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1 Simulating Galaxies and Universes

“We have some good news”, my collaborator announced as I wandered into his office one morning in
early 2017. “We have been granted 60 million CPU hours to run possibly the largest hydrodynamic
simulation of the Universe ever!”. “Well, I guess that is good news” I said, uncertainly, “What’s the
bad news?”. “Er, I didn’t mention there was any bad,... well, OK, we kind of want you to choose
the location in parameter space to run the model at”, he said. This wasn’t wholly unexpected.
“How long in real time will it take to run 60 million CPU hours on the given facility?” I enquired,
curiously. “Real time? Oh, about one and a half years...”. Several unprintable expletives then
followed.

The model in question is the EAGLE simulation (Schaye et al., 2015), which is indeed one of
the most complex models of galaxy formation ever run. My collaborator is Prof Richard Bower, a
member of the Institute of Computational Cosmology here at Durham University, and one of the
core members of the EAGLE group and of the VIRGO consortium (see http://www.virgo.dur.ac.uk)
that created and ran EAGLE. The facility in question is run by PRACE, the Partnership for
Advanced Computing in Europe (see http://www.prace-ri.eu). And I am a Bayesian statistician,
with a background in theoretical physics, who specialises in the Bayesian uncertainty analysis
of computer models of complex physical systems - an area that overlaps with, and some more
contentious than myself would say has a far wider and deeper scope than, the recently fashionable
area commonly termed “Uncertainty Quantification”.

1.1 The EAGLE Simulation

EAGLE stands for the Evolution and Assembly of Galaxies and their Environments which, aside
from implying that someone really wanted an acronym that spelt EAGLE, means that its purpose
is to understand how large numbers of galaxies form, collide and evolve. The simulation models
a cosmological volume of (100 Megaparsecs)?, which is about (326 million light years)?, a volume
large enough to contain approximately 10,000 galaxies of the size of the Milky Way or larger. The
simulation starts prior to the formation of any stars or galaxies, when the Universe was still very
uniform, and uses nearly 7 billion particles in combination with well known fundamental physical
laws for example of gravity and of hydrodynamics. It models the effects of dark matter (which
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Figure 1: Left panel: a slice through the EAGLE simulation volume, showing the intergalactic gas colour coded
from blue to red with increasing temperature. The inset zooms into a galaxy similar to the Milky Way, showing first
its gas and then its stellar disc, which looks remarkably similar to observed spiral galaxies. Right panel: another
slice through the EAGLE simulation showing the hot gas content (top), the dark matter density (bottom right) and
what the simulation would look like in the visible spectrum (bottom left). Thanks to the VIRGO consortium.

allows large galaxy sized structures to grow) and baryonic matter (that forms stars) along with the
cosmological constant (that causes cosmic acceleration). The end results of the simulation can then
be compared to various detailed but complex observed data sets that measure a variety of galaxy
features: common ones include the stellar mass function (the distribution of galaxies over stellar
mass), and the distributions of galaxy sizes. Examples of the output from EAGLE can be seen in
figure 1. See http://icc.dur.ac.uk/Eagle/ for more details, including some rather beautiful movies.

Some example scientific questions that EAGLE seeks to answer (there are many more) are:

e How do galaxies stop growing? Is it because of the activity of the central black hole? Is it
because they collide and merge? Is it because they are in a crowded environment?

How typical is our own Milky-Way? Are we in a normal galaxy in a normal part of the
Universe or is there something special about where we live?

How do the different gas flows affect the formation of galaxies?

e How does the presence of gas affect the observations of halo masses, lensing or dark matter?

A single run of the 100 Megaparsec (Mpc) model was performed in 2015, which took 1.5 months
using 4064 processors (a substantial proportion of the VIRGO consortium’s computational resources
at the time). This showed that EAGLE is of sufficient accuracy to attempt to answer many of the
above questions, and led to a large number of publications, the first of which (Schaye et al., 2015)
has obtained over 580 citations, and was one of the most cited papers on astro-ph that year. Now,



the plan is to run even larger volumes: perhaps up to 15 times larger, as described in the slightly
melodramatic opening paragraph above.

1.2 A Major Challenge

So, what in fact is the problem? Well, in a word: uncertainty. Now that the huge amount of
work developing and efficiently coding up the current EAGLE version has been completed, we can
perform a single model evaluation, using admittedly substantial computational resources and a lot
of patience. This would be sufficient, were there only one possible way to run EAGLE. However,
EAGLE features several uncertainties, many in the form of parameters related to hard to model
‘sub-grid’ processes. In short, galaxy formation critically depends on processes spanning wildly
different scales: for example black holes at the centre of galaxies draw in gas on scales of 0.01
parsecs, but the energy produced by this process affects the whole galaxy and possibly its host halo
up to a scale of 1 Megaparsec, effectively spanning 8 orders of magnitude in spatial resolution.

EAGLE itself, commendably one should say, spans over 5 orders of magnitude in resolution. To
give some feel for this scale (although such comparisons should be treated with extreme caution, as
there are many complexities here), if one managed a similar level of spatial resolution attempting
to model the Earth’s atmosphere, for use for example in a climate model, each cubic grid cell would
be less than 26 metres across. However, EAGLE’s impressive resolution is still nowhere near high
enough to accurately represent either the effect of central black holes nor various other important
small scale phenomena that affect galaxy formation, such as the impact of supernovas (massive
stars that explode and drive gas out of the galaxy). Hence these processes have to be modelled via
sub-grid scale models, that are parameterised using a modest number of physical input parameters
representing uncertain aspects of the processes in question. EAGLE also possesses additional
cosmological parameters, but these are little more understood and usually set to the values as
measured to reasonably high accuracy by the Plank satellite. 7 sub-grid parameters of interest
have been identified as strongly influential and hence form the core of the current study. The
remaining parameters are thought to be somewhat sub-dominant, but their effects will be taken
into account, in a less detailed form, in our analysis below.

Hence to really understand the scientific ramifications of EAGLE, one inevitably has to explore
its uncertain behaviour over this 7-dimensional parameter space. As each step in this parameter
space takes 1.5 months to complete, using 4064 processors, one can see the problem: standard
search techniques are utterly infeasible. Just to reiterate this point: a 7-dimensional hypercube has
128 corners, so just to visit these would take the current version of EAGLE over 64000 years (on a
single processor). But more detail would inevitably be required, for example a 7-dimensional grid
of length 10, and therefore of size 107 may be sufficient, but this would take over 5 billion years to
evaluate, which is somewhat ironically, well over a third of the current age of the Universe.

Critically, we must go even further: as EAGLE produces many different outputs that can be
compared with a range of observed data sets, our real goal is to identify all the choices of the input
parameters that will lead to acceptable matches between the model output and observed data (or to
find that no such choices exist), hence requiring a detailed parameter search. Note that only finding
a single acceptable match may be scientifically highly misleading. This is sometimes referred to
as an inverse problem, a Bayesian calibration problem, or a history matching problem (we prefer
the latter, for various somewhat subtle reasons: for details see Vernon et al. (2010)). Finally, we
may want to use our understanding of the input parameter space, to choose the input parameters
for a single future, even larger, EAGLE run, or perhaps to design a limited set of slightly smaller



runs chosen to be at highly informative locations across the parameter space. To address the above
problems, we really require the use of Bayesian statistics.

2 Bayesian analysis of computer models of complex physical
systems

The reason the above general problem structure, as faced by the EAGLE collaboration, is of interest
to Bayesian statisticians is not just because of the fascinating scientific questions EAGLE hopes to
answer, but because it has many of the attributes of a type of problem that is currently occurring
in a wide variety of scientific disciplines. Due to the increase in mathematical modelling and
corresponding computing power, many scientific areas are developing ever more complex, high-
dimensional and computationally expensive models of physical systems. Helpfully, an area of
(Bayesian) statistics has developed over the last 25 years, designed specifically to combat the
challenges posed by this kind of problem, the general form of which we now describe.

A model is created for a particular real world system of interest, that describes how a vector of
various system properties x affects a vector of system behaviour, given by the model as f(x). So
for example, for all of EAGLE’s complexity, it is just a function f(z) that maps a 7-dimensional
x to a high-dimensional vector of galaxy property outputs f. The model or simulator is, however,
imperfect, and the real system properties (suitably defined, an interesting question all by itself)
are given by the vector y. We may wish to explicitly model the gap between reality y and the
model f(z) evaluated at its best input z* for example via y = f(z*) + €, where € is now a random
vector, with a possibly complex joint structure, representing the unknown structural deficiencies
of the model. We can of course measure a subset of the system properties, but with error: these
measurements are given by a vector of data z,, and correspond to past system properties y, with y
partitioned as y = (y,,ys), where y; represents possible future properties of interest, that we may
want to predict. Again, we may make the gap between measurements and real system explicit for
example via say y = z + e, where e is a random vector representing measurement error.

We wish to answer various scientific questions, while accounting for all the uncertainties that
exist in the above setup. For example we may wish to

1. Explore the model’s behaviour f(z) over a defined input space = € X'.

2. Learn about acceptable values of = (or perform full Bayesian inference on x) by comparing
the model f(z) to observed data z.

3. Explore the accuracy of the model for reproducing various outputs, and hence assess its
adequacy for the task at hand.

4. Use the model combined with past observations z, to make predictions of future outputs y;.

5. Use the model along with the assessed uncertainties in some decision theory calculation, for
example, to help aid policy makers.

However, the model or simulator f(z) is usually extremely computationally expensive to evaluate,
relative to the dimension of z, preventing the evaluation of any of the above calculations. Hence
we have some major problems which can be grouped roughly as follows:



e The speed problem: the model is far too slow to be used to explore its input parameter
space in naive ways. For example, we cannot plug it into standard optimisers or more sophis-
ticated algorithms such as MCMC, that usually require vast numbers of model evaluations.

e The general uncertainty problem: the answers to whatever scientific questions we wish to
pose will critically depend upon the assessment of all the various uncertainties in the problem.
In particular the multivariate nature of the structural discrepancy €, the observational errors
e, and input parameter uncertainty x may have a major impact.

2.1 Solving the Speed problem: Bayesian Gaussian Process Emulation

Firstly, we must acknowledge the underlying problem: except at a small number of input locations
where we actually decide to run the model, we will always be uncertain as to the true value of the
EAGLE function f(z). In the Bayesian setting, we can incorporate this uncertainty naturally, by
simply treating f(z) at unevaluated x as another random vector. Secondly, we then ask what do we
know about this uncertain function f(x)? For example, many physical functions are in some sense
smooth, in that although small changes to the input parameters could in principle greatly effect
the outputs, this may (in the domain expert’s view) be deemed unlikely based on consideration
of the fundamental equations, and the physical nature of the system under investigation. Such
considerations facilitate the construction of Bayesian emulators, which are specifically employed to
combat the speed problem. A Bayesian emulator is a fast statistical function built to mimic the
behaviour of the EAGLE function f(x) over the input space X. The emulator provides both an
expectation as to the value of f(x) at an as yet unevaluated x, and critically an z dependent uncer-
tainty statement as to the emulator’s accuracy at this point, which can be naturally incorporated
into a Bayesian analysis. Most importantly, the emulators are very fast to evaluate and are usually
multiple orders of magnitude faster that the model itself. In this application, they are between
102 — 10'? times faster than EAGLE (depending on which version of EAGLE we compare to), the
kind of speed increase that tends to turn heads in most scientific communities.

A popular statistical model for the Bayesian emulator for f(z), which has individual outputs
fi(x),i=1...q, is structured as follows (see for example Vernon et al. (2010) for details):

filx) = Z Bijgij(xa;) + wiza,) + wi() (1)

J

where the active variables x4, are a subset of the inputs = that are most influential for output
fi(xz). The first term on the right hand side of the emulator equation (1) is a regression term,
where g;; are known deterministic functions of x4,, a common choice being low order polynomials,
and f;; are unknown scalar regression coefficients. The second term, u;(z4,) is a Gaussian pro-

cess! over z4,, which means that if we choose a finite set of inputs {:Uilli), e ,mffi)}, the uncertain
outputs ui(xilli) )yen- ,ui(acffi)) will have a multivariate normal distribution with a covariance matrix

constructed from an appropriately chosen covariance function, a popular form being;:

Cov(ui(za,), ui(2y,)) = oy, exp { ~wa, —aly, /67 } (2)

Tt is worth noting that Bayesian style Gaussian processes are now heavily used in the machine learning community,
giving weight to the amusing, but perhaps unfair quip that “machine learning is just doing Bayesian statistics on a
Mac”.
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Figure 2: An example emulator for a 1-dimensional toy model where f(z) = sin(27(z —0.1)/0.4), for the 1st wave,
using just 6 runs (left panel), and for the 2nd wave, using 2 additional runs (right panel). The emulator’s expectation
Ep[f(z)] and credible intervals Ep[f(z)] & 31/ Varp, (fi(x)) are given by the blue and red lines respectively, with
the observed data z that we wish to match to as the black horizontal line (with errors). The implausibility I(z) is
represented by the coloured bar along the z-axis, with dark blue implying I(x) > 3, light blue 2.5 < I(z) < 3 and
yellow (I(z) < 1). These emulators are for deterministic models, but stochastic equivalents of course also exist.

where 012” and 6; are the variance and correlation length of u;(x 4,) which must be specified a priori.
The third term w;(x) is a nugget, a white noise process with variance O'gi, uncorrelated with 3;;,
ui(z4,) and itself, that represents the effects of the remaining inactive input variables.

Given a set of n carefully chosen runs D; = (fi(z™M), fi(z®), ..., f;(2(™)), we can update our
prior beliefs about f(z) at unevaluated z by D; using either Bayes theorem (which requires full
probability distributions) or the computationally efficient Bayes linear update (which only requires
expectations and variances). The latter provides the adjusted expectation and variance of f(z),
denoted Ep, (fi(z)) and Varp, (fi(x)). Figure 2 shows an example of a 1d emulator of a deterministic
toy model (a simple sine function), with emulator’s adjusted expectation Ep,(f;(x)) and credible
interval Ep, (fi(x)) £ 3+/Varp, (fi(z)) as given by the blue and red lines respectively.

The speed of the emulators, allows us to comprehensively explore the input parameter space X’
and identify regions of X' that may lead to acceptable matches to the observed data z. We do this
by using implausibility measures, the simplest form of which is, for output ¢

2y — (Ep, (fi(z)) = %)’
= Varp, (7)) + Var(e) + Var(er) i

Usually we perform the exploration in iterations or ‘waves’, using the emulators and implausibility
measures to rule out parts of the current space X that are obviously poor (which have high I;(z)
for a subset of the outputs), before performing further runs of the model in the not yet ruled out
region X411 say, and reconstructing new, more accurate emulators defined only over Xy, ;. This
divide and conquer approach is very powerful. The z-axis of figure 2 is coloured by implausibility,
showing the obviously bad parts of the input space with high I(z) > 3 in dark blue, that correctly
suggest f(z) will be far away from the data z, given with error as the horizontal black lines.




2.2 Taming exceedingly slow simulators: Multilevel Emulation

Even given the above emulation technology, EAGLE at its current size of 100 Mpc, is still too
slow to perform enough runs to construct even a moderately accurate emulator over 7-dimensional
space. Things seem a little hopeless until we ask if there are faster, approximate versions of EAGLE
available, that we can use for a process known as multilevel emulation. Helpfully there are, EAGLE
can indeed be run over smaller volumes of the Universe, and has been set up to run on cubes of size
12.5 Mpc, 25 Mpc, 50 Mpc and the full 100 Mpc, which we will refer to as levels 1 to 4 respectively.
Each level is thought to be approximately 8 times faster than the next, although levels 1 and 2
gain additional speed as they don’t have to simulate very large galaxies.

There are, however, two important differences between the levels: a) levels 1 and 2 only model
relatively small numbers of galaxies, and so we encounter noise in many of the outputs due to finite
galaxy counts, b) the lower levels are physically different from the level 4 simulation, in that due to
periodic boundary conditions the largest galaxies simply cannot form inside a 12.5 Mpc or even a
25 Mpc box, leading to possibly substantial systematic differences between runs at different levels
for the same input x. Multilevel emulation can usually handle such issues. All we need is for the
lower levels to be informative for the higher levels (so biases, systematic differences etc. are fine).

We begin by building an emulator f (1)(35) for level 1, summarised by the uncertain quantities

{ij-l),ugl)(:cAi),wz(l)(x)} from equation (1), based on a carefully chosen set of 60 runs. We then

construct a prior emulator for level 2 by specifying a representation for {Bg ), u§2) (z Ai),wz@ (z)}
based on their level 1 counterparts, say by modestly inflating the level 1 uncertainties and by
including any additional physical structure or suspected systematic differences we are aware of. We
now require far fewer level 2 runs (here we used 20) to update this relatively well informed prior
level 2 emulator. We will then repeat the process for levels 3 and 4, but now focus on the parts of
X that may yield good matches to observed data (so that we do not squander runs in uninteresting
parts of the parameter space). We are currently in the process of designing the set of level 3 runs.
Figure 3 shows the results of the level 2 emulator and corresponding (maximised) implausibility
measure based on the important stellar mass function outputs, over the full 7-dimensional space
(shown as all possible 2-dimensional projections). This used 400000 emulator evaluations, com-
pleting in minutes. The dark blue areas will be ruled out as implausible. The light blue/green/red
areas will need a second wave of runs to investigate further, but look likely to produce moderate
to good fits to the observed data set. The pink dot is the location of the single 100 Mpc run
performed in 2015. It can be seen that it is in a good part of the input space as judged from
several 2-dimensional projections, however its location could be improved, especially in terms of
the BlackHoleViscousAlpha input parameter (however, we should stress that the 100 Mpc run was
chosen to match several additional data sets that could have therefore caused this disparity).
This project is ongoing, but once we have performed a small number of level 3 and 4 runs, we
will be in a position to answer the original question and propose a suitable parameter location for
a single massive ‘level 5’ run, or to suggest a set of locations for slightly smaller runs, designed to
resolve some of the key scientific questions outlined above. Then we will just have to wait.

2.3 The General Uncertainty Problem: application to other disciplines.

Addressing the general uncertainty problem, for example, by assessing the properties of the struc-
tural discrepancy e and observed errors e, that are combined with the emulator uncertainty in
equation (3), is of course context dependent. However, we have successfully applied this style of
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Figure 3: The implausibility of the 7-dimensional input space of the EAGLE simulation, shown as all possible two-
dimensional projections (the 7 input parameters are named down the main diagonal: the first 5 describe supernova,
and the last two central black holes). The colour scheme is consistent with figure 2 so that dark blue shows regions
we would discard, light blue gives borderline regions (2.5 < I(x) < 3) that we would wish to explore further in the
next wave, while the green/yellow regions suggest that the emulators currently think that good matches between the
25 Mpc level 2 version and the stellar mass function data could be found (but this may change with more runs).
Note that the low implausibility points are plotted last, allow one effectively to see through the less interesting parts
of the space. The pink dot is the location of the previous 100Mpc EAGLE run.

Bayesian uncertainty analysis across multiple scientific disciplines, including to semi-analytic galaxy
formation simulations (Vernon et al. (2010)) in which we assessed the contribution of nine separate
sources of uncertainty to a 17 input dimension model, a paper that was subsequently awarded the
top prize in Bayesian statistics: the Mitchel Prize for the best applied Bayesian article worldwide
by JASA/ISBA (see also Rodrigues et al. (2017)), and we are following this form of analysis for
EAGLE. Other areas of application include for example epidemiology (Andrianakis et al. (2015,
2016)), involving models of HIV possessing up to 96 inputs; environmental models (Goldstein et al.
(2013)), describing tools for detailed structural discrepancy assessments; systems biology models
(Vernon et al. (2017)), and climate models (Williamson et al. (2013)).
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