf; € D: Z filw)p(w) >0
weN

(Dlc) Y pw) =1

weN
(D1d) Vw: p(w) > 0.

Note that (P1) is fully degenerate, and (D1) is nearly fully degenerate. Clearly,
any feasible solution of (D1) is also an optimal solution, since the objective function
is constant.

3.3. Reduced linear programming problem for checking avoiding sure
loss. When solving linear programs, several algorithms, such as the simplex and
the affine scaling methods, require all variables to be non-negative. Here we present
alternative linear programming problems which are slightly smaller in dimension
and have only non-negative variables. The following theorem is presented in [§]
without a proof; we give a proof in the appendix.

Theorem 6. [§] Choose any wy € Q. The set D = {f1,..., fn} avoids sure loss if
and only if the optimal value of (P2) is zero:

(P2a) (P2) min Y Aifi(wo) +
i=1
(P2b) subject to Yw # wy: Z(fl (wo) = filw)hAi+a >0
i=1
(P2c) Vi: \; >0 and a > 0,

or, equivalently, if and only if its dual problem, (D2), has a feasible solution:
(D2a) (D2) max 0

(D2b) subject to Vf; € D: Z (fi(wo) = fi(w))p(w) < fi(wo)
wFwo
(D2c) Y plw) <1
wF#wo

(D2d) Yw: p(w) > 0.



IMPROVED METHODS FOR CHECKING AVOIDING SURE LOSS 7

Proof. See appendix. O

(P2) is still fully degenerate, whilst (D2) is no longer degenerate.

As primal optimality corresponds to dual feasibility [5, p. 104], if we choose any
wo such that most values f;(wp) are non-negative, then (D2) will be closer to a dual
feasible solution, and therefore (P2) will also be closer to a primal optimal solution.
For instance, if there is an wq for which f;(wg) > 0 for all ¢, then we directly obtain
a feasible solution of (D2) by setting p(w) = 0 for all w # wy [§]. The corresponding
optimal solution of (P2) is given by A; = 0 for all 4 and a = 0.

Next, we look at the simplex, the affine scaling and the primal-dual algorithms.
We briefly explain how they work, and discuss improvements.

4. IMPROVING ALGORITHMS FOR SOLVING LINEAR PROGRAMS

4.1. Simplex methods. The simplex method is an iterative algorithm that needs
an extreme point to start. If a problem can be written in the form:

(S) min cTz subject to Az +s=0b, >0, s >0,

then provided that b > 0, we immediately obtain a starting extreme point by setting
s=band z =0 [0, §4.2]. Equation can be represented in a table. The simplex
algorithm performs row operations on this table to move between extreme points,
improving the value of the objective function at each iteration, until we find the
optimal value [6], §4.4].

The problem (P2) can be easily written as eq. by negating eq. and
adding non-negative slack variables s(w) [8]:

(P3a) (P3) min Z Aifi(wo) + &
i=1
(P3b) subject to  Vw # wp: zn:(fz(w) — filwo))Ai —a+s(w) =0
i=1
(P3c) Vi: A >0, Vw # wp: s(w) >0 and a > 0.

Setting all \;, a and s(w) to zero provides an initial extreme point. Because (P3)
is fully degenerate, this is also the only extreme point.

Full degeneracy also implies that, by the minimum ratio test [4, p. 36], we can
select any leaving basic variable at any point in the simplex method. Moreover, the
value of any new entering basic variable is always zero, so the objective value never
improves. This is bad news: if the same sequence of degenerate pivots associated
with a non-optimal solution is repeated multiple times, then the simplex method is
said to be cycling and will never terminate [4, §3.5]. Fortunately, there are simple
ways to avoid cycling, such as the lexicographic method or Bland’s rule [4] §3.6].

Once the problem of cycling is addressed, we may encounter another problem
called stalling, meaning that the method performs an exponentially long sequence
of degenerate pivots [3]. Since there are no known efficient rules for choosing leaving
variables for fully degenerate problems, we may end up visiting all extreme points.
Efficiently solving fully degenerate problems is still an open problem [7].

We now consider the dual problem (D2) and convert it into the form of eq. . We
first add non-negative slack variables to egs. and and obtain equality
constraints. Since we want all the right hand side values to be non-negative, for
every j such that f;(w) < 0, we multiply the corresponding constraint by —1 to



8 NAWAPON NAKHARUTAI, MATTHIAS C. M. TROFFAES, AND CAMILA C. S. CAIADO

make it non-negative and then add a non-negative artificial variable. In this case,
the size of the linear programming problem is slightly bigger. We arrive at [§]:

(D3a) (D3) min Y v,

(D3b) s.t. ;]E EN: ; (fi(w) = fi(wo))p(w) — 55 + v; = —fj(wo)
(D3c) Vj¢ N: ;O(fj (wo) = f3(w))p(w) + 55 = fi(wo)

(D3d) > pw)+ ; =1

(D3e) ;jzwo:p(w)zo, Vj:s; >0, v;>0and ¢ >0

with N := {j € N: fj(wo) < 0}. An initial extreme point for (D3) is given by
v; = —fj(wo),s; =0 forall j € N, sj = fj(wo) for all j ¢ N, p(w) = 0 for all
w# wo and ¢ = 1. If all f;(wo) > 0, then we have an immediate optimal solution.
The problem (D3) is normally non-degenerate, except if f;(wg) = 0 for some j [§].

To summarise, to check avoiding sure loss by the simplex method, we can solve
either (P3), which is fully degenerate, or (D3), whose size is slightly larger. Even
though the simplex method may stall under degeneracy, in practice, it is still one
of the most commonly used algorithms. This is why we treated it here.

4.2. Affine scaling methods. The affine scaling method solves linear programs of
the form of eq. (]ED Given a starting interior feasible point, the method generates
a sequence of interior feasible points which iteratively decrease the value of the
objective function, until the improvement is small enough or unboundedness is
detected [} §7.1.1].

The affine scaling method can solve (P3) as it is already in the form of eq. (P).
Similar to the simplex method, degeneracy can affect the performance of the affine
scaling method. (author?) [I2] show that this can be overcome by limiting the
step-size of the algorithm.

However, unlike the simplex method, lemmal[I]can be applied to the affine scaling
method. Specifically, when the affine scaling solves (P3), the method can stop as
soon as it finds a negative value for the objective function.

The dual problem (D2) can be written in the form of eq. (]ED by adding non-
negative slack variables:

(D4a) (D4) max 0
(D4b) subject to Vf; € D: Y (filwo) — fi(w))p(w) + ti = fi(wo)
wH#wo
(D4c) Z plw)+qg=1
w#wo
(D4d) Yw # wo: p(w) >0, Vi: t; >0, ¢ > 0.

Although we can also solve (D3) by the affine scaling method, we solve (D4) as it
has fewer artificial variables.

As the affine scaling method requires an initial interior feasible point, we nor-
mally need to solve two linear programming problems: one to find a starting interior
feasible point, and another one to solve the original problem with this starting point.



IMPROVED METHODS FOR CHECKING AVOIDING SURE LOSS 9

A starting interior feasible solution can be found as follows (see [4, §7.1.2] for
more details). Consider the constraints Az = b and « > 0. Choose any point
2% > 0 and calculate z = b — Az®. If z = 0, then 2 is an interior feasible solution
of the original problem. Otherwise, solve

(P min~y subject to Ax +zy=0b, >0, v>0

by the affine scaling method, using [z 7] = [2° 1] as a starting point (this point
is an interior feasible solution of eq. (P7)). If an optimal solution is [z* 7*] with
~v* = 0, then x* is an interior feasible solution of the original problem. Otherwise,
there is no feasible solution.

The good news for us is that, for solving either (P3) or (D4), we only need to
solve a single linear programming problem. For (D4), this is because every interior
feasible point is also an optimal solution, so we only need to solve eq. . For (P3),
due to the structure of the problem, we can immediately write down an interior
feasible point in closed form, so we do not need to solve eq. .

Let us explain how eq. looks like for (D4), following (with a slight improve-

ment here) (author?) [§]. Let Q\{wo} = {w1,...,wn}. Consider, for the moment,
an arbitrary

(16) 2= [0w) o Pwm) B 1 )] >0

and define [r z] :== b — Ax?, so

(17) ri=h; —t]

(18) z:=1-— Z P’ (w) +¢°

wFwo
where
(19) hi = filwo) = Y (filwo) = fi(w))p"(w).
wFwo

If we choose ¢° = p°(w) = 1/|9] for all w # wy, then z = 0. Choose t? = 1 (or any
other strictly positive value) for all i where h; < 0. Finally, choose ¢! = h; for all i
where h; > 0, so all corresponding r; are zero. So, eq. becomes:

(D4’a) (D4’) min

(D4’b) st Vii Y (filwo) = fi(w))pw) + ti + 1y = fi(wo)
wHwo
(D4c) > pw) +g=1
w#wo
(D4’d) Yw # wo: p(w) >0, Vi: t; >0,¢>0and v >0,

with an initial interior feasible point as constructed. Note that for simplicity in our
implementation, we choose tY = 1 for all 4. If the optimal solution of (D4’) has
~* = 0, then we will have found an interior feasible solution for (D4) (and therefore
also an optimal solution for (D4)), and so D avoids sure loss; otherwise, there is no
feasible solution and D incurs sure loss.

For (P3), we simply calculate a starting interior feasible point using theorem
below, with A = 1.
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Theorem 7. [8, modified] An interior feasible point of the following system of
linear constraints

(20) Vie{l,...,m}: Zaij)\i—a—i-s]':bj
i=1

is given by setting \; = A for some arbitrary A} > 0, a = 1 + max{0, -} with

(22) 0 := min {bj - ; aij/\?} ;
and s; =b; — Y ai i\ + o .

Proof. We must show that eq. is satisfied, and that all variables are strictly
positive.

Clearly, eq. (20) is satisfied by our choice of s;, all A; = A >0, and a > 1> 0.
Finally, note that also all s; > 0 because

(23) si=bj—Y agM+a>d+a>6+1-6>0,
i=1
where we used the definitions of § and « respectively. O

To conclude, to check avoiding sure loss with the affine scaling method, we either
solve (P3) or (D4’). In either case, we have a closed form initial interior feasible
point. In addition, we can apply lemma [I] as an extra stopping rule to detect
unboundedness when solving (P3). However, we need to take care to limit the
step-size due to degeneracy.

Next, we look at another interior-point method for which we can also apply
lemma [T] and theorem [7 but which does not have a limitation on the step-size and
which has faster convergence as observed in practice.

4.3. Primal-dual methods. The primal-dual method is an iterative algorithm
which finds an optimal solution by solving egs. and @ simultaneously. At
each iteration, the method solves the following system:

Az —b
(24) ATy+t—c| =0,2>0,t>0 (y free)
xTt

whilst keeping the variables x and ¢ positive. Theoretically, given an initial interior
feasible point (z,y,t) where z > 0 and ¢ > 0, the method can generate a sequence
of interior feasible points such that 2Tt gets closer and closer to zero (by duality, the
solution is optional when 27t = 0; the method simply exploits this fact). However,
in practical implementations, keeping (z,y, t) in the feasible region is very difficult
due to numerical issues [4, §7.3].

Therefore, in practical implementations, the primal-dual method starts with an
arbitrary point (z,y,t) where > 0 and ¢ > 0 and generates points that converge
to a feasible optimal solution. The method will stop when the primal residual
Ax — b, dual residual ATy + ¢t — ¢, and duality gap Tt are small enough, or when
unboundedness in either the primal or the dual is detected. Although this modified
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version of the algorithm has no known convergence proof, it works extremely well
in practice [4, §7.3].
The problem (P3) is already in the form of eq. (P). Its dual is [8]:

(D5a) (D5) max 0
(D5b) ot V€D Y (filw) = filwo))v(w) +t; = fi(wo)
wH#wo
(D5¢) q— Z v(w) =1
wHwo
(D5d) Yw # wo: v(w) + p(w) =0
(D5e) Vi:t; >0, Yw # wo: p(w) >0 and ¢ > 0.

Because —v(w) = p(w) > 0, (D5) is equivalent to (D4), as expected. The primal-
dual method solves (P3) and (D5) simultaneously.

Theorem [7| provides an initial interior feasible point for (P3). However, there
is no closed form feasible point for (D5) (if we had, then we immediately would
have found an optimal solution). In this case, a starting point of (D5) can be
¢° =p°(w) = 1/|9], v°(w) = —1/]Q|, and t? = 1 for all i [§].

Remind that we can apply lemma [1| to (P3) only if we can keep all iterative
points in the feasible region. Although we start (P3) with a feasible point, the next
points do not necessarily remain in the feasible region due to numerical rounding
errors. Therefore, it is good practice to calculate the primal residual and only apply
lemma |1} if this error is neglegible [g].

Now, consider solving the problem (D4’) by the primal-dual method. In this
case, the dual of (D4’) can be written in the form of eq. (D)) as follows:

(P4’a) (P4’) max Zn: Aifi(wo) +
i=1
(P4) St VoA unr 3 (w0) — F@)h+ats(@) =0
(P4’¢) Vi A+ u:: 0
(P4d) a+pB=0
(P4%e) zn:ri)\i +u=1
(P4f) VZZ'Zzlui >0, Vw#wy: s(w) >0, 8>0and x> 0.

To find an initial interior feasible point of (P4’), first choose \; < 0 such that
i X < 1. The u; > 0 are then fixed by eq. , and p is fixed by eq. .
Note that p = 1 — Y7, 7A; > 0 by construction. Substituting « = —f into
eq. (P4’b)), we can then apply theorem |z| to find interior feasible values for § and
s(w) for all w # wy. Unfortunately we cannot apply lemma [I| to (P4’), because the
problem is no longer fully degenerate.

In the next section, we explain how we can generate random sets of desirable
gambles that either avoid or do not avoid sure loss. In section [7] we will then
benchmark our three methods on those randomly generated sets.
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5. GENERATING SETS OF DESIRABLE GAMBLES VIA COHERENT LOWER
PREVISIONS

In this section, we first give algorithms for generating coherent previsions (al-
gorithm , polyhedral lower previsions (algorithm [2)) and linear-vacuous mixtures
(algorithm , as mentioned earlier. We then discuss how they can be used to
generate sets of desirable gambles for benchmarking.

Algorithm 1 Generate a coherent prevision

Input: Set of outcomes (2
Output: Coherent prevision P on £(£)

Stage 1. Generate a probability mass function p as follows:

(a) For each w, sample r,, uniformly from (0, 1).
Inr,

Yweonry’

Stage 2. Generate a coherent prevision P
(a) For any f € L(), P(f) = E,(f) as in eq. ().

(b) For each w, set p(w) =

Algorithm 2 Generate a polyhedral lower prevision

Input: Set of outcomes €2
k coherent previsions: @1,...,Qk (e.g. obtained by algorithm
Output: Polyhedral lower prevision P on £(£2)

Stage 1. For any f € L(Q), P(f) = min?zl{Qj(f)}.

Algorithm 3 Generate a linear-vacuous mixture

Input: Set of outcomes (2
5 € (0,1) (e.g. sample § uniformly from (0, 1))
Coherent prevision @ (e.g. generated by algorithm
Output: Linear-vacuous mixture P

Stage 1. For any f € L(Q), P(f) == (1 —§)Q(f) + dinf f.

We now explain how to generate sets of desirable gambles that avoid sure loss
from any given coherent lower previsions. As we will see, if this coherent lower
prevision is more generic, then the generated set of desirable gambles will also be
more generic. In addition to the analysis presented here, note that we also generated
sets of desirable gambles from lower previsions that avoid sure loss but that are not
coherent. However, we found no practical difference; see discussion at the end of
section [1

We start by generating a coherent lower prevision E on £(2) e.g. through one
of the above algorithms. Next, we generate a finite subset K of £(£2) and set
P(f) = E(f) for all f € K. P is coherent too because it is the restriction of a
coherent lower prevision [I1l, p. 58]. Therefore, the set D = {f — P(f): f € K}
avoids sure loss:

Algorithm 4 Generate a set of desirable gambles that avoids sure loss

Input: Set of outcomes €2
Number of desirable gambles n = |D|
Coherent lower prevision E on £(2)
Output: Finite set of desirable gambles D that avoids sure loss
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Stage 1. Generate {f;:j € {1,...,n}}:

for each w and j, sample f;(w) uniformly from (0, 1).
Stage 2. For each ¢ € {1,...,n}, calculate E(f;).
Stage 3. Set D= {f; — E(f;):i€{1,...,n}}.

Which type of coherent lower prevision should we use to generate sets of desirable
gambles? To answer this question, first we look at Mg and its extreme points, for
various classes of E:

(i) Vacuous lower prevision: Mg = A(f2) and its extreme points are all 0 — 1
valued probabilities.
(ii) Coherent previsions: Mg = ext Mg = {p}, p € A(Q).
(iii) Polyhedral lower previsions: as in eq. , when M is finite, Mg is a
polyhedron and has a finite set of extreme points.
(iv) Linear-vacuous mixtures: for pg € A(Q) and § > 0, Mg = {(1 — §)po +
dp,p € A(Q)} and ext Mg = {(1-9)po+0p, p is a 0—1 valued probability}.

N A

(i) (ii) (iil) (iv)
FIGURE 1. Simplex representation of different Mg for @ = {a,b, c}:
(i) vacuous, (ii) prevision, (iii) polyhedral lower prevision, (iv) linear-
vacuous mixture.

Figure |I| shows examples of Mg associated with different coherent lower previ-
sions. For polyhedral lower previsions, the number of extreme points is arbitrary
(but finite). For linear-vacuous mixtures, the number of extreme points is limited
to the number of outcomes, and the shape of its credal set is fixed (up to scale and
translation).

When we generate D = {f — P(f): f € dom P} as in algorithm 4} the credal set
associated with D is given by

(25) Mp = {pe A(Q): Vf € D, E,(f) >0}.
Mp and Mg are related as follows:

Corollary 1. Let E be a coherent lower prevision on L()), let P be a restriction
of E to a finite domain, and let D = {f — P(f): f € dom P}. Then:

(i) Mg € Mp.
(ii) If Mg is a polyhedron, then there is a finite set I C L(Q) such that if
dom P = K, then Mp = Mg.
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abaﬁb/a 1>a4

\
B

(i) (ii) (iii) (iv)
FIGURE 2. Constructing Mg by finite half-spaces for Q@ = {a,b,c}:
(i) vacuous, (ii) prevision, (iii) polyhedral lower prevision, (iv) linear-
vacuous mixture.

b

Proof. (i). We find that

(26) Mp = {p e A(Q): Ep(f) = E()}
FeL(Q)

(27) = () {PeA®): E(f—E(f) >0}
FeL()

(28) C {r € A(Q): Ey(f — P(f)) > 0} = Mp.
f€dom P,

(ii). By (i), we only need to show that Mp C Mpg. Since Mg is a polyhedron,
it is an intersection of a finite number of half-spaces. Therefore there exists an
n € N, vectors f1,..., f, and numbers aq, ..., a, such that

(29) Mp=(peAQ):p-fi > a;}

=1

where ‘" denotes the dot product. Note that
(30) E(fi)= min p- fi=min{p- fi: Vj, p- f; = a;} > .
PEME P

Set K ={f1,..., fn} and dom P = K. Then,

(31) Mp = ({p € AQ): p- fi > E(fi)}

i=1

(32) C(HreA@):p-fi >} = Mg.

i=1

O

Consequently, if we want Mp to have a sufficient number of extreme points, we
should generate D using either a polyhedral lower prevision, or at the very least
using a linear-vacuous mixture.

Figure [2| visualises the construction of the proof, for various classes of lower
previsions. Corollary [1] implies that we do not necessarily gain new extreme points
as we add more and more gambles to D. Therefore, algorithm [f] may not be a good
way for generating D if our aim is to keep adding new extreme points with every
gamble we add. The algorithm in the next section addresses precisely this issue.
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6. SEQUENTIALLY GENERATING SETS OF DESIRABLE GAMBLES

Consider a set £ = {f1,..., fn} that avoids sure loss. How can we add another
gamble, say f, for which £ U {f} either still avoids sure loss, or not?

6.1. Generating sets of desirable gambles that do not avoid sure loss.
Given a gamble g, we first find the range of values for a such that £ U {g — a}
avoids sure loss. By the condition of avoiding sure loss in definition [I| we obtain a

constraint on the values of a as follows: for all n € N, all A\q,...; A, > 0, and all
f17 et fn e 87

33 su A fi( g(w) | > a.

(33) sup (Z ifilw ))

The infimum of this upper bound is precisely E¢(g). So, we proved:

Corollary 2. Let £ avoid sure loss and let g € L(R2). EU{g — a} avoids sure loss
if and only if o < Ee(g).

Hence, if we set o > Eg(g), then £ U {g — a} does not avoid sure loss:

Algorithm 5 Generate a set of desirable gambles that does not avoid sure loss

Input: Set of outcomes (2
A set of desirable gambles £ that avoids sure loss
d > 0 (e.g. sample § uniformly from (0,1))
Output: A set of desirable gambles D that does not avoid sure loss.
Stage 1. For each w € (2, sample ¢g(w) uniformly from (0, 1).
Stage 2. Solve the following linear program:

(34) min (8

(35) st VweQ: > filwhi =B < —gw), Ni>0 (B free).
fi€€

Stage 3. Set D:=EU{g— S —d}.

Note that sets of gambles generated by algorithm [5| only contain a single gamble
that violate consistency. Therefore, they are the most computationally challenging
sets to detect not avoiding sure loss. Consequently, they are the most suitable sets
for benchmarking, as any measurable improvement on these cases implies an at
least as large improvement on any simpler cases.

6.2. Generating sets of desirable gambles that avoid sure loss. Consider
a coherent lower prevision Q. The set & = {f — Q(f): f € domQ} then avoids
sure loss. Let g € £(Q2) \ domQ. By corollary (2 l we know that the larger set
D := £ U{g — a} still avoids sure loss as long as o < Fg¢(g). Note that the number
of extreme points can decrease after adding {g — a}, as shown in fig.

How should we choose a to avoid reducing the number of extreme points? If P
is a coherent extension of @ to dom QU {g}, then Mp must have at least as many
extreme points as Mg, because, by coherence, for every f € dom @, P(f) and Q(f)
must be achieved at some extreme point of Mp and Mg, respectively [14] p. 126].
But because P(f) = Q(f) for all these gambles f, it cannot be that Mp has fewer
extreme points than I/IQ, because otherwise P(f) > Q(f) for at least one gamble
f. Hence, the number of extreme points does not decrease if we keep coherence.
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c c c
b a b a b
Mg adding a gamble Mop
FIGURE 3. Simplex representation of a credal sets after adding a gamble.

«———— avoiding sure loss
[ coherence 7 W

Eé (9) Eq(9) Eq(9)

FIGURE 4. Ranges of avoiding sure loss and coherence

Theorem 8. (adapted from [17, p. 126]) Let Q be a coherent lower prevision and
let g € L(Q) \ domQ. Let P be an extension of Q to domQ U {g}. Then P is
coherent if and only if P(g) € [Eg(9), Eq(g)], where

(36) ‘Eg(g) = fiedorlnné, Ai20 {

max ( )+ Z)‘ (filw) = Q(fi))) — Ao(fo(w) Q(fo))> }

Figure [f] shows ranges of avoiding sure loss and coherence of g given a coherent
lower prevision Q.

We can calculate Eq (g) by solving a single linear programming problem. How-
ever, Eq (g) cannot be obtained by solving just a single linear programming prob-
lem: we have to solve a separate linear programming problem for every fo € dom Q,
where each separate linear program is very similar to and has the same size as the
linear program for calculating Eq(g)-

So, instead of finding Eq(g), we calculate Eg(g) and Eg(g) (or Eg(g) where

={f —Q(f): f € domQ}) since for each of them, we solve only one linear
programming problem. Next, we choose a very small number § and set P(g) =
(1—0)Eq(g9) +6Eq(g). Then, P(g) is slightly larger than E(g), but P(g) is still
less than Fg(g). Therefore £ U {g — P(g)} still avoids sure loss as we want. This
approach is summarised in algorithm @ Because only the natural extension of @ is
used, we only need @ to avoid sure loss.

Algorithm 6 Generate a set of desirable gambles that avoids sure loss

Input: Set of outcomes (2
A lower prevision @ that avoids sure loss (e.g. Algorithms I, I or .
Aset £={f—-Q(f): f € dom@Q} that avoids sure loss
§€(0,1)

Output: A larger set of desirable gambles D that avoids sure loss

Stage 1. For each w € €, sample g(w) uniformly from (0, 1).
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Stage 2. Calculate Eg(g) by solving

(37) min f
(38) subject to Vw € Q: Y (fi(w) — QUfi))Ai — B < —g(w)
i=1

(39) Ai 20, filw) —Q(fi) €€ (B free)
Stage 3. Calculate Eg(g) by solving

(40) max 7y

(41) subject to  Vw € Q: Z(fl(w) —Q(fi)Ni +v<g(w)

i=1
(42) Ai >0, fz(w) - Q(fz) eé (’y free).

Stage 4. Set P(g) = (1 — 6)Eg(g) + 5@9(9).
Stage 5. Set D:=E&U{g— P(9)}.

Note that we will not use algorithm [f] in our benchmarking. Instead, we use a
combination of algorithm [2]and algorithm ] which generates constraints via a set of
probability mass functions, as this is computationally faster. We state algorithm [0]
for the sake of completeness, as an alternative algorithm for generating constraints
directly.

7. NUMERICAL RESULTS

To benchmark our theoretical result, in this section, we generate two types of
random sets of desirable gambles: sets that avoid sure loss, and sets that do not. For
each type, we consider |D| = 2! fori € {1,2,...,8}and |Q| = 27 for j € {1,2,...,8}.
Random sets that avoid sure loss are generated as follows:

(1) We use algorithm [I| to generate k coherent previsions. We fixed k = 25, as
we observed that varying k has little impact on the results.

(2) From these k coherent previsions, we use algorithm [2] to generate a polyhe-
dral lower prevision.

(3) We use algorithm |4} with this polyhedral lower prevision, to generate a
random set that avoids sure loss.

Next, starting from a set £ that avoids sure loss, we generate a set that does not
avoid sure loss using algorithm [5] with § = 0.05.

For each random set of desirable gambles, we use the algorithms for checking
avoiding sure loss discussed earlier in the paper. Table|l| gives an overview of these
different algorithms. Note that the primal-dual method simultaneously solves the
primal and the dual problems.

To compare these three methods, we wrote our own implementation of the affine
scaling and the primal-dual methods. We used an implementation of the revised
simplex method written by (author?) [I0]. Indeed, the revised simplex method
is mathematically equivalent to the standard simplex method, but is much more
efficient and numerically stable as it applies sparse matrix manipulations [4] §3.7].
We used the revised simplex method to solve both problems (P3) and (D3). For
the affine scaling method, a standard version is used for solving (D4’), while an
improved version, which includes the extra stopping criterion and our mechanism
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. Methods
Linear programs
Simplex Affine scaling Primal-dual
(P3) v v v
(D3) v
(D4) v v

TABLE 1. List of different methods for checking avoiding sure loss. Note
that the primal-dual method also solves the dual problem simultane-
ously, e.g. (D5) for (P3) and (P4’) for (D4’).

for calculating feasible starting points, is used to solve (P3). For the primal-dual
method, an improved version that has the extra stopping criterion and the mech-
anism for calculating feasible starting points is used for solving (P3) and (D5),
and another improved version that has only the mechanism for calculating feasible
starting points is used to solve (D4’) and (P4’).

For each method, we run the algorithm twice to remove any warm-up effects that
can happen in the first run, and we only measure the corresponding computational
time taken in the second run. We repeat the process 1000 times and present a
summary of the results in figs. [f] and [6]

Figures [5] and [6] show the average computational time taken during each method
when checking avoiding sure loss. In the left column, the sets of desirable gambles
avoid sure loss while in the right column, they do not avoid sure loss. In fig.
each row represents a different number of desirable gambles, and the horizontal
axis represents the number of outcomes. In fig. [6] each row represents a different
number of outcomes, and the horizontal axis represents the number of desirable
gambles. In both figures, the vertical axis shows the computational time. The
computational time is averaged over 1000 random sets of desirable gambles. The
error bars on the figures represent approximate 95% confidence intervals on the
mean computation time. These are barely visible because of the large sample size,
except in some rare cases where we observed large variability in the simplex method
(possibly due to the numerical issues that we discussed earlier in the paper).

In the avoiding sure loss case, note that the sets of desirable gambles are always
generated from coherent lower previsions. However, in some applied problems, this
may not be the case. Therefore, we ran one further experiment where we introduced
a negative bias, which removes coherence whilst still avoiding sure loss. Specifically,
in Stage 3 of algorithm [4] we set D = {f; — E(f;) +n(fi): i € {1,...,n}}, for some
n(f;) > 0. We considered two scenarios: (i) we uniformly sampled each 7(f;) from
the open (0, 1) interval, and (ii) we fixed each n(f;) := 0.01. This made no practical
difference. In particular, the plots in figs. [f] and [6] for the avoiding sure loss case
remained nearly identical, with no change in general conclusions.

8. DISCUSSION AND CONCLUSION

In this study, we discussed and improved the simplex, the affine scaling and the
primal-dual methods to efficiently solve linear programming problems for checking
whether sets of desirable gambles avoid sure loss or not. To measure our improve-
ments, we also gave several algorithms for generating random sets of desirable
gambles that either avoid or do not avoid sure loss.
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Building further from [8], we studied linear programming problems and two
improvements of these methods, namely, (i) an extra stopping criterion, and (ii)
a simple and quick algorithm for finding feasible starting points in these methods.
We compared the impact of these improvements on the three methods for solving
linear programming problems.

These improvements benefit all applied problems as they reduce the computa-
tional burden of the original algorithms. Our benchmarking study quantified these
benefits for a wide range of situations. In case of not avoiding sure loss, we tested
the hardest case where only a single gamble violates consistency. Any positive
computational gain in these cases implies an at least as large gain for more general
applied cases where multiple gambles violate consistency.

According to our numerical results, the relative performance of the three meth-
ods depends on the number of desirable gambles and the number of outcomes.
Specifically, if the number of outcomes is much larger than the number of desirable
gambles, then solving either (D3) or (D4’) is faster than solving (P3). However, if
the number of outcomes is much less than the number of desirable gambles, then
we prefer to solve (P3). When the two numbers are of similar magnitude, there is
no clear difference.

In the results, the primal-dual and the affine scaling methods outperform the
simplex method in most cases. The simplex method can find a basic feasible starting
point easily, but it cannot apply the extra stopping criterion. Therefore, the simplex
method is not a good choice for checking avoiding sure loss.

On the other hand, the affine scaling and the primal-dual methods can benefit
from these improvements. Specifically, when we solve (P3), these two methods can
apply the extra stopping criterion and a simple mechanism to calculate feasible
starting points. In this case, the primal-dual method performs very well, especially
when we do not avoid sure loss and the number of desirable gambles is large.

When we solve (D4), these two interior-point methods can easily find feasible
starting points. In this case, the affine scaling method performs very well in small
problems whilst the primal-dual method does better when the problems are bigger.

Overall, if problems are small, then there is no big difference in the time taken
to solve either (P3) or (D4’), and there is also no big difference between the per-
formance of the methods. When the problems are large, the primal-dual method is
the best choice. In this case, if the number of desirable gambles is large, then we
solve (P3), and if the number of outcomes is large, then we solve (D4’).

In future work, we will test our improved methods with some real applications
and explore an algorithm for choosing wp in theorem [6] for large problems.

APPENDIX A. PROOFS

Proof of theorem[6 'We only show that D avoids sure loss if and only if the optimal
value of (P2) is zero since the proof that the dual problem, (D2), has feasible
solutions follows immediately by the strong duality theorem [4, p.59].

Firstly, by lemma the optimal value of (P2) is either zero or unbounded. Next,
we show that if D avoids sure loss, then the optimal value of (P2) is zero, and vice
versa. Note that eq. can be written as

(43) sup (Z Aifi(‘*’)) < Z)\ifi(wo) + o

weR i—1
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Suppose D avoids sure loss, then by definition [2] for all n, all Ay, ..., A, > 0, and
fla R fn EDa

44 0<su i fi .

(4 o (3000

So, by eq. ,
(45) 0<> Nifilwo) +a
i=1

So, the optimal value is non-negative. Now, by putting A\; = 0 for all 7, and o = 0,
we obtain

(46) S i) +a =

Therefore, the optimal value of (P2) is zero.
Conversely, suppose D does not avoid sure loss. There are non-negative Ay, ...,
An, such that

o (S0 <o

weN
Set
48 5= su Aifi
(48) sup (Z ifilw >
and choose
n
(49) a=s— Z Aifi(wo).
i=1
Now we have o« > 0 and
(50) Vo #wor Y Aifi(w) <> Nifilwo) +a=s<0.
i=1 i=1
This means that
n
(51) Z Aifilwo) +a <0
i=1
is a feasible value of (P2). By lemma [l} the optimal value is unbounded. (]
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