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Abstract
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allocation that maximizes the expected social surplus subject to the bidders’ in-

centive compatible constraints when the first best is not implementable. We prove

that Maskin’s (1992) result that any first best allocation that is deterministic and

monotone can be implemented with the English auction carries over to the second
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1 Introduction

Suppose that an oil tract is put up for sale between two wildcatters. The first one, the

incumbent, has a high marginal cost and a low fixed cost, whereas the second one, the

entrant, has a low marginal cost and a high fixed cost. In this case, it may be efficient

to allocate the good to the incumbent if there is little oil and to the entrant if there is

much oil. However, Maskin (1992) has shown that this allocation, i.e. the first best, is

not implementable1 when the amount of oil is private information of the incumbent. A

similar problem may arise in an auction with an insider and an outsider. What is then

the socially optimal allocation subject to implementability, i.e. the second best? Can it

be implemented with a “realistic” mechanism?

Maskin (1992) has shown that for the case of only two bidders, and if value functions

verify a mild monotonicity condition, any first best allocation that is deterministic and

monotone2,3 can be implemented with the English auction. We show that this result

also holds true for the second best. In fact, we derive this result from the more general

claim that the English auction implements the deterministic and monotone allocation

that gives the greatest expected surplus when there are only two bidders.

Restricting to monotone allocations is natural if one is interested in the English

auction since only such allocations can be implemented as a monotone equilibrium

of the English auction. The restriction to deterministic allocations only eliminates

equilibria in mixed strategies and equilibria with ties. It is unclear how these could

improve efficiency. Besides, both restrictions are without loss of generality for the

natural case in which values are additively separable and private types stochastically
1In this paper, we mean by implementable that the allocation is the equilibrium outcome to some

game. This notion of implementability is also called achievability. Note that it differs from the concept

of full implementation. This latter concept requires that the allocation is the unique equilibrium

outcome to some game.
2For a formal definition of deterministic and monotone allocations see our Section 4. Informally, an

allocation is deterministic if it does not involve lotteries and it is monotone if the ex post probability of

allocating the good to a bidder does not go down as we increase her type keeping constant the rival’s

type.
3This result is stated in terms of an almost equivalent single crossing condition.
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independent. Our motivating examples verify these assumptions.

To grasp the intuition of our result consider the wildcatter example. Since the

incumbent knows the amount of oil, she knows her value. Hence, she has a unique

weakly dominant strategy as in a private value auction: to stay active until her value

is reached. If the incumbent plays this strategy, the entrant’s payoff when winning

is equal to the difference between her value and the incumbent’s, i.e. it is equal to

the change in social surplus. Thus, the entrant’s best reply maximizes not only her

expected profits but also social welfare, i.e. the private interest of the entrant is aligned

with the social one. In our analysis, we use the local optimality conditions of the second

best problem to show how an adaptation of this intuition applies more generally.

The above example also illustrates that the strategic analysis of the English auction

when the first best is not implementable is more complex than otherwise. Since the

entrant’s value is greater than the incumbent’s if and only if the latter is large enough,

the entrant makes a loss if she wins at a low price but a profit if she wins at a high price.

Her best response must trade off these expected losses and gains. It may be possible

that the entrant finds it profitable to remain in the auction at prices at which she makes

a loss when the incumbent quits, i.e. there may be ex post regret in equilibrium.

Ex post regret implies that the equilibrium is not an ex post equilibrium. This is a

common feature of second best efficient equilibria of the English auction. It is easy to

see why. If the first best is not implementable, the second best allocation maximizes

total expected surplus trading-off inefficient allocations with the weights given by the

bidders’ beliefs. In general, this means that the second best allocation varies with the

bidders’ beliefs and, consequently, any equilibrium that implements it must also vary

with them. Generally, this is incompatible with ex post equilibria. An alternative is a

more sophisticated auction mechanism whose rules vary with the bidders’ beliefs. This,

however, is less appealing as emphasized by Wilson’s critique.

The rest of the paper is organized as follows. The related literature is in Section

2. We define the formal set-up in Section 3. Section 4 contains several definitions and

Section 5 some motivating examples in which the first best is not implementable. We

study the English auction in Section 6. Section 7 concludes and the Appendix contains
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the most involved proofs.

2 Related Literature

Most of the papers that study the set of auction mechanisms that maximize the expected

social surplus subject to the buyers’ incentive compatibility constraints differ from

ours in that they assume conditions that guarantee that the incentive compatibility

constraints are not binding. This is for instance the case of Vickrey (1961), Krishna

and Perry (1998), and Williams (1999), and most of the analysis of Maskin (1992, 2000),

and Dasgupta and Maskin (2000).

Maskin (1992, 2000), Dasgupta and Maskin (2000), Eso and Maskin (2000), and

Jehiel and Moldovanu (2001) also consider the case in which the first best is not im-

plementable. Their results, however, hinge on the assumption that bidders have mul-

tidimensional private information. They argue that in this case an implementable

allocation cannot depend on the type beyond a particular one-dimensional reduction.

The first best is usually not implementable because it requires conditioning on more

information than this one-dimensional reduction. Eso and Maskin (2000) define in this

set-up the constraint efficient allocation. This is the allocation that maximizes expected

social surplus when we can only condition the allocation on the former one-dimensional

reduction.4

Another related branch of the literature, Maskin (1992), Krishna (2003), Birulin

and Izmalkov (2009), Izmalkov (2003), and Dubra, Echenique, and Manelli (2009),

analyzes whether there is an equilibrium of the English auction that allocates the good

efficiently when the efficient allocation is implementable.

On the technical side, our analysis of the case of independent types and additively

separable value functions is related to the ironing technique introduced by Mussa and
4Although we assume a one-dimensional type space, we show in the working paper version of this

paper, Hernando-Veciana and Michelucci (2008), that some of our results may be used in the efficiency

analysis based on the one-dimensional reduced types. In a more general version of our example in

Section 5.2, it is generally the case that the one-dimensional reduction does not verify the conditions

required for implementability of the constraint efficient allocation.
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Rosen (1978) and Myerson (1981). In a recent paper, Boone and Goeree (2009) have

used the ironing technique in an environment closely related to our motivating example

in Section 5.2. Their focus, as in Myerson (1981), is on revenue maximization rather

than on efficiency.

The problem of second best efficiency has also received attention in the context of

two parties that bargain with asymmetric information, see Myerson and Satterthwaite

(1983). The difference is that in their set-up withdrawing the individual rationality

constraints always makes the first best implementable, whereas this is not the case in

our set-up. In fact, we consider the usual auction environment in which the individual

rationality constraints can be trivially met and it is only the incentive compatibility

constraints that may be binding.

3 The Model

One unit of an indivisible good is put up for sale to a set of two bidders {1, 2}. Let

s = (s1, s2) be a vector that it is equal to the realization of a random variable with

distribution F and with a strictly positive bounded density f in a bounded support

S ≡ S1 × S2 ⊂ R2. We denote each marginal distributions of F (on the sets Si’s)

by Fi and its density by fi. Bidder i observes privately si and gets a von Neumann-

Morgenstern utility vi(s)−P if she gets the good for sale at price P , and utility −P if

Bidder j, j 6= i, gets the good and i pays a price P . We assume that vi is non-negative,

bounded, measurable and strictly increasing in si, for any i.5

Let an allocation be a measurable function p : S → [0, 1]2, such that p1(s)+p2(s) = 1

for any s ∈ S, where pi(s) denotes the probability that the good is allocated to i when

the vector of types is s ∈ S. Note that we do not allow for the possibility that the good

remains unsold. This is a common assumption in the papers that study the efficiency of

the English auction, for instance Maskin (2000), Krishna (2003), Birulin and Izmalkov
5We say that a function g : D ⊆ Rn → Rn is increasing if for any x, y ∈ D, x > y implies g(x) ≥ g(y),

and strictly increasing if x > y implies g(x) > g(y).
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(2009), and Dubra, Echenique, and Manelli (2009).6,7

We also make another common assumption, that vi(s) is increasing. It is well-known

that an assumption of this sort is necessary for the English auction to implement the

first best. That a similar condition is also necessary for the second best is a consequence

of the fact that the strategies that implement it share with the strategies that implement

the first best that each bidder bids her value conditional on his type and on the other

bidder’s type being pivotal for the allocation.8

4 Definitions

Definition: We say that an allocation p is first best when ∀s ∈ S, pi(s) > 0 only if:

vi(s) ≥ vj(s), j 6= i.

We are interested in the set of allocations that can be implemented. By the rev-

elation principle, there is no loss of generality in restricting to direct mechanisms. A

direct mechanism is a pair of measurable functions (p, x), where p is an allocation and

x : S → R2 a payment function. In the direct mechanism (p, x), each bidder announces

a type, and pi(s) denotes the probability that i gets the good and xi(s) her payment

to the auctioneer when the vector of announced types is s ∈ S.

The expected utility of Bidder i with type si who reports s′i when the other bidder

6This assumption is without loss of generality if the seller’s value is sufficiently small relative to the

buyer’s valuations. Indeed, our assumption that retaining the good is not an option for the seller can

be interpreted as if retaining the good for the seller has minus infinity value. To some extend, this may

be the case for some government auctions where not selling is not option.
7In fact, there is usually no combination of entry fees and reserve prices that enables the English

auction to implement the efficient allocation when this allocation requires that the good remains unsold

for some realizations of the bidders’ types.
8We cannot directly relax our assumption as in Krishna (2003), Birulin and Izmalkov (2009), or

Dubra, Echenique, and Manelli (2009). The reason is that their alternative assumptions require as-

suming continuity of the value functions, which conflicts with our motivating example in Section 5.2.
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reports truthfully is equal to:9

Ui(si, s′i) ≡
∫
Sj

(
vi(si, sj)pi(s′i, sj)− xi(s′i, sj)

)
fj(sj |si)dsj ,

where j 6= i and fj(sj |si) denotes the density of the distribution of sj conditional on

the realization of Bidder i’s type being equal to si.

Thus, we say that an allocation p is implementable if there exists a direct mechanism

(p, x) that satisfies the following Bayesian incentive compatible constraint:10

Ui(si, si) = sup
s′i∈Si

{Ui(si, s′i)},

for all si ∈ Si and i ∈ {1, 2}.

Requiring Bayesian incentive compatibility constraints is consistent with the fact

that we consider Bayesian Nash equilibria of the English auction. This departs from

the alternative approach used in the related literature that employs ex post equilibrium

and ex post incentive compatible constraints. This departure, as explained in the

Introduction, is motivated by our focus on an auction whose details are not fine tuned

to the bidders’ beliefs.

Definition: We say that an implementable allocation p is second best efficient, if it

maximizes the expected social surplus:∫
S

∑
i=1,2

vi(s)pi(s)f(s) ds,

among the implementable allocations.

Since we assume preferences quasilinear in money, second best efficiency is equiva-

lent to Holmström and Myerson’s (1983) concept of ex ante incentive efficiency.

Certainly, the set of second best allocations includes the first best allocation when

the efficient allocation is implementable.

Our interest in the English auction, see our discussion in the Introduction, justifies

to concentrate on second best allocations that are deterministic and monotone in the
9With some abuse of notation, we denote by pi(si, sj), xi(si, sj) and vi(si, sj) the functions pi, xi

and vi, respectively, evaluated at (si, sj) if i < j and at (sj , si) otherwise.
10We do not impose individual rationality constraints because they are trivially satisfied in our set-up.
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following sense: an allocation is deterministic if it takes values in the set {0, 1}2, and

it is monotone if pi(s) is increasing in si for any i. We also say that an allocation is

monotone in i when pi(s) is increasing in si. This last definition is useful to state some

of our results in particular Proposition 2.

Monotone allocations have been extensively studied by the related literature because

monotonicity is equivalent to ex post implementability, see Chung and Ely (2002). In

this sense, we can see our restriction to monotone allocations as a refinement of Bayesian

implementation. Besides, we show in the next proposition that our restriction is without

loss of generality under some reasonable assumptions that, for instance, are verified by

our motivating examples in Section 5.

Proposition 1. There exists a deterministic and monotone allocation that it is second

best efficient when bidders’ types are stochastically independent and the value functions

are additively separable.11

See the proof in the Appendix.

The proof of Proposition 1 contains a characterization of the second best efficient

allocations that we use in the analysis of Example 1 in Section 6.

5 Motivating Examples

In this section, we discuss two simple examples that illustrate realistic set-ups in which

the first best is typically not implementable. The first set-up is the sale of a license

to operate in a market in which one bidder, the incumbent, has private information

about the market size and another bidder, the entrant, has a lower marginal cost

than the incumbent but a higher fixed cost. This model extends the intuitions of the

wildcatters’ example in the Introduction. The second set-up is the auction of an item

with private and common values in which the common value is private information of

only one bidder, the insider. The two examples verify Myerson’s (1981) assumptions,

and thus his Lemma 2 implies that the first best allocation is not implementable if
11This is vi(s) = vi

i(si) + vj
i (sj) for some vi

i : Si → R and vj
i : Sj → R.
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the corresponding interim probabilities of getting the object are not increasing in the

bidder’s type.

5.1 An Auction with an Incumbent

The object for sale is a license to supply in exclusivity a market with a demand function

Q(P ) = s1(1−P ). Bidders are firms that can supply the market. Firm 1, the incumbent,

has zero set-up costs and a constant marginal cost c1. Firm 2, the entrant, has a constant

marginal cost c and an idiosyncratic set-up cost that we denote by −s2, thus a higher s2

means a lower fixed cost. Each si is equal to the realization of an independent random

variable with distribution function Fi and a density. Its realization is Bidder i’s private

information. All the other elements of the model are common knowledge.

The profits of the incumbent with type s1 if awarded the license are equal to

s1
(1−c1)2

4 . Similarly, the profits of an entrant with type s2 are equal to s1
(1−c)2

4 + s2.

Thus, it is first best to give the license to the incumbent if and only if s1
(1−c1)2

4 ≥

s1
(1−c)2

4 + s2. We also assume that s2 < 0 in all the support and c < c1 < 1, so that,

as in the example of the Introduction, the incumbent has the lowest fixed cost, but

the highest marginal cost. This assumption implies that it is first best to allocate to

Bidder 1 if and only if s1, i.e. the market size, is sufficiently small. It is easy to see that

under some appropriate assumptions on the support of the distributions Fi, the first

best allocation is not implementable because Bidder 1’s interim probability of getting

the object strictly decreases at some point when we increase Bidder 1’s type.

5.2 An Auction with an Insider

The object for sale is a painting that may be from a well-known (and priced) artist.

Bidder i puts a value on the painting of τi + ρ if the painting is original and a value

of τi, otherwise. We assume that each τi is equal to an independent draw of a random

variable with a distribution function Gi and a density in the support [t, t]. We assume

that τi is private information of Bidder i. Bidder 1, the insider, is an expert art dealer

that knows whether the painting is original. Bidder 2, the outsider, only knows the ex

ante probability that the picture is original, α ∈ (0, 1).
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We also assume that t < ρ + t. This assumption means that Bidder 1’s multidi-

mensional type can be mapped into a one dimensional type, s1 = τ1 +ρ, without losing

information.12 Note that s1 ≥ ρ + t indicates that the painting is original. Bidder 2’s

type s2 is equal to τ2. Thus, the outsider’s value is equal to s2 + ρ1(s1 ≥ ρ+ t).13 For

any vector of the outsiders’ types, it is efficient to allocate to the insider if s1 = t, while

it is not if s1 = t + ρ. This means that the first best allocation is not implementable

because Bidder 1’s interim probability of getting the object strictly decreases when s1

increases from t to t+ ρ.

6 The English Auction

In this section, we analyze the English auction described by Milgrom and Weber (1982)

and show that any second best allocation that it is deterministic and monotone can be

induced as the outcome of an equilibrium of the English auction, i.e. can be implemented

with the English auction. Note that since we assume that there are only two bidders,

the English auction is strategically equivalent to a second price auction.

In what follows, we assume Si = [0, 1] to simplify the notation. A deterministic

and monotone allocation in j is characterized a.e. with a function of pivotal types

ψj : [0, 1] → [0, 1] that maps each type of Bidder i into the corresponding type of

Bidder j that is pivotal for the allocation. The allocations that maximize the expected

social surplus amongst the allocations that are deterministic and monotone in j are

characterized by the functions of pivotal types ψj that solve:

max
ψj

∫ 1

0

∫ ψj(si)

0
(vi(s)− vj(s)) f(s) dsj dsi. (1)

This problem maximizes the net increase in expected social surplus when adopting the

allocation characterized by ψj rather than an allocation that always allocates to Bidder

j.
12Our results can be extended to the case ρ+t ≤ t, but it requires a framework with multidimensional

types. See also Footnote 4.
131(X) is an indicator function that takes value 1 when the condition X is verified and zero otherwise.
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We start with the case in which one bidder knows her value and hence has a unique

weakly dominant strategy, to bid her value.

Proposition 2. Suppose v1(s) is constant in s2. The undominated equilibria of the

English auction implement a.e. the allocations that solve Equation (1) for j = 1 and

i = 2. Consequently, any second best allocation that is deterministic and monotone in

1 can be implemented a.e. with the English auction.

Proof. We assume that Bidder 1 plays her unique weakly dominant strategy, to bid her

value, and study Bidder 2’s best response. A strategy of Bidder 2 is a function that

maps each type of Bidder 2 into a bid. Since Bidder 1’s strategy is strictly increasing,

Bidder 2’s strategy determines a function of pivotal types that maps each type of Bidder

2 into the maximum type of Bidder 1 for which Bidder 2 wins the auction. Thus, the

expected utility that Bidder 2 gets with a strategy that has an associated function of

pivotal types ψ1 : [0, 1]→ [0, 1] is equal to:∫ 1

0

∫ ψ1(s2)

0
(v2(s)− v1(s)) f(s) ds1ds2,

since whenever Bidder 2 wins the auction, she pays Bidder 1’s bid, i.e. Bidder 1’s

value. A best response of Bidder 2 picks a function ψ1 that maximizes this expression

as desired. �

Intuitively, since Bidder 1 bids her true value, Bidder 2’s utility when she wins

is equal to the increase in expected social surplus from changing the allocation from

Bidder 1 to Bidder 2. Thus, Bidder 2’s incentives are aligned with the social incentives.

Since Bidder 1 plays a strictly increasing bid function, then a pure strategy of Bidder

2 can only pick an allocation that is deterministic and monotone in 1.

For the more general case, we focus on deterministic and monotone allocations.

Any such allocation is characterized a.e. by an increasing function of pivotal types.

The allocations that maximize the expected social surplus amongst the deterministic

and monotone allocations are characterized by the functions of pivotal types that solves

Equation (1) subject to the constraint that the function of pivotal types is increasing.

For any such allocation p∗, we define the bid functions b∗1(s1) ≡ v1(s1, ψ∗2(s1)) and

11



b∗2(s2) ≡ v2(ψ∗1(s2), s2), where ψ∗1 and ψ∗2 are the functions of pivotal types that describe

p∗ a.e.

Proposition 3. Suppose f is affiliated.14 Then, (b∗1, b
∗
2) is an equilibrium of the En-

glish auction that implements p∗ a.e. Consequently, any second best allocation that is

deterministic and monotone can be implemented a.e. with the English auction.

See the proof in the Appendix.

The main argument of the proof 15 uses that the local optimality conditions of

the problem that ψ∗j solves imply that vi(si, ψ∗j (si)) ≥ vj(si, ψ∗j (si)) at any point si in

which ψ∗j is strictly increasing either to the left or to the right.16 This implies that

b∗i (s
′
i) > b∗j (s

′
j) for any (s′i, s

′
j) in the interior of the set of types for which p∗ allocates

to Bidder i. This is because there always exists a point si such that (s′i, ψ
∗
j (s
′
i)) >

(si, ψ∗j (si)) > (ψ∗i (s
′
j), s

′
j) and at which ψ∗j is strictly increasing either to the left or to

the right. Finally, to understand why (b∗1, b
∗
2) is an equilibrium note that when Bidder

j plays b∗j , Bidder i’s expected utility when she wins is equal to vi(s)− b∗j (sj). This is

greater (less) than the social incentives to allocate to Bidder i rather than to Bidder j,

vi(s) − vj(s), if si ≥ ψ∗i (sj) (resp. si < ψ∗i (sj)). Thus, Bidder i’s incentives to get the

good are greater (less) than the social incentives to allocate to Bidder i if the second

best p∗ allocates the good to Bidder i (resp. Bidder j). This explains why Bidder i

does not have incentives to deviate since p∗ maximizes expected social surplus subject

to monotonicity of the allocation and affiliation guarantees that Bidder i does not lose

by restricting to an increasing best response.

To illustrate the equilibrium, consider the following example that has all the quali-

tative features of the model in Section 5.2.

Example 1. v1(s) = 2s1 and v2(s) = s2 +1(s1 ≥ 1/2), where bidders’ private types are

drawn independently according to a distribution function uniform in the support [0, 1].
14See Milgrom and Weber (1982) for a definition of affiliation.
15For illustrative purposes, we assume in our intuitive description that the functions involved are

continuous.
16We say that an increasing function ψ : D ⊂ R → R is strictly increasing to the left (resp., to the

right) at a point s ∈ D, when ψ(s̃) < ψ(s) for any s̃ < s in D (resp. ψ(s̃) > ψ(s) for any s̃ > s in D).
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In this example, the second best efficient allocation is characterized17 by a function

of pivotal types ψ∗1(s2) = 1
2 (s2 + 1(s2 ≥ 1/2)), and our proposed equilibrium strategies

are: b∗1(s1) = 2s1 and b∗2(s2) = s2+1(s2 ≥ 1/2). We plot both bid functions in Figure 1.

si1/2 1

2

0

b∗1

b∗2

1

1/4 3/4

3/2

1/2

Figure 1: The bid functions (b∗1, b
∗
2) for Example 1.

Bidder 1 submits her unique weakly dominant bid, her value, whereas Bidder 2

bids her value conditional on the event that she ties with Bidder 1. Bidder 2 has a

discontinuity at s2 = 1/2, it jumps from 1/2 to 3/2. It is easy to see that when Bidder 2

has a type of 1/2 and wins at a price p between 1/2 and 1, she incurs in a loss, whereas

when the price is between 1 and 3/2, she gets a profit. Losses and profits compensate

so that Bidder 2 with type 1/2 is indifferent between bidding 1/2 and bidding 3/2.

Note that the structure of this equilibrium is more involved than the more standard
17To see why, we refer to the characterization of the second best in the proof of Proposition 1. To

apply this characterization note that t1(s1) = 2s1 − 1(s1 ≥ 1/2) and t2(s2) = s2 in the example, and

hence, t̂1(s1) = 2s1 if s1 ∈ [0, 1/4], t̂1(s1) = 1/2 if s1 ∈ (1/4, 3/4), t̂1(s1) = 2s1 − 1 if s1 ∈ [3/4, 1]; and

t̂2(s2) = s2.
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case in which the first best is implementable. The difference is that, as we explained

in the previous paragraph, Bidder 2 may win the auction at prices at which she makes

a loss, i.e. there may be ex-post regret. This is a common feature of the equilibria

under the assumptions of Proposition 2 when the first best allocates to Bidder 1 and

the second best to Bidder 2. To see why, note that the first best allocates to the bidder

with larger value and Bidder 2 pays a price equal to Bidder 1’s value when she wins in

equilibrium. This result, however, does not generalize to the case in which Bidder 1’s

value function is not constant in s2. There are equilibria that implement the second

best that display ex post regret and equilibria that implement the second best that do

not display ex post regret.18

7 Conclusions

In this paper we have discussed the efficiency properties of the English auction when

the first best is not implementable and there are two bidders. The English auction

implements the second best allocation at least for the relevant case in which the second

best is deterministic and monotone. Implementing the second best outside this case

seems much harder as it may require the use of either non-monotonic strategies or other

mechanisms with more sophisticated strategy spaces.

Our result does not generalize to the case of more than two bidders. This was

well-known in the case in which the first best is implementable, see for instance Maskin

(1992). The conditions provided by Krishna (2003), Birulin and Izmalkov (2009), and

Dubra, Echenique, and Manelli (2009) to guarantee that the first best can be imple-

mented with the English auction with more than two bidders do not easily generalize

to the second best, as we show in the working paper. One additional difficulty here

is that the equilibrium of the English auction that implements the second best with

two bidders typically implies ex post regret. This means that the modifications of the
18In general, multiplicity of equilibria is more a concern here than in the usual framework where the

single crossing holds. It may be shown that in the example vi(s) = si + 2sj there are two asymmetric

equilibria that implement the second best while the symmetric equilibrium is not second best efficient.

Besides, there is no natural refinement that singles out an equilibrium.
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English auction proposed by Perry and Reny (2002, 2005) and Izmalkov (2003) to solve

the problems of the first best does not work for the second best.

We think that a profitable venue of future research is how to modify the English

auction for the case of more than two bidders to recover second best efficiency, at

least for the natural examples we have considered here. We find this project specially

appealing given the connection between the English auction and the Vickrey auction.

Appendix: Proofs

Proof of Proposition 1

Proof. Recall the functions vii and vji in Footnote 11 and denote in this proof ti(si) ≡

vii(si) − vij(si) and qi(si) ≡ vij(si), j 6= i. To simplify the notation, we normalize the

marginal distributions Fi’s to be uniform in the interval [0, 1].19

Let Ti(si) ≡
∫ si

0 ti(s̃i) ds̃i for all i ∈ n and si ∈ [0, 1], and let T̂i(si) : [0, 1] → R be

the convex hull of the function Ti (i.e. the highest convex function on [0, 1] such that

T̂i(si) ≤ Ti(si) for all si ∈ [0, 1].)20

As a convex function T̂i is differentiable except at countably many points, and its

derivative is an increasing function. We define t̂i : [0, 1]→ R to be the differential of T̂i

completed by right-continuity in the interior and by continuity at the boundaries.

The second best maximizes:∫
[0,1]2

∑
i=1,2

ti(si) +
∑
j=1,2

qj(sj)

 pi(s) ds, (2)

19This normalization was already noted by Lehmann (1988). We can always construct it by defining

a new vector of signals s̃i ≡ Fi(si) and value functions ṽi(s̃) ≡ t̃i(s̃i) +
P

i=1,2 q̃j(s̃j) where t̃i(s̃i) ≡

ti(F
−1
i (s̃i)), q̃j(s̃j) ≡ qj(F−1

j (s̃j)), for F−1(z) ≡ min{si ∈ [s, s] : F (s) ≥ z}. To see why, the marginal

distribution of each s̃i is uniform on [0, 1] note that the probability of {s̃i ≤ z} for z ∈ [0, 1] is equal to

the probability of {Fi(si) ≤ z}, which is equal to the probability of {si ≤ F−1
i (z)} and thus, it is equal

to Fi(F
−1
i (z)) = z.

20For a formal definition see Myerson (1981).
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subject to p implementable. The objective function is equal to:21

∫
[0,1]2

∑
i=1,2

t̂i(si) +
∑
j=1,2

qj(sj)

 pi(s) ds+
∑
i=1,2

∫ 1

0

(
T̂i(si)− Ti(si)

)
dQi(si, p), (3)

where:

Qi(si, p) ≡
∫ 1

0
pi(si, sj) dsj .

To see why, note that:∫
[0,1]2

(
ti(si)− t̂i(si)

)
pi(s)ds =

∫ 1

0

(
ti(si)− t̂i(si)

)
Qi(si, p) dsi

=
∫ 1

0
Qi(si, p) dTi(si)−

∫ 1

0
Qi(si, p) dT̂i(si)

=
∫ 1

0

(
T̂i(si)− Ti(si)

)
dQi(si, p),

where we have used integration by parts (see Hewitt (1960)) and the fact that T̂i(0) =

Ti(0) and T̂i(1) = Ti(1), see Section 6 in Myerson (1981), in the last step.

It is easy to see that an allocation maximizes the first integral in Equation (3) if and

only it satisfies (i) p∗i (s) > 0 only if t̂i(si) ≥ t̂j(sj), j 6= i a.e. Moreover, since Qi(., p) is

increasing for any p implementable by Lemma 2 in Myerson (1981), and T̂i(si) ≤ Ti(si),

see Section 6 in Myerson (1981), an implementable allocation maximizes the second

integral if and only if it satisfies Qi(., p∗) is constant in any open interval in which

T̂i(si) < Ti(si).

A deterministic and monotone allocation that verifies (i) and (ii) is:

pi(s) =

 1 if i = min{j : t̂j(sj) = maxl t̂l(sl)},

0 otherwise,

for all i ∈ {1, 2}. �

Proof of Proposition 3

The proof follows from four claims that we prove below. The first and third claim are

auxiliary results, the second claim is that the strategies (b∗1, b
∗
2) induce the allocation

21We denote by
R

E
ϕ(x)dF (x) the Lebesgue-Stieljes integral of ϕ with respect to F in E. In particular,

for any implementable allocation p, we denote by
R

Si
ϕ(si)dQi(si, p) the Lebesgue-Stieljes integral of

ϕ with respect to Qi(., p) in Si.
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p∗, and the fourth that (b∗1, b
∗
2) is an equilibrium.

Claim 1: ψ∗j verifies that:

lim vi(sni , ψ
∗
j (s

n
i )) ≥ lim vj(sni , ψ

∗
j (s

n
i )),

for any decreasing sequence {sni } that tends to a point ŝi ∈ [0, 1) at which ψ∗j is strictly

increasing either to the left or to the right.

Proof. To prove the claim, it is sufficient to show that for any ŝ′i ∈ (ŝi, 1]:∫ ŝ′i

ŝi

(
vi(si, ψ∗j (si))− vj(si, ψ∗j (si))

)
f(s) dsi ≥ 0.

To prove so, note that the optimality of ψ∗j implies that for any increasing function

ψ̂j : [0, 1]→ [0, 1]:∫ 1

0

∫ ψ∗j (si)

0
(vi(s)− vj(s)) f(s) dsj dsi ≥

∫ 1

0

∫ ψ̂j(si)

0
(vi(s)− vj(s)) f(s) dsj dsi.

Consider first the case in which ψ∗j is strictly increasing to the right at ŝi. Since ψ∗j is

increasing, for any ŝi, ŝ′i and ε > 0, the function:

ψ̂j(si) ≡

 max{ψ∗j (si)− ε, ψ∗j (ŝi)} if si ∈ [ŝi, ŝ′i]

ψ∗j (si) otherwise,

is also increasing and we can apply the above inequality. After some simple algebraic

manipulations, we get:∫ ŝ′i

ŝi

∫ ψ∗j (si)

ψ∗j (si)−ε
(vi(s)− vj(s)) f(s) dsj dsi−∫ ŝ′i

ŝi

∫ max{ψ∗j (si)−ε,ψ∗j (ŝi)}

ψ∗j (si)−ε
(vi(s)− vj(s)) f(s) dsj dsi ≥ 0. (4)

To derive our sufficient condition we divide this inequality by ε > 0 and apply to each

of the two integrals the following two results respectively:

lim
ε→0

∫ ψ∗j (si)

ψ∗j (si)−ε (vi(s)− vj(s)) f(s) dsj

ε
=
(
vi(si, ψ∗j (si))− vj(si, ψ∗j (si))

)
f(si, ψ∗j (si)),
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for almost all si ∈ (ŝi, ŝ′i) and,

lim
ε→0

∫ max{ψ∗j (si)−ε,ψ∗j (ŝi)}
ψ∗j (si)−ε (vi(s)− vj(s)) f(s) dsj

ε
= 0,

for any si ∈ (ŝi, ŝ′i). The first limit can be proved using that for any given si,

vi(si, sj) and vj(si, sj) are both continuous in sj a.e., a consequence of their mono-

tonicity. The second limit can be proved using that the integrand is bounded and

limε→0
max{0,ψ∗j (ŝi)−ψ∗j (si)+ε}

ε = 0 for any si ∈ (ŝi, ŝ′i) since ψ∗j is locally strictly increas-

ing to the right at ŝi.

The case in which ψ∗j is strictly increasing to the left at ŝi has a similar analysis

but using the function:

ψ̂j(si) ≡


min{ψ∗j (si), ψ∗j (ŝi)− ε} if si < ŝi

ψ∗j (ŝi)− ε si ∈ [ŝi, ŝ′i]

ψ∗j (si) otherwise,

instead. �

Claim 2: The good is allocated according to p∗ a.e. when bidders play (b∗1, b
∗
2). In par-

ticular, for any s in the interior of the set of types for which p∗ allocates to i ∈ {1, 2},

it is verified that b∗i (si) > b∗j (sj), j 6= i.

Proof. To prove the claim, it is sufficient to show that for any s that verifies the

conditions of the proposition there exists a (ŝi, ŝj) and a sequence {sni } such that:22

vi(si, ψ∗j (si)) > lim vi(sni , ψ
∗
j (s

n
i )) ≥ lim vj(sni , ψ

∗
j (s

n
i )) ≥ vj(ŝi, ŝj) ≥ vj(ψ∗i (sj), sj) (5)

Any s that verifies the conditions of the proposition also verifies that both (ψ∗i (sj), sj)

and (si, ψ∗j (si)) belong to the frontier of the set of types for which p∗ allocates to Bidder

i. Since the allocation p∗ is deterministic and monotone, then (si, ψ∗j (si)) > (ψ∗i (sj), sj)

and there exists a (ŝi, ŝj) such that: (i) it belongs to the frontier of the former set, (ii)

22We denote (s1, s2) < (ŝ1, ŝ2) when s1 < ŝ1 and s2 < ŝ2; and (s1, s2) ≤ (ŝ1, ŝ2) when s1 ≤ ŝ1 and

s2 ≤ ŝ2 and (s1, s2) 6= (ŝ1, ŝ2).
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it verifies that (si, ψ∗j (si)) ≥ (ŝi, ŝj) ≥ (ψ∗i (sj), sj) and (iii) it is such that ψ∗j is locally

strictly increasing either to the right or the left at ŝi. (ii) implies the last inequality

in Equation (5). (i) and (ii) imply that for any strictly decreasing sequence {sni } that

starts at si and has limit ŝi, it is verified that (si, ψ∗j (si)) > (sni , ψ
∗
j (s

n
i )) ≥ (ŝi, ŝj). This

implies the first and the third inequalities in Equation (5). Finally, (iii) and Claim 1

implies the second inequality of Equation (5). �

Claim 3: If f is affiliated, there is a selection of:

arg max
ψ

∫ ψ

0
(v2(s1, s2)− v1(s1, ψ∗2(s1))) f(s1, s2) ds1

increasing in s2.

Proof. To prove the claim, it is sufficient to show that for any s′2 > s2:∫ ψ

ψ̃
(v2(s1, s2)− v1(s1, ψ∗2(s1))) f(s1, s2) ds1 ≥ 0, ∀ψ̃ ≤ ψ,

implies that, ∫ ψ

ψ̃

(
v2(s1, s′2)− v1(s1, ψ∗2(s1))

)
f(s1, s′2) ds1 ≥ 0, ∀ψ̃ ≤ ψ.

Since v2 is increasing in s2, a sufficient condition (after some straightforward trans-

formations) is that:∫ ψ

ψ̃
(v2(s1, s2)− v1(s1, ψ∗2(s1))) f(s1|s2) ds1 ≥ 0, ∀ψ̃ ≤ ψ,

implies that,∫ ψ

ψ̃
(v2(s1, s2)− v1(s1, ψ∗2(s1))) f(s1|s2)

f(s1|s′2)
f(s1|s2)

ds1 ≥ 0, ∀ψ̃ ≤ ψ.

Since affiliation implies that f(s1|s′2)
f(s1|s2) is increasing in s1, the last condition can be

derived from the more general claim that for any J(s1) increasing and non-negative:∫ ψ

ψ̃
A(s1) ds1 ≥ 0, ∀ψ̃ ≤ ψ,
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implies that, ∫ ψ

ψ̃
A(s1)J(s1) ds1 ≥ 0, ∀ψ̃ ≤ ψ.

Integration by parts on the left hand side of the last equation means that it is equal

to:

J(ψ̃)
∫ ψ

ψ̃
A(s1)ds1 +

∫ ψ

ψ̃

∫ ψ

s1

A(s̃1) ds̃1 dJ(s1),

which is non-negative for any ψ̃ ≤ ψ as desired, when∫ ψ

ψ̃
A(s1) ds1 ≥ 0, ∀ψ̃ ≤ ψ.

�

Claim 4: (b∗1, b
∗
2) is a Bayesian Nash equilibrium of the English auction.

Proof. Suppose that Bidder 1 plays the proposed strategy and consider Bidder 2’s

expected payoff when she plays an arbitrary strategy. In this case, Bidder 2 pays

a price equal to Bidder 1’s bid, i.e. v1(s1, ψ∗2(s1)), if she wins. As in the proof of

Proposition 2, the expected payoff of any strategy of Bidder 2 can be characterized

with the corresponding function of pivotal types of Bidder 1 ψ̂1 : [0, 1]→ [0, 1]:∫ 1

0

∫ ψ̂1(s2)

0
(v2(s1, s2)− v1(s1, ψ∗2(s1))) f(s) ds1 ds2. (6)

Since (b∗1, b
∗
2) induce the allocation p∗ a.e. by Claim 2, b∗2 picks ψ̂1 = ψ∗1 a.e. in the

above problem. Thus, to prove that Bidder 2 does not have incentives to deviate, we

have to show that ψ̂1 = ψ∗1 maximizes Equation (6). Claim 3 implies that there is no

loss in adding the constraint that ψ̂1 is increasing to this problem.

The integral in Equation (6) is equal to the sum of two integrals:∫ 1

0

∫ ψ̂1(s2)

0
(v2(s1, s2)− v1(s1, s2)) f(s) ds1 ds2 (7)

and, ∫ 1

0

∫ ψ̂1(s2)

0
(v1(s1, s2)− v1(s1, ψ∗2(s1))) f(s) ds1 ds2. (8)
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The function ψ∗1 maximizes the first integral subject to ψ̂1 increasing by definition, see

Equation (1) for j = 1 and i = 2. It also maximizes the second integral because the

interior of the set {(s1, s2) : s2 ≥ ψ∗2(s1)} is equal to the interior of the set {(s1, s2) :

s1 ≤ ψ∗1(s2)}. Thus, ψ̂1 = ψ∗1 maximizes Equation (6) subject to ψ̂1 increasing as

desired. �
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