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Abstract. An instance of the constraint satisfaction problem (CSP) is given by a family of
constraints on overlapping sets of variables, and the goal is to assign values from a fixed domain
to the variables so that all constraints are satisfied. In the optimization version, the goal is to
maximize the number of satisfied constraints. An approximation algorithm for a CSP is called
robust if it outputs an assignment satisfying an (1  - g(\varepsilon ))-fraction of constraints on any (1  - \varepsilon )-
satisfiable instance, where the loss function g is such that g(\varepsilon ) \rightarrow 0 as \varepsilon \rightarrow 0. We study how the
robust approximability of CSPs depends on the set of constraint relations allowed in instances, the
so-called constraint language. All constraint languages admitting a robust polynomial-time algorithm
(with some g) have been characterized by Barto and Kozik, with the general bound on the loss g
being doubly exponential, specifically g(\varepsilon ) = O((log log(1/\varepsilon ))/ log(1/\varepsilon )). It is natural to ask when a
better loss can be achieved, in particular polynomial loss g(\varepsilon ) = O(\varepsilon 1/k) for some constant k. In this
paper, we consider CSPs with a constraint language having a near-unanimity polymorphism. This
general condition almost matches a known necessary condition for having a robust algorithm with
polynomial loss. We give two randomized robust algorithms with polynomial loss for such CSPs:
one works for any near-unanimity polymorphism and the parameter k in the loss depends on the
size of the domain and the arity of the relations in \Gamma , while the other works for a special ternary
near-unanimity operation called the dual discriminator with k = 2 for any domain size. In the latter
case, the CSP is a common generalization of Unique Games with a fixed domain and 2-Sat. In
the former case, we use the algebraic approach to the CSP. Both cases use the standard semidefinite
programming relaxation for the CSP.
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1. Introduction. The constraint satisfaction problem (CSP) provides a frame-
work in which it is possible to express, in a natural way, many combinatorial problems
encountered in computer science and AI [18, 20, 25]. An instance of the CSP consists
of a set of variables, a domain of values, and a set of constraints on combinations of
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1764 DALMAU ET AL.

values that can be taken by certain subsets of variables. The basic aim is then to
find an assignment of values to the variables that satisfies the constraints (decision
version) or that satisfies the maximum number of constraints (optimization version).

Since CSP-related algorithmic tasks are usually hard in full generality, a ma-
jor line of research in CSP studies how possible algorithmic solutions depend on
the set of relations allowed to specify constraints, the so-called constraint language
(see, e.g., [11, 18, 20, 25, 42]). The constraint language is denoted by \Gamma and the
corresponding CSP by CSP(\Gamma ). For example, when one is interested in polynomial-
time solvability (to optimality for the optimization case), the ultimate sort of results
are dichotomy results [10, 11, 25, 38, 50, 52], pioneered in [49], which characterize
the tractable restrictions and show that the rest are NP-hard. Classifications with
respect to other complexity classes or specific algorithms are also of interest (see,
e.g., [4, 6, 39, 44]). When approximating (optimization) CSPs, the goal is to improve,
as much as possible, the quality of approximation that can be achieved in polynomial
time; see, e.g., surveys [35, 47]. Throughout the paper, we assume that P \not =NP.

The study of almost satisfiable CSP instances features prominently in the ap-
proximability literature. On the hardness side, the notion of approximation resis-
tance (which, intuitively, means that a problem cannot be approximated better than
by just picking a random assignment, even on almost satisfiable instances) has been
much studied recently; see, e.g., [1, 15, 29, 37]. Many exciting developments in ap-
proximability in the last decade were driven by the unique games conjecture (UGC)
of Khot; see survey [35]. The UGC states that it is NP-hard to tell almost satisfiable
instances of CSP(\Gamma ) from those where only a small fraction of constraints can be
satisfied, where \Gamma is the constraint language consisting of all graphs of permutations
over a large enough domain. This conjecture (if true) is known to imply optimal
inapproximability results for many classical optimization problems [35]. Moreover, if
the UGC is true, then a simple algorithm based on semidefinite programming (SDP)
provides the best possible approximation for all optimization problems CSP(\Gamma ) [48],
though the exact quality of this approximation is unknown.

On the positive side, Zwick [53] initiated the systematic study of approximation
algorithms which, given an almost satisfiable instance, find an almost satisfying as-
signment. Formally, call a polynomial-time algorithm for a CSP robust if, for every
\varepsilon > 0 and every (1  - \varepsilon )-satisfiable instance (i.e., at most a \varepsilon -fraction of constraints
can be removed to make the instance satisfiable), it outputs a (1  - g(\varepsilon ))-satisfying
assignment (i.e., that fails to satisfy at most a g(\varepsilon )-fraction of constraints). Here, the
loss function g must be such that g(\varepsilon ) \rightarrow 0 as \varepsilon \rightarrow 0. Note that one can without loss of
generality assume that g(0) = 0, that is, a robust algorithm must return a satisfying
assignment for any satisfiable instance. The running time of the algorithm should not
depend on \varepsilon (which is unknown when the algorithm is run). Which problems CSP(\Gamma )
admit robust algorithms? When such algorithms exist, how does the best possible
loss g depend on \Gamma ?

Related work. In [53], Zwick gave an SDP-based robust algorithm with g(\varepsilon ) =
O(\varepsilon 1/3) for 2-Sat and an LP-based robust algorithm with g(\varepsilon ) = O(1/ log(1/\varepsilon )) for
Horn k-Sat. Robust algorithms with g(\varepsilon ) = O(

\surd 
\varepsilon ) were given in [17] for 2-Sat

and in [16] for Unique Games(q), where q denotes the size of the domain. For
Horn-2-Sat, a robust algorithm with g(\varepsilon ) = 2\varepsilon was given in [27]. These bounds for
Horn k-Sat (k \geq 3), Horn 2-Sat, 2-Sat, and Unique Games(q) are known to be
optimal [27, 34, 36], assuming the UGC.

The algebraic approach to the CSP [11, 18, 32] has played a significant role in the
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recent massive progress in understanding the landscape of complexity of CSPs. The
key to this approach is the notion of a polymorphism, which is an n-ary operation
(on the domain) that preserves the constraint relations. Intuitively, a polymorphism
provides a uniform way to combine n solutions to a system of constraints (say, part
of an instance) into a new solution by applying the operation componentwise. The
intention is that the new solution improves on the initial solutions in some problem-
specific way. Many classifications of CSPs with respect to some algorithmic property
of interest begin by proving an algebraic classification stating that every constraint
language either can simulate (in a specific way, via gadgets; see, e.g., [5, 23, 44] for
details) one of a few specific basic CSPs failing the property of interest or else has
polymorphisms having certain nice properties (say, satisfying nice equations). Such
polymorphisms are then used to obtain positive results, e.g., to design and analyze
algorithms. Getting such a positive result in full generality in one step is usually
hard, so (typically) progress is made through a series of intermediate steps where the
result is obtained for increasingly weaker algebraic conditions. The algebraic approach
was originally developed for the decision CSP [11, 32], and it was adapted for robust
satisfiability in [23].

One such algebraic classification result [45] gives an algebraic condition (referred
to as SD(\wedge ) or ``omitting types 1 and 2""; see [4, 41, 45] for details) equivalent to
the inability to simulate 3-Lin-p---systems of linear equations over Zp, p prime, with
three variable per equation. H\r astad's celebrated result [28] implies that 3-Lin-p does
not admit a robust algorithm (for any g). This result carries over to all constraint lan-
guages that can simulate (some) 3-Lin-p [23]. The remaining languages are precisely
those that have the logico-combinatorial property of CSPs called ``bounded width"" or
``bounded treewidth duality"" [4, 9, 46]. This property says, roughly, that all unsatisfi-
able instances can be refuted via local propagation; see [12] for a survey on dualities
for the CSP. Barto and Kozik used SD(\wedge ) in [4], and then in [5] they used their
techniques from [4] to prove the Guruswami--Zhou conjecture [27] that each bounded
width CSP admits a robust algorithm.

The general bound on the loss in [5] is g(\varepsilon ) = O((log log(1/\varepsilon ))/ log(1/\varepsilon )). It is
natural to ask when a better loss can be achieved. In particular, the problems of
characterizing CSPs where linear loss g(\varepsilon ) = O(\varepsilon ) or polynomial loss g(\varepsilon ) = O(\varepsilon 1/k)
(for constant k) can be achieved have been posed in [23]. Partial results on these
problems appeared in [23, 24, 43]. For the Boolean case, i.e., when the domain is
\{ 0, 1\} , the dependence of loss on \Gamma is fully classified in [23].

Our contribution. We study CSPs that admit a robust algorithm with polyno-
mial loss. As explained above, the bounded width property is necessary for admitting
any robust algorithm. Horn 3-Sat has bounded width but does not admit a robust
algorithm with polynomial loss (unless the UGC fails) [27]. The algebraic condi-
tion that separates 3-Lin-p and Horn 3-Sat from the CSPs that can potentially
be shown to admit a robust algorithm with polynomial loss is known as SD(\vee ) or
``omitting types 1, 2, and 5"" [23]; see section 2.2 for the description of SD(\vee ) in
terms of polymorphisms. The condition SD(\vee ) is also a necessary condition for the
logico-combinatorial property of CSPs called ``bounded pathwidth duality"" (which says,
roughly, that all unsatisfiable instances can be refuted via local propagation in a lin-
ear fashion) and possibly a sufficient condition for it too [44]. It seems very hard to
obtain a robust algorithm with polynomial loss for every CSP satisfying SD(\vee ) all in
one step.

From the algebraic perspective, the most general natural condition that is (slightly)
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1766 DALMAU ET AL.

stronger than SD(\vee ) is the near-unanimity (NU) condition [2]. CSPs with a constraint
language having an NU polymorphism received a lot of attention in the literature (see,
e.g., [25, 31, 6]). Bounded pathwidth duality for CSPs admitting an NU polymorphism
was established in a series of papers [21, 22, 6], and we use some ideas from [22, 6] in
this paper.

We prove that any CSP with a constraint language having an NU polymorphism
admits a randomized robust algorithm with loss O(\varepsilon 1/k), where k depends on the
size of the domain. It is an open question whether this dependence on the size of the
domain is necessary. We prove that, for the special case of a ternary NU polymorphism
known as the dual discriminator (the corresponding CSP is a common generalization
of Unique Games with a fixed domain and 2-Sat), we can always choose k = 2.
Like the vast majority of approximation algorithms for CSPs [47], our algorithms use
the standard SDP relaxation.

The algorithm for the general NU case follows the same general scheme as [5, 43]:
1. Solve the LP/SDP relaxation for a (1 - \varepsilon )-satisfiable instance \scrI .
2. Use the LP/SDP solution to remove certain constraints in \scrI with total weight

O(g(\varepsilon )) (in our case, O(\varepsilon 1/k)) so that the remaining instance satisfies a certain
consistency condition.

3. Use the appropriate polymorphism (in our case, NU) to show that any in-
stance of CSP(\Gamma ) with this consistency condition is satisfiable.

Steps 1 and 2 in this scheme can be applied to any CSP instance, and this is where
essentially all work of the approximation algorithm happens. Polymorphisms are not
used in the algorithm; they are used in step 3 only to prove the correctness. While
the above general scheme is rather simple, applying it is typically quite challeng-
ing. Obviously, step 2 prefers weaker conditions (achievable by removing not too
many constraints), while step 3 prefers stronger conditions (so that they can guaran-
tee satisfiability), so reaching the balance between them is the main (and typically
significant) technical challenge in any application of this scheme. Our algorithm is
somewhat inspired by [5], but it is also quite different from the algorithm there. That
algorithm is designed so that steps 1 and 2 establish a consistency condition that, in
particular, includes the 1-minimality condition, and establishing 1-minimality alone
requires removing constraints with total weight O(1/ log (1/\varepsilon )) [27], unless UGC fails.
Since our requirement on the loss function g(\varepsilon ) is stricter, we have to design a dif-
ferent ``rounding"" procedure (which is usually the hardest part to analyze for most
approximation algorithms). As in [5], our rounding is nontraditional, since a solu-
tion to the SDP relaxation is used to decide which constraints to violate, rather than
to immediately assign values to the variables. To show that our rounding gives the
right dependency on \varepsilon , we introduce a new consistency condition somewhat inspired
by [6, 40]. The proof that the new consistency condition satisfies the requirements of
steps 2 and 3 of the above scheme is one of the main technical contributions of our
paper.

Organization of the paper. After some preliminaries, we formulate the two
main results of this paper in section 3. Section 4 then contains a description of SDP
relaxations that we will use later. Sections 5 and 6 contain the description of the
algorithms for constraint languages compatible with NU polymorphism and the dual
discriminator, respectively; the following sections prove the correctness of the two
algorithms.
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2. Preliminaries.

2.1. CSPs. Throughout the paper, let D be a fixed finite set, sometimes called
the domain. An instance of the CSP is a pair \scrI = (V, \scrC ) with V a finite set of variables
and \scrC a finite set of constraints. Each constraint is a pair (x,R), where x is a tuple of
variables (say, of length r > 0) called the scope of C, and R is an r-ary relation on D
called the constraint relation of C. The arity of a constraint is defined to be the arity
of its constraint relation. In the weighted optimization version, which we consider in
this paper, every constraint C \in \scrC has an associated weight wC \geq 0. Unless otherwise
stated, we shall assume that every instance satisfies

\sum 
C\in \scrC wC = 1.

An assignment for \scrI is a mapping s : V \rightarrow D. We say that s satisfies a constraint
((x1, . . . , xr), R) if (s(x1), . . . , s(xr)) \in R. For 0 \leq \beta \leq 1, we say that assignment s
\beta -satisfies \scrI if the total weight of the constraints satisfied by s is at least \beta . In this
case, we say that \scrI is \beta -satisfiable. The best possible \beta for \scrI is denoted by Opt(\scrI ).

A constraint language on D is a finite set \Gamma of relations on D. The problem
CSP(\Gamma ) consists of all instances of the CSP where all the constraint relations are
from \Gamma . Problems k-Sat, Horn k-Sat, 3-Lin-p, Graph H-coloring, and Unique
Games(| D| ) are all of the form CSP(\Gamma ).

The decision problem for CSP(\Gamma ) asks whether an input instance \scrI of CSP(\Gamma ) has
an assignment satisfying all constraints in \scrI . The optimization problem for CSP(\Gamma )
asks one to find an assignment s where the weight of the constraints satisfied by s
is as large as possible. Optimization problems are often hard to solve to optimality,
motivating the study of approximation algorithms.

2.2. Algebra. An n-ary operation f on D is a map from Dn to D. We say
that f preserves (or is a polymorphism of) an r-ary relation R on D if for all n (not
necessarily distinct) tuples (ai1, . . . , a

i
r) \in R, 1 \leq i \leq n, the tuple

(f(a11, . . . , a
1
n), . . . , f(a

r
1, . . . , a

r
n))

belongs to R as well. If R is the edge relation of a digraphH, then f is a polymorphism
of R if and only if, for any list of n (not necessarily distinct) edges (a1, b1), . . . , (an, bn)
of H, there is an edge in H from f(a1, . . . , an) to f(b1, . . . , bn). If f is a polymorphism
of every relation in a constraint language \Gamma , then f is called a polymorphism of \Gamma .
Many algorithmic properties of CSP(\Gamma ) depend only on the polymorphisms of \Gamma ; see
survey [7], as well as [11, 23, 32, 44].

An (n+1)-ary (n \geq 2) operation f is a near-unanimity (NU) operation if, for all
x, y \in D, it satisfies

f(x, x, . . . , x, x, y) = f(x, x, . . . , x, y, x) = \cdot \cdot \cdot = f(y, x, . . . , x, x, x) = x.

Note that the behavior of f on other tuples of arguments is not restricted. An NU
operation of arity 3 is called a majority operation.

We mentioned in the introduction that (modulo UGC) only constraint languages
satisfying condition SD(\vee ) can admit robust algorithms with polynomial loss. The
condition SD(\vee ) can be expressed in many equivalent ways, for example as the ex-
istence of ternary polymorphisms d0, . . . , dt, t \geq 2, satisfying the following equa-
tions [30]:

d0(x, y, z) = x, dt(x, y, z) = z,(2.1)

di(x, y, x) = di+1(x, y, x) for all even i < t,(2.2)

di(x, y, y) = di+1(x, y, y) for all even i < t,(2.3)

di(x, x, y) = di+1(x, x, y) for all odd i < t.(2.4)
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If line (2.2) is strengthened to di(x, y, x) = x for all i, then, for any constraint lan-
guage, having such polymorphisms would be equivalent to having an NU polymor-
phism of some arity [3] (this is true only when constraint languages are assumed to
be finite).

NU polymorphisms have appeared many times in the CSP literature. For ex-
ample, they characterize the so-called bounded strict width property [25, 31], which
says, roughly, that, after establishing local consistency in an instance, one can always
construct a solution in a greedy way, by picking values for variables in any order so
that constraints are not violated.

Theorem 2.1 (see [25, 31]). Let \Gamma be a constraint language with an NU poly-
morphism of some arity. There is a polynomial-time algorithm that, given an instance
of CSP(\Gamma ), finds a satisfying assignment or reports that none exists.

Every relation with an (n + 1)-ary NU polymorphism is n-decomposable (and in
some sense the converse also holds) [2]. We give a formal definition only for the
majority case n = 2. Let R be an r-ary (r \geq 2) relation. For every i, j \in \{ 1, . . . , r\} ,
let pri,j R be the binary relation \{ (ai, aj) | (a1, . . . , ar) \in R\} . Then R is called 2-
decomposable if the following holds: a tuple (a1, . . . , ar) \in Dr belongs to R if and only
if (ai, aj) \in pri,j R for every i, j \in \{ 1, . . . , r\} .

The dual discriminator is a majority operation f such that f(x, y, z) = x whenever
x, y, z are pairwise distinct. Binary relations preserved by the dual discriminator are
known as implicational [8] or 0/1/all [19] relations. Every such relation is of one of
the four following types:

1. (\{ a\} \times D) \cup (D \times \{ b\} ) for a, b \in D;
2. \{ (\pi (a), a) | a \in D\} , where \pi is a permutation on D;
3. P \times Q, where P,Q \subseteq D;
4. an intersection of a relation of type 1 or 2 with a relation of type 3.

The relations of the first kind, when D = \{ 0, 1\} , are exactly the relations allowed
in 2-Sat, while the relations of the second kind are precisely the relations allowed
in Unique Games (| D| ). We remark that having such an explicit description of
relations having a given polymorphism is rare beyond the Boolean case.

3. Main result.

Theorem 3.1. Let \Gamma be a constraint language on D:
(1) If \Gamma has an NU polymorphism, then CSP(\Gamma ) admits a randomized polynomial-

time robust algorithm with loss O(\varepsilon 1/k) for k = 6| D| r+7, where r is the max-
imal arity of a relation in \Gamma . Moreover, if \Gamma contains only binary relations,
then one can choose k = 6| D| + 7.

(2) If \Gamma has the dual discriminator polymorphism, then CSP(\Gamma ) admits a ran-
domized polynomial-time robust algorithm with loss O(

\surd 
\varepsilon ).

It was stated as an open problem in [23] whether every CSP that admits a robust
algorithm with loss O(\varepsilon 1/k) admits one where k is bounded by an absolute constant
(that does not depend on D). In the context of the above theorem, the problem can
be made more specific: is dependence of k on | D| in this theorem avoidable, or is there
a strict hierarchy of possible degrees there? The case of a majority polymorphism is
a good starting point when trying to answer this question.

As mentioned in the introduction, robust algorithms with polynomial loss and
bounded pathwidth duality for CSPs seem to be somehow related, at least in terms
of algebraic conditions. The condition SD(\vee ) is the common necessary condition for
them, although it is conditional on the UGC for the former and unconditional for
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the latter. Having an NU polymorphism is a sufficient condition for both. Another
family of problems CSP(\Gamma ) with bounded pathwidth duality was shown to admit
robust algorithms with polynomial loss in [23], where the parameter k depends on the
pathwidth duality bound (and appears in the algebraic description of this family).
This family includes languages not having an NU polymorphism of any arity; see [13,
14]. It is unclear how far connections between the two directions go, but consistency
notions seem to be the common theme.

Returning to the discussion of a possible hierarchy of degrees in polynomial loss
in robust algorithms, there was a similar question about a hierarchy of bounds for
pathwidth duality, and the hierarchy was shown to be strict [22], even in the presence
of a majority polymorphism.

4. SDP relaxation. Associated to every instance \scrI = (V, \scrC ) of the CSP there
is a standard SDP relaxation. It comes in two versions: maximizing the number of
satisfied constraints and minimizing the number of unsatisfied constraints. We use the
latter. We define it assuming that all constraints are binary; this will be sufficient for
our purposes. The SDP has a variable xa for every x \in V and a \in D. It also contains
a special unit vector v0. The goal is to assign (| V \| D| )-dimensional real vectors to its
variables minimizing the following objective function:

(4.1)
\sum 

C=((x,y),R)\in \scrC 

wC

\sum 
(a,b) \not \in R

xayb

subject to

xayb \geq 0, x, y \in V, a, b \in D,(4.2)

xaxb = 0, x \in V, a, b \in D, a \not = b,(4.3) \sum 
a\in D xa = v0, x \in V,(4.4)

\| v0\| = 1.(4.5)

In the intended integral solution, x = a if xa = v0. In the fractional solution,
we informally interpret \| xa\| 2 as the probability of x = a according to the SDP
(the constraints of the SDP ensure that

\sum 
a\in D \| xa\| 2 = 1). If C = ((x, y), R) is

a constraint and a, b \in D, one can think of xayb as the probability given by the
solution of the SDP to the pair (a, b) in C. The optimal SDP solution, then, gives
as little probability as possible to pairs that are not in the constraint relation. For a
constraint C = ((x, y), R), conditions (4.4) and (4.5) imply that

\sum 
(a,b)\in R xayb is at

most 1. Let loss(C) =
\sum 

(a,b) \not \in R xayb. For a subset A \subseteq D, let xA =
\sum 

a\in A xa. Note

that xD = yD(= v0) for all x, y \in D.
Let SDPOpt(\scrI ) be the optimum value of (4.1). It is clear that, for any instance

\scrI , we have Opt(\scrI ) \geq SDPOpt(\scrI ) \geq 0. There are algorithms [51] that, given an
SDP instance \scrI and some additive error \delta > 0, produce in time poly (| \scrI | , log(1/\delta )) an
output vector solution whose value is at most SDPOpt(\scrI )+\delta . There are several ways
to deal with the error \delta . In this paper, we deal with it by introducing a preprocessing
step which will also be needed to argue that the algorithm described in the proof of
Theorem 3.1(1) runs in polynomial time.

Preprocessing step 1. Assume that \scrC = \{ C1, . . . , Cm\} and that wC1
\geq wC2

\geq 
\cdot \cdot \cdot \geq wCm

. Using the algorithm from Theorem 2.1, find the largest j such that the
subinstance \scrI j = (V, \{ C1, . . . , Cj\} ) is satisfiable. If the total weight of the constraints
in \scrI j is at least 1 - 1/m, then return the assignment s satisfying \scrI j and stop.
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Lemma 4.1. Assume that \scrI is (1 - \varepsilon )-satisfiable. If \varepsilon \leq 1/m2, then preprocessing
step 1 returns an assignment that (1 - 

\surd 
\varepsilon )-satisfies \scrI .

Proof. Assume \varepsilon \leq 1/m2. Let i be maximum with the property that wCi
> \varepsilon .

It follows that the instance \scrI i = (V, \{ C1, . . . , Ci\} ) is satisfiable since the assignment
(1 - \varepsilon )-satisfying \scrI must satisfy every constraint with weight larger than \varepsilon . It follows
that i \leq j and, hence, the value of the assignment satisfying \scrI j is at least 1 - wCi+1

 - 
\cdot \cdot \cdot  - wCm \geq 1 - mwCi+1 \geq 1 - m\varepsilon \geq 1 - 

\surd 
\varepsilon .

If the preprocessing step returns an assignment, then we are done. So assume
that it did not return an assignment. Then we know that \varepsilon \geq 1/m2. We then solve
the SDP relaxation with \delta = 1/m2 obtaining a solution with objective value at most
2\varepsilon , which is good enough for our purposes.

5. Overview of the proof of Theorem 3.1(1). We assume throughout that
\Gamma has an NU polymorphism of arity n+ 1 (n \geq 2).

It is sufficient to prove Theorem 3.1(1) for the case when \Gamma consists of binary
relations and k = 6| D| + 7. The rest will follow by Proposition 4.1 of [5] (see also
Theorem 24 in [7]), which shows how to reduce the general case to constraint languages
consisting of unary and binary relations in such a way that the domain size increases
from | D| to | D| r, where r is the maximal arity of a relation in \Gamma . Note that every
unary constraint (x,R) can be replaced by the binary constraint ((x, x), R\prime ), where
R\prime = \{ (a, a) | a \in R\} .

Throughout the rest of this section, let \scrI = (V, \scrC ) be a (1 - \varepsilon )-satisfiable instance
of CSP(\Gamma ).

5.1. Patterns and realizations. A pattern in \scrI is defined as a directed multi-
graph p whose vertices are labeled by variables of \scrI and edges are labeled by con-
straints of \scrI in such a way that the beginning of an edge labeled by ((x, y), R) is
labeled by x and the end by y. Two of the vertices in p can be distinguished as the
beginning and the end of p. If these two vertices are labeled by variables x and y,
respectively, then we say that p is a pattern from x to y.

For two patterns p and q such that the end of p and the beginning of q are labeled
by the same variable, we define p + q to be the pattern which is obtained from the
disjoint union of p and q by identifying the end of p with the beginning of q and
choosing the beginning of p+ q to be the beginning of p and the end of p+ q to be the
end of q. We also define jp to be p+ \cdot \cdot \cdot +p, where p appears j times. A pattern is said
to be a path pattern if the underlying graph is an oriented path with the beginning
and the end being the two end vertices of the path, and it is said to be an n-tree
pattern if the underlying graph is an orientation of a tree with at most n leaves and
both the beginning and the end are leaves. A path of n-trees pattern is then any
pattern of the form t1 + \cdot \cdot \cdot + tj for some n-tree patterns t1, . . . , tj .

A realization of a pattern p is a mapping r from the set of vertices of p to D
such that if (vx, vy) is an edge labeled by ((x, y), R), then (r(vx), r(vy)) \in R. Note
that r does not have to map different vertices of p labeled with same variable to
the same element in D. A propagation of a set A \subseteq D along a pattern p whose
beginning vertex is b and ending vertex is e is defined as follows. For A \subseteq D, define
A+p = \{ r(e) | r is a realization of p with r(b) \in A\} . Also, for a binary relationR, we
put A+R = \{ b | (a, b) \in R and a \in A\} . Observe that we have (A+p)+q = A+(p+q).

Further, assume that we have nonempty sets D\ell 
x, where 1 \leq \ell \leq | D| + 1 and x

runs through all variables in an instance \scrI . Let p be a pattern in \scrI with the beginning
b and the end e. We call a realization r of p an \ell -realization (with respect to the family
\{ D\ell 

x\} ) if, for any vertex v of p labeled by a variable x, we have r(v) \in D\ell +1
x . For
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A \subseteq D, define

A+\ell p = \{ r(e) | r is an \ell -realization of p with r(b) \in A\} .

Also, for a constraint ((x, y), R) or ((y, x), R - 1) and sets A,B \subseteq D, we write B =
A+\ell (x,R, y) if B = \{ b \in D\ell +1

y | (a, b) \in R for some a \in A \cap D\ell +1
x \} .

5.2. The consistency notion. Recall that we assume that \Gamma contains only
binary relations. Before we formally introduce the new consistency notion, which is
the key to our result, as we explained in the introduction, we give an example of a
similar simpler condition. We mentioned before that 2-Sat is a special case of a CSP
that admits an NU polymorphism (actually, the only majority operation on \{ 0, 1\} ).
There is a textbook consistency condition characterizing satisfiable 2-Sat instances,
which can be expressed in our notation as follows: for each variable x in a 2-Sat
instance \scrI , there is a value ax such that, for any path pattern p in \scrI from x to x, we
have ax \in \{ ax\} + p.

Let \scrI be an instance of CSP(\Gamma ) over a set V of variables. We say that \scrI satisfies
condition (IPQ)n if the following holds:

(IPQ)n For every y \in V , there exist nonempty sets D1
y \subseteq \cdot \cdot \cdot \subseteq D

| D| 
y \subseteq D

| D| +1
y = D

such that for any x \in V , any \ell \leq | D| , any a \in D\ell 
x, and any two patterns p, q

which are paths of n-trees in \scrI from x to x, there exists j such that

a \in \{ a\} +\ell (j(p+ q) + p).

Note that + between p and q is the pattern addition and thus is independent of \ell .
Note also that a in the above condition belongs to D\ell 

x, while propagation is performed
by using \ell -realizations, i.e., inside sets D\ell +1

y .
The following theorem states that this consistency notion satisfies the require-

ments of step 3 of the general scheme (for designing robust approximation algorithms)
discussed in the introduction.

Theorem 5.1. Let \Gamma be a constraint language containing only binary relations
such that \Gamma has an (n+1)-ary NU polymorphism. If an instance \scrI of CSP(\Gamma ) satisfies
(IPQ)n, then \scrI is satisfiable.

5.3. The algorithm. Let k = 6| D| + 7. We provide an algorithm which, given
a (1 - \varepsilon )-satisfiable instance \scrI of CSP(\Gamma ), removes O(\varepsilon 1/k) constraints from it to obtain
a subinstance \scrI \prime satisfying condition (IPQ)n. It then follows from Theorem 5.1 that
\scrI \prime is satisfiable, and we can find a satisfying assignment by Theorem 2.1.

5.3.1. More preprocessing. By Lemma 4.1, we can assume that \varepsilon \geq 1/m2.
We solve the SDP relaxation with error \delta = 1/m2 and obtain a solution \{ xa\} (x \in 
V, a \in D) whose objective value \varepsilon \prime is at most 2\varepsilon . Let us define \alpha to be max\{ \varepsilon \prime , 1/m2\} .
It is clear that \alpha = O(\varepsilon ). Furthermore, this gives us that 1/\alpha \leq m2. This will be
needed to argue that the main part of the algorithm runs in polynomial time.

Let \kappa = 1/k (we will often use \kappa to avoid overloading formulas).
Preprocessing step 2. For each x \in V and 1 \leq \ell \leq | D| +1, compute sets D\ell 

x \subseteq D

as follows. Set D
| D| +1
x = D and, for 1 \leq \ell \leq | D| , set D\ell 

x = \{ a \in D | \| xa\| \geq rx,\ell \} ,
where rx,\ell is the smallest number of the form r = \alpha 3\ell \kappa (2| D| )i/2, i \geq 0 integer, with
\{ b \in D | r(2| D| ) - 1/2 \leq \| xb\| < r\} = \emptyset . It is easy to check that rx,\ell is obtained with
i \leq | D| .

It is clear that the sets D\ell 
x \subseteq D, x \in V , 1 \leq \ell \leq | D| , can be computed in

polynomial time.
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The sets D\ell 
x are chosen such that D\ell 

x contains relatively ``heavy"" elements (a's
such that \| xa\| 2 is large). The thresholds are chosen so that there is a big gap (at
least by a factor of 2| D| ) between ``heaviness"" of an element in D\ell 

x and outside.

5.3.2. Main part. Given that the preprocessing is done, we have that 1/\alpha \leq 
m2, and we precomputed sets D\ell 

x for all x \in V and 1 \leq \ell \leq | D| + 1. The description
below uses the number n, where n+ 1 is the arity of the NU polymorphism of \Gamma .

Step 0. Remove every constraint C with loss(C) > \alpha 1 - \kappa .
Step 1. For every 1 \leq \ell \leq | D| , do the following. Pick a value r\ell \in (0, \alpha (6\ell +4)\kappa )

uniformly at random. Here we need some notation: for x, y \in V and A,B \subseteq D,
we write xA \preceq \ell yB to indicate that there is no integer j such that \| yB\| 2 < r\ell +
j\alpha (6\ell +4)\kappa \leq \| xA\| 2. Then remove all constraints ((x, y), R) such that there are sets
A,B \subseteq D with B = A +\ell (x,R, y) and xA \not \preceq \ell yB , or with B = A +\ell (y,R - 1, x) and
yA \not \preceq \ell xB .

Step 2. For every 1 \leq \ell \leq | D| , do the following. Let m0 = \lfloor \alpha  - 2\kappa \rfloor . Pick
a value s\ell \in \{ 0, . . . ,m0  - 1\} uniformly at random. We define xA \preceq \ell 

w yB to mean
that there is no integer j such that \| yB\| 2 < r\ell + (s\ell + jm0)\alpha 

(6\ell +4)\kappa \leq \| xA\| 2.
Obviously, if xA \preceq \ell yB , then xA \preceq \ell 

w yB . Now, if A \subseteq B \subseteq D\ell +1
x are such that

\| xB  - xA\| 2 \leq (2n  - 3)\alpha (6\ell +4)\kappa and xB \not \preceq \ell 
w xA, then remove all the constraints in

which x participates.
Step 3. For every 1 \leq \ell \leq | D| , do the following. Pick m\ell = \lceil \alpha  - (3\ell +1)\kappa \rceil unit

vectors independently uniformly at random. For x, y \in V and A,B \subseteq D, say that
xA and yB are cut by a vector u if the signs of u \cdot (xA  - xD\setminus A) and u \cdot (yB  - yD\setminus B)
differ. Furthermore, we say that xA and yB are \ell -cut if they are cut by at least one
of the chosen m\ell vectors. For every variable x, if there exist subsets A,B \subseteq D such
that A \cap D\ell 

x \not = B \cap D\ell 
x and the vectors xA and xB are not \ell -cut, then remove all the

constraints in which x participates.
Step 4. For every 1 \leq \ell \leq | D| , remove every constraint ((x, y), R) such that

there are sets A,B \subseteq D with B = A +\ell (x,R, y), and xA and yB are \ell -cut, or with
B = A+\ell (y,R - 1, x), and yA and xB are \ell -cut.

Step 5. For every 1 \leq \ell \leq | D| , do the following. For every variable x, if A,B \subseteq 
D\ell +1

x such that \| xB  - xA\| 2 \leq (2n - 3)\alpha (6\ell +4)\kappa and xA and xB are \ell -cut, remove all
constraints in which x participates.

Step 6. By Proposition 5.3 and Theorem 5.1, the remaining instance \scrI \prime is satis-
fiable. Use the algorithm given by Theorem 2.1 to find a satisfying assignment for \scrI \prime .
Assign all variables in \scrI that do not appear in \scrI \prime arbitrarily, and return the obtained
assignment for \scrI .

Note that we chose to define the cut condition based on xA  - xD\setminus A, rather than
on xA, because the former choice has the advantage that \| xA  - xD\setminus A\| = 1, which
helps in some calculations.

In Step 0, we remove constraints that, according to the SDP solution, have a high
probability to be violated. Intuitively, Steps 1 and 2 ensure that the loss in \| xA\| 
after propagating A by a path of n-trees is not too big. This is achieved first by
ensuring that by following a path we do not lose too much (Step 1), which also gives
a bound on how much we can lose by following an n-tree pattern (see Lemma 8.13).
Together with the removal of constraints in Step 2, this guarantees that following
a path of n-trees we do not lose too much. This ensures that \{ a\} +\ell (j(p+ q) + p) is
nonvanishing as j increases. Steps 3--5 ensure that if A and B are connected by paths
of n-trees in both directions (i.e., xA = xB +\ell p1 and xB = xA +\ell p2), then xA and
xB do not differ too much (i.e., A \cap D\ell 

x = B \cap D\ell 
x). This is achieved by separating
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the space into cones by cutting it using the m\ell chosen vectors, removing the variables
which have two different sets that are not \ell -cut (Step 3), and then ensuring that if
we follow an edge (Step 4), or if we drop elements that do not extend to an n-tree
(Step 5), then we do not cross a border to another cone. This gives us both that the
sequence Aj = \{ a\} +\ell (j(p+ q)+p) stabilizes and that, after it stabilizes, Aj contains
a. This provides condition (IPQ)n for the remaining instance \scrI \prime .

The algorithm runs in polynomial time. Since D is fixed, it is clear that Steps
0--2 can be performed in polynomial time. For Steps 3--5, we also need that m\ell is
bounded by a polynomial in m, which holds because \alpha \geq 1/m2.

The correctness of the algorithm is given by Theorem 5.1 and the two following
propositions, whose proofs can be found in section 8. These propositions show that
our new consistency notion satisfies the requirements of step 2 of the general scheme
for designing robust approximation algorithms discussed in the introduction.

Proposition 5.2. The expected total weight of constraints removed by the algo-
rithm is O(\alpha \kappa ).

Proposition 5.3. The instance \scrI \prime obtained after Steps 0--5 satisfies the condition
(IPQ)n (with the sets D\ell 

x computed by preprocessing step 2 in section 5.3.1).

6. Overview of the proof of Theorem 3.1(2). Since the dual discriminator
is a majority operation, every relation in \Gamma is 2-decomposable. Therefore, it follows,
e.g., from Lemma 3.2 in [23], that to prove that CSP(\Gamma ) admits a robust algorithm
with loss O(

\surd 
\varepsilon ), it suffices to prove this for the case when \Gamma consists of all unary and

binary relations preserved by the dual discriminator. Such binary constraints are of
one of the four kinds described in section 2.2. Using this description, it follows from
Lemma 3.2 of [23] that it suffices to consider the following three types of constraints:

1. disjunction constraints of the form x = a \vee y = b, where a, b \in D;
2. unique game (UG) constraints of the form x = \pi (y), where \pi is any permu-

tation on D;
3. unary constraints of the form x \in P , where P is an arbitrary nonempty subset

of D.
We present an algorithm that, given a (1  - \varepsilon )-satisfiable instance \scrI = (V, \scrC )

of the problem, finds a solution satisfying constraints with expected total weight
1  - O(

\sqrt{} 
\varepsilon log | D| ) (the hidden constant in the O-notation depends neither on \varepsilon nor

on | D| ).
We now give an informal and somewhat imprecise sketch of the algorithm and its

analysis. We present details in section 9. We use the SDP relaxation from section 4.
Let us call the value \| xa\| 2 the SDP weight of the value a for variable x.

Variable partitioning step. The algorithm first solves the SDP relaxation.
Then it partitions all variables into three groups \scrV 0, \scrV 1, and \scrV 2 using a threshold
rounding algorithm with a random threshold. If most of the SDP weight for x is
concentrated on one value a \in D, then the algorithm puts x in the set \scrV 0 and assigns
x the value a. If most of the SDP weight for x is concentrated on two values a, b \in D,
then the algorithm puts x in the set \scrV 1 and restricts the domain of x to the set
Dx = \{ a, b\} (thus we guarantee that the algorithm will eventually assign one of the
values a or b to x). Finally, if the SDP weight for x is spread among three or more
values, then we put x in the set \scrV 2; we do not restrict the domain for such x. After
we assign values to x \in \scrV 0 and restrict the domain of x \in \scrV 1 to Dx, some constraints
are guaranteed to be satisfied (say, the constraint (x = a) \vee (y = b) is satisfied if we
assign x the value a and the constraint x \in P is satisfied if Dx \subseteq P ). Denote the set
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of such constraints by \scrC s, and let \scrC \prime = \scrC \setminus \scrC s.
We then identify a set \scrC v \subseteq \scrC \prime of constraints that we conservatively label as

violated. This set includes all constraints in \scrC \prime , except those belonging to one of the
following four groups:

1. disjunction constraints (x = a) \vee (y = b) with x, y \in \scrV 1 and a \in Dx, b \in Dy;
2. UG constraints x = \pi (y) with x, y \in \scrV 1 and Dx = \pi (Dy);
3. UG constraints x = \pi (y) with x, y \in \scrV 2;
4. unary constraints x \in P with x \in \scrV 2.

Our construction of sets \scrV 0, \scrV 1, and \scrV 2, which is based on randomized threshold
rounding, ensures that the expected total weight of constraints in \scrC v is O(\varepsilon ) (see
Lemma 9.2).

The constraints from the four groups above naturally form two disjoint subin-
stances of \scrI : \scrI 1 (groups 1 and 2) on the set of variables \scrV 1 and \scrI 2 (groups 3 and 4)
on \scrV 2. We treat these instances independently, as described below.

Solving instance \bfscrI \bfone . The instance \scrI 1 with the domain of each x restricted
to Dx is effectively an instance of Boolean 2-CSP (i.e., each variable has a 2-element
domain and all constraints are binary). A robust algorithm with quadratic loss for this
problem was given by Charikar, Makarychev, and Makarychev [17]. This algorithm
finds a solution violating an O(

\surd 
\varepsilon ) fraction of all constraints if the optimal solution

violates at most an \varepsilon fraction of all constraints or SDPOpt(\scrI 1) \leq \varepsilon . However, we
cannot apply this algorithm to the instance \scrI 1 as is. The problem is that the weight
of violated constraints in the optimal solution for \scrI 1 may be greater than \omega (\varepsilon ). Note
that the unknown optimal solution for the original instance \scrI may assign values to
variables x outside of the restricted domain Dx, and hence it is not a feasible solution
for \scrI 1. Furthermore, we do not have a feasible SDP solution for the instance \scrI 1 since
the original SDP solution (restricted to the variables in \scrV 1) is not a feasible solution
for the Boolean 2-CSP problem (because

\sum 
a\in Dx

xa is not necessarily equal to v0 and,

consequently,
\sum 

a\in Dx
\| xa\| 2 may be less than 1). Thus, our algorithm first transforms

the SDP solution to obtain a feasible solution for \scrI 1. To this end, it partitions the set
of vectors \{ xa : x \in \scrV 1, a \in Dx\} into two sets H and \=H using a modification of the
hyperplane rounding algorithm by Goemans and Williamson [26]. In this partitioning,
for every variable x, one of the two vectors \{ xa : a \in Dx\} belongs to H and the other
belongs to \=H. Label the elements of each Dx as \alpha x and \beta x so that x\alpha x

is the vector in
H and x\beta x

is the vector in \=H. For every x, we define two new vectors \~x\alpha x
= x\alpha x

and
\~x\beta x

= v0  - x\alpha x
. It is not hard to verify that the set of vectors \{ \~xa : x \in \scrV 1, a \in Dx\} 

forms a feasible SDP solution for the instance \scrI 1. We show that for each disjunction
constraint C in the instance \scrI 1, the cost of C in the new SDP solution is not greater
than the cost of C in the original SDP solution (see Lemma 9.4). The same is true for
all but an O(

\surd 
\varepsilon ) fraction of UG constraints. Thus, after removing UG constraints for

which the SDP value has increased, we get an SDP solution of cost O(\varepsilon ). Using the
algorithm [17] for Boolean 2-CSP, we obtain a solution for \scrI 1 that violates constraints
of total weight at most O(

\surd 
\varepsilon ).

Solving instance \bfscrI \bftwo . The instance \scrI 2 may contain only unary and UG con-
straints, as all disjunction constraints are removed from \scrI 2 in the variable partition-
ing step. We run the approximation algorithm for Unique Games by Charikar,
Makarychev, and Makarychev [16] on \scrI 2 using the original SDP solution restricted to
vectors \{ xa : x \in \scrV 2, a \in D\} . This is a valid SDP relaxation because in the instance
\scrI 2, unlike the instance \scrI 1, we do not restrict the domain of variables x to Dx. The
cost of this SDP solution is at most \varepsilon . As shown in [16], the weight of constraints
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violated by the algorithm [16] is at most O(
\sqrt{} 

\varepsilon log | D| ).
We get the solution for \scrI by combining solutions for \scrI 1 and \scrI 2 and assigning

values chosen at the variable partitioning step to the variables from the set \scrV 0.

7. Proof of Theorem 5.1. In this section, we prove Theorem 5.1. The proof
will use constraint languages with relations of arity greater than two. In order to
talk about such instances, we need to extend the definition of a pattern. Note that
patterns (in the sense of section 5.1) are instances (with some added structure) and
the realizations of patterns are solutions. We use the pattern/instance and solu-
tion/realization duality to generalize the notion of a pattern. Moreover, we often
treat patterns as instances and (whenever it makes sense) instances as patterns.

We will often talk about path/tree instances; they are defined using the incidence
multigraph. The incidence multigraph of an instance \scrJ is bipartite, its vertex set
consists of variables and constraints of \scrJ (which form the two parts), and if a variable
x appears j times in a constraint C, then the vertices corresponding to x and C have
j edges between them.

An instance is connected if its incidence multigraph is connected; an instance is
a tree instance if it is connected and its incidence multigraph has no multiple edges
and no cycles. A leaf variable in a tree instance is a variable which corresponds to
a leaf in the incidence multigraph, and we say that two variables are neighbors if they
appear together in a scope of some constraint (i.e., the corresponding vertices are
connected by a path of length 2 in the incidence multigraph). Note that the incidence
multigraph of a path pattern in a binary instance (treated as an instance, as described
in the first paragraph of this section) is a path and that of an n-tree pattern is a tree
with n leaves.

The next definition captures, among other things, the connection between the
pattern (treated as an instance) and the instance in which the pattern is defined.
Let \scrJ 1 and \scrJ 2 be two instances over the same constraint language. An (instance)
homomorphism e : \scrJ 1 \rightarrow \scrJ 2 is a mapping that maps each variable of \scrJ 1 to a variable of
\scrJ 2 and each constraint of \scrJ 1 to a constraint of \scrJ 2 in such a way that every constraint
((y1, . . . , yk), R) in \scrJ 1 is mapped to ((e(y1), . . . , e(yk)), R).

Using these new notions, a path pattern in an instance \scrI (see the definition in
section 5.1) can alternatively be defined as an instance, with its beginning and end
chosen among the leaf variables, whose incidence graph is a path from beginning to
end, together with a homomorphism into \scrI . Similarly, we define a path pattern in
a (not necessarily binary) instance \scrI as an instance \scrJ , with chosen beginning/end
leaf variables, whose incidence graph, after removing all the other vertices of degree
one, is a path from beginning to end, together with a homomorphism e : \scrJ \rightarrow \scrI . The
addition of path patterns and propagation are defined analogously to the addition of
patterns with binary constraints (see section 5.1).

For a k-ary relation R, let pri(R) = \{ ai | (a1, . . . , ai, . . . , ak) \in R\} . A CSP
instance \scrJ is called arc-consistent in sets Dx (x ranges over variables of \scrJ ) if, for any
variable x and any constraint ((x1, . . . , xk), R) in \scrJ , if xi = x, then pri(R) = Dx. We
say that a CSP instance \scrJ satisfies condition (PQ) in sets Dx if

1. \scrJ is arc-consistent in these sets and
2. for any variable x, any path patterns p, q from x to x, and any a \in Dx there

exists j such that a \in \{ a\} + (j(p+ q) + p).
Note that if the instance \scrJ is binary, then (PQ) implies (IPQ)n for all n (setting
Di

x = D if i = | D| + 1 and Di
x = Dx if i < | D| + 1).

The following fact, a special case of Theorem A.2 in [40], provides solutions for
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(PQ) instances.

Theorem 7.1. If \Gamma \prime is a constraint language with an NU polymorphism, then
every instance of CSP(\Gamma \prime ) satisfying condition (PQ) is satisfiable.

Finally, a standard algebraic notion has not been defined yet: having fixed \Gamma over
a set D, a subset A \subseteq D is a subuniverse if, for any polymorphism g of \Gamma , we have
g(a1, a2, . . .) \in A whenever a1, a2, . . . \in A. For any S \subseteq D, the subuniverse generated
by S is defined as

\{ g(a1, . . . , ar) | r \geq 1, a1, . . . , ar \in S, g is an r-ary polymorphism of \Gamma \} .

7.1. Into the proof. We begin the proof of Theorem 5.1. We fix a binary
language \Gamma compatible with an (n + 1)-ary NU polymorphism and an instance \scrI of
CSP(\Gamma ) which satisfies (IPQ)n with sets D\ell 

x. Note that we can assume that all D\ell 
x's

are subuniverses. If this is not the case, we replace each D\ell 
x with the subuniverse

generated by it. It is easy to check that (after the change) the instance \scrI still satisfies
(IPQ)n with such enlarged D\ell 

x's.
For each variable x, choose and fix an arbitrary index i such that Di

x = Di+1
x

and call it the level of x. Note that each variable has a level (since the sets D\ell 
x are

nonempty and \ell ranges from 1 to | D| + 1). Let V i denote the set of variables of level
i and V <i, V \leq i, . . . be defined in the natural way.

Our proof of Theorem 5.1 will proceed by applying Theorem 7.1 to \scrI restricted
to V 1, then to V 2, and so on. However, in order to obtain compatible solutions, we
will add constraints to the restricted instances.

7.2. The instances in levels. Let \scrI i (for i \leq | D| ) be the instance defined as
follows:

1. V i is the set of variables of \scrI i.
2. \scrI i contains, for every n-tree pattern t of \scrI , the constraint ((x1, . . . , xk), R)

defined in the following way: let v1, . . . , vk be all the vertices of t labeled by
variables from V i; then x1, . . . , xk are the labels of v1, . . . , vk, respectively,
and

R = \{ (r(v1), . . . , r(vk)) | r is an i-realization of t (i.e., inside sets Di+1
x )\} .

This definition has a number of immediate consequences: First, every binary
constraint between two variables from V i is present in \scrI i (as it defines a two-element
n-tree). Second, note that if some n-tree contains a vertex vj in V i which is not a
leaf, then by splitting the tree t at vj (with vj included in both parts) we obtain two
trees defining constraints which together are equivalent to the constraint defined by
t. This implies that by including only the constraints defined by n-trees t such that
only the leaves can be from V i, we obtain an equivalent (i.e., having the same set of
solutions) instance. Throughout most of the proof, we will be working with such a
restricted instance. In this instance, the arity of constraints is bounded by n.

Since the arity of a constraint in \scrI i is bounded and the size of the universe is fixed,
\scrI i is a finite instance, even though some constraints in it can be defined via infinitely
many n-tree patterns. It is easy to see that all the relations in the constraints are
preserved by all the polymorphisms of \Gamma .

The instance \scrI i is arc-consistent with sets Di
x(= Di+1

x ): Let ((x1, . . . , xk), R)
be a constraint defined by v1, . . . , vk in t, and let a \in Di

xj
. By (IPQ)n, there is a

realization of t in Di+1
x mapping vj to a, and thus Di

xj
\subseteq prj R. On the other hand,
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as Di
xj

= Di+1
xj

and every tuple in R comes from a realization inside the sets Di+1
x ,

we get prj R \subseteq Di
xj
.

Next, we show that \scrI i has property (PQ). Part 1 of the definition was established
in the paragraph above. For part 2, let p and q be arbitrary path patterns from x
to x in \scrI i. Define p\prime and q\prime to be the paths of trees in \scrI obtained, from p and q,
respectively, by replacing (in the natural way) each constraint in p and q with the tree
that defines it (we use the fact that each constraint is defined by leaves of a tree). We
apply property (IPQ)n for \scrI with \ell = i and patterns p\prime and q\prime to get that, for any
x \in V i and any a \in Di

x, there is a number j such that a \in \{ a\} +i (j(p\prime + q\prime ) + p\prime ).
The property (PQ) follows immediately.

Since \scrI i has the property (PQ), then, by Theorem 7.1, it has a solution. The
solution to \scrI will be obtained by taking the union of appropriately chosen solutions
to \scrI 1, . . . , \scrI | D| .

7.3. Invariant of the iterative construction. A global solution, denoted by
\sanss \sanso \sansl : V \rightarrow D, is constructed in steps. At the start, we define it for the variables in V 1

by choosing an arbitrary solution to \scrI 1.
In step i, we extend the definition of \sanss \sanso \sansl from V <i to V \leq i, using a carefully chosen

solution to \scrI i. Our construction will maintain the following condition:
(Ei) every n-tree pattern in \scrI has a realization inside the sets Di+1

x which agrees
with \sanss \sanso \sansl on V \leq i.

Note that, after the first step, the condition (E1) is guaranteed by the constraints of
\scrI 1.

Assume that we are in step i: we have already defined \sanss \sanso \sansl on V <i, and condition
(Ei - 1) holds. Our goal is to extend \sanss \sanso \sansl by a solution of \scrI i in such a way that (Ei)
holds. The remainder of section 7 is devoted to proving that such a solution exists.

Once we accomplish that, we are done with the proof: Condition (Ei) implies
that \sanss \sanso \sansl is defined on V \leq i, and for every constraint ((x, y), R) between x, y \in V \leq i the
pattern from x to y containing a single edge labeled by ((x, y), R) is an n-tree. This
implies that \sanss \sanso \sansl satisfies ((x, y), R), i.e., it is a solution on V \leq i. After establishing
(E| D| ), we obtain a solution to \scrI .

7.4. Restricting \bfscrI \bfiti . We begin by defining a new instance \scrK i: it is defined
almost identically to \scrI i, but in part 2 of the definition we require that the realization
r sends vertices from V <i according to \sanss \sanso \sansl . As in the case of \scrI i, we can assume that
all the constraints are defined by leaves of the tree. Thus, every n-tree pattern with
no internal vertices in V i defines one constraint in \scrI i and another in \scrK i. Just like \scrI i,
the instance \scrK i is finite.

Note that we still need to establish that constraints of \scrK i are nonempty, but the
following claim, where f is the fixed (n + 1)-ary NU polymorphism, holds indepen-
dently.

Claim 7.2. Let ((x1, . . . , xk), R) and ((x1, . . . , xk), R
\prime ) be constraints defined by

the same tree t in \scrI i and \scrK i (respectively). If a1, . . . , an+1 \in R\prime , a \in R, and j \in 
\{ 1, . . . , n+ 1\} , then f(a1, . . . , aj - 1, a, aj+1, . . . , an+1) belongs to R\prime .

Proof. Let ri be a realization of t defining ai; this realization sends all the vertices
of t labeled by variables from V <i according to \sanss \sanso \sansl . Let r be a realization of t defining
a.

Define a function, from vertices of t into D, sending a vertex v to

f(r1(v), . . . , r(v), . . . , rn+1(v))
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(where r(v) is in position j). This is clearly a realization, and if v is labeled by
x \in V <i, it sends v according to \sanss \sanso \sansl (since f is an NU operation). The new realization
witnesses that f(a1, . . . , aj - 1, a, aj+1, . . . , an+1) belongs to R\prime .

In order to proceed, we need to show that the instance \scrK i contains a nonempty,
arc-consistent subinstance, i.e., an arc-consistent instance (in some nonempty sets
Dx) obtained from \scrK i by restricting every constraint in it so that each coordinate can
take value only in the appropriate set Dx.

A proof of this claim is the subject of the next section.

7.5. Arc-consistent subinstance of \bfscrK \bfiti . In order to proceed with the proof,
we need an additional definition. Let e : \scrJ 1 \rightarrow \scrJ 2 be an instance homomorphism. If
for any variable y of \scrJ 1 and any constraint ((x1, . . . , xk), R) of \scrJ 2 with e(y) = xi (for
some i) the constraint ((x1, . . . , xk), R) has exactly one preimage ((y1, . . . , yk), R) with
y = yi, we say that e is a covering. A universal covering tree instance UCT(\scrJ ) of a
connected instance \scrJ is a (possibly countably infinite) tree instance \scrT together with
a covering e : \scrT \rightarrow \scrJ satisfying some additional properties. If \scrJ is a tree instance,
then one can take UCT(\scrJ ) = \scrJ ; otherwise, UCT(\scrJ ) is always infinite. If an instance
\scrJ is disconnected, then UCT(\scrJ ) is a disjoint union of universal covering tree instances
for connected components of \scrJ .

Several equivalent (precise) definitions of UCT can be found in section 5.4 of [40]
or section 4 of [43]. For our purposes, it is enough to mention that, for any \scrJ , the
instance UCT(\scrJ ) (with covering e) has the following two properties. For any two
variables v, v\prime satisfying e(v) = e(v\prime ), there exists an endomorphism h of UCT(\scrJ )
(i.e., a homomorphism into itself) sending v to v\prime and such that e \circ h = e. Similarly
for constraints C and C \prime , if e(C) = e(C \prime ), then there is an endomorphism h such that
h(C) = C \prime and e \circ h = e. It is well known that UCT(\scrJ ) has a solution if and only if
\scrJ has an arc-consistent subinstance.

Consider UCT(\scrK i), and fix a covering e\prime : UCT(\scrK i) \rightarrow \scrK i. Let \scrT i be an instance
obtained from UCT(\scrK i) by replacing each constraint C in it by a tree that defines
e\prime (C), each time introducing a fresh set of variables for the internal vertices of the
trees. Let e be the instance homomorphism from \scrT i to \scrI defined in the natural way.
We call a solution (or a partial solution) to \scrT i nice if it maps each v into Di+1

e(v), and,

moreover, if e(v) \in V <i, then v is mapped to \sanss \sanso \sansl (e(v)). It should be clear that nice
solutions to \scrT i correspond to solutions of UCT(\scrK i) (although the correspondence is
not one-to-one).

Claim 7.3. There exists a nice solution of \scrT i.

Proof. If \scrT i is not connected, we consider each connected component separately
and then take the union of nice solutions. Henceforth we assume that \scrT i is connected.
By a standard compactness argument, it suffices to find a nice solution for every finite
subtree of \scrT i. Suppose, for a contradiction, that \scrT is a minimal finite subtree of \scrT i

without nice solutions.
First, only the leaf vertices of \scrT can be mapped, by e, into variables from V <i.

Indeed, if an internal vertex is mapped to a variable in V <i, we can split the tree
at this vertex into two parts, obtain (from the minimality of \scrT ) nice solutions to
both parts (which need to map the splitting vertex according to \sanss \sanso \sansl , i.e., to the
same element), and merge these solutions to obtain a nice solution to \scrT . This is
a contradiction.

Second, we show that \scrT has more than n leaves mapped by e into V <i. Assume
that \scrT has n or fewer leaves mapped to V <i, and let \scrT \prime be the smallest subtree of \scrT 
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with these leaves. Then \scrT \prime is an n-tree and by (Ei - 1) we obtain a solution s to \scrT \prime in
Di

x's which sends leaves of \scrT \prime according to \sanss \sanso \sansl . It remains to extend s to a solution
of \scrT in Di+1

x 's. This extension is done in a sequence of steps. In each step, s is
defined for increasingly larger subtrees of \scrT . Furthermore, in each step the following
condition (*) is satisfied by s: if a vertex v has a value assigned by s and a neighbor
without such a value, then s(v) belongs to Di

e(v). Clearly, this condition holds in
the beginning. In each step, we pick a constraint C on a vertex v with an assigned
value and a vertex v\prime without such a value. (Note that the constraints of \scrT i, and
consequently of \scrT , are binary.) C has been added to \scrT i by replacing a constraint
of UCT(\scrK i) with an n-tree \scrT C that defines it. Let \scrS be a maximal subtree of \scrT 
such that it contains C, it has v as a leaf, and all other nodes in \scrS have not been
assigned by s and belong to \scrT C . Since \scrT C is an n-tree, \scrS is also an n-tree, and we
can use (IPQ)n to derive that there exists a solution, s\prime , of \scrS in Di+1

x 's that sends v
to s(v) \in Di

e(v). More specifically, we apply (IPQ)n with x = v, a = s(v), and both

p and q are the same pattern t1 + t2 such that t1 is \scrS with the beginning v and the
end being any other leaf of \scrS , and t2 is t1 with the beginning and end swapped. This
solution s\prime can be added to s (as the values on v are the same). It remains to see that
condition (*) is preserved after extending s with s\prime . Indeed, let u be any vertex such
that after adding solution s\prime has a neighbor u\prime that has not yet been assigned. We
can assume that u is one of the new variables assigned by s\prime . If e(u) \in V i, then the
claim follows from the fact that Di+1

e(u) = Di
e(u), and so we can assume that e(u) \not \in V i.

However, in this case, all neighbors of u in \scrT must be in \scrT C , so the constraint in \scrT 
containing both u and u\prime must be also in \scrT C , contradicting the maximality of \scrS .

So the counterexample \scrT must have at least n+ 1 leaves mapped into V <i. Fix
any n+ 1 of such leaves v1, . . . , vn+1, and let \scrT j , for j = 1, . . . , n+ 1, denote a subin-
stance of \scrT obtained by removing vj together with the single constraint containing
vj : ((vj , v

\prime 
j), Rj) from \scrT . Clearly, v\prime j is not a leaf (as it would make our \scrT a two-

element instance), and by the fact that only leaves can be mapped into V <i we get
that e(v\prime j) \in V i or e(v\prime j) \in V >i and, in the last case, i \not = | D| .

By minimality, each \scrT j has a nice realization, say sj . Now either e(v\prime j) \in V i and

sj(v
\prime 
j) \in Di

e(v\prime 
j)

= Di+1
e(v\prime 

j)
or e(v\prime j) \in V >i, si(v

\prime 
j) \in Di+1

e(v\prime 
j)

and i + 1 \not = | D| + 1. In

both cases, sj(v
\prime 
j) \in Di\prime 

e(v\prime 
j)

for i\prime \leq | D| , and thus, by (IPQ)n, there exists aj \in D

such that (aj , sj(v
\prime 
j)) \in Ri. We let s\prime j be the realization of \scrT obtained by extending

sj by mapping vj to aj . The last step is to apply the (n + 1)-ary NU operation
coordinatewise to s\prime j 's (in a way identical to the one in the proof of Claim 7.2). The
application produces a nice realization of \scrT . This contradiction finishes the proof of
the claim.

We will denote the arc-consistent subinstance of \scrK i (which is about to be con-
structed) by \scrL i. The variables of \scrL i and \scrK i (or indeed \scrI i) are the same. For every
constraint (x,R) in \scrK i, we introduce a constraint (x,R\prime ) into \scrL i, where

R\prime = \{ a : a = s(y), where s is a solution to UCT(\scrK i) and e\prime ((y,R)) = (x,R)\} ,

where e\prime is an instance homomorphism mapping UCT(\scrK i) to \scrK i. In other words, we
restrict a relation in a constraint of \scrK i by allowing only the tuples which appear in a
solution of the UCT(\scrK i) (at this constraint).

All the relations of \scrL i are preserved by all the polymorphisms of \Gamma and are
nonempty (by Claim 7.2). The fact that \scrL i is arc-consistent is an easy consequence
of the endomorphism structure of universal covering trees. Finally, Claim 7.2 holds
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for \scrL i.

Claim 7.4. Let ((x1, . . . , xk), R) and ((x1, . . . , xk), R
\prime ) be constraints defined by

the same tree t in \scrI i and \scrL i, respectively. Let a1, . . . , an+1 \in R\prime and a \in R; then
f(a1, . . . , a, . . . , an+1), where f is the (n + 1)-ary NU operation and a is in position
j, belongs to R\prime .

Proof. By Claim 7.2, the tuple f(a1, . . . , a, . . . , an+1) belongs to the relation in the
corresponding constraint in\scrK i. Thus, if it extends to a solution of UCT(\scrK i), it belongs
to R\prime . However, each ai extends to a solution of UCT(\scrK i) and a extends to a solution
of UCT(\scrI i). By applying the NU operation f to these extensions (coordinatewise),
we obtain the required evaluation.

7.6. A solution to \bfscrK \bfiti . In order to find a solution to \scrL i, we will use Corollary
B.2 from [40]. We state it here in a simplified form using the following notation: for
subuniverses A\prime \subseteq A, we say that A\prime nu-absorbs A if, for some NU polymorphism f ,
f(a1, . . . , an) \in A\prime whenever a1, . . . , an \in A and at most one ai is in A\setminus A\prime . Similarly,
if R\prime \subseteq R are relations preserved by all polymorphisms of \Gamma , we say R\prime nu-absorbs R
if for some NU operation f taking all arguments from R\prime except for one which comes
from R produces a result in R\prime .

Corollary 7.5 (Corollary B.2 from [40]). Let \scrI satisfy the (PQ) condition in
sets Ax. Let \scrI \prime be an arc-consistent instance in sets A\prime 

x on the same set of variables
as \scrI such that the following hold:

1. for every variable x, the subuniverse A\prime 
x nu-absorbs Ax; and

2. for every constraint ((x1, . . . , xn), R
\prime ) in \scrI \prime , there is a corresponding con-

straint ((x1, . . . , xn), R) in \scrI such that R\prime nu-absorbs R (and both respect the
NU operation).

Then there are subuniverses A\prime \prime 
x of A\prime 

x (for every x) such that the instance \scrI \prime \prime ob-
tained from \scrI \prime by restricting the domain of each variable to A\prime \prime 

x and by restricting the
constraint relations accordingly satisfies the condition (PQ).

We will apply the corollary above using \scrI i for \scrI and \scrL i for \scrI \prime . By our con-
struction, \scrI i satisfies condition (PQ), and the sets Di

x (which play the role of Ax)
are subuniverses of D. On the other hand, \scrL i is arc-consistent and all the relations
involved in it are closed under the polymorphisms of \Gamma . Claim 7.4 shows that each
relation R\prime nu-absorbs the corresponding R. By arc-consistency, the projection of R\prime 

on a variable x is the same for each constraint ((x1, . . . , xn), R
\prime ) containing x; call the

corresponding sets A\prime 
x. Since each R\prime nu-absorbs R, it follows that each A\prime 

x nu-absorbs
the corresponding Ax. The corollary implies that we can restrict the instance \scrL i to
obtain an instance satisfying (PQ). By Theorem 7.1, such an instance, and thus both
\scrK i and \scrL i, has a solution.

7.7. Finishing the proof. We choose any solution to \scrK i and extend the global
solution \sanss \sanso \sansl to V i according to it. There exists a solution on V \leq i because every
constraint between two variables from this set is either in V <i or defines a two-
variable n-tree which was used to define a constraint in \scrK i. It remains to prove that,
with such an extension, condition (Ei) holds.

Let t be an n-tree pattern in \scrI . If it has no variables mapped to V i, then (Ei)
follows from (Ei - 1). Assume that it has such variables. By splitting t at internal
vertices mapped to V i, it is enough to consider the case when only leaves of t are
mapped to V i. Then t defines a constraint (x,R) in \scrK i. The solution to \scrK i mapping
x to a \in R and the evaluation of t witnessing that a belongs to R can be taken to
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satisfy (Ei) for t. Theorem 5.1 is proved.

8. Full proof of Theorem 3.1(1). In this subsection, we prove Propositions 5.2
and 5.3. The following equalities, which can be directly verified, are used repeatedly
in this section: for any subsets A,B of D and any feasible solution \{ xa\} of the SDP
relaxation of \scrI , it holds that \| xA\| 2 = xAyD and \| yB  - xA\| 2 = xD\setminus AyB + xAyD\setminus B .

8.1. Analysis of preprocessing step 2. In some of the proofs, it will be
required that \alpha \leq c0 for some constant c0 depending only on | D| . This can be
assumed without loss of generality since we can adjust constants in O-notation in
Theorem 3.1(1) to ensure that \varepsilon \leq c0 (and we know that \alpha \leq \varepsilon ). We will specify the
requirements on the choice of c0 as we go along.

Lemma 8.1. There exists a constant c > 0 that depends only on | D| such that the
sets D\ell 

x \subseteq D, x \in V , 1 \leq \ell \leq | D| , obtained in preprocessing step 2 are nonempty and
satisfy the following conditions:

(1) for every a \in D\ell 
x, \| xa\| \geq \alpha 3\ell \kappa ;

(2) for every a \not \in D\ell 
x, \| xa\| \leq c\alpha 3\ell \kappa ;

(3) for every a \in D\ell 
x, \| xa\| 2 \geq 2\| xD\setminus D\ell 

x
\| 2;

(4) D\ell 
x \subseteq D\ell +1

x (with D
| D| +1
x = D).

Proof. Let c = (2| D| )(| D| /2). It is straightforward to verify that conditions 1--3
are satisfied. Let us show condition 4. Since c only depends on | D| , we can choose c0
(an upper bound on \alpha ) so that c\alpha 3\kappa < 1. It follows that c\alpha 3(\ell +1)\kappa < \alpha 3\ell \kappa . It follows
from conditions 1 and 2 that D\ell 

x \subseteq D\ell +1
x .

Finally, let us show that D\ell 
x is nonempty. By condition 4, we only need to take

care of case \ell = 1. We have by condition 2 that\sum 
a\in D\setminus D1

x

\| xa\| 2 \leq | D| c2\alpha 6\kappa .

Note that we can adjust c0 to also satisfy | D| c2\alpha 6\kappa < 1 because, again, c only depends
on | D| .

8.2. Proof of Proposition 5.2. We will prove that the total weight of con-
straints removed in Steps 0--5 of the algorithm in section 5.3.2 is O(\alpha \kappa ).

Lemma 8.2. The total weight of the constraints removed in Step 0 is at most \alpha \kappa .

Proof. We have

\alpha \geq 
\sum 
C\in \scrC 

wC loss(C) \geq 
\sum 
C\in \scrC 

loss(C)\geq \alpha 1 - \kappa 

wC\alpha 
1 - \kappa ,

from which the lemma follows.

Lemma 8.3. Let ((x, y), R) be a constraint not removed in Step 0, and let A,B
be such that B = A+\ell (x,R, y). Then \| yB\| 2 \geq \| xA\| 2  - c\alpha (6\ell +6)\kappa for some constant
c > 0 depending only on | D| . The same is also true for a constraint ((y, x), R) and
A = B +\ell (y,R - 1, x).

Proof. Consider the first case, i.e., a constraint ((x, y), R) and B = A+\ell (x,R, y).
We have

xAyD\setminus B =
\sum 

a\in A,b\in D\setminus B
(a,b)\not \in R

xayb +
\sum 

a\in A,b\in D\setminus B
(a,b)\in R

xayb.D
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The first term is bounded from above by the loss of constraint ((x, y), R), and hence
is at most \alpha 1 - \kappa , since the constraint has not been removed in Step 0. Since B =
A +\ell (x,R, y), it follows that for every (a, b) \in R such that a \in A and b \in D \setminus B we
have that a \not \in D\ell +1

x or b \not \in D\ell +1
y . Hence, the second term is at most

xD\setminus D\ell +1
x

yD + xDyD\setminus D\ell +1
y

= \| xD\setminus D\ell +1
x

\| 2 + \| yD\setminus D\ell +1
y

\| 2,

which, by Lemma 8.1(2), is bounded from above by d\alpha (6\ell +6)\kappa for some constant d > 0.
From the definition of \kappa , it follows that (6\ell +6)\kappa \leq 1 - \kappa , and hence we conclude that
xAyD\setminus B \leq (d+ 1)\alpha (6\ell +6)\kappa . Then we have that

\| yB\| 2 = xAyB + xD\setminus AyB \geq xAyB = xAyD  - xAyD\setminus B

\geq \| xA\| 2  - (d+ 1)\alpha (6\ell +6)\kappa .

Lemma 8.4. The expected weight of the constraints removed in Step 1 is O(\alpha \kappa ).

Proof. Let ((x, y), R) be a constraint not removed in Step 0. We shall see that
the probability that it is removed in Step 1 is at most c\alpha \kappa , where c > 0 is a constant.

Let A,B be such that B = A +\ell (x,R, y). It follows from Lemma 8.3 that
\| yB\| 2 \geq \| xA\| 2  - d\alpha (6\ell +6)\kappa for some constant d > 0. Hence, the probability that a
value r\ell in Step 1 makes that yB \not \preceq \ell xA is at most

d\alpha (6\ell +6)\kappa 

\alpha (6\ell +4)\kappa 
= d\alpha 2\kappa \leq d\alpha \kappa .

We obtain the same bound if we switch x and y and consider sets A,B such that
A = B+\ell R - 1. Taking the union bound for all sets A,B and all values of \ell , we obtain
the desired bound.

Lemma 8.5. If there exists a constant c > 0 depending only on | D| such that for
every variable x the probability that all constraints involving x are removed in Step 2,
Step 3, or Step 5 is at most c\alpha \kappa , then the total expected weight of constraints removed
this way in the corresponding is at most 2c\alpha \kappa .

Proof. Let wx denote the total weight of the constraints in which x participates.
The expected weight of constraints removed is at most\sum 

x\in V

wxc\alpha 
\kappa =

\Biggl( \sum 
x\in V

wx

\Biggr) 
c\alpha \kappa = 2c\alpha \kappa ,

and the lemma is proved.

Lemma 8.6. The expected weight of the constraints removed in Step 2 is O(\alpha \kappa ).

Proof. Let x be a variable. According to Lemma 8.5, it is enough to prove that
the probability that we remove all constraints involving x in Step 2 is at most c\alpha \kappa 

for some constant c > 0. Suppose that A \subseteq B are such that \| xB\| 2  - \| xA\| 2 =
\| xB  - xA\| 2 \leq (2n  - 3)\alpha (6\ell +4)\kappa . Then the probability that one of the bounds of the
form r\ell + (s\ell + jm0)\alpha 

(6\ell +4)\kappa separates \| xB\| 2 and \| xA\| 2 is at most

(2n - 3)/m0 \leq (2n - 3)/(\alpha  - 2\kappa  - 1),

which is at most c\alpha \kappa for some constant c > 0 whenever \alpha \kappa < 1/2. The latter can
be ensured by adjusting constant c0 from section 8.1. Taking the union bound for all
sets A,B and all values of \ell , we obtain the desired bound.
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Lemma 8.7. There exist constants c, d > 0 depending only on | D| such that for
every pair of variables x and y and every A,B \subseteq D the probability, p, that a unit
vector u chosen uniformly at random cuts xA and yB satisfies

c \cdot \| yB  - xA\| \leq p \leq d \cdot \| yB  - xA\| .

Proof. Let 0 \leq x \leq 1, and let 0 \leq \theta \leq \pi be an angle such that x = cos(\theta ). There
exist constants a, b > 0 such that

a \cdot 
\surd 
1 - x \leq \theta \leq b \cdot 

\surd 
1 - x.

Now, if \theta is the angle between xA  - xD\setminus A and yB  - yD\setminus B , then

1 - cos(\theta ) = 1 - (xA  - xD\setminus A)(yB  - yD\setminus B) = 2(xD\setminus AyB + xAyD\setminus B)

= 2 \| yB  - xA\| 2 .

Since p = \theta /\pi , the result follows.

Lemma 8.8. The expected weight of the constraints removed in Step 3 is O(\alpha \kappa ).

Proof. According to Lemma 8.5, it is enough to prove that the probability that
we remove all constraints involving x in Step 3 is at most c\alpha \kappa for some constant c. Let
A and B be such that A\cap D\ell 

x \not = B \cap D\ell 
x. Let a be an element in symmetric difference

(A\cap D\ell 
x)\bigtriangleup (B\cap D\ell 

x). Then we have \| xB - xA\| =
\sqrt{} 
xD\setminus AxB + xAxD\setminus B \geq \| xa\| \geq \alpha 3\ell \kappa ,

where the last inequality is by Lemma 8.1(1). Then by Lemma 8.7 the probability
that xA and xB are not \ell -cut is at most

(1 - c\alpha 3\ell \kappa )m\ell \leq 1

exp(c\alpha 3\ell \kappa m\ell )
\leq 1

exp(c\alpha  - \kappa )
\leq c\alpha \kappa ,

where c is the constant given in Lemma 8.7. Taking the union bound for all sets A,B
and all values of \ell , we obtain the desired bound.

Lemma 8.9. The expected weight of the constraints removed in Step 4 is O(\alpha \kappa ).

Proof. Let ((x, y), R) be a constraint not removed in Steps 0 and 1. We shall prove
that the probability that it is removed in Step 4 is at most c\alpha \kappa for some constant
c > 0.

Fix \ell and A,B such that B = A +\ell (x,R, y). Since the constraint has not been
removed in Step 1, we have yB \preceq \ell xA. Since B = A +\ell p, we have that xAyD\setminus B \leq 
c1\alpha 

(6\ell +6)\kappa , as shown in the proof of Lemma 8.3. Since \| xA\| 2 = xA(yB + yD\setminus B), it

follows that xAyB \geq \| xA\| 2  - c1\alpha 
(6\ell +6)\kappa .

Also, we have that \| yB\| 2 = (xAyB+xD\setminus AyB) is at most \| xA\| 2+\alpha (6\ell +4)\kappa because

yB \preceq \ell xA. Using the bound on xAyB obtained above, it follows that xD\setminus AyB is at

most \alpha (6\ell +4)\kappa + c1\alpha 
(6\ell +6)\kappa \leq (c1 + 1)\alpha (6\ell +4)\kappa .

Putting the bounds together, we have that

\| yB  - xA\| =
\sqrt{} 

xD\setminus AyB + xAyD\setminus B \leq 
\sqrt{} 
c1\alpha (6\ell +6)\kappa + (c1 + 1)\alpha (6\ell +4)\kappa 

\leq c2\alpha 
(3\ell +2)\kappa 

for some constant c2 > 0.
Applying the union bound and Lemma 8.7, we have that the probability that xA

and yB are \ell -cut is at most m\ell dc2\alpha 
(3\ell +2)\kappa = O(\alpha \kappa ). We obtain the same bound if we

switch x and y and take R - 1 instead of R. Taking the union bound for all sets A,B
and all values of \ell , we obtain the desired bound.
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Lemma 8.10. The expected weight of the constraints removed in step 5 is O(\alpha \kappa ).

Proof. Again, according to Lemma 8.5, it is enough to prove that the probability
that we remove all constraints involving x in Step 5 is at most c1\alpha 

\kappa for some constant
c1. Suppose that A, B are such that \| xA  - xB\| 2 \leq (2n  - 3)\alpha (6\ell +4)\kappa . Hence, by
Lemma 8.7 and the union bound, the probability that xA and xB are \ell -cut is at most

m\ell d(2n - 3)1/2\alpha (3\ell +2)\kappa \leq d(2n - 3)1/2\alpha \kappa ,

where d is the constant from Lemma 8.7. Taking the union bound for all sets A, B
and all values of \ell , we obtain the desired bound.

8.3. Proof of Proposition 5.3. All patterns appearing in this subsection are
in \scrI \prime . The following notion will be used several times in our proofs: Let t be a tree,
and let y be one of its nodes. We say that a subtree t\prime of t is separated by vertex y if
t\prime is maximal among all the subtrees of t that contain y as a leaf.

In the first part of the proof (which consists of the following three lemmas), we
prove that if we start with a set A \subseteq Dx and propagate it via a path p, from x to y, of
n-tree patterns to obtain a set B \subseteq Dy, the value \| yB\| cannot be much smaller than
\| xA\| . The first lemma proves that this is the case if we restrict ourselves to proper
path patterns.

Lemma 8.11. Let 1 \leq \ell \leq | D| , let p be a path pattern from x to y, and let A,B be
such that B = A+\ell p. Then xA \preceq \ell yB and, in particular, \| xA\| \leq \| yB\| + \alpha (6\ell +4)\kappa .

Proof. Since the relation \preceq \ell is transitive, it is enough to prove the lemma for
path patterns containing only one constraint. But this is true since all the constraints
((x, y), R) or ((y, x), R) which would invalidate the lemma have been removed in Step
1.

The second lemma proves that the weight of sets that vanish after following a tree
pattern is small.

Lemma 8.12. If p is a tree pattern with at most j + 1 leaves starting at x, and
A \subseteq D\ell +1

x is such that A+\ell p = \emptyset , then \| xA\| 2 \leq (2j  - 1)\alpha (6\ell +4)\kappa .

Proof. We will prove the statement by induction on the number of leaves. For
j = 1, this follows from Lemma 8.11. Suppose, then, that p is a tree pattern with
j + 1 > 2 leaves and the statement is true for any tree pattern with at most j leaves.
Choose y to be the first branching vertex in the unique path in p from x to the end
of p, and let p0, t1, . . . , th be all subtrees of p separated by y, where p0 is the subtree
containing x. We turn p0 into a pattern by choosing x as the beginning and y as
the end. Similarly, we turn every ti into a pattern by choosing y as the beginning
and any other arbitrary leaf as the end. Since y is a branching vertex, we have that
h \geq 2, every ti has ji + 1 < j + 1 leaves, and

\sum h
i=1 ji = j. Now let Bi denote the set

\{ a \in D\ell +1
y : \{ a\} +\ell ti = \emptyset \} . Since ji < j, we know that \| yBi

\| 2 \leq (2ji  - 1)\alpha (6\ell +4)\kappa .

Further, for B =
\bigcup h

i=1 Bi, we have, using inductive assumption, that

\| yB\| 2 \leq 
h\sum 

i=1

\| yBi
\| 2 \leq 

h\sum 
i=1

(2ji  - 1)\alpha (6\ell +4)\kappa = (2j  - h)\alpha (6\ell +4)\kappa 

\leq (2j  - 2)\alpha (6\ell +4)\kappa .

Finally, since A +\ell p = \emptyset , then A +\ell p0 \subseteq B, and the required claim follows from
Lemma 8.11.
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The following lemma concludes the first part of the proof by proving that following
a path of n-trees pattern cannot decrease the weight of a set too much.

Lemma 8.13. Let 1 \leq \ell \leq | D| , and let p be a pattern from x to y which is a path
of n-trees. If A,B \subseteq D are such that A+\ell p = B, then \| xA\| 2 \leq \| yB\| 2 + \alpha (6\ell +2)\kappa .

Proof. We claim that for any n-tree pattern t and A,B with A+\ell t = B, we have
xA \preceq \ell 

w yB . Since the relation \preceq \ell 
w is transitive, the lemma is then a direct consequence.

For a contradiction, suppose that t is a smallest (by inclusion) n-tree that does not
satisfy the claim. Observe that t is not a path, due to Lemma 8.11 and the fact
that xA \preceq \ell yB implies xA \preceq \ell 

w yB . Let vx and vy denote the beginning and the
end vertices of t, respectively; and let vz be the last branching vertex that appears
on the path connecting vx and vy, and let it be labeled by z. Let t1, t2, p1, . . . , pj
be all subtrees of t separated by vz, where t1 and t2 are the subtrees containing
vx and vy, respectively. Let us turn p1, . . . , pj into patterns by choosing vz as the
beginning and any other leaf as the end. Note that the sum of numbers of the leaves
of p1, . . . , pj when excluding vz is less than n  - 1 since t was a path of n-trees.
Furthermore, choose x and z to be the beginning and end, respectively, of t1 and
z and y to be the beginning and end, respectively, of t2. Note that t2 is a path.
Further, we know that for C = A +\ell t1 we have xA \preceq \ell 

w zC by the minimality of
t. Now let Ci = \{ a \in D\ell +1

z : \{ a\} +\ell pi = \emptyset \} . Then, by Lemma 8.12, we get that
\| zCi

\| 2 \leq (2ji  - 1)\alpha (6\ell +4)\kappa , where ji + 1 is the number of leaves of pi; therefore, for
C \prime =

\bigcup 
Ci we have \| zC\prime \| 2 \leq 

\sum 
\| zCi

\| 2 \leq (2n - 3)\alpha (6\ell +4)\kappa (we used that
\sum 

ji \leq n - 1).
This implies that \| zC\setminus C\prime \| 2 \geq \| zC\| 2 - (2n - 3)\alpha (6\ell +4)\kappa , and consequently zC \preceq \ell 

w zC\setminus C\prime ,
as otherwise all constraints containing z would have been removed in Step 2. Finally,
observe that B = (C \setminus C \prime )+\ell t2, and therefore zC\setminus C\prime \preceq \ell yB and, hence, zC\setminus C\prime \preceq \ell 

w yB .

Putting this together with all other derived \preceq \ell 
w-relations, we obtain the required

claim.

Next, we move to proving the condition (IPQ)n. For that, we will need the
following technical statement. Intuitively, the statement says that, starting with a set
A, if we follow a circular path of n-tree patterns and end up back in the set A, then
all values from A can be reached by this pattern.

Lemma 8.14. Let 1 \leq \ell \leq | D| , let p be a pattern from x to x which is a path of n-
trees, and let A,B be such that A+\ell p = B. If B\cap D\ell 

x \subseteq A\cap D\ell 
x, then A\cap D\ell 

x = B\cap D\ell 
x.

Proof. For a contradiction, suppose that there is an element a \in (D\ell 
x \cap A) \setminus 

B. From Lemma 8.1, we get that \| xA\setminus B\| 2 \geq \| xa\| 2 \geq 2\| xD\setminus D\ell 
x
\| 2 \geq 2\| xB\setminus A\| 2.

Therefore, we have

\| xB\| 2 = \| xA\| 2  - \| xA\setminus B\| 2 + \| xB\setminus A\| 2 \leq \| xA\| 2  - \| xa\| 2 + (1/2)\| xa\| 2

= \| xA\| 2  - (1/2)\| xa\| 2 \leq \| xA\| 2  - (1/2)\alpha 6\ell \kappa .

On the other hand, since p is a path of n-trees, we get from the previous lemma
that \| xB\| 2 \geq \| xA\| 2  - \alpha (6\ell +2)\kappa . If we adjust constant c0 from section 8.1 so that
1/2 > \alpha 2\kappa , the above inequalities give a contradiction.

The final lemma of this section proves a slight generalization of the condition
(IPQ)n.

Lemma 8.15. Let x be a variable, let p and q be two patterns from x to x which
are paths of n-trees, let 1 \leq \ell \leq | D| , and let A \subseteq D\ell 

x. Then there exists some j such
that A \subseteq A+\ell (j(p+ q) + p).
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Proof. For every A, define A0, A1, . . . in the following way. If i = 2j is even, then
Ai = A+\ell (j(p+ q)). Otherwise, if i = 2j + 1 is odd, then Ai = A+\ell (j(p+ q) + p).

We claim that for every sufficiently large u we have Au \cap D\ell 
x = Au+1 \cap D\ell 

x. From
the finiteness of D, we get that for every sufficiently large u there is u\prime > u such that
Au = Au\prime . It follows that there exists some path of n-trees pattern p\prime starting and
ending in x such that Au = Au+1 +

\ell p\prime . To prove the claim, we will show that xAu

and xAu+1
are not \ell -cut. Then the claim follows, as otherwise we would have removed

all constraints involving x in Step 3.
Consider the path x1, . . . , xk in p\prime which connects the beginning and end vertices.

Further, let Ri = R if the ith edge of the path is labeled by ((xi, xi+1), R), and
let Ri = R - 1 if the ith edge is labeled by ((xi+1, xi), R). Now define a sequence
B1, B

\prime 
2, B2, . . . , Bm inductively by setting B1 = Au+1, B

\prime 
i+1 = Bi +

\ell (xi, Ri, xi+1).
Further, if xi+1 is not a branching vertex, then put Bi+1 = B\prime 

i+1. If xi+1 is a branching
vertex, then let \Phi i be the set of all subtrees separated by xi+1 in p\prime , excluding the two
such subtrees containing the beginning and the end of p\prime . Then turn each subtree in
\Phi i into a pattern by choosing xi+1 as the beginning and any other leaf as the end, and
define Bi+1 = \{ b \in B\prime 

i+1 : \{ b\} +\ell t \not = \emptyset for all t \in \Phi i\} . As in Lemma 8.13, we know
that the sum of the numbers of leaves of the trees from \Phi i that are also leaves of p\prime is
less than n - 1. Finally, if xAu

and xAu+1
are \ell -cut, then, for some i, vectors xiBi

and
xi+1B\prime 

i+1
are \ell -cut, or vectors xiBi

and xiB\prime 
i
are \ell -cut. The former case is impossible

since B\prime 
i+1 = Bi +

\ell (xi, Ri, xi+1), and hence if xB\prime 
i+1

and xBi are \ell -cut, then either of

the constraints ((xi, xi+1), Ri) or ((xi+1, xi), R
 - 1) would have been removed in Step

4. We now show that the latter case is not possible either. Clearly, in this case xi is
a branching vertex. For t \in \Phi i, let Ct = \{ b \in B\prime 

i : \{ b\} +\ell t = \emptyset \} and let jt be the
number of leaves of t. By Lemma 8.12, we get \| xiCt

\| 2 \leq (2jt  - 1)\alpha (6\ell +4)\kappa for any
t \in \Phi i, and consequently

\| xiB\prime 
i
 - xiBi

\| 2 \leq 
\sum 
t\in \Phi i

\| xiCt
\| 2 \leq 

\sum 
t\in \Phi i

(2jt  - 1)\alpha (6\ell +4)\kappa \leq (2n - 3)\alpha (6\ell +4)\kappa .

Therefore, if xiBi
and xiB\prime 

i
were \ell -cut, then all constraints that include xi would have

been removed in Step 5. We conclude that indeed we have Au \cap D\ell 
x = Au+1 \cap D\ell 

x for
all sufficiently large u.

Now take u = 2j + 1 large enough. We have that (A \cup Au+1) +
\ell (j(p+ q) + p) =

Au \cup A2u+1. And also (Au \cup A2u+1) \cap D\ell 
x = Au+1 \cap D\ell 

x \subseteq (A \cup Au+1) \cap D\ell 
x, and

hence by Lemma 8.14 we get that (A \cup Au+1) \cap D\ell 
x = Au+1 \cap D\ell 

x. Since A \subseteq D\ell 
x by

assumption of the lemma, we have A \subseteq Au+1 \cap D\ell 
x \subseteq Au = A+\ell (j(p+ q) + p).

Finally, setting A = \{ a\} in Lemma 8.15 gives Proposition 5.3.

9. Full proof of Theorem 3.1(2). In this section, we prove Theorem 3.1(2). A
brief outline of the proof is given in section 6. Throughout this section, \scrI = (V, \scrC ) is
a (1 - \varepsilon )-satisfiable instance of CSP(\Gamma ), where \Gamma consists of implicational constraints.

9.1. SDP relaxation. We use SDP relaxation (4.1)--(4.5) from section 4. For
convenience, we write the SDP objective function as follows:

(9.1)
\sum 

C\in \scrC equals (x=a)\vee (y=b)

wC(v0  - xa)(v0  - yb)

+
1

2

\sum 
C\in \scrC equals x=\pi (y)

\sum 
a\in D

wC\| x\pi (a)  - ya\| 2 +
\sum 

C\in \scrC equals x\in P

wC

\left(  \sum 
a\in D\setminus P

\| xa\| 2
\right)  .D
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This expression equals (4.1) because of SDP constraint (4.4).
As discussed before (Lemma 4.1), we can assume that \varepsilon \geq 1/m2, where m is the

number of constraints. We solve the SDP with error \delta = 1/m2 obtaining a solution,
denoted by \sansS \sansD \sansP , with objective value O(\varepsilon ). Note that every feasible SDP solution
satisfies the following conditions:

\| xa\| 2 = xa \cdot 

\Biggl( 
v0  - 

\sum 
b\not =a

xb

\Biggr) 
= xa \cdot v0  - 

\sum 
b\not =a

xa \cdot xb = xav0,(9.2)

xayb = xa \cdot 

\Biggl( 
v0  - 

\sum 
b\prime \not =b

yb\prime 

\Biggr) 
= \| xa\| 2  - 

\sum 
b\prime \not =b

xayb\prime \leq \| xa\| 2,(9.3)

\| xa\| 2  - \| yb\| 2 = \| xa  - yb\| 2 + 2(xayb  - \| yb\| 2) \leq \| xa  - yb\| 2,(9.4)

(v0  - xa)(v0  - yb) =
\sum 
a\prime \not =a

xa\prime 

\sum 
b\prime \not =b

yb\prime \geq 0.(9.5)

9.2. Variable partitioning step. In this section, we describe the first step of
our algorithm. In this step, we assign values to some variables, partition all variables
into three groups \scrV 0, \scrV 1, and \scrV 2, and then split the instance into two subinstances \scrI 1
and \scrI 2.

Vertex partitioning procedure. Choose a number r \in (0, 1/6) uniformly at random.
Do the following for every variable x:

1. Let Dx = \{ a : 1/2 - r < xav0\} .
2. Depending on the size of Dx, do the following:

(a) If | Dx| = 1, add x to \scrV 0 and assign x = a, where a is the single element
of Dx.

(b) If | Dx| > 1, add x to \scrV 1 and restrict x to Dx (see below for details).
(c) If Dx = \emptyset , add x to \scrV 2.

Note that each variable in \scrV 0 is assigned a value; each variable x in \scrV 1 is restricted
to a set Dx; each variable in \scrV 2 is not restricted.

Lemma 9.1. (i) If xav0 > 1
2 + r, then x \in \scrV 0.

(ii) For every x \in \scrV 1, | Dx| = 2.

Proof. (i) Note that for every b \not = a, we have xav0 + xbv0 \leq 1 and, therefore,
xbv0 < 1/2 - r. Hence, b /\in Dx. We conclude that Dx = \{ a\} and x \in \scrV 0.

(ii) Now consider x \in \scrV 1. We have

| Dx| < 3(1/2 - r)| Dx| = 3
\sum 
a\in Dx

(1/2 - r) \leq 3
\sum 
a\in Dx

xav0 \leq 3.

Therefore, | Dx| \leq 2. Since x \in \scrV 1, | Dx| > 1. Hence, | Dx| = 2.

We say that an assignment is admissible if it assigns a value in Dx to every x \in \scrV 1

and it is consistent with the partial assignment to variables in \scrV 0. From now on, we
restrict our attention only to admissible assignments. We remove those constraints
that are satisfied by every admissible assignment (our algorithm will satisfy all of
them). Specifically, we remove the following constraints:

1. UG constraints x = \pi (y) with x, y \in \scrV 0 that are satisfied by the partial
assignment;

2. disjunction constraints (x = a) \vee (y = b) such that either x \in \scrV 0 and x is
assigned value a, or y \in \scrV 0 and y is assigned value b; and
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3. unary constraints x \in P such that either x \in \scrV 0 and the value assigned to x
is in P , or x \in \scrV 1 and Dx \subseteq P .

We denote the set of satisfied constraints by \scrC s. Let \scrC \prime = \scrC \setminus \scrC s be the set of remaining
constraints. We now define a set of violated constraints---those constraints that we
conservatively assume will not be satisfied by our algorithm (even though some of them
might be satisfied by the algorithm). We say that a constraint C \in \scrC \prime is violated if
at least one of the following conditions holds:

1. C is a unary constraint on a variable x \in \scrV 0 \cup \scrV 1.
2. C is a disjunction constraint (x = a) \vee (y = b), and either x /\in \scrV 1 or y /\in \scrV 1

(or both).
3. C is a disjunction constraint (x = a) \vee (y = b), and x, y \in \scrV 1, and either

a /\in Dx or b /\in Dy (or both).
4. C is a UG constraint x = \pi (y), and at least one of the variables x, y is in \scrV 0.
5. C is a UG constraint x = \pi (y), and one of the variables x, y is in \scrV 1 and the

other is in \scrV 2.
6. C is a UG constraint x = \pi (y), x, y \in \scrV 1 but Dx \not = \pi (Dy).

We denote the set of violated constraints by \scrC v and let \scrC \prime \prime = \scrC \prime \setminus \scrC v.
Lemma 9.2. \BbbE [w(\scrC v)] = O(\varepsilon ).

Proof. We analyze separately constraints of each type in \scrC v.

Unary constraints. A unary constraint x \in P in \scrC is violated if and only if
x \in \scrV 0 \cup \scrV 1 and Dx \not \subseteq P (if Dx \subseteq P , then C \in \scrC s, and thus C is not violated). Thus,
the SDP contribution of each violated constraint C of the form x \in P is at least

wC

\sum 
a\in D\setminus P

\| xa\| 2 \geq wC

\sum 
a\in Dx\setminus P

\| xa\| 2 = wC

\sum 
a\in Dx\setminus P

xa \cdot v0 \geq wC

\biggl( 
1

2
 - r

\biggr) 
\geq wC

3
.

The last two inequalities hold because the set Dx \setminus P is nonempty, xav0 \geq 1/2  - r
for all a \in Dx by the construction, and r \leq 1/6. Therefore, the expected total weight
of violated unary constraints is at most 3 \sansS \sansD \sansP = O(\varepsilon ).

Disjunction constraints. Consider a disjunction constraint (x = a) \vee (y = b).
Denote it by C. Assume without loss of generality that xav0 \geq ybv0. Consider
several cases. If xav0 > 1/2 + r, then x \in \scrV 0 and x is assigned value a. Thus, C is
satisfied. If xav0 \leq 1/2 + r and ybv0 > 1/2  - r, then we also have xav0 > 1/2  - r,
and hence x, y \in \scrV 0 \cup \scrV 1 and a \in Dx, b \in Dy. Thus, C is not violated (if at least one
of the variables x and y is in \scrV 0, then C \in \scrC s; otherwise, C \in \scrC \prime ). Therefore, C is
violated only if

xav0 \leq 1/2 + r and ybv0 \leq 1/2 - r

or, equivalently,

(9.6) xav0  - 1/2 \leq r \leq 1/2 - ybv0.

Since we choose r uniformly at random in (0, 1/6), the probability density of the
random variable r is 6 on (0, 1/6). Thus, the probability of event (9.6) is at most

6max
\Bigl( \bigl( 

(1/2 - ybv0

\bigr) 
 - 
\bigl( 
xav0  - 1/2)

\bigr) 
, 0
\Bigr) 
= 6max

\Bigl( 
(v0  - xa)(v0  - yb) - xayb, 0

\Bigr) 
by (4.2) and (9.5)

\leq 6(v0  - xa)(v0  - yb).
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The expected weight of violated constraints is at most\sum 
C\in \scrC equals
(x=a)\vee (y=b)

6wC(v0  - xa)(v0  - yb) \leq 6\sansS \sansD \sansP = O(\varepsilon ).

UG constraints. Consider a UG constraint x = \pi (y). Assume that it is violated.
Then Dx \not = \pi (Dy) (note that if x and y do not lie in the same set \scrV t, then | Dx| \not = | Dy| 
and necessarily Dx \not = \pi (Dy)). Thus, at least one of the sets \pi (Dy)\setminus Dx or Dx \setminus \pi (Dy)
is not empty. If \pi (Dy) \setminus Dx \not = \emptyset , there exists c \in \pi (Dy) \setminus Dx. We have

Pr (c \in \pi (Dy) \setminus Dx) \leq Pr
\bigl( 
\| y\pi  - 1(c)\| 2 > 1/2 - r and \| xc\| 2 \leq 1/2 - r

\bigr) 
= Pr

\bigl( 
1/2 - \| y\pi  - 1(c)\| 2 < r \leq 1/2 - \| xc\| 2

\bigr) 
\leq 6max(\| y\pi  - 1(c)\| 2  - \| xc\| 2, 0)

by (9.4)

\leq 6\| y\pi  - 1(c)  - xc\| 2.

By the union bound, the probability that there is c \in \pi (Dy) \setminus Dx is at most

6
\sum 
c\in D

\| y\pi  - 1(c)  - xc\| 2 = 6
\sum 
b\in D

\| yb  - x\pi (b)\| 2.

Similarly, the probability that there is b \in Dx\setminus \pi (Dy) is at most 6
\sum 

b\in D \| yb - x\pi (b)\| 2.
Therefore, the probability that the constraint x = \pi (y) is violated is upper bounded
by 12

\sum 
b\in D \| yb - x\pi (b)\| 2. Consequently, the total expected weight of all violated UG

constraints is at most

\sum 
C\in \scrC equals x=\pi (y)

wC

\Biggl( 
12
\sum 
b\in D

\| x\pi (b)  - yb\| 2
\Biggr) 

= 24\times 

\Biggl( 
1

2

\sum 
C\in \scrC equals x=\pi (y)

wC

\sum 
b\in D

\| x\pi (b)  - yb\| 2
\Biggr) 

\leq 24\sansS \sansD \sansP = O(\varepsilon ),

where we bound the value of the SDP by the second term of the objective func-
tion (9.1).

We restrict our attention to the set \scrC \prime \prime . There are four types of constraints in \scrC \prime \prime :
1. disjunction constraints (x = a) \vee (y = b) with x, y \in \scrV 1 and a \in Dx, b \in Dy;
2. UG constraints x = \pi (y) with x, y \in \scrV 1 and Dx = \pi (Dy);
3. UG constraints x = \pi (y) with x, y \in \scrV 2; and
4. unary constraints x \in P with x \in \scrV 2.

Denote the set of type 1 and 2 constraints by \scrC 1 and type 3 and 4 constraints by \scrC 2.
Let \scrI 1 be the subinstance of \scrI on variables \scrV 1 with constraints \scrC 1 in which every
variable x is restricted to Dx, and let \scrI 2 be the subinstance of \scrI on variables \scrV 2 with
constraints \scrC 2.

In sections 9.3 and 9.4, we show how to solve \scrI 1 and \scrI 2, respectively. The total
weight of constraints violated by our solution for \scrI 1 will be at most O(

\surd 
\varepsilon ). The total

weight of constraints violated by our solution for \scrI 2 will be at most O(
\sqrt{} 
\varepsilon log | D| ).

Thus, the combined solution will satisfy a subset of the constraints of weight at least
1 - O(

\sqrt{} 
\varepsilon log | D| ).
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9.3. Solving instance \bfscrI \bfone . In this section, we present an algorithm that solves
instance \scrI 1. The algorithm assigns values to variables in \scrV 1 so that the total weight
of violated constraints is at most O(

\surd 
\varepsilon ).

Lemma 9.3. There is a randomized algorithm that, given instance \scrI 1 and the SDP
solution \{ xa\} for \scrI , finds a set of UG constraints \scrC bad \subseteq \scrC 1 and values \alpha x, \beta x \in Dx

for every x \in \scrV 1 such that the following conditions hold:
\bullet Dx = \{ \alpha x, \beta x\} .
\bullet For each UG constraint x = \pi (y) in \scrC 1 \setminus \scrC bad, we have \alpha x = \pi (\alpha y) and
\beta x = \pi (\beta y).

\bullet The expected weight of \scrC bad is O(
\surd 
\varepsilon ).

Proof. We use the algorithm of Goemans and Williamson for Min Uncut [26] to
find values \alpha x, \beta x. Recall that in the Min Uncut problem (also known as Min 2CNF\equiv 
deletion) we are given a set of Boolean variables and a set of constraints of the form
(x = a) \updownarrow (y = b). Our goal is to find an assignment that minimizes the weight of
unsatisfied constraints.

Consider the set of UG constraints in \scrC 1. Since | Dx| = 2 for every variable x \in \scrV 1,
each constraint x = \pi (y) is equivalent to the Min Uncut constraint (x = \pi (a)) \updownarrow (y =
a), where a is an element of Dy (it does not matter which of the two elements of Dy

we choose). We define an SDP solution for the Goemans--Williamson relaxation of
Min Uncut as follows. Consider x \in \scrV 1. Denote the elements of Dx by a and b (in
any order). Let

x\ast 
a =

xa  - xb

\| xa  - xb\| 
and x\ast 

b =  - x\ast 
a =

xb  - xa

\| xa  - xb\| 
.

Note that the vectors xa and xb are nonzero orthogonal vectors, and thus \| xa  - xb\| 
is nonzero. The vectors x\ast 

a and x\ast 
b are unit vectors. Now we apply the random hyper-

plane rounding scheme of Goemans and Williamson: We choose a random hyperplane
and let H be one of the half-spaces into which the hyperplane divides the space. Note
that for every x exactly one of the two antipodal vectors in \{ x\ast 

a : a \in Dx\} lies in H
(almost surely). Define \alpha x and \beta x so that x\ast 

\alpha x
\in H and x\ast 

\beta x
/\in H. Let \scrC bad be the set

of UG constraints such that \alpha x \not = \pi (\alpha y), or equivalently x\ast 
\pi (\alpha y)

/\in H.

Values \alpha x and \beta x satisfy the first condition. If a UG constraint x = \pi (y) is in
\scrC 1 \setminus \scrC bad, then \alpha x = \pi (\alpha y); also since Dx = \pi (Dy), \beta x = \pi (\beta y). So the second
condition holds. Finally, we verify the last condition. Consider a constraint x = \pi (y).
Let A = x\pi (\alpha y)  - x\pi (\beta y) and B = y\alpha y

 - y\beta y
. Since x \in \scrV 1, we have \| x\pi (\alpha y)\| 2 >

1/2  - r > 1/3 and \| x\pi (\beta y)\| 2 > 1/3. Hence, \| A\| 2 = \| x\pi (\alpha y)\| 2 + \| x\pi (\beta y)\| 2 > 2/3.
Similarly, \| B\| 2 > 2/3. Assume first that \| A\| \geq \| B| . Then

\| x\ast 
\pi (\alpha y)

 - y\ast 
\alpha y

\| 2 =

\bigm\| \bigm\| \bigm\| \bigm\| A

\| A\| 
 - B

\| B\| 

\bigm\| \bigm\| \bigm\| \bigm\| 2 = 2 - 2AB

\| A\| \| B\| 

=
2

\| B\| 2
\times 
\biggl( 
\| B\| 2  - \| B\| 

\| A\| 
AB

\biggr) 
.

We have 2
\bigl( 
\| B\| 2  - \| \bfB \| 

\| \bfA \| AB
\bigr) 
\leq \| A - B\| 2 since

\| A - B\| 2  - 2

\biggl( 
\| B\| 2  - \| B\| 

\| A\| 
AB

\biggr) 
=
\Bigl( 
\| A\|  - \| B\| 

\Bigr) \biggl( 
\| A\| + \| B\|  - 2AB

\| A\| 

\biggr) 
\geq 0
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because \| A\| \geq AB/\| A\| and \| B\| \geq AB/\| A\| . We conclude that

\| x\ast 
\pi (\alpha y)

 - y\ast 
\alpha y

\| 2 \leq \| A - B\| 2

\| B\| 2
\leq 3

2
\| A - B\| 2

=
3

2
\| (x\pi (\alpha y)  - y\alpha y ) - (x\pi (\beta y)  - y\beta y )\| 2

\leq 3 \| x\pi (\alpha y)  - y\alpha y
\| 2 + 3 \| x\pi (\beta y)  - y\beta y

\| 2.

If \| A\| \leq \| B\| , we get the same bound on \| x\ast 
\pi (\alpha y)

 - y\ast 
\alpha y

\| 2 by swapping A and B in

the formulas above. Therefore,\sum 
C\in \scrC 1

is of the form
x=\pi (y)

wC\| x\ast 
\pi (\alpha y)

 - y\ast 
\alpha y

\| 2 \leq 3 \sansS \sansD \sansP = O(\varepsilon ).

The analysis by Goemans and Williamson shows that the expected total weight of
the constraints of the form x = \pi (y) such that

x\ast 
\pi (\alpha y)

/\in H and y\ast 
\alpha y

\in H

is at mostO(
\surd 
\varepsilon ); see section 3 in [26] for the original analysis or section 2 in survey [47]

for a presentation more closely aligned with our notation. Therefore, the expected
total weight of \scrC bad is O(

\surd 
\varepsilon ).

We remove all constraints \scrC bad from \scrI 1 and obtain an instance \scrI \prime 
1 (with the

domain for each variable x now restricted to Dx). We construct an SDP solution
\{ \~xa\} for \scrI \prime 

1. We let
\~x\alpha x = x\alpha x and \~x\beta x = v0  - x\alpha x .

We define Sx\alpha x = \{ \alpha x\} and Sx\beta x = D \setminus Sx\alpha x . Since \~x\beta x = v0 - x\alpha x = xSx\beta x
, we have

(9.7) \~xa = xSxa
for every a \in Dx.

Note that a \in Sxa for every a \in Dx.

Lemma 9.4. The solution \{ \~xa\} is a feasible solution for SDP relaxation (4.1)--
(4.5) for \scrI \prime 

1. Its cost is O(\varepsilon ).

Proof. We verify that the SDP solution is feasible. First, we have
\sum 

a\in Dx
\~xa = v0

and
\~x\alpha x

\~x\beta x
= x\alpha x

\cdot (v0  - x\alpha x
) = x\alpha x

v0  - \| x\alpha x
\| 2 = 0.

Then, for a \in Dx and b \in Dy, we have \~xa\~yb =
\sum 

a\prime \in Sxa,b\prime \in Syb
xa\prime yb\prime \geq 0. We now

show that the SDP cost is O(\varepsilon ).
First, we consider disjunction constraints. We prove that the contribution of each

constraint (x = a)\vee (y = b) to the SDP for \scrI \prime 
1 is at most its contribution to the SDP

for \scrI . That is,

(9.8) (v0  - \~xa)(v0  - \~yb) \leq (v0  - xa)(v0  - yb).

Observe that (v0  - \~xa) = xD\setminus Sxa
, (v0  - \~yb) = yD\setminus Syb

, (v0  - xa) = xD\setminus \{ a\} , and
(v0  - yb) = yD\setminus \{ b\} . Then D \setminus Sxa \subseteq D \setminus \{ a\} and D \setminus Syb \subseteq D \setminus \{ b\} . Therefore, by
(4.2),

(v0  - \~xa)(v0  - \~yb) =
\sum 

(a\prime ,b\prime )\in (D\setminus Sxa)\times (D\setminus Syb)

xa\prime yb\prime \leq 
\sum 

(a\prime ,b\prime )\in (D\setminus \{ a\} )\times (D\setminus \{ b\} )

xa\prime yb\prime 

= (v0  - xa)(v0  - yb).
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Now we consider UG constraints. The contribution of a UG constraint x = \pi (y)
in \scrC 1 \setminus \scrC bad to the SDP for \scrI \prime 

1 equals the weight of the constraint times the following
expression:

\| \~x\pi (\alpha y)  - \~y\alpha y\| 2 + \| \~x\pi (\beta y)  - \~y\beta y\| 2 = \| \~x\alpha x  - \~y\alpha y\| 2 + \| \~x\beta x  - \~y\beta y\| 2

= \| x\alpha x
 - y\alpha y

\| 2 + \| (v0  - x\alpha x
) - (v0  - y\alpha y

)\| 2

= 2\| x\alpha x
 - y\alpha y

\| 2 = 2\| x\pi (\alpha y)  - y\alpha y
\| 2.

Thus, by the choice of \alpha x and \alpha y (Lemma 9.3), the contribution is at most twice
the contribution of the constraint to the SDP for \scrI . We conclude that the SDP
contribution of all the constraints in \scrC 1 \setminus \scrC bad is at most 2 \sansS \sansD \sansP = O(\varepsilon ).

Finally, we note that \scrI \prime 
1 is a Boolean 2-CSP instance. We round solution \{ \~xa\} 

using the rounding procedure by Charikar, Makarychev, and Makarychev for Boolean
2-CSP [17] (when | D| = 2, the SDP relaxation used in [17] is equivalent to SDP
(4.1)--(4.5)). We get an assignment of variables in \scrV 1. The weight of constraints in
\scrC 1 \setminus \scrC bad violated by this assignment is at most O(

\surd 
\varepsilon ). Since w(\scrC bad) = O(

\surd 
\varepsilon ), the

weight of constraints in \scrC 1 violated by the assignment is at most O(
\surd 
\varepsilon ).

9.4. Solving instance \bfscrI \bftwo . Instance \scrI 2 is a UG instance with additional unary
constraints. We restrict the SDP solution for \scrI to variables x \in \scrV 2 and get a solution
for the UG instance \scrI 2. Note that since we do not restrict the domain of variables
x \in \scrV 2 to Dx, the SDP solution we obtain is feasible. The SDP cost of this solution
is at most \sansS \sansD \sansP . We round this SDP solution using a variant of the algorithm by
Charikar, Makarychev, and Makarychev [16] that is presented in section 3 of the
survey [47]; this variant of the algorithm does not need \ell 22-triangle-inequality SDP
constraints. Given a (1  - \varepsilon )-satisfiable instance of Unique Games, the algorithm
finds a solution with the weight of violated constraints at most O(

\sqrt{} 
\varepsilon log | D| ). We

remark that paper [16] considers only UG instances. However, in [16], we can restrict
the domain of any variable x to a set Sx by setting xa = 0 for a \in D \setminus Sx. Hence,
we can model unary constraints as follows. For every unary constraint x \in P , we
introduce a dummy variable zx,P and restrict its domain to the set P . Then we
replace each constraint x \in P with the equivalent constraint x = zx,P . The weight of

the constraints violated by the obtained solution is at most O(
\sqrt{} 
\varepsilon log | D| ).

Finally, we combine results proved in sections 9.2, 9.3, and 9.4 and obtain Theo-
rem 3.1(2).

10. Conclusion. We have proved that every CSP with an NU polymorphism
admits a robust algorithm with polynomial loss. Thus a small gap remains in our
understanding of such algorithms---between the sufficient condition of having an NU
polymorphism and a necessary condition SD(\vee ). We remark that closing this gap is
likely to require a structural result, similar to our Theorem 5.1, which would resolve
the conjecture of Larose and Tesson [44] and characterize CSPs solvable by linear
propagation. Such a result would immediately imply a characterization of CSPs in
the complexity class NL [21, 44] (and hence also L [33]), modulo complexity-theoretic
assumptions.
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