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SUMMARY

In this paper we use an enriched approximation space for the efficient and accurate solution of the Helmholtz
equation in order to solve problems of wave scattering by polygonal obstacles. This is implemented in both
Boundary Element Method (BEM) and Partition of Unity Boundary Element Method (PUBEM) settings.
The enrichment draws upon the asymptotic singular behaviour of scattered fields at sharp corners, leading
to a choice of fractional order Bessel functions that complement the existing Lagrangian (BEM) or plane
wave (PUBEM) approximation spaces. Numerical examples consider configurations of scattering objects,
subject to the Neumann ‘sound hard’ boundary conditions, demonstrating that the approach is a suitable
choice for both convex scatterers and also for multiple scattering objects that give rise to multiple reflections.
Substantial improvements are observed, significantly reducing the number of degrees of freedom required
to achieve a prescribed accuracy in the vicinity of a sharp corner.
Copyright c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Acoustic wave propagation is a broad field of study, in which the Finite Element Method (FEM)
and Boundary Element Method (BEM) are popular approaches for numerical simulation. It is well10

known that as frequency ω increases, and the wavelength λ decreases relative to the domain of
interest, the computational expense using these methods may become prohibitively large. The design
of numerical methods to ameliorate the computational complexity is an active field of research.

While we recognise alternative approaches to accelerate computations in high-frequency
acoustics, based on fast multipole expansions [1], low-rank matrix approximations [2] and use of15

optimised linear algebra routines [3], in this article we focus on the class of methods that reduce
the size of the required linear system by utilising enrichment, which can be viewed as the use of
operator-specific basis functions. One way to achieve this is to use a high-order basis, for example in
the Isogeometric Finite Element Method (IGAFEM) [4], and with Bernstein-Bézier polynomials [5]
which admit acceleration using static condensation. Other approaches involving oscillatory basis20

functions have their roots in Trefftz methods, in which functions that are known local solutions
to the Partial Differential Equation (PDE) at hand are inserted into the approximation space. A
relevant comparison with high order schemes is made in [6]. Methods employing a wave basis draw
upon the Partition of Unity Method [7], and these include the Partition of Unity Finite Element
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2 B. GILVEY, J. TREVELYAN, G. HATTORI

Method (PUFEM) [8, 9], the Discontinuous Enrichment Method [10], the Variational Theory of25

Complex Rays (VTCR) [11], the Ultraweak Variational Formulation (UWVF) [12] and the Plane
Wave Discontinuous Galerkin Method (PWDG) [13, 14].

The above methods involve volumetric discretisation. When considering problems of acoustic
radiation and/or scattering in infinite domains, however, it is preferable to employ methods which
require information only on the boundary of the scattering object, and the BEM has become a30

standard approach. A clear benefit is a reduction in dimensionality of the problem, but another
advantage is that the Sommerfeld radiation condition [15] is satisfied by construction. Thus there is
no requirement to truncate the domain and impose artificial non-reflecting boundary conditions. In
order to address the computational complexity at high frequencies, a BEM formulation based on the
Partition of Unity Method (PUBEM) was developed by Perrey-Debain et al. [16–18]. In these works,35

the use of a plane wave basis was shown to reduce the required number of degrees of freedom (DoF)
per wavelength (a parameter we denote τ ) from between 8-10 when using conventional elements to
approximately 2.5. A highly efficient wave basis approach tailored for scattering by a single convex
polygonal scatterer was developed by Chandler-Wilde [19], and was further developed into the
Hybrid Numerical Asymptotic approach [20].40

While PUBEM provides a considerable improvement on BEM for smooth scattering objects,
its advantages over BEM when considering polygonal scattering objects become less substantial.
This results from the plane wave basis not efficiently resolving the singular behaviour around sharp
corners. There have been attempts to mitigate the expense resulting from corner singularities using
a graded mesh along with a preconditioning strategy [21] and utilising a fast solver [22]. Alternative45

approaches rely on injecting the correct asymptotic local behaviour at corner locations into the
approximation space. This can been seen for Laplace operators in [23], exterior problems using
the UWVF [24], and has been successfully combined with the Method of Fundamental Solutions
(MFS) [25,26]. More recently, the impact that the singularity has on pollution in FEM for large k is
shown in [27]. The extension of this enrichment strategy to BEM and PUBEM is the focus of this50

paper.
The paper is organised in the following way. In section 2 we present the relevant Boundary

Integral Equation (BIE) and its discrete solution using the BEM formulation. In section 3 we
introduce the corner enrichment strategy, and test the scheme using a selection of numerical
examples in section 4. We close with some concluding remarks in section 5.55

2. BOUNDARY INTEGRAL EQUATION FORMULATION

In this section the BIE is formulated, and the fundamental contribution highlighted from the
enrichment functions employed. Consider a sound-hard polygonal object Ωs ⊂ R2 having boundary
Γ, and the acoustic wave propagation in the infinite, fluid-filled region Ωf = R2\Ωs in the exterior
when the scatterer is impinged by an incident plane wave. The problem is outlined by beginning
with the time-harmonic reduction of the wave equation, the Helmholtz equation60

∇2u(x) + k2u(x) = 0, x ∈ Ωf (1)

where the wavenumber k = 2π/λ. The unknown potential is u ∈ C and∇2 is the Laplacian operator.
The sound-hard scatterer is imposed through a Neumann boundary condition

∇u(x) · n = 0, x ∈ Γ (2)

Making use of Green’s second identity the Helmholtz equation can be expressed in an equivalent
form of a BIE [28], i.e.

c(p)u(p) +

∫
Γ

∂G(p, q)

∂n
u(q)dΓq =

∫
Γ

∂u(q)

∂n
G(p, q)dΓq + uinc(p), p ∈ Γ (3)

where the first term arises from the presence of the strongly singular integral on the left hand side,65

with c(p) = 1
2 on a smooth boundary Γ, but varying as a function of the exterior angle at non-

smooth boundary points. The points p = (xp, yp) and q = (xq, yq) are the so called ‘source’ and
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SINGULAR ENRICHMENT FUNCTIONS FOR BEM 3

‘field’ points respectively. uinc is the incident wave and the vector n is the unit normal vector
outward pointing from Ωf . As the focus of this paper remains in two-dimensional space, the Green’s
function G(p, q) is70

G(p, q) =
i

4
H

(1)
0 (kr), (4)

where H(1)
0 is the Hankel function of the first kind and of order zero, and r is the Euclidian distance

between p and q. The acoustically rigid Neumann boundary condition (2) causes the third term of
(3) to vanish. Solution of (1) by the BEM is achieved by discretising the BIE (3) and making some
assumption about the form of u over each element of the discretisation. Conventionally one might
use low order polynomial shape functions to represent the varying acoustic potential over an element75

e, i.e.

u =

J∑
j=1

Nj(ξ)u
e
j , (5)

in which Nj denotes the polynomial shape function (typically Lagrangian) for node j, ξ ∈ [−1, 1]
is the usual parametric variable describing the element, uej are the unknown nodal potential values
at node j on element e, and J is the number of nodes in the element. This results in the discretised
form of (3) in a BEM setting as follows80

c(p)u(p) +

E∑
e=1

J∑
j=1

∫ 1

−1

∂G(p, q)

∂n
Nj(ξ)J

edξuej = uinc(p), (6)

whereE is the total number of elements and Je is the Jacobian of the geometric mapping (x, y)→ ξ.
In PUBEM the polynomial basis is enriched with plane waves, such that the unknown potential is
written as a linear combination of plane waves propagating in different directions, i.e.

u =

J∑
j=1

M∑
m=1

Nj(ξ)Ajmeikdjm·q, (7)

djm = (cos θjm, sin θjm), θjm =
2π(m− 1)

M
(8)

where Ajm are the unknown plane wave amplitudes, djm are the direction vectors of the plane85

waves, i =
√
−1 andM is the number of plane waves considered per node. Therefore the discretised

form of (3) in a PUBEM setting becomes

c(p)u(p) +

E∑
e=1

J∑
j=1

M∑
m=1

∫ 1

−1

∂G(p, q)

∂n
Nj(ξ)eikdjm·qJedξAejm = uinc(p). (9)

While this can be considered in a Galerkin procedure, in the current work the collocation form
of BEM is employed, so that (9) is collocated at a sufficient number of points p to yield a solvable
linear system. It should be noted that with the plane wave expansion (7) the number of degrees of90

freedom greatly exceeds the number of nodes, requiring collocation at many non-nodal locations.
Further, it is well known that solutions of (3) become non-unique at frequencies corresponding to
the eigenfrequencies of the associated interior problem formed on the same boundary Γ. In the
interest of simplicity, the Combined Helmholtz Integral Equation Formulation (CHIEF) [29] is
employed here to overcome the system degeneracy. Here, additional collocation points are located95

in the interior domain Ωs of the scattering object, resulting in an overdetermined system of equations
that requires use of an appropriate solver. We adopt CHIEF in preference to the Burton and Miller
(BM) approach [30] because, although the hypersingular integrals involved in BM can be treated in
various ways, e.g. [31, 32], CHIEF is more computationally efficient, especially for PUBEM.

It is commonly observed that enriched formulations suffer from ill-conditioning of the resulting100

linear system. However, we note that the ill-conditioning in PUBEM can be managed by (i) ensuring
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4 B. GILVEY, J. TREVELYAN, G. HATTORI

that the problem is suitably discretised by controlling τ to be not too large, (ii) oversampling with
use of more collocation points than strictly necessary, and (iii) for the more severely ill-conditioned
systems, using a truncated Singular Value Decomposition (SVD) to solve the overdefined system of
equations.105

3. MODIFIED BASIS FUNCTIONS

In this section both Extended Boundary Element Method (XBEM) and Partition of Unity Extended
Boundary Element Method (PUXBEM) bases are proposed. To develop our XBEM formulation,
we augment the polynomial expansion of potential by including additional functions, denoted ψ,
representing the singular behaviour at corners, so that over element e (5) becomes replaced by

u =

J∑
j=1

Nj(ξ)u
e
j +

L∑
l=1

ψl(ξ)ū
e
l (10)

Thus we augment the discretised BIE (6) to formulate XBEM, as follows110

c(p)u(p) +

E∑
e=1

J∑
j=1

∫ 1

−1

∂G(p, q)

∂n
Nj(ξ)J

edξuej +

E∑
e=1

L∑
l=1

∫ 1

−1

∂G(p, q)

∂n
ψl(ξ)J

edξūel = uinc(p)

(11)
The coefficients ūel therefore become part of the solution vector alongside the other unknowns uej .
Once the BEM system has been solved, these become available and the potential at any location on Γ
can be recovered through (10). The corner enrichment can be extended to the PUBEM technique (9)
to provide the new PUXBEM formulation. Here, we augment the plane wave expansion of potential
by including the additional functions ψ, so that over element e (7) becomes replaced by115

u =

J∑
j=1

M∑
m=1

Nj(ξ)A
e
jmeikdjm·q +

L∑
l=1

ψl(ξ)B
e
l , (12)

and the corresponding discretised BIE becomes

c(p)u(p) +

E∑
e=1

J∑
j=1

M∑
m=1

∫ 1

−1

∂G(p, q)

∂n
Nj(ξ)eikdjm·qJedξAejm +

E∑
e=1

L∑
l=1

∫ 1

−1

∂G(p, q)

∂n
ψl(ξ)J

edξBel = uinc(p).

(13)
Once again, the coefficients Bel are auxiliary unknowns to be solved for in the BEM system.

The choice of the form of enrichment functions ψl is informed by the asymptotic potential
behaviour around a corner. From [33] the asymptotic behaviour locally to the corner (for the sound-
hard Neumann case) can be shown to be120

u(rb, θb) ≈
N∑
n=1

Jnα(krb) cosnαθb, 0 <
π

α
< 2π, (14)

where α is such that the exterior angle at the corner is π/α, rb is the distance from the corner
and angle θb is measured from one of the planar surfaces at the corner as shown in Fig. 1. In Fig. 2
we plot the family of Bessel functions Jnα(krb) for the case k = 20 and taking α = 2/3 to indicate
a 90◦ corner. The singularity in the gradient of the Bessel function J2/3(krb) is evident at rb = 0,
and it is this form that is expected to provide a suitable local enrichment in the vicinity of the125

corner. Further, since the Bessel functions considering n > 1 do not exhibit a singular gradient,
we suppose that these will provide only a negligible improvement in the approximation over the
piecewise polynomial (BEM) or plane wave (PUBEM) basis functions. Therefore, unlike Luostari
et al. [24] and Barnett & Betcke [25], we proceed taking N = 1, i.e. taking only the first Bessel
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SINGULAR ENRICHMENT FUNCTIONS FOR BEM 5

term in the series (14). Further, we note that the behaviour of this Bessel function for small rb is of130

the form rαb . This latter function will be faster to compute than the full Bessel function yet will still
contain the important asymptotic behaviour. For this reason we investigate the use of two candidate
forms, ψ1,l and ψ2,l, of the enrichment function, being

ψ1,l = rαb cos lαθb (15)

ψ2,l = Jlα(krb) cos lαθb. (16)

Figure 1. Polar coordinate system local to a corner.
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Figure 2. Bessel functions with n = 1-6, α = 2
3 and k = 20.

The cosine term in (14)-(16) describes the smooth variation in potential in the circumferential135

direction in the vicinity of the corner. While this is of great importance in finite element and
UWVF implementations, we note that in a BEM context we are required to evaluate only the trace
of the functions on the boundary, and for the flat-sided polygonal geometries considered in this
paper we have constant θb over each edge. The two edges meeting at any right-angled corner, for
example, would have constant θb = 0 and θb = 3π/2. This admits the possibility of simplifying the140

enrichment functions by omitting the trigonometric term, leaving ψ1,l = rαb , ψ2,l = Jlα(krb). This
discussion also suggests that there are two options for the Bessel based enrichment. Firstly, to use
two DoF per Bessel function, i.e. a separate DoF corresponding to each of the edges meeting at the
corner in question. We refer to this as formulation A. Secondly, to include each Bessel function as
a single DoF, inserting θb into the argument, which will take the value of either 0 or 3π/2, for a145

right-angled corner. This will be referred to as formulation B. The distinction is highlighted below.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
Prepared using nmeauth.cls DOI: 10.1002/nme



6 B. GILVEY, J. TREVELYAN, G. HATTORI

Formulation A:
ūeL 6= ūe+1

1 (17)

BeL 6= Be+1
1 (18)

Formulation B:
ūeL = ūe+1

1 (19)
150

BeL = Be+1
1 (20)

We note that by including the Bessel function or plane wave enrichment, oscillatory integrals are
introduced. At present the integration scheme employed is a sub-divided Gauss-Legendre scheme.
Since the focus of the current work is the numerical behaviour of BEM schemes with corner
enrichment, we use a larger number of Gauss points than is necessary in order to eliminate as far as
possible any errors due to integration.155

4. NUMERICAL TESTING

This section first considers scattering by a single square in an infinite domain, such as the case
illustrated in Fig. 3 (the case k = 50 is shown). Both the number of degrees of freedom (DoF) used
and the radius rip at which the evaluation points are located are varied, as defined in Fig. 4. We
consider an L2 relative error ε, taken over this circular contour, and defined as

ε =
||u− uref ||L2

||uref ||L2

(21)

where uref is a reference solution. The analysis considers the influence of wavenumber k on the160

error norm, and a further example of scattering by two square objects is investigated to demonstrate
the efficacy of XBEM and PUXBEM in the presence of reflections. With the exception of section
4.1.4, formulation A is employed for the Bessel based enrichment.

Figure 3. (left) Real part of the total potential, (right) absolute value of total potential. Unit square scatterer
for the case k = 50.
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SINGULAR ENRICHMENT FUNCTIONS FOR BEM 7

Figure 4. Internal point locations for a square scatterer.

4.1. Square scattering object

Consider a unit square being impinged by a plane wave uinc propagating in direction φinc = π
4 . In165

our first analysis we take the wavenumber k = 20 and the geometry dictates that α = 2
3 . We evaluate

the potential over a ring of points at rip =
√

0.52 + 0.52 + γ, and plot the relative error ε for the case
γ = 1 in Fig. 5.
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Figure 5. Relative error vs. DoF.

It is evident that a notable improvement is seen when the corner enrichment is included, with
the PUXBEM formulation outperforming the XBEM. The enrichment function forms ψ1,l and ψ2,l170

offer similar benefit, with slightly more favourable results found using ψ2,l.
Extending the analysis of the unit square by varying k provides further insight. This is shown by

a comparison made in Fig. 6 for k in the range 1 to 40, evaluated using each respective method with
the number of DoF fixed at 128. The results confirm that XBEM and PUXBEM outperform BEM
considerably. It is worth noting that as k increases, so does the XBEM error, eventually approaching175

the BEM result. This is due to the fact that the 128DoF model becomes less able to resolve the
solution generally over the square with the (predominantly) polynomial basis functions in XBEM.
Conversely with PUXBEM, as k increases, the plane wave basis is able to maintain accuracy over a
larger frequency range.

Further comparison of the unit square case is made in Table I, which shows the errors for varying180

γ obtained using a fixed DoF taking k = 20 throughout. The table highlights the fact that overall
accuracy increases as we consider results at points further from the scatterer. It is interesting
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8 B. GILVEY, J. TREVELYAN, G. HATTORI
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Figure 6. Relative error vs. k using 128 DoF.

to observe that it is not only locally around the corners that the additional enrichment increases
accuracy; significant reduction in error is also seen in the far field.

γ BEM XBEM PUXBEM
1 2.8354e− 03 4.3427e− 04 2.7960e− 05
2 2.2018e− 03 3.4139e− 04 2.1726e− 05
3 1.8703e− 03 2.9102e− 04 1.8458e− 05
4 1.6527e− 03 2.5755e− 04 1.6312e− 05
5 1.4947e− 03 2.3311e− 04 1.4753e− 05

Table I. Relative error ε using 128 DoF for γ = 1-5.

4.1.1. Use of blending functions It is clear that the proposed corner enrichment functions ψ1,l and185

ψ2,l will (apart from a few special cases at the roots of the Bessel function) be non-zero for rb > 0.
So, considering an enrichment function over an edge of the scatterer described by 0 < rb < L,
with rb = 0 at the corner we are enriching, use of these enrichment functions will then not enforce
continuity of the potential at rb = L. Restricting our analysis now to the formulation found most
favourable in the previous section, i.e. PUXBEM with ψ2,l, we focus on modifying this case to190

observe the impact of the discontinuity. In this study, we multiply ψ2,l by a tapering Hermite function
that decays to zero at rb = L. In this fashion ψ2,l is redefined as

ψ2,l = Jlα(krb) cos(lαθb)w(η) (22)

where
η =

2rb
L− β

− L+ β

L− β
(23)

w(η) =

{
1, if rb < β

0.25(1− η)2(2 + η), otherwise
(24)

The resulting function is shown in Fig. 7. The tapering can begin at any desired point in the
interval, depending on the choice of parameter β. The results displayed in Fig. 8 and Fig. 9 show195

that blending actually has a detrimental effect on the solution, presumably because the enrichment
function is no longer the same as the theoretical asymptotic behaviour for rb > β. Not only are
the results less accurate but they are also less stable than those using unblended corner enrichment
functions.
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SINGULAR ENRICHMENT FUNCTIONS FOR BEM 9
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Figure 7. (left) Hermite blending function, (right) Blended Bessel function with n = 1, k = 20 and α = 2
3 .
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Figure 8. Relative error vs. DoF for γ = 1, varying β where L is the element length.
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Figure 9. Relative error vs. k using 128 DoF, varying β where L is the element length.

We have tested five different values of β = (0.2L, 0.4L, 0.6L, 0.8L,L) in producing these results,200

and one may note that use of β = L is consistent with no blending function having been applied. One
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10 B. GILVEY, J. TREVELYAN, G. HATTORI

interesting observation from these figures is that if we rank the values of β in order of their general
performance we find a sequence β = L (best), 0.2L, 0.4L, 0.6L, 0.8L (worst). The conclusion is that
it is best to remove the blending function entirely (accepting a small discontinuity at r = L) but, if
one is going to include blending then it is best to use a small β. Our interpretation of this rather205

counter-intuitive behaviour is that a large β will give rise to a steep blending function that means
the blended enrichment function ψ2,l is less faithful to the theoretical asymptotic behaviour in (14)
in the region β < rb < L.

4.1.2. Accuracy locally at a corner The analysis is now taken closer to the corner locations by
distributing internal points uniformly on four arcs according to Fig. 10, each of radius γ centered210

around a corner. This defines a composite contour

ΓR =

i=4⋃
i=1

ΓiR. (25)

The error ε is shown in Fig. 11 over a range of γ = 0.01− 0.2. The number of degrees of
freedom is fixed at 128, giving τ ≈ 10, which is a discretisation that would normally be sufficient
for unenriched BEM schemes. In the presence of corners, it is clear that the unenriched BEM is not
capable of achieving engineering accuracy (for which we take a common definition of 1% error)215

locally around the corners at this discretisation.

Figure 10. Internal point locations for single square scattering object.
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Figure 11. Relative error vs. γ using 128 DoF.
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SINGULAR ENRICHMENT FUNCTIONS FOR BEM 11

4.1.3. Conditioning It is commonly reported that enriched numerical schemes, particularly plane
wave enriched schemes, suffer from a degree of ill conditioning. This is true of the current scheme,
as illustrated in Fig. 12 which shows the condition number κ of the system matrix generated for the
three different numerical methods. The case k = 20 for the square scatterer is shown. It can clearly220

be seen that the addition of eight degrees of freedom, turning the BEM scheme into XBEM, causes
approximately two orders of magnitude increase in κ, though not to an extent that would interfere
with the ability of solvers to reach an accurate solution. The significantly worse conditioning of
PUXBEM derives from the plane wave basis and is consistent with the literature in these methods.
It has already been seen in Fig. 11 that PUXBEM provides the highest accuracy of the three schemes,225

but the ill conditioned system requires an appropriate solver to be employed. In the current work we
use the MATLAB backslash operator.

0 50 100 150 200 250
10

0

10
5

10
10

10
15

Figure 12. Condition number κ of the H matrix vs. degrees of freedom.

We note that Antunes [34] has recently presented a revised set of oscillatory basis functions for
the Method of Fundamental Solutions that eliminates the problem of the ill-conditioning inherent in
the use of a plane wave basis. However, if this approach were applied to PUBEM or PUXBEM, the230

increased computational demands required for basis function evaluation would be too high a price
to pay for the improved conditioning when, as we have demonstrated, PUBEM and PUXBEM are
very capable of producing highly accurate solutions in spite of the poor conditioning of the linear
system.

4.1.4. Single degree of freedom per Bessel function In all of the examples shown up until this235

point, formulation A is employed. In this section formulation B is used to provide a comparison.
We recall that in the formulation A, there are two degrees of freedom for the Bessel enrichment at
a corner, while in formulation B these are combined into a single degree of freedom at each corner
as suggested by the trigonometric variation in (14). In Fig. 13 formulation A and formulation B are
compared. While formulation B results offer an improvement on traditional BEM and are slightly240

smoother, at no point do they outperform the original test cases, using formulationA. For this reason
we proceed with formulation A only.

While readers might question why the idea for formulation B has been presented in this paper
only to be found inferior, we emphasise that it has been included because it is the more faithful
of the two formulations in representing the leading order term in the series (14) giving the245

theoretical asymptotic behaviour. It is an interesting result to see this outperformed consistently
by the formulation A which ignores the cos lαθb variation in the circumferential direction.
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Figure 13. Relative error vs. DoF using a single DoF per ψ2, marked 1DoF and using a DoF for each edge.
The single DoF results were obtained using 124 DoF and the two DoF results used 128 DoF.

4.2. Multiple square scattering

One of the benefits of using a basis comprising multiple plane waves is that it provides an
attractive method not only for single, convex scatterers, but also without modification for non-250

convex scatterers, multiple scatterers, or other cases in which multiple internal reflections occur.
For this reason we consider the scattering of an incident wave by a structure containing two squares.
The problem is illustrated in Fig. 14, showing the geometry of the two unit squares along with their
total potential field in which reflections between the scatterers can clearly be seen. As before we
consider an incident plane wave propagating in an angle of π/4 from the lower left corner.255

Figure 14. Real part of total potential field resulting from a configuration of two squares being impinged by
an φinc = π

4 .

Numerical testing shows that the benefits enjoyed by the Bessel function enrichment for the single
scattering object case directly translate to the multiple scattering arrangement. For this case, we find
it useful to define a different metric. We first distribute internal points as shown in Fig. 10 (but for
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eight arcs), each of radius γ centered around a corner. Defining a composite contour ΓR, for the
evaluation of results, as260

ΓR =

i=8⋃
i=1

ΓiR (26)

we consider the following norm, Q, of the solution as

Q = ||u||L2(ΓR). (27)

A sufficiently small γ = 0.01 is selected to produce the results in Fig. 15. The impact of the
singularity is clearly visible as both XBEM and PUXBEM converge to the same result almost
immediately, whereas a conventional unenriched BEM scheme oscillates gradually towards the
same result.265

0 80 160 240 320 400 480 560
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Figure 15. L2 norm vs. DoF at internal points around two square scattering objects, γ = 0.01.

4.3. Triangular scattering object

Finally, we consider a unit equilateral triangle being impinged by a plane wave uinc propagating in
the direction φinc = 3π

2 . For this example, the 60◦ corner geometry dictates that α = 3
5 . Since the

plane wave basis in PUBEM is more effective for large wave number k, as is evident for example
from Fig. 6, we make two comparisons for the triangular scatterer problem: (i) BEM vs. XBEM for270

k = 2, and (ii) PUBEM vs. PUXBEM for k = 20. We define an error metric

ε =
||u− uref ||L2(Γc)

||uref ||L2(Γc)
(28)

where the contour Γc encloses one of the triangle vertices as shown in Fig. 16. A comparison of the
relative error ε produced by BEM and XBEM for k = 2 is shown in Fig.17, and the corresponding
comparison for PUBEM vs. PUXBEM for k = 20 in Fig. 18. In all cases we consider γ = 0.1. It
is clear that the addition of only six corner enrichment degrees of freedom has a remarkable effect,275

reducing errors by approximately two orders of magnitude, an improvement also observed for the
square scatterer examples.
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We note that in all of the examples considering square scatterers, the reference solutions are
derived from converged BEM simulations. However, since it has been shown (in Fig. 15) that XBEM
and PUXBEM converge to the same result as BEM but with far fewer degrees of freedom, reference280

solutions for the triangular scatterer were obtained using converged XBEM and PUXBEM schemes,
respectively, for the production of Figures 17 and 18.

Figure 16. Triangular scatterer problem, showing contour Γc for results evaluation.
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Figure 17. Relative error vs. DoF for γ = 0.1, k = 2.

5. CONCLUSIONS

Singular enrichment functions have been introduced for Helmholtz scattering by polygonal objects,
and implemented in both XBEM and PUXBEM formulations for single and multiple scatterer cases.
The enrichment functions are taken from the leading order term in the series of fractional-order285

Bessel functions in the asymptotic wave field close to a corner. The results provide evidence that
the benefit of including singular basis functions for acoustic scattering from polygonal scattering
objects can be extended successfully to BEM from other numerical methods. It is found preferable to
introduce two enrichment degrees of freedom per corner, rather than one, to express the asymptotic
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Figure 18. Relative error vs. DoF for γ = 0.1, k = 20.

field. Enrichment at the corners involves the addition of only this small number of degrees of290

freedom to the linear system, but offers approximately two orders of magnitude reduction in our
error indicator.

The use of an approximation, rαb , to the Bessel function markedly improves upon conventional
BEM, but fails to reach the accuracy available by using the actual Bessel function. It is clear that
PUXBEM is consistently more accurate than XBEM for the set of problems tested, and also retains295

accuracy over a considerably larger frequency range than either BEM or XBEM for a fixed number
of degrees of freedom. The use of blending functions to enforce continuity of potential is not found
to be helpful and the best results are achieved, at least for the medium to high frequency problems
we address in this paper, without blending. This will introduce a small discontinuity in the solution
but it is of negligible size because of the decay in the Bessel function over the length of the scatterer300

face. The conditioning of the BEM linear system deteriorates with the introduction of XBEM corner
enrichment, but only moderately due to the small number of enrichment functions. The PUXBEM
system is severely ill-conditioned, a feature inherited from the PUBEM use of the plane wave basis,
but by use of a solver sympathetic to ill-conditioning the method gives the most accurate results of
all.305

One might speculate on the possibility of transferring the technique to 3D to consider scattering
from polyhedral objects. The situation at the edges of such a scatterer resembles that in the 2D
analysis of planar polygons in this paper, and we suggest that the Bessel function enrichment might
be applied to edges to enhance accuracy in 3D. The situation at vertices of a polygon is not so clear.
However, it may be that enriching the edges, and omitting any special treatment for vertices, might310

produce results of sufficient accuracy. This is an open subject for further research.
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