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Abstract

We use a competitive search (price–posting) framework to experimentally examine how buyer infor-

mation and fairness perceptions affect market behavior. We observe that moving from 0 to 1 uninformed

buyers leads to higher prices in both 2(seller)x2(buyer) and 2x3 markets: the former as predicted un-

der standard preferences, the latter the opposite of the theoretical prediction. Perceptions of fair prices –

elicited in the experiment – are a powerful driver of behavior. For buyers, fair prices correlate with price–

responsiveness, which varies systematically across treatments and impacts sellers’ pricing incentives.

For sellers, fair prices correlate with under–pricing, which also varies systematically across treatments.
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1 Introduction

A fundamental question in search and information economics concerns how the quality of buyers’ informa-

tion about prices affects those prices. As the rise of the internet has led to a proliferation of price–comparison

websites for air–fares, hotels, insurance, computers, clothing, and many other goods, the consequences of

these websites – and the increased price transparency they bring – for these goods’ prices are of obvious rel-

evance. This information is also useful to firms for deciding how transparent to make their pricing schemes,

and to policy–makers for deciding whether and how to regulate the reporting of prices. Despite this clear

importance, the question has received relatively little attention in the economics literature, perhaps because

most would consider the answer to be obvious and long–settled: just as intuition would suggest, early theo-

retical treatments of search (Salop and Stiglitz 1977; Varian 1980) argued convincingly that making buyers

more informed about sellers’ prices ought to drive these prices down.1

Recently, Lester (2011) has contended that this need not be true; making buyers more informed about

prices may actually lead to higher prices. He analyzes a model in which capacity–constrained sellers post

prices that are observed by informed buyers but not uninformed buyers, before all buyers choose which

seller to visit. Informed buyers must balance the potentially higher surplus gained by visiting a lower–priced

seller against the higher chance of being able to buy from a higher–priced seller, leading to an optimal level

of price–responsiveness that varies with the numbers of sellers, informed buyers and uninformed buyers.

Improving buyers’ information by replacing an uninformed buyer with an informed buyer has two coun-

tervailing effects. On one hand, losing a price–insensitive buyer and gaining a price–sensitive buyer act to

increase overall price–responsiveness. On the other hand, the larger number of informed buyers means that

competition to buy from the low–priced seller increases; that is, the likelihood of being able to buy when

visiting this seller falls. This reduces the incentive to chase low prices, so each informed buyer becomes

less price–sensitive. This acts to decrease overall price–responsiveness. Often, the latter effect dominates,

in which case increasing buyer information lowers overall price–responsiveness, giving sellers an incentive

to raise their prices – rather than lowering them as intuition might suggest.

This paper is an investigation of how prices are affected by the level of buyer price information, both

directly via the competitive pressures described above, and indirectly via its effect on buyers’ and sellers’

perceptions of what prices are “fair” (of which more below). Empirical testing using observational data

from the field is tricky, as natural experiments involving buyer information are rare, and confounding factors

are likely to be significant. For example, giving buyers in the field information about prices makes it almost

certain that sellers will also gain access to this information, making collusive pricing easier to verify and

enforce. Thus, when an increase in buyer information is found to lead to an increase in prices (as in Albæk et

al. 1997), the result may be attributable to collusion rather than buyers’ strategic interaction. To circumvent

these problems, we use a lab experiment, allowing us to exogenously vary the variables of interest, and to

control precisely the information agents receive. We use four of the simplest non–trivial parameterizations:

1See Lester (2011), especially his footnote 2, for examples from empirical studies and the popular press.
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2 sellers and either 2 or 3 buyers (2x2 and 2x3 markets), with either 0 or 1 uninformed buyers; we name

the four resulting cases “2x2–0”, “2x2–1”, “2x3–0” and “2x3–1”. Importantly, we vary the number of

uninformed buyers within–participant (i.e., the same participant plays an equal number of rounds with 0

and 1 uninformed buyers), removing confounds due to unobserved individual–specific attributes by using

each participant as his/her own control.

Our design allows a strong test of the effects of buyer information. If each buyer and seller is motivated

only by his/her money payment (standard preferences), moving from 0 to 1 uninformed buyers is predicted

to lead to a price increase in the 2x2 market but a price decrease in the 2x3 market. However, there is ample

evidence that individuals are motivated by other considerations such as fairness perceptions. As discussed

in Section 2, notions of fairness often play a role in decision making, and when markets are thin (so that

individuals’ choices can substantially affect market outcomes) as in our setting, the effects may be detectable

at the market level. We show, using a simple theoretical model of fair prices, that having a preference for fair

prices can affect buyer and seller behavior in systematic ways. Perceiving a lower price as fair makes sellers

choose lower prices, while it also makes buyers more price–responsive, reinforcing the incentive for sellers

to choose lower prices (i.e., fairness views are to some extent self–fulfilling). This means that if perceived

fair prices are correlated with price information – that is, if giving buyers more or less price information

actually changes what prices buyers and sellers view as fair – then fairness perceptions can amplify, reduce,

or even reverse the effects that would follow from competitive pressures on their own.

Our experimental results bear this out. Moving from 0 to 1 uninformed buyers in the 2x2 market does

lead to higher prices as predicted by standard preferences. It also increases prices in the 2x3 market, the

opposite of the prediction. Fairness is the most plausible explanation for our results. Within each treatment,

elicited fair prices correlate with behavior in the same ways as were predicted by our model of fair prices.

They also vary systematically across treatments, with higher prices reported as fair when there is one un-

informed buyer than when there are none: both in the 2x2 market where this follows the standard–theory

predictions (and thus fairness perceptions reinforce the effects of competitive pressures) and in the 2x3 mar-

ket where it goes in the opposite direction (so that fairness reverses the effects of competition). Along the

way, we also show that alternative explanations for our results can be ruled out, such as risk aversion, order

effects, and incomplete convergence.

2 Relevant literature

One relevant strand of the literature involves experiments based on settings of price posting and directed

search (Cason and Noussair 2007, Anbarci and Feltovich 2013, Anbarci et al. 2015, Kloosterman 2015). A

recent paper by Helland et al. (2016) is worth special mention because they also examine the effect of buyer

information on prices, using an underlying setting very similar to ours. Importantly, they report behavior by

both sellers and buyers that conforms much more closely to the standard theoretical predictions than what

we find. In particular, their prices decrease when moving from 0 to 1 uninformed buyers in the 2x3 market,
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where ours increase. Their experimental design and procedures differ in many small ways from ours, as

we will discuss in Section 4.6; however, we will discover little by way of a satisfying explanation for the

different results between their experiment and ours.

A second important strand concerns the effects of fairness perceptions on decisions. Early studies were

survey–based (Kahneman et al. 1986, Thaler 1985). A typical result was that price increases are viewed

as fair when they are seen as responses to cost increases (e.g., when a retailer increases the price of snow

shovels because the wholesale price rises) but not when they are seen as opportunistic (e.g., when a retailer

increases the price of snow shovels because a snowstorm leads to high demand). This pattern of perceptions

has proved to be quite robust, both in economics (see, e.g., Dickson and Kalapurakal 1994; Pirona and

Fernandez 1995; Seligman and Schwartz 1997) and in other business fields (Campbell 1999; Xia et al. 2004

and Campbell et al. 2015 in marketing; Tian and Zhou 2015 in accounting).

The first incentivized study of fairness in markets was that of Kachelmeier et al. (1991a), though other

strands of the literature focus on fairness in other settings such as bargaining (see, for example, the discussion

of ultimatum–game results in Roth’s 1995 survey of bargaining experiments), and the strands do overlap

somewhat (see Korth 2009 for an investigation of fairness in a market setting built upon the ultimatum

game). Kachelmeier et al. considered 5–buyer–5–seller induced–value markets with buyers posting bids via

networked computers. (Sellers could accept buyers’ bids but could not post offers.) After 10 rounds, there

was a change to the “tax regime”, followed by another 10 rounds. Under the new regime, the equilibrium

price was higher than before, as were sellers’ marginal costs and their share of total surplus. Kachelmeier

et al. varied the information given to buyers at the beginning of the second 10 rounds: buyers received

no information in a control treatment; they were informed that sellers’ costs had risen in a “marginal cost

disclosure” treatment; and they were informed that the share of surplus going to sellers had risen in a “profit

disclosure” treatment. Kachelmeier et al. found that prices converged to the new higher equilibrium level

fastest under marginal cost disclosure and slowest under profit disclosure, consistent with the earlier survey–

based studies. They also found that participants’ reported fair prices (elicited after the last round, for both the

first and second 10 rounds) were lowest under profit disclosure and highest under marginal cost disclosure.

They attribute their results to a “principle of dual entitlements” (proposed by Kahneman et al. 1986 and

Thaler 1985), according to which consumers in markets receive not only “acquisition utility” (the benefit

from the good under standard preferences) but also “transaction utility” (an additional benefit or cost based

on how justifiable the price is); the latter gives fair–price perceptions a role in market behavior.

Subsequent studies found similar results. Franciosi et al. (1995) modified Kachelmeier et al.’s (1991a)

setting so that sellers posted offers instead of buyers posting bids, and Kachelmeier et al. (1991b) modified

it to allow both seller offers and buyer bids; both found convergence fastest in the marginal–cost treatment

and slowest in the profit treatment, just as in the original study. Ruffle (2000) found that convergence to a

high equilibrium price in posted–offer markets was slower when there were fewer buyers (so that each had a

greater effect on market demand) and when the seller share of total profit was higher (so that the equilibrium

price was more unfair to buyers), due to differences in “demand withholding” (buyers buying less than the
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profit–maximizing amount as a protest) and in its effectiveness. Tyran and Engelmann (2005) modified

the setting further to allow buyers to boycott the market (after a majority vote to boycott, the market did

not operate for one round); they found evidence of both boycotts and demand withholding, though these

served only to reduce efficiency, with little effect on seller price choices. Bartling et al. (2014) examined

markets where the buyer had the market power, and found that sellers were less willing to engage in costly

punishment following a low price when the price was chosen in an apparently procedurally fair way (via

competitive auction) than otherwise (dictated by the buyer). Still other studies have found that fairness can

matter in markets with moral hazard (Fehr et al. 1993), adverse selection (Renner and Tyran 2004), and

where seller costs are based on performance on a real–effort task (Cason et al. 2011).

3 The experiment

The setting for our experiment comes from Lester’s (2011) extension of Burdett et al.’s (2001) directed–

search environment (see Figure 1). There is one homogeneous, indivisible, perishable good. There are

Figure 1: Sequence of decisions in the market

- - -Sellers
post prices

Informed buyers
observe prices

All buyers’
visit choices Trading

n ≥ 2 buyers and m ≥ 2 sellers. Sellers are identical and capacity constrained; the first unit is produced

at zero cost but additional production is impossible. Buyers are identical, each with valuation Ū > 0 for

the first unit and zero for any additional unit. Each seller simultaneously posts a price, which is observed

by the n − u informed buyers but not by the u uninformed buyers. Buyers, both informed and uninformed,

then simultaneously make their visit choices; each visits exactly one seller. Trade takes place at the seller’s

posted price; if multiple buyers visit the same seller, one is randomly chosen to buy. Buyers who aren’t

chosen, and sellers who aren’t visited, do not trade.

In the experiment, we set Ū = 20; this is with no loss of generality, since a different value of Ū would

only re–scale absolute variables such as prices, and would leave relative variables unaffected. The number

of sellers m was set to 2, and the number of buyers n to 2 or 3, of which either u = 0 or 1 are uninformed.

There are thus four experimental cells, which we abbreviate using the form “mxn–u”. (E.g., the 2x2–1 cell

has 2 sellers, 1 informed buyer and 1 uninformed buyer.) We choose the 2x3 market because the comparison

between 2x3–0 and 2x3–1 represents the largest price decrease possible in Lester’s framework resulting from

changing an informed buyer to an uninformed one, given standard preferences. We choose the 2x2 market

because it is the simplest non–trivial directed search market, and because replacing an informed buyer with

an uninformed one (moving from 2x2–0 to 2x2–1) has the anticipated effect of a price increase.
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3.1 Experimental procedures

The experiment was conducted at Monash University; participants were mainly undergraduates. Participants

played 40 rounds with the market (2x2 or 2x3) fixed. There were 20 rounds each with 0 and 1 uninformed

buyers; we varied the ordering (0 uninformed then 1 uninformed, or 1 then 0) across sessions.2 Participants

kept the same role (buyer or seller) in all rounds, but were randomly assigned to markets in each round, so

as to preserve the one–shot nature of the stage game by having participants interact with different people

from round to round. In rounds with uninformed buyers, the uninformed buyer was chosen randomly in

each round (so a given buyer would be informed in some rounds and uninformed in others). Some sessions

with large numbers of participants were partitioned into two “matching groups” at least twice the size of an

individual market, and closed with respect to interaction (i.e., participants in different matching groups were

never assigned to the same market), allowing two independent observations from the same session.

The experiment was computerized, and programmed using z–Tree (Fischbacher 2007). All interaction

took place anonymously via the computer program; participants were visually isolated and received no iden-

tifying information about other participants. In particular, sellers were labeled to buyers within a round as

“Seller 1” and “Seller 2”, but these ID numbers were randomly re–assigned in each round, and were not

made known to the sellers. This anonymity is necessary so that uninformed buyers are truly uninformed,

even after many rounds have been played. Also, combined with the random re–assignment into markets

each round, this anonymity reduces incentives for repeated–game behavior such as tacit collusion by sellers

(by making it impossible to recognize a deviator in future rounds) or dynamic coordination by buyers (e.g.,

alternating who visits the lower–priced seller). This last point is particularly important because the game

played by informed buyers amongst themselves (given sellers’ prices) typically has multiple Nash equilib-

ria (see, e.g., Figure 2 in the next section), and it is necessary to remove any coordination devices from

the experiment in order to justify use of the symmetric mixed–strategy equilibrium in formulating predic-

tions rather than any of the asymmetric pure–strategy equilibria (which often payoff–dominate the mixed

equilibrium).

Written instructions were distributed before the first round, with a small additional set between rounds

20 and 21, and were read aloud in an attempt to make them common knowledge. Sellers began each round

by entering their prices, which could be any multiple of AUD 0.05. These prices were displayed to informed

buyers, who were also reminded of the number of informed buyers, while uninformed buyers were shown a

message stating that they were not being shown the prices. Buyers then made their visit choices, after which

participants received end–of–round feedback that included the prices and visit choices in their market, along

with an own–profit calculation. Participants received no information about outcomes in other markets.

After the last round, participants were given two additional tasks. First, they completed an Eckel–

2Thus the market was varied between–participants, while the number of uninformed buyers was varied within–participants. The

use of within–participant variation allows us to control for participant–specific characteristics such as risk aversion when assessing

the effect of buyer information. In Section 4.6 we report robustness results based on new sessions with participants playing 50

rounds under a single set of parameters, so that the variation in the number of uninformed buyers is between–participants.
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Grossman (2008) lottery–choice task to measure their level of risk aversion. Next, they completed a short

questionnaire made up of two questions eliciting participants’ views of what a “fair” price would be in

rounds 1–20 and what it would be in rounds 21–40 (“In your opinion, what would be a fair price in Part

1 [2] of the experiment?”), followed by several demographic questions.3 After completing these tasks,

participants were paid. Participants received (exactly) the sum of their profits from four randomly–chosen

rounds, plus the earnings from the lottery–choice task, plus a show–up fee of AUD 5 for sellers and AUD

15 for buyers.4 Total earnings averaged about $43 for a session that typically lasted about 60 minutes.

3.2 Equilibrium predictions under standard preferences

For most parameterizations of our model (i.e., values of m, n and u), sellers’ and informed buyers’ decision

problems reflect trade–offs arising from two features of the setting: (1) sellers’ capacity constraints, and

(2) buyers’ simultaneous visit choices. (Uninformed buyers simply visit each seller with equal probability.)

Simultaneous visit choices imply that some sellers may be visited by no buyers and thus unable to sell, while

others may be visited by multiple buyers, in which case capacity constraints imply that all but one of those

buyers is unable to buy. When not all seller prices are the same, informed buyers face a trade–off between

earning a large profit conditional on being able to buy (by visiting a low–priced seller) and having a high

probability of being able to buy (by visiting a high–priced seller). Usually, the result of this trade–off is

that in the game played by informed buyers against each other given the sellers’ posted prices (see Figure 2

for an example), the only symmetric equilibrium will be in mixed strategies, with buyers price–responsive

but not perfectly so. That is, even higher–price sellers will be visited with positive probability, but lower

Figure 2: The game buyers with standard preferences play in the 2x2–0 cell, given seller prices p1 and p2

Buyer 2

Visit Seller 1 Visit Seller 2

Buyer Visit Seller 1 20−p1

2 , 20−p1

2 20 − p1, 20− p2

1 Visit Seller 2 20− p2, 20− p1
20−p2

2 , 20−p2

2

probability than lower–price sellers.

Given that informed buyers are price–responsive, sellers face a trade–off between earning a large profit

3See the appendix for sample instructions and screen–shots, including those for the lottery–choice task and questionnaire. Other

experimental materials including the raw data are available from the corresponding author upon request.
4At the time of the experiment, the Australian and US dollars were roughly at parity. The differing show–up fees were meant

to compensate buyers, who have lower expected earnings. The amounts of the show–up fees, and the fact that they differ between

buyers and sellers, were not made known until after the last round, in an attempt to minimize demand effects. Also, participants

were not informed of the rounds randomly chosen to determine earnings, nor the realization of the lottery–choice task, until after

all decisions had been made, in order to minimize wealth effects. Finally, we acknowledge that our questionnaire, including the

elicitation of “fair” prices, was not incentivized, though incentivizing such responses is a non–trivial problem.
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conditional on being able to sell (by posting a high price) and having a high probability of being able to

sell (by posting a low price). This trade–off usually leads to an interior solution, with sellers posting prices

strictly between 0 and buyer valuation in equilibrium. It is worth emphasizing that because the seller earns

the posted price if visited by at least one buyer, and zero otherwise, the equilibrium price follows directly

from buyers’ price–responsiveness – through its effect on the probability of being visited by at least one

buyer – so factors affecting price–responsiveness ought also to affect the equilibrium price.

Replacing an uninformed buyer with an informed buyer (i.e., increasing buyer price information) has

two effects that pull in opposite directions. The direct effect comes from a price–unresponsive uninformed

buyer being replaced by a price–responsive informed buyer; this on its own ought to increase overall price

responsiveness; that is, it would raise the probability that the low–price seller is visited by at least one buyer.

The countervailing indirect effect arises from informed buyers’ awareness that the number of informed buy-

ers has increased. If individual buyers’ price–responsiveness had then stayed unchanged, the new larger

number of informed buyers would intensify competition for the low–price seller’s item, reducing the ex-

pected payoff to visiting that seller relative to the high–price seller. Hence, informed buyers will react by

increasing the probability of visiting the high–price seller; that is, they will become less price–responsive.

The overall effect of increasing buyer price information – and in particular, its sign – thus depends on

the relative strengths of the direct and indirect effects. Both of the important possibilities are seen in Table 1,

which shows the theoretical predictions for each experimental cell under standard preferences.5 In the 2x2

market, moving from the 2x2–0 to the 2x2–1 cell means that one of the price–responsive informed buyers

is replaced by a price–unresponsive uninformed buyer (the direct effect), while the sole remaining informed

buyer becomes more price–responsive (the indirect effect). The direct effect dominates in this case, so

overall price responsiveness decreases; this lower price responsiveness gives sellers an incentive to raise

their prices. Thus, moving from the 2x2–0 to the 2x2–1 cell (a decrease in buyer information) is associated

with an increase in the equilibrium price, as intuition would suggest.

In the 2x3 market, moving from the 2x3–0 to the 2x3–1 cell means – just as in the 2x2 case – that a

price–responsive informed buyer is replaced by a price–unresponsive uninformed buyer (the direct effect).

5Note that the table shows two sets of point predictions, one based on infinitely–divisible money, and one based on a smallest

money unit of 0.05 (as in the experiment). The predictions for the 2x2–0, 2x3–0 and 2x3–1 cells with continuous money are from

Lester (2011). In the 2x2–1 cell, the lone informed buyer does not face the trade–off described above, since there are no other

informed buyers, and therefore strictly prefers visiting the low–price seller. This makes sellers’ profit functions discontinuous:

under–cutting the rival by even a cent means being able to sell with certainty (since she will attract the informed buyer), but

pricing even a cent higher than the rival means having to hope an uninformed buyer visits. The discontinuous profit function leads

to mixed–strategy equilibrium play by sellers, as described in detail in Appendix A.1. The equilibria with discrete money were

calculated using the Gambit game theory software (McKelvey et al. 2014), and are available from the corresponding author; these

also involve mixing by sellers in 2x2–1 and pure strategies otherwise. Notice that under discrete money, multiple equilibria are

shown for the other three cells, but this multiplicity is trivial in that prices differ from the continuous–money equilibrium prices by

no more than the smallest money unit. As usual in experiments, we are less interested in the point predictions themselves than in

the comparative statics they imply; these are robust to whether we use the continuous–money or discrete–money equilibria as our

source of predictions.
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Table 1: Theoretical predictions under standard preferences

Cell Market Number of Expected posted price

uninformed buyers continuous money discrete money

2x2–0 2x2 0 10.00 9.95, 10.00, 10.05

2x2–1 2x2 1 13.86 13.86

2x3–0 2x3 0 14.55 14.50, 14.55, 14.60

2x3–1 2x3 1 13.33 13.30, 13.35

Then, the two remaining informed buyers both become more price–responsive (the indirect effect). Here,

unlike the 2x2 case, the indirect effect dominates, so overall price responsiveness increases, giving sellers

an incentive to lower their prices. Thus, this decrease in buyer information is associated with a decrease in

the equilibrium price – the opposite of what intuition would suggest and the opposite of the corresponding

comparative static for the 2x2 market.

3.3 Fairness preferences and their effects

The predictions in the previous section are based on both buyers and sellers having standard preferences

(i.e., being motivated by expected money payment only). However, the literature discussed in Section 2

suggests a role for fairness considerations. We asked our experimental participants what they thought of as

a fair price in each of the blocks of 20 rounds (i.e., with 0 uninformed buyers and with 1 uninformed buyer),

but we did so after all rounds had been played. This procedure, which follows Kachelmeier et al. (1991a),

has the advantage of avoiding demand effects in market decisions, but the corresponding disadvantage is

that reported fair prices may have been affected by participants’ experience in the market setting.6

There are many potential mechanisms through which fairness concerns might affect behavior. We make

an assumption that, while not completely innocuous, seems plausible. Namely, a fair price is a reference

point, and participants dislike prices the farther they are from that reference point, while they continue to

value their monetary payoff as usual. This implies a fairly minor change to standard preferences; if p is the

actual price and p∗ is the individual’s perceived fair price, then utility is given by

U(p, p∗) = π(p)− c(p− p∗),

where π(p) is the monetary payoff and c(·) characterizes distaste for deviations from the fair price.7 One

6As we will see in Section 4.5, the associations we find between participants’ reported fair prices and their behavior – for both

buyers and sellers – are fairly robust to whether we use data from all rounds or only early rounds. Since early–round decisions

would have been made without a good understanding of either the equilibrium or session averages, this robustness suggests that

reported fair prices were not overly dependent on experienced prices.
7Note that this specification for utility implements the “principle of dual entitlements” (Kahneman et al. 1986a, Thaler 1985);

the first term reflects the buyer’s “acquisition utility” and the second term reflects his “transaction utility”.
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special case of c is a quadratic
(

c(p − p∗) = α
2 (p− p∗)2

)

, but our results hold for more general forms of c;

other then a few technical conditions, we need only for c to be convex, and zero when p = p∗.

When c = 0, the utility function reduces to standard preferences. Otherwise, fairness preferences make

the utility function steeper when the price is less favorable than the fair price (below p∗ for sellers, above it

for buyers). For prices more favorable than the fair price, fairness preferences flatten the utility function near

p∗ and reverse the sign of its slope for sufficiently distant prices from p∗. (See Figure 3 for an illustration.)

Note that the disutility of prices away from p∗ is incurred irrespective of whether trade actually takes place;

it comes from posting a particular price for sellers, or from visiting a seller with a particular posted price for

buyers.

Figure 3: Sample utility functions under various strengths of fairness preference
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We do not make any assumption about p∗ itself: what price(s) individuals actually consider to be fair. In

the experiment, seller cost is 0 and buyer value is 20, so participants might view a price of 10 (equalizing the

surplus between buyer and seller) as fair. Alternatively, buyers might report lower fair prices than sellers do;

since we randomly assign participants to these roles, such a difference would be evidence of a self–serving

bias in fairness perception (Babcock et al. 1997). We will take an agnostic approach to the questions of what

prices ought to be fair, and whether and how the fair price might differ across treatments. In particular, our

analysis of the experimental data will take at face value the fair–price reports we elicit from participants.

Even under the fairly weak conditions we place on c, there is enough structure to show the effect of fair

prices on behavior. For informed buyers, lower fair prices lead to increased price responsiveness.

Proposition 1 Suppose buyers’ utility is given by U(p, p∗) = 20 − p − c(p − p∗), where c(·) is twice

differentiable, strictly convex, and with c(0) = 0. (i) Suppose all buyers have the same fair price p∗; then
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as p∗ decreases, informed buyers become more price–responsive in equilibrium. (ii) Suppose buyers’ fair

prices are heterogeneous; then informed buyers with lower p∗ will be more price–responsive in equilibrium.

Note that part (i) deals with differences between buyer populations (e.g., across treatments), while part (ii)

deals with heterogeneity within populations; the same will be true for the next proposition. Proofs for both

parts of both propositions for the 2x2–0 case are shown in Appendix A.2; those for the other cells of the

experiment proceed analogously, and are available from the corresponding author upon request.

For sellers, lower fair prices lead to lower posted prices chosen.

Proposition 2 Suppose sellers’ utility is given by U(p, p∗) = p−c(p−p∗), where c(·) is twice differentiable,

strictly convex, and with c(0) = 0. (i) Suppose all sellers have the same fair price p∗; then as p∗ decreases,

the posted price decreases. (ii) Suppose sellers’ fair prices are heterogeneous; then sellers with lower p∗

will post lower prices in equilibrium.

While Proposition 2 is completely intuitive, it is worth remarking on why Proposition 1 holds. Notice

from Figure 3 that fairness preferences make the utility function strictly concave. Suppose p1 and p2 are

the two sellers’ prices, and suppose p1 < p2. (Price responsiveness is not an issue when p1 = p2, so this

assumption is without loss of generality.) In order to visit both sellers with positive probability, it must be

that the expected utility from visiting either is the same; that is,

(20− p1) · Prob(buy|visit 1) − c(p1, p
∗) = (20− p2) · Prob(buy|visit 2) − c(p2, p

∗),

where Prob(buy|visit i) is the probability of being able to buy if visiting Seller i. Rearranging terms,

c(p2, p
∗) − c(p1, p

∗) = (20− p2) · Prob(buy|visit 2)− (20− p1) · Prob(buy|visit 1); (1)

i.e., the difference in “fairness costs” between sellers must equal the difference in expected money payments.

To see the effect of p∗ on price–responsiveness, suppose p∗ decreases. Because of the convexity of c, the

difference c(p2, p
∗)− c(p1, p

∗) increases as a result, so the right–hand side of (1) also has to increase. Since

the prices are fixed, it must be that Prob(buy|visit 2) increases relative to Prob(buy|visit 1), which means

that the equilibrium probability of visiting Seller 2 must fall relative to that of visiting Seller 1. Since Seller

2 is the higher–price seller, this implies that p∗ decreasing has made informed buyers more price–responsive.

A few further remarks about Proposition 1 are in order. First, the key step in the argument uses the

convexity of the function c, but the extent of this convexity is not used; thus it is not necessary to have

strong fairness preferences (in particular, the result is consistent with monotonically decreasing utility in p),

or to have a symmetric cost function (e.g., buyers could dislike prices above p∗ more than prices equally far

below p∗ without losing this result).

Second, while changing the fair price p∗ changes price–responsiveness, informed buyers are still typ-

ically playing mixed strategies – visiting each seller with positive probability – just as they would under

standard preferences. It is possible for the higher–price seller actually to be visited with higher probabil-

ity than the lower–price seller, but this happens exactly where it would be expected: with strong fairness

10



preferences, and with even the higher posted price well below p∗. (As an illustration, consider the strong

fairness preferences for buyers in Figure 3, and suppose both seller prices were close to zero.) Under weak

fairness preferences, buyers will visit lower–priced sellers more often than higher–priced sellers – just as

under standard preferences – and the same would be true even under strong fairness preferences, as long as

the fair price is not too much higher than the sellers’ posted prices.

Third, we can use (1) to compare price–responsiveness under fairness preferences with that under stan-

dard preferences. Notice that under standard preferences, c(p2, p
∗) − c(p1, p

∗) = 0, while under fairness

preferences, for p1 < p2, c(p2, p
∗)− c(p1, p

∗) is negative if both posted prices are less than p∗, and positive

if both are greater than p∗. So by similar logic as in the previous paragraph, a buyer with fairness prefer-

ences will be more price–responsive than under standard preferences when the fair price is low, and less

price–responsive than under standard preferences when the fair price is high.

Fourth, buyers’ fairness preferences will affect sellers’ behavior. Lower buyers’ fair prices mean that

buyers will be more price–responsive, giving sellers incentives to lower their prices, and conversely higher

buyers’ fair prices will incentivise sellers to raise their prices. Thus while buyers’ and sellers’ notions of

fair prices operate through different channels, their separate effects are similar, and their joint effects are as

expected: low buyers’ fair prices and low sellers’ fair prices would be predicted to reinforce each other, as

would high buyer and seller fair prices (leading to low actual prices and high ones respectively), while low

buyer fair prices and high seller fair prices (or the reverse) should largely cancel each other out.

Finally, our theoretical results, to some extent, capture the spirit of the empirical results involving fair-

ness in markets that were discussed in Section 2. As Kachelmeier et al. (1991a) found in their data, our

model predicts associations between fair–price perceptions and specific aspects of market behavior for both

buyers and sellers that we will test in our data. Beyond this, previous experiments have few literal impli-

cations for ours, since the effect of fairness on our predicted treatment effects depends on how fair–price

perceptions differ between markets with 0 and 1 uninformed buyer, whereas in the earlier experiments, it

was typically clear – if not explicitly stated – what the relationship between fair and equilibrium prices was.

(E.g., in the several experimental designs that increased the equilibrium price part–way through the session,

the fair price was taken to be below the new equilibrium price, except perhaps when buyers were given a

cost–based explanation for the change.) However, the broad conclusion of these earlier studies – that fair-

ness perceptions can affect the ability of theoretical predictions under standard preferences to characterize

observed outcomes – is exactly the implication of our model.

3.4 Hypotheses

The arguments put forth in Sections 3.2 and 3.3 give rise to several testable predictions. We will describe

these predictions by first stating two–sided null hypotheses, and then discussing scenarios that would give

rise to each of the corresponding directional alternative hypotheses.

Our experimental manipulation involves the number of uninformed buyers in two markets: 2x2 and 2x3.
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We begin with the former.

Hypothesis 1 In the 2x2 market, prices are equal with 1 uninformed buyer than with 0 uninformed buyers.

Recall from Table 1 that under standard preferences, replacing an informed buyer with an uninformed one

(moving from 2x2–0 to 2x2–1) should lead to a rise in prices. This qualitative effect – based on competitive

pressures – is what we would expect to see as long as fairness considerations either play a minor role (e.g., if

perceived fair prices are roughly equal between the two cells, or the intensity of fairness preferences is weak)

or if they serve to reinforce the effects of competitive pressures (e.g., if perceived fair prices are higher in

the 2x2–1 cell than in 2x2–0). However, as shown in Propositions 1 and 2, if fairness preferences are strong

and work in the opposite direction (i.e., if perceived fair prices are lower in the 2x2–1 cell than in 2x2–0),

then the opposite treatment effect would be expected: moving from 2x2–0 to 2x2–1 should instead lead to a

fall in prices.

We continue with the 2x3 market.

Hypothesis 2 In the 2x3 market, prices are equal with 1 uninformed buyer than with 0 uninformed buyers.

Table 1 shows that under standard preferences – that is, based on competitive pressures alone – replacing an

informed buyer with an uninformed one in the 2x3 market should lead to a fall in prices. As in the 2x2 case,

this is the direction of effect we would anticipate as long as fairness perceptions play a minor role or if they

work in the same direction. However, if they work in the opposite direction (i.e., if perceived fair prices are

higher in the 2x3–1 cell than in 2x3–0) and are sufficiently strong, then the treatment effect could go the

opposite way: moving from 2x3–0 to 2x3–1 should instead lead to a rise in prices.

Notice that in both markets, we have one alternative hypothesis based on the effect of buyer information

coming mostly (or entirely) from competitive pressures, while the opposite alternative hypothesis relies

on fairness preferences not only being sufficiently strong, but working in a particular direction. In what

follows, we will sometimes refer to these using terminology such as the alternative to a particular null

hypothesis “arising from competitive pressures” or “arising from fairness perceptions”. However, it is worth

remembering that this is to some extent an abuse of terminology: evidence for either alternative hypothesis

– or even failure to reject the null – does not mean that either competition or fairness is exclusively driving

the results. At most, it might allow a conclusion about the relative strengths of these two channels.

4 Results

We conducted twelve sessions with a total of 206 participants (see Table 2). As noted above, many sessions

were partitioned into more than one matching group, which is our independent unit of observation. In total,

there were 12 matching groups for each of our 2x2–0 and 2x2–1 cells, and 10 for each of 2x3–0 and 2x3–1.
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Table 2: Session information

Cell in rounds Session Total number of

1–20 21–40 numbers matching groups markets participants

2x2–1 2x2–0 2, 9, 12 6 12 48

2x2–0 2x2–1 4, 7, 10 6 12 48

2x3–0 2x3–1 1, 4, 8 4 10 50

2x3–1 2x3–0 3, 6, 11 6 12 60

Totals: 22 46 206

4.1 Market aggregates

In our analysis, we use two price measures – the average posted price (the simple average of seller price

choices) and the average transaction price (the average of those posted prices at which a unit was traded)

– though our results are mostly robust to which measure we use. Table 3 reports cell–level posted and

transaction prices over all rounds and over the last 5 rounds.8 Figure 4 disaggregates by matching group, for

Table 3: Aggregate results – prices

Market Uninformed Posted price Transaction price

buyers Predicted All rounds Last 5 rounds Predicted All rounds Last 5 rounds

2x2 0 10.00 9.69 9.85 10.00 9.27 9.52

1 13.86 12.30 12.81 13.33 11.78 12.46

Significance of difference p ≈ 0.002 p ≈ 0.007 p ≈ 0.002 p ≈ 0.007

2x3 0 14.55 11.86 12.98 14.55 11.67 12.79

1 13.33 13.19 14.19 13.33 13.08 14.02

Significance of difference p ≈ 0.23 p ≈ 0.08 p ≈ 0.16 p ≈ 0.08

Note: p–values from two–sided Wilcoxon signed–rank tests on matching–group–level data (details in text).

a sense of data heterogeneity, and Figure 5 disaggregates by round to show how prices evolve over time.

Consistent with the “competition” alternative to Hypothesis 1, Table 3 shows that prices in the 2x2

market are higher when there is an uninformed buyer than when both buyers are informed. Figure 4 shows

that while there is substantial heterogeneity across matching groups, overall they are roughly centered at

the theoretical prediction under standard preferences (shown as a cross), and all but two in each panel show

8Note that in the 2x2–1 cell, the predicted transaction price is lower than the posted price. This is because the mixed strategies

played by sellers mean that the two realized prices in a market will usually differ, with the lower price more likely to lead to a trade.
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Figure 4: Scatter–plots of posted and transaction prices by matching group
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the predicted order relationship between zero and one uninformed buyer. Non–parametric statistical tests

on the matching–group–level data verify this apparent treatment effect.9 Wilcoxon signed–rank tests reject

the null hypothesis of no difference in prices between the 2x2–0 and 2x2–1 cells, for both posted prices and

transaction prices, and irrespective of whether we use the data from all rounds or from only the last five

rounds.10

Table 3 shows that prices are also higher in the 2x3–1 cell than in the 2x3–0 cell; this difference is

consistent with the “fairness” alternative to Hypothesis 2, and is in the opposite direction from what com-

petive pressures on their own would imply. As in the 2x2 market, there is substantial heterogeneity across

matching groups in the 2x3 market. In six of the ten groups, the observed difference has the opposite sign as

the predicted difference, while in either three (for posted prices) or all (for transaction prices) of the remain-

ing four, the signs are the same but the observed magnitude of the difference is smaller than the predicted

magnitude. Non–parametric tests using the matching–group–level data confirm that the differences between

2x3–0 and 2x3–1 cells are significant when the last five rounds’ data are used, though not when all rounds

are used.

The time series displayed in Figure 5 not only confirm the signs of both treatment effects (2x2–0 versus

9See Siegel and Castellan (1988) for descriptions of the non–parametric tests used in this paper, and Feltovich (2005) for critical

values for the robust rank–order tests used later in this section.
10We use non–parametric tests here, rather than the more common t–test, due to the low number of matching-group–level

observations. However, it is worth noting that our significance results are robust to using t–tests instead of Wilcoxon signed–rank

tests: while doing so often changes p–values somewhat, there is no case where a significant result in Table 3 becomes insignificant

(or the reverse) from using a t–test instead of the Wilcoxon test.
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Figure 5: Time series of posted and transaction prices by cell
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2x2–1 and 2x3–0 versus 2x3–1), but suggest that they are increasing in magnitude over time. So, it is

unlikely that the support for the fairness alternative to Hypothesis 2 rather than the competition alternative (or

for that matter, the support for the competition alternative to Hypothesis 1) is due to participant inexperience

that would have been rectified had more rounds been played.11

4.2 Parametric analysis of prices

We next report results from regressions with posted price and transaction price as the dependent variables.

Our primary explanatory variables are an indicator for one uninformed buyer and one for the 2x3 market.

Additionally, we include the round number (running from 1 to 20, and re–starting at 1 in the second half

of the session) and a second–half dummy. Importantly, we include all interactions of these four variables,

to allow variables’ effects to differ according to other variables’ values. (For example, we obviously do

not want to force the effect of an uninformed buyer to be the same in the 2x2 and 2x3 markets.) Note in

particular that the interaction term between the second–half dummy, the one–uninformed–buyer dummy and

the 2x3 dummy allows us to control for order effects in both 2x2 and 2x3 markets.

For both posted and transaction price, we estimate a “restricted” model with only the variables listed

above, and an “unrestricted” model with additional variables: the number of sellers in the matching group

(as a control for attempts to tacitly collude), the seller’s decision time, her self–reported “fair” price, her

11Moreover, these results are not due to order effects. If we ignore the data from the second half of the experiment – thus

concentrating on the between–participants comparison between those sessions with 0 uninformed buyers in the first half and those

with 1 uninformed buyer in the first half – the qualitative results are the same. In the 2x2 market, prices are higher with one

uninformed buyer than with none (10.54 and 9.43 respectively for posted prices, and 10.07 and 8.82 for transaction prices), and

similarly, in the 2x3 market, prices are higher with one uninformed buyer than with none (12.71 and 10.38 respectively for posted

prices, and 12.60 and 10.19 for transaction prices). The observed result for the 2x3 market thus continues to hold, and indeed it is

significant despite the sample size being halved (two–sided robust rank–order test, matching–group–level data, p ≈ 0.048).
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choice in the lottery task (as a control for risk aversion), and some demographic variables (sex, age, number

of economics classes taken, economics–major indicator, and portion of life lived in Australia). Descriptive

statistics for some of these variables (and some that will be used later) are shown in Table 4. We use Stata

Table 4: Descriptive statistics for selected variables used in regressions

Variable Mean Std. Dev. Min. Max. Variable Mean Std. Dev. Min. Max.

Posted price 11.73 3.45 1 20 Transaction price 11.47 3.37 1 20

Seller decision time (sec.) 6.24 7.22 0 76 Number of sellers (per group) 4.29 0.706 4 6

Seller “fair” price 11.73 3.15 5 20 Female 0.481 0.500 0 1

Seller lottery choice 3.67 1.37 1 5 Age 23.03 5.38 18 58

Buyer decision time (sec.) 3.11 4.97 0 76 Economics classes taken 1.13 1.40 0 4

Buyer “fair” price 11.64 3.48 5 20 Economics student 0.097 0.296 0 1

Buyer lottery choice 3.45 1.44 1 5 Portion of life lived in Aus. 0.349 0.391 0 1

(version 12) to estimate panel Tobit models with endpoints 0 and 20 (the bounds on allowable prices).

Table 5 reports estimated average marginal effects and standard errors.12 The positive and significant

marginal effect of the “1 uninformed buyer” variable in both 2x2 and 2x3 markets confirms what was

apparent from the treatment aggregates: replacing an informed buyer with an uninformed one is associated

with an increase in price, both when competitive pressures on their own predict an increase (the 2x2 market)

and when they predict a decrease (the 2x3 market). Between the non–parametric tests reported earlier, and

the parametric statistical results reported here, the evidence is strong for our main results:

Result 1 In the 2x2 market, moving from 0 uninformed buyers to 1 is associated with an increase in price.

Result 2 In the 2x3 market, moving from 0 uninformed buyers to 1 is associated with an increase in price.

Two other variables’ effects are worth noting here. The positive marginal effect of the lottery choice

is consistent with theory: raising price increases the profit conditional on being visited, but lowers the

probability of being visited. So, less risk–averse sellers should choose higher prices. Also, the positive

marginal effect of the fair–price variable on actual prices suggests that pricing decisions are influenced by

sellers’ views about what a fair price is, consistent with Proposition 2.

4.3 Buyer visit choices

In the 2x2–0, 2x3–0 and 2x3–1 cells, the seller prices induce a symmetric subgame played amongst the

informed buyers. There are two pure strategies: visit Seller 1 and visit Seller 2. This game always has a

12Not shown are the estimates corresponding to the demographic variables, as none of these were significant, though we have left

them in Models 2 and 4. Our results are qualitatively robust to (a) using linear instead of Tobit models, (b) estimating separately

for the 2x2 and 2x3 markets, (c) estimating based on only the first–half data, (d) combining (b) and (c), or (e) estimating marginal

effects in round 20 instead of average marginal effects. These additional results are available from the corresponding author.
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Table 5: Tobit results – estimated average marginal effects (unless specified) and standard errors

Dependent variable: Posted price Transaction price

[1] [2] [3] [4]

1 uninformed buyer... 2.103∗∗∗ 1.634∗∗∗ 1.995∗∗∗ 1.574∗∗∗

(0.069) (0.073) (0.071) (0.074)

...in 2x2 market 2.659∗∗∗ 2.007∗∗∗ 2.534∗∗∗ 1.947∗∗∗

(0.096) (0.102) (0.102) (0.107)

...in 2x3 market 1.496∗∗∗ 1.229∗∗∗ 1.464∗∗∗ 1.205∗∗∗

(0.100) (0.099) (0.099) (0.097)

2x3 market 1.509∗∗∗ 0.950∗∗ 1.748∗∗∗ 1.238∗∗∗

(0.430) (0.430) (0.414) (0.415)

Round number 0.104∗∗∗ 0.100∗∗∗ 0.114∗∗∗ 0.105∗∗∗

(0.006) (0.006) (0.006) (0.006)

Second half 1.975∗∗∗ 1.489∗∗∗ 2.022∗∗∗ 1.515∗∗∗

(0.060) (0.075) (0.071) (0.077)

Number of sellers (per matching group) −0.895∗∗ −0.876∗∗

(0.393) (0.379)

Seller decision time (sec.) −0.011∗ −0.028∗∗∗

(0.006) (0.015)

Seller fair price 0.420∗∗∗ 0.398∗∗∗

(0.026) (0.027)

Seller lottery choice 0.419∗∗∗ 0.378∗∗∗

(higher=less risk averse) (0.149) (0.144)

Constant term? Yes Yes Yes Yes

Demographic variables? No Yes No Yes

N 3680 3680 2959 2959

|ln(L)| 8063.83 7931.54 6285.64 6161.87

* (**,***): Marginal effect significantly different from zero at the 10% (5%, 1%) level.

unique symmetric Nash equilibrium that specifies the probability of visiting each seller. For example, if p1

and p2 are the sellers’ prices, each informed buyer should visit Seller 1 with probability

q(p1, p2) =
20 − 2p1 + p2

40 − p1 − p2
. (2)

in the 2x2–0 case under standard preferences (see Figure 2 in Section 3.2 for the payoff matrix).13

From here, we construct a reliability diagram, showing how closely the actual probability of visiting a

seller corresponds to this prediction. This is known as the calibration of the symmetric equilibrium as a

predictor of buyer visit choices. If calibration is high, then over all cases where the equilibrium predicts

a given seller is visited with probability 0.4, buyers should actually have chosen to visit that seller about

13This expression holds as long as it is defined (i.e., except when p1 = p2 = 20), and between 0 and 1. When it is larger than 1

(smaller than 0), visiting Seller 1 (Seller 2) is a dominant strategy for each buyer. There typically exist asymmetric pure–strategy

equilibria also, but the symmetric one is favored by theorists (Burdett et al. 2001; Lester 2011).
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four–tenths of the time; when the predicted probability is 0.7, she should have been visited seven–tenths of

the time by buyers; and so on.

To construct the reliability diagram, we first compute the predicted probability of visiting Seller 1 for

each buyer and round under standard preferences, and record the buyer’s actual visit choice in that round.

(Since there are only two sellers, using Seller 2 instead of Seller 1 would yield an equivalent diagram.)

Second, for each of thirteen intervals of predicted probability ({0}, (0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4],

(0.4, 0.5), {0.5}, (0.5, 0.6], (0.6, 0.7], (0.7, 0.8], (0.8, 0.9], (0.9, 1), {1}), the average of the predicted prob-

abilities lying in the interval is calculated, as is the frequency of actual visits to Seller 1 in those occurrences.

Finally, at the ordered pair (average predicted probability, actual frequency), a circle or square is plot-

ted with area proportional to the number of occurrences. For example, if there are 100 cases where the

predicted probability of visiting Seller 1 was 0.5, and the buyers actually visited Seller 1 in 47 of those

cases, a circle is plotted at (0.5, 0.47), with area proportional to 100. The reliability diagrams for all four

cells are shown in Figure 6. Also shown are OLS trend lines for each cell, along with the 45–degree line

Figure 6: Buyers’ symmetric Nash equilibrium probability of visiting Seller 1 versus actual frequency

of visits to Seller 1 (area of a circle or square is proportional to the number of observations it represents)
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(where predicted and observed probability are equal, and hence calibration is perfect).

Two aspects of buyer visit behavior are apparent. First, buyers are less price–responsive than predicted,

as OLS trends are flatter than the 45–degree line. Second, calibration varies systematically across cells. It

is difficult to detect any differences between the 2x2–0 and 2x2–1 cells, but buyers are visibly more price–

responsive in the 2x3–0 cell than in the 2x3–1 cell. These differences can also be seen in panel probit

regressions based on the informed–buyers’ decisions, with a Seller–1–visit dummy as the dependent vari-

able. The main explanatory variables are the predicted probability under standard preferences, 2x3–market
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and 1–uninformed–buyer dummies, the round number and the second–half dummy, along with all interac-

tions and a constant. A second probit includes these variables and also the buyer’s decision time, reported

“fair” price, lottery choice, and demographic variables (on their own and interacted with the predicted prob-

ability), and a third probit is identical to the second except that it uses only the first 7 rounds of data rather

than all 20, as an indication of inexperienced–buyer behavior.14 The results are shown in Table 6; note that

starred values are significantly different from one (full price responsiveness) rather than the usual zero.

Table 6: Marginal effect of predicted Seller 1 visit probability on observed Seller 1 visit (informed buyers

only), at particular variables’ values (panel probits)

[5] [6] [7]

(All rounds) (Rounds 1–7)

Overall 0.610∗∗∗ 0.653∗∗∗ 0.653∗∗∗

(0.037) (0.037) (0.037)

2x2–0 cell 0.734∗∗∗ 0.696∗∗∗ 0.617∗∗∗

(0.063) (0.071) (0.117)

2x2–1 cell 0.853∗∗∗ 0.851∗∗∗ 0.768∗∗∗

(0.042) (0.044) (0.178)

Significance of difference: p ≈ 0.12 p ≈ 0.06 p ≈ 0.48

2x3–0 cell 0.624∗∗∗ 0.681∗∗∗ 0.726

(0.062) (0.061) (0.104)

2x3–1 cell 0.479∗∗∗ 0.552∗∗∗ 0.379∗∗∗

(0.051) (0.049) (0.093)

Significance of difference: p ≈ 0.07 p ≈ 0.09 p ≈ 0.01

Lottery choice = 1 0.345∗∗∗ 0.314∗∗∗

(0.067) (0.109)

Lottery choice = 5 0.798∗∗∗ 0.750∗∗∗

(0.045) (0.074)

Significance of difference: p < 0.001 p ≈ 0.001

Fair price = 8 0.745∗∗∗ 0.712∗∗∗

(0.045) (0.072)

Fair price = 13 0.599∗∗∗ 0.553∗∗∗

(0.039) (0.065)

Significance of difference: p < 0.001 p ≈ 0.01

* (**,***): Marginal effect significantly different from one at the

10% (5%, 1%) level.

The table confirms the under–responsiveness that was seen in Figure 6. While the marginal effect of the

predicted probability is positive (indicating that informed buyers do respond to price), it is significantly less

than one – overall and in each individual cell. Even more importantly, price responsiveness clearly differs

14Ideally, we would use fewer rounds than this, since even seven rounds is sufficient for learning to take place. However, Stata

was unable to estimate the regression model when fewer rounds were used, due to lack of concavity of the likelihood function.
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across cells. Over all rounds (Models 5 and 6), chi–square tests easily reject the null of equal responsive-

ness across all four treatments (χ2
3 = 35.52 for Model 5, χ2

3 = 22.24 for Model 6, p < 0.001 for both).

Responsiveness also differs between the two cells in each market. In the 2x2 market, buyers significantly

under–respond to price differences when both are informed, but when only one buyer is informed – so that

calculating the predicted probabilities is trivial, even for the participants – responsiveness is either weakly

significantly higher (Model 6) or the increase just misses significance (Model 5). We see the opposite rela-

tionship in the 2x3 market, with responsiveness weakly significantly lower when one buyer is uninformed

than when all buyers are informed.

The bottom half of the table adds additional detail. As with sellers (Table 5), buyer risk aversion corre-

lates in the expected way with behavior in the market. Here, the most risk–averse buyers are significantly less

price–responsive than the least risk–averse ones; since (except in the 2x2–1 cell) visiting the lower–priced

seller entails a higher profit given trading but a lower probability of trading, risk aversion should indeed

lower the likelihood of choosing that seller. Also, buyers’ views of fairness have the expected association

with their market behavior (see Section 3.3); buyers who report a fair price of 8 (roughly the first quartile)

are significantly more price–elastic than those who report a fair price of 13 (roughly the third quartile). Fi-

nally, a comparison between Models 6 and 7 suggests that all of the effects described here are present in

early rounds as well as overall, though in some cases they become less significant due to the larger standard

errors arising from smaller sample sizes.

Result 3 In all four markets, buyers exhibit lower price elasticity than predicted. This under–responsiveness

varies systematically with the cell, and is least severe in the 2x2–1 cell and most severe in the 2x3–1 cell.

Result 4 Buyers’ price–responsiveness varies with their risk attitudes and views of fairness. In particular,

they are more price–responsive if they are less risk–averse and if they view lower prices as being fair.

Note that the last part of Result 4 is consistent with Proposition 1.

4.4 Seller prices revisited

Since the predictions in Table 1 are based on equilibrium behavior by informed buyers (with standard pref-

erences), and since we have just seen that buyers are actually insufficiently price–responsive relative to

that benchmark, it may be that sellers’ prices, while not consistent with subgame perfect equilibrium, do

represent Nash equilibrium choices given buyers’ actual behavior. We now examine this possibility.

In order to compute Nash equilibrium seller prices, we need to specify buyers’ continuation behavior.

The assumption we make is that buyers are globally β times as price–responsive as the theoretical prediction

under standard preferences. That is, when the symmetric Nash equilibrium in buyer strategies has each

informed buyer choosing Seller 1 with probability q(p1, p2), where p1 and p2 are the sellers’ price choices,

the actual probability of an informed buyer choosing Seller 1 is

q̂(p1, p2) =
1− β

2
+ β · q(p1, p2). (3)
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So, when sellers ought to be visited with equal probability (q = 1
2 ), this is what happens (q̂ is also 1

2). Also,
∂q̂
∂pi

= β · ∂q
∂pi

for i = 1, 2: price–responsiveness is β times the predicted level.

While simply inserting a constant multiplier into the visit–probability function may seem ad hoc, this is

not necessarily the case. In particular, if all buyers have utility function u(x) = xβ for β ∈ (0, 1) (constant

relative risk–aversion, or CRRA), then they will be exactly β times as price–responsive in equilibrium as they

would be under risk–neutrality. In Appendix A.3, we derive the theoretical predictions for the 2x3–0 and

2x3–1 cases under general risk–averse utility functions; substituting a CRRA utility function for the general

function (e.g., in (8) in the appendix) demonstrates the result we mention here. Also, in Appendix A.5 we

directly compute the equilibrium in seller prices for the 2x2–0 case under the assumption in (3).

Figure 7 depicts how the Nash equilibrium prices for the four cells of our experiment depend on β over

a range of values from complete unresponsiveness (β = 0) to full responsiveness (β = 1), and even over–

responsiveness (β > 1). (Note that over–responsiveness is not possible in the 2x2–1 case, since full respon-

siveness means choosing the lower–price seller with certainty.) Within any cell, higher price responsiveness

Figure 7: Nash equilibrium price choices, given informed–buyer price responsiveness of β times predicted

responsiveness
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implies lower prices. Also, within either market (2x2 or 2x3), the ordinal relationship between zero and one

uninformed buyers is the same over the range of β pictured. This last fact means that our 2x3–market result

cannot be explained as arising from equilibrium seller behavior given buyer under–responsiveness that is

constant across treatments (e.g., if under–responsiveness were due to risk aversion).

To get the predicted Nash equilibrium prices, it remains only to specify values for β. These we estimate

from the data: specifically, using the individual–cell estimates from Model 6 in Table 6. The resulting prices

(point estimates and 95% confidence intervals) are shown in Table 7. Nash–equilibrium prices are higher
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Table 7: Predicted and observed posted prices

Cell Subgame perfect Observed price Nash equil. price, given buyer responsiveness

equil. price all rounds last 5 rounds point estimate 95% CI

2x2–0 10.00 9.69 9.85 11.79 (10.82, 12.76)

2x2–1 13.86 12.30 12.81 14.73 (14.22, 15.24)

2x3–0 14.55 11.86 12.98 15.93 (15.37, 16.50)

2x3–1 13.33 13.19 14.19 15.67 (15.08, 16.26)

than the corresponding subgame–perfect–equilibrium price, reflecting buyer under–responsiveness. In the

2x2 market, the impact of using actual buyer price–responsiveness instead of assuming full responsiveness

is minor. The higher responsiveness in the 2x2–1 cell compared with the 2x2–0 cell means that the Nash

equilibrium price is about a dollar higher than the subgame perfect equilibrium price in the former, versus

almost two dollars higher in the latter. However, while this reduces the size of the predicted treatment effect

(from 3.86 to 2.94), it does not change its sign, and indeed these point estimates are significantly different

from each other (p < 0.001), as the 95% confidence intervals would suggest. So, accounting for buyers’

actual level of price–responsiveness rather than assuming the equilibrium level has no material effect on the

theoretical predictions for sellers in the 2x2 market.

By contrast, in the 2x3 market, the higher price responsiveness in the 2x3–0 cell relative to the 2x3–

1 cell is sufficient to reduce the predicted treatment effect nearly to zero (from 1.22 to 0.26), and as the

nearly identical confidence intervals suggest, there is no significant difference between the point estimates

(p ≈ 0.52). Thus, given buyer behavior, there is essentially no monetary incentive for sellers to post lower

prices in the 2x3–1 cell compared to the 2x3–0 cell as predicted by the subgame perfect equilibrium.

Result 5 In the 2x2 market, differences in buyer price responsiveness between the 2x2–0 and 2x2–1 cells

are small enough to leave the predicted treatment effect (due to competitive pressures alone) intact. In the

2x3 market, corresponding differences are large enough to reduce the predicted treatment effect almost to

zero.

Next, we perform similar probit estimations to those in Table 6, but separately for each matching group

and cell, each yielding corresponding estimates of β and thence Nash equilibrium seller price. These are

plotted against the associated mean observed seller prices in Figure 8. While there is substantial heterogene-

ity across groups, sellers on average under–price relative to the Nash equilibrium price.

Table 8 shows additional under–pricing results based on Tobit regressions on the individual–level data,

with the level of under–pricing (the posted price minus the Nash equilibrium price for that cell and matching

group) as the dependent variable. Explanatory variables include dummies for the 2x2–1, 2x3–0 and 2x3–

1 cells, the round number, a second–half dummy, a constant term, and a new variable called “fair price
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Figure 8: Scatter–plot of Nash equilibrium seller prices (based on actual buyer behavior) and actual seller

posted prices, by individual matching group
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deviation”, which is the seller’s reported fair price for the current round minus the Nash equilibrium price.

Along with marginal effects and standard errors, we report estimated levels of under–pricing in each cell,

and the corresponding 95% confidence intervals. One set of estimates is based on all seller data, one is based

on only the first five rounds of each cell, and a third is based on the last five rounds of each cell.

Sellers under–price in all four cells; it decreases over time but remains substantial even in the last five

rounds. As with buyer price–responsiveness, there are systematic differences across cells. Most impor-

tantly, under–pricing is significantly more severe in the 2x3–0 cell than in the 2x3–1 cell. Finally, we again

find a correlation between reported fair prices and actual price choices, not only over all rounds but impor-

tantly also in the first five rounds on their own (suggesting that the correlation is not due simply to sellers

calculating the average price for the session and reporting that as their fair price).

Result 6 Sellers under–price relative to the Nash equilibrium price given buyers’ actual price–responsiveness.

This under–pricing varies systematically with the cell, and overall is most severe in the 2x3–0 cell.

Result 7 Sellers under–price more severely the lower is their reported fair price.

Note that the last part of Result 7 is consistent with Proposition 2.

4.5 How do fair prices vary across treatments?

The last three sections have shown evidence consistent with our Propositions 1 and 2, based on estimations

that either were carried out separately for each cell (in the case of buyers) or included controls for the cell
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Table 8: Tobit results – estimated average marginal effects (unless specified) and standard errors

Dependent variable: price deviation (posted price minus Associated level of under–pricing

Nash equilibrium price given buyer price–responsiveness) (point estimate and 95% CI)

Rounds 1–5 Rounds 16–20 All rounds Rounds 1–5 Rounds 16–20 All rounds

2x2–0 –2.529 –2.398 –2.515

(–3.179,–1.878) (–3.060,–1.736) (–3.099,–1.931)

2x2–1 −0.799∗∗∗ 0.546∗∗∗ 0.125 2x2–1 –3.329 –1.852 –2.390

(0.238) (0.185) (0.107) (–3.973,–2.686) (–2.509,–1.195) (–2.972,–1.808)

2x3–0 −2.253∗∗∗ 0.095 −0.967∗∗∗ 2x3–0 –4.786 –2.303 –3.482

(0.476) (0.487) (0.431) (–5.455,–4.116) (–2.988,–1.617) (–4.092,–2.873)

2x3–1 −1.841∗∗∗ 0.694 –0.195 2x3–1 –4.371 –1.704 –2.710

(0.478) (0.488) (0.431) (–5.041,–3.701) (–2.390,–1.018) (–3.319,–2.100)

Joint significance p < 0.001 p < 0.001 p < 0.001

Significance, 2x3–0 vs. 2x3–1 p ≈ 0.066 p < 0.001 p < 0.001

Round number 0.202∗∗∗ 0.127∗∗∗ 0.105∗∗∗

(0.055) (0.042) (0.006)

Second half 1.482∗∗∗ 0.999∗∗∗ 1.231∗∗∗

(0.159) (0.122) (0.070)

Seller fair price deviation 0.582∗∗∗ 0.650∗∗∗ 0.620∗∗∗

(fair price minus NE price) (0.043) (0.035) (0.021)

N 920 920 3680

|ln(L)| 2186.59 1968.33 8063.83

* (**,***): Marginal effect significantly different from zero at the 10% (5%, 1%) level.

(for sellers), and are thus within–cell relationships. However, if there are systematic differences in these

reported fair prices across cells, these might provide empirical support for the fairness explanation for the

treatment effects we have observed.

Figure 9 displays scatter–plots of individual participants’ reported fair prices with zero and one un-

informed buyer, with buyers displayed as dark circles and sellers as light circles/rings. (Recall that each

participant played 20 rounds with zero uninformed buyers and 20 rounds with one uninformed buyer, and

reported separate fair prices for each.) Also shown are the corresponding means for all buyers and sellers

in each cell, and the subgame–perfect–equilibrium prices under standard preferences. While the modal fair

price for both buyers and sellers is the equal–split price of 10, there is substantial variation within and across

cells. The within–cell variation suggests that participants are heterogeneous in their fairness views. The

across–cell variation suggests that these views are not completely home–grown; rather, they seem partly to

reflect participants’ perception of differing strategic environments across cells. In both markets, both buyers

and sellers report fair prices that are significantly higher with one uninformed buyer than with zero unin-

formed buyers (Wilcoxon signed–ranks tests, p < 0.01 for sellers in either market, p ≈ 0.018 for buyers in
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Figure 9: Participants’ reported fair prices and subgame perfect equilibrium prices under standard prefer-

ences (area of a dark circle is proportional to the number of buyers, area of a light circle/ring is proportional

to the number of sellers it represents)
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the 2x2 market, p ≈ 0.062 for buyers in the 2x3 market).15 Most striking, the higher fair price in the 2x3–1

cell compared to the 2x3–0 cell is the reverse of the equilibrium prediction. If we define a participant–

specific “fair price deviation” measure as the difference between the subgame perfect equilibrium price in a

cell and the participant’s reported fair price for that cell, this deviation is significantly larger (i.e., fair prices

under–state the equilibrium price more) in the 2x2–1 cell than in the 2x2–0 cell, while it is significantly

smaller in the 2x3–1 cell than in the 2x3–0 cell (Wilcoxon signed–ranks tests, p < 0.001 in both markets

and for both buyers and sellers).

Result 8 Both buyers and sellers report higher fair prices in the 2x2–1 cell than in the 2x2–0 cell. Both

buyers and sellers report higher fair prices in the 2x3–1 cell than in the 2x3–0 cell.

Summing up, the differences between the observed treatment effects and the theoretical predictions

under standard preferences are consistent with the implications of fairness. In the 2x2 market, competitive

pressures alone predict a price increase when we move from zero to one uninformed buyers. While the

associated difference in fair prices is smaller than the predicted price difference, it has the same sign. Since

we have seen that higher fair prices are associated with higher actual prices (both directly in seller choices,

15Curiously, we find only weak evidence of self–serving bias. In the 2x2 market, buyers actually report higher fair prices than

sellers, though these differences are not significant (robust rank–order tests, p > 0.20 for both 2x2–0 and 2x2–1). In the 2x3

market, sellers do report at least weakly significantly higher fair prices than buyers (p ≈ 0.043 for 2x3–0, p ≈ 0.091 for 2x3–1),

though the magnitude of the difference, roughly 70 cents in both cases, is small.
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and indirectly through the incentive for higher prices due to reduced buyer price–responsiveness), we would

therefore expect fairness to reinforce the effects of competitive pressures, meaning higher prices in the 2x2–

1 cell than in the 2x2–0 cell, which is indeed what we observe. In the 2x3 market, competitive pressures

alone predict a price decrease when we move from zero to one uninformed buyers. However, the difference

in fair prices is in the opposite direction, which implies higher prices in the 2x3–1 cell than in the 2x3–0

cell. Thus what we observe is exactly consistent with the “fairness” alternative to Hypothesis 2: the effect

of fairness has the opposite sign of competition’s effect, and is apparently strong enough to flip the direction

of the overall effect from that of the standard–theory prediction.

4.6 Discussion of our results as compared with Helland et al.’s (2016)

Our finding of lower prices in the 2x3–0 cell than in the 2x3–1 cell contrasts with another current study (Hel-

land et al. 2016), whose experiment implements a similar setting to ours, and who report strong support for

the theoretical predictions based on standard preferences. In particular, they find at least weakly significant

support for the counter–intuitive prediction of higher prices in their 2x3–0 cell than in their 2x3–1 cell.16

Their experimental procedures differ in many ways from ours; however, both sets of procedures arguably

conform to standard experimental–economics methodology, so neither is manifestly “correct” or “wrong”.17

The most plausibly consequential difference between the two experiments is that their participants play

50 rounds of one treatment, while ours play 20 rounds each of two treatments. This could potentially explain

the differing results we find, since one might expect that giving participants more experience in the same

setting ought to make them play more in line with theoretical predictions. Indeed, even though Helland et

al. observe essentially no time trend in prices after the 20th round (see their Figure 2) – suggesting their

results would have been the same if they had stopped at that point – prices in our 2x3–0 and 2x3–1 cells do

not appear to have stabilized at the 20th round, and while the difference between these prices does appear to

remain fairly stationary after the first few rounds, it is always possible that this could have changed in later

16Based on the one–sided non–parametric tests they report, the difference they find in posted prices is statistically insignificant

and the one in transaction prices is significant at the 10% level. Based on regressions, the difference is significant at the 10% level

for posted prices and the 5% level for transaction prices. Given that non–parametric tests tend to err on the side of conservatism

and regressions on the side of liberalism, these results probably indicate borderline significance.
17To our knowledge, here are the differences between our original experiment and Helland et al.’s (2016), other than those

emphasized in the main text of this section. Helland et al. use a between–participant design while we use a within–participant

design. Their uninformed buyers are automated while ours are human participants. They assign persistent labels to sellers (which

allows collusion and coordination) while we do not. Their matching groups comprise three individual markets; ours comprise either

two or three, and we control for the size in our seller regressions. They paid participants the sum of payoffs in all rounds multiplied

by a conversion factor, while we pay the actual payoffs from a subset of rounds. They use only 2x3 markets but also vary whether

a capacity constraint exists, while we always have capacity constraints but vary the market size. Their sessions were conducted in

Norway and Germany; ours were conducted in Australia. Their buyer valuation was 100 experimental currency units, while ours

was 20 dollars. They do not elicit risk attitudes, demographic information, or perceived fair prices; we elicit all of these. Finally,

they use one–sided non–parametric tests while we use more conservative two–sided tests; this obviously cannot change qualitative

treatment effects, but does make their significance results appear stronger than they are.
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rounds had they been played.

To address this possibility, we report the results of a small follow–up experiment in which participants

play 50 rounds under a single set of parameters (as in Helland et al.): either the 2x3 market with zero

uninformed buyers or the 2x3 market with one uninformed buyer. Otherwise, experimental procedures

parallel those in our original experiment (to keep the stakes per round comparable, we paid according to 5

rather than 4 rounds). We conducted 6 sessions – 3 each of 2x3–0 and 2x3–1 – with 20 participants in each

session, none of whom had participated in our original experiment, and without partitioning the session into

smaller matching groups. (So, each matching group comprised 4 markets.)

Two key results are apparent in Figure 10, which shows the time series of posted and transaction prices

in both treatments. First, the counter–theoretic but intuitive (and fairness–consistent) result of higher prices

Figure 10: Time series of posted and transaction prices in 2x3–0 and 2x3–1 treatments of new experiment
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in 2x3–1 compared to 2x3–0 is present in the new experiment as it was in the original one.18 Second,

while prices continue rising after round 20, these rises are small in magnitude and not substantially different

between the treatments. (Indeed, in the last ten rounds the treatment effect appears to get larger, not smaller.)

Thus it is very likely that the differences between our original experimental results and those of Helland et

al. are not due to the number of rounds played (or indeed within– versus between–participant design).

With these potential explanations ruled out, and since none of the other differences between our experi-

ments (see footnote 17) seems like a plausible explanation, we are left merely to speculate. One possibility,

as always, is differences in the participant pool. If Helland et al.’s participants did not care about fair prices,

or if their fair–price concerns were different from our participants’ (e.g., if the same price was viewed as

equally fair across all treatments), that could easily account for the difference between our results and theirs.

Alternatively, Helland et al.’s between–participants design allows for uncontrolled variation in other char-

18As in the original experiment, there is some heterogeneity across sessions. In the three 2x3–0 sessions, posted prices averaged

12.07, 12.51 and 13.95 and transaction prices averaged 12.00, 12.27 and 13.85, while in the three 2x3–1 sessions, posted prices

averaged 13.03, 13.74 and 14.61 and transaction prices averaged 12.72, 13.41 and 14.48.
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acteristics such as risk attitudes: if their buyers are less risk averse, or sellers more risk averse, in their

2x3–1 treatment than in 2x3–0, that could explain their result.19 There are also other potential explanations

– perhaps there is some difference in procedures that we have failed to notice – but again, we can do little

beyond speculating.

5 Conclusion

While the results in our 2x2 market are consistent with standard theory, the same is not true for our 2x3

market. There, prices are higher with one uninformed buyer (2x3–1) than with zero (2x3–0), rather than

lower as predicted. This result cannot be due to risk aversion, since (a) we vary the number of uninformed

buyers within–participants to eliminate differences in risk attitudes between the 2x3–0 and 2x3–1 cells, and

(b) our analyses in Appendices A.3 and A.4 show that the sign of the predicted difference between these

two cells is robust to allowing either identical or heterogeneous risk aversion, as long as risk attitudes do

not change with the number of uninformed buyers. It cannot be due to order effects, as it is confirmed both

in robustness checks using the data from the original experiment (footnotes 11 and 12) and in a follow–up

experiment using a between–participants design (Section 4.6). The follow–up experiment also shows that

the result is not due to allowing insufficient time for play to converge.

Instead, we find evidence suggesting that market outcomes are influenced by fairness perceptions. Re-

ported fair prices vary widely within each cell and in systematic ways across cells. Like observed prices but

not theoretically–predicted prices, fair prices in the 2x3 market are significantly higher with one uninformed

buyer than with zero. (In the 2x2 market, fair prices show the same relationship as both observed prices

and predicted prices.) Since fair prices were elicited at the end of the experimental session, after all of the

market decisions were made, we cannot prove causality. However, a compelling (though still circumstan-

tial) argument is made by within–cell analysis, which shows that participants’ reported fair prices correlate

with their behavior – even in early rounds where predicted and/or observed treatment effects would not have

become apparent. Buyers reporting lower fair prices are more price–responsive (thus incentivizing sellers

to lower their prices), while sellers reporting lower fair prices charge lower prices, even after accounting

for the effect of buyers’ actual price–responsiveness. Both of these patterns of behavior are consistent with

rationality if standard preferences are augmented by a distaste for prices away from a “fair price” reference

point, as discussed in Section 3.3. Thus, the counter–intuitive nature of the standard theoretical prediction

for the 2x3 market may be, in a sense, exactly what leads to its undoing: participants quickly form views

19Since Helland et al. do not collect information about participant characteristics, we can only conjecture about whether their

participant pool is different from ours. A hint that their participants may be unusual is given by buyer visit choices. The under–

responsiveness to price in our original experiment is similar to that seen in other directed–search experiments (Cason and Noussair

2007, Anbarci and Feltovich 2013). Our follow–up experiment is similar: a probit like Model 6 yields marginals of 0.738 and 0.570

for the 2x3–0 and 2x3–1 cells, both significantly less than one. By contrast, Helland et al. report approximately full responsiveness

(from their Result 6, p. 12: “the average probability of buying at a specific seller is almost identical to the average predicted

probability given prices”), though their Figure 4 suggests that this holds in their 2x3–1 cell better than in their 2x3–0 cell.
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about “fair” prices – perhaps based entirely on intuition that more information should reduce prices – and

their resulting behavior suggests these views are self–fulfilling.

Our results are in keeping with previous fairness results in market experiments. Like Kachelmeier et

al. (1991a), we find individual–level correlations between perceived fair prices and market behavior, and

like their study and several follow–ups (e.g., Kachelmeier et al. 1991b, Franciosi et al. 1995, Ruffle 2000,

Bartling et al. 2014), we find that the success of theoretical predictions is influenced by how fair the predicted

outcomes are viewed to be. So, part of our contribution is simply the added evidence of the robustness of

fairness effects in markets. However, our study is also novel in several ways. One is in the milieu we use:

markets with directed search. Our procedures make this a severe test of the effects of fairness on buyer

behavior: unlike Kachelmeier et al. (1991a; 1991b), whose buyers could post bids; Franciosi et al. (1995),

Ruffle (2000), and Tyran and Engelmann (2005), whose buyers could refuse to buy at all; and Bartling et al.

(2014), whose sellers could engage in punishment; our buyers have no recourse when facing unfair prices

except to visit a different seller. Even limited to such a weak punishment mechanism, buyers utilize it and

its effects are apparent. Our results are also novel in that they are persistent (with no apparent decrease

over 50 rounds in our follow–up experiment), in contrast to previous results (Kachelmeier et al. 1991a;

1991b; Franciosi et al. 1995) where the treatment effect is in speed of convergence to the same equilibrium,

and thus transitory. Finally, fairness perceptions in our experiment actually reverse a theoretically predicted

treatment effect (between the 2x3–0 and 2x3–1 cells), which we have not seen elsewhere.

We expect that our results have clear implications for market settings outside the lab. While external

validity is always a concern when drawing conclusions based on lab experiments, we are relatively confident

about our findings for buyer behavior, since our participants have plenty of experience as buyers in many

settings, and – as undergraduates at a large public university – they are fairly representative of the overall

population except in age, which seems not to be a significant driver of behavior here. We are less confident

that our findings for sellers will generalize, since undergraduates are less representative and less experienced

as sellers than as buyers. However, as we saw in Section 4.4, even if sellers play exactly as Nash equilibrium

implies given buyers’ behavior, buyers’ deviations from equilibrium behavior on their own are sufficient to

all but eliminate the predicted treatment effect between our 2x3–0 and 2x3–1 cells. Since this pair of cells

represents the largest counter–intuitive price difference that is possible within the model, even for more

general market sizes, and even if “real” sellers were to behave in line with the theory, it seems unlikely that

we would see a case where more informed buyers led to higher prices.

Our results also have implications for policy. Lester (2011) provides some motivation for his paper

by noting that many US states have legislated to increase price transparency in health–care markets. His

theoretical results suggest that such policies may have perverse effects, since making prices more transparent

may lead to price increases rather than decreases. Our empirical results suggest that such perverse effects

may be less likely than the theory implies, tilting the balance in favor of price–transparency policies.
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A Appendix

A.1 Solution to the case of one informed buyer (standard preferences)

Suppose there are m ≥ 2 sellers and n ≥ 2 buyers, with exactly 1 informed buyer and the remaining n − 1

buyers uninformed. Let Ū be buyers’ common valuation for the good (in the experiment, Ū = 20).

Proposition 3 Define

p∗ = Ū

[

1 −

(

1 −
1

m

)n−1
]

. (4)

Then there exists a unique symmetric subgame perfect equilibrium. In this equilibrium, each seller’s price

is drawn from a distribution with support [p∗, Ū ] and no mass points. For p in this interval, the cumulative

distribution function (c.d.f.) F is given by

F (p) = 1−

[

p∗(Ū − p)

p(Ū − p∗)

]
1

m−1

. (5)

Proof: Buyer behavior is straightforward: each of the u uninformed buyers mixes uniformly over sellers,

and the one informed buyer chooses the lowest–priced seller with certainty, or mixes among them if there

is more than one lowest–priced seller. So, a seller choosing price p ≤ Ū will sell for sure if it is the lowest

price (since the informed buyer visits); while if another seller has a strictly lower price, she will sell with

probability 1 −
(

1 − 1
m

)n−1
, the probability of at least one uninformed buyer visiting. Finally, if she is one

of exactly k lowest–priced sellers, she will sell with probability 1 −
(

1 − 1
k

) (

1− 1
m

)n−1
; note that this is

strictly larger than 1 −
(

1 − 1
m

)n−1
for any k ∈ {1, 2, ..., n}, and strictly smaller than one as long as k > 1

(i.e., the seller is tied with at least one other seller).

Let F be the common c.d.f. of the sellers. F cannot have a mass point at any price p ∈ [p∗, Ū ], since

then a seller could improve her profit by shifting some mass from p slightly to the left (removing the chance

of a tie and hence discontinuously raising the probability of selling, with only a second–order decrease in the

selling price).20 Also, F cannot have a “gap” – an interval (p0, p1) with zero density throughout but positive

density below and above – since then choosing price p1 would earn a strictly higher profit than prices just

below p0, as it would increase the selling price with only a second–order decrease in the probability of

selling.

Let p̂ = sup{p|F (p) = 0} and p̃ = min{p|F (p) = 1} (the latter exists because of right–continuity

of c.d.f.’s). Then choosing p̃ yields profit π(p̃) = p̃
[

1 −
(

1 − 1
m

)n−1
]

. But choosing price Ū yields profit

π(Ū) = Ū
[

1−
(

1− 1
m

)n−1
]

, so we cannot have p̃ < Ū . Also, any price above Ū yields zero profit, so we

cannot have p̃ > Ū . Hence we must have p̃ = Ū .

Then, choosing p̂ yields profit π(p̂) = p̂, which must be equal to π(Ū); that is, p̂ = p∗ as defined in

(4). So, p∗ and Ū are the left and right endpoints of the smallest closed interval containing the support of

20The arguments for this “no mass point” assertion and the upcoming “no gap” assertion are based on arguments used by Varian

(1980, pp. 653–654) in his model of temporal price dispersion.



the price distribution. Since we have already noted there are no “gaps” in this support, this means that the

support of F is exactly [p∗, Ū ].

Finally, let p ∈ [p∗, Ū ]. Since F has no mass points, the probability of another seller choosing exactly

p is zero, so we can ignore the possibility of ties for the lowest price. Then p is the lowest price with

probability [1 − F (p)]m−1, in which case it sells for sure; otherwise, another seller’s price is strictly lower,

in which case it sells with probability 1 −
(

1 − 1
m

)n−1
= p∗/Ū . So, the resulting expected profit is given

by

π(p) = p · [1− F (p)]m−1 + p ·
p∗

Ū

{

1− [1− F (p)]m−1
}

Since there is positive density at p, it must yield profit equal to that of p∗, so

p∗ = p · [1 − F (p)]m−1 + p ·
p∗

Ū

{

1 − [1 − F (p)]m−1
}

.

Solving for F (p) yields (5). �

Note that for the special case of the 2x2–1 market, (5) simplifies to F (p) = 2 − 20/p, so the corre-

sponding probability density function (p.d.f.) is f(p) = 20/p2 with support [10, 20] and expected value

E(p) = 20 · ln(2) ≈ 13.86.

A.2 Proofs of Propositions 1 and 2 (2x2–0 case)

Proposition 1

Let Ū be buyers’ common valuation for the good (in the experiment, Ū = 20). Suppose the sellers post

prices p1 and p2, not both equal to Ū , and with p1 ≤ p2 without loss of generality. Define ci = c(pi − p∗).

(i) Then in the symmetric equilibrium of the game played between buyers, the probability a given buyer

visits Seller 1 is given by

q∗ =
Ū − 2p1 + p2 − 2c1 + 2c2

2Ū − p1 − p2
, (6)

when this is between 0 and 1.21 Note that when c1 = c2 = 0, this expression reduces to (2) in Section 4.3.

Now,
∂q∗

∂p∗
=

2

2Ū − p1 − p2

(

∂c2

∂p∗
−

∂c1

∂p∗

)

,

and note that the expression outside the parentheses is positive, so that ∂q∗

∂p∗
has the same sign as

(

∂c2
∂p∗

− ∂c1
∂p∗

)

.

Since p1 ≤ p2, this means that ∂q∗

∂p∗
< 0 if c(·) is convex (which is true by assumption), and also that q∗

is the probability of visiting the lower–priced seller. Thus, as p∗ increases, the equilibrium probability of

visiting the lower–price seller decreases. �

21Since at least one price is less than Ū , q∗ exists. If the right–hand side of (6) is less than zero (more than one), buyers visit

Seller 2 (Seller 1) with certainty.



(ii) Suppose now that p∗ varies across buyers, with a distribution over [0, Ū ] that is common knowledge.

Suppose that each buyer’s value of p∗ is his private information. Then a given buyer’s expected utility from

visiting Seller 1 and Seller 2 are

q

[

Ū − p1

2

]

+ (1 − q)[Ū − p1]− c(p1 − p∗) =
(

1 −
q

2

)

[Ū − p1] − c(p1 − p∗)

and

q[Ū − p2] + (1 − q)

[

Ū − p2

2

]

− c(p2 − p∗) =
1 + q

2
[Ū − p2] − c(p2 − p∗)

respectively, where q is the probability that the rival buyer (who from this buyer’s standpoint is randomly

chosen from the population) visits Seller 1. So the buyer prefers to visit Seller 1 if

c2 − c1 >
1 + q

2
[Ū − p2] −

(

1 −
q

2

)

[Ū − p1], (7)

where ci = c(pi−p∗). She prefers to visit Seller 2 if the inequality in (7) is reversed, and is indifferent if the

inequality sign is replaced by an equal sign. (In particular, if c1 = c2 = 0, equality yields the equilibrium

mixed–strategy under standard preferences.) So, other things equal, the larger is c2 relative to c1, the more

likely she is to prefer Seller 1.

Now, suppose p1 < p2. Then as p∗ decreases, c2 increases relative to c1 due to the convexity of c, so the

buyer will be more likely to visit Seller 1 – who is the lower-price seller – meaning the buyer is more price–

responsive. Similarly, if p1 > p2, then as p∗ decreases, c2 decreases relative to c1, so the buyer will be more

likely to visit Seller 2 (who is now the lower-price seller), so again the buyer is more price–responsive. �

Proposition 2

A seller’s utility is given by

Πi = Φi · pi − c(pi − p∗),

where Φi is the probability that at least one buyer visits the seller (which is a function of pi and other sellers’

prices, but not p∗). We assume that ∂Φi

∂pi
and ∂2Φi

∂p2
i

are negative for any rival seller price, as is true when

buyers have standard preferences or weak fairness preferences, and for prices sufficiently near p∗ under

strong fairness preferences. We also assume that ∂2Φi

∂pi∂pj
= 0; this will be exactly true in equilibrium when

buyers have standard preferences, or more generally when they have the same fairness preferences.

(i) Then a given seller’s utility is maximized when

0 = Φi +
∂Φi

∂pi
−

∂c

∂pi
,

and the equilibrium condition is that this holds when p1 = p2 = p, in which case Φi = 0.75. Implicit

differentiation yields

0 =

[

∂Φi

∂pi
+ pi

∂2Φi

∂p2
i

+ pi
∂2Φi

∂pi∂pj
−

∂2c

∂p2
i

]

· dpi −
∂2c

∂pi∂p∗
· dp∗,



or

dp

dp∗
=

− ∂2c
∂pi∂p∗

∂2c
∂p2

i

− ∂Φi

∂pi
− p∂2Φi

∂p2
i

− p ∂2Φi

∂pi∂pj

=

∂2c
∂p2

i

∂2c
∂p2

i

− ∂Φi

∂pi
− p∂2Φi

∂p2
i

− p ∂2Φi

∂pi∂pj

.

By convexity of c, the numerator and the first term of the denominator of the last expression are positive,

and by assumption, ∂Φi

∂pi
and ∂2Φi

∂p2
i

are negative and ∂2Φi

∂pi∂pj
is zero, so that the entire denominator and thus

dp
dp∗

is positive. �

(ii) Suppose now that p∗ varies across sellers, with a distribution over [0, Ū] that is common knowledge, and

that each seller’s value of p∗ is his private information. Then sellers’ posted prices may depend on their own

value of p∗.

So, a seller’s expected utility is given by

EΠi = EΦi · pi − c(pi − p∗)

(where the expectation is over the distribution of rival–seller prices). This is maximised when

0 = EΦi +
∂EΦi

∂pi
−

∂c

∂pi
.

Implicit differentiation yields

0 =

[

2
∂EΦi

∂pi
+ pi

∂2EΦi

∂p2
i

−
∂2c

∂p2
i

]

· dpi −
∂2c

∂pi∂p∗
· dp∗,

or

dpi

dp∗
=

− ∂2c
∂pi∂p∗

∂2c
∂p2

i

− 2∂EΦi

∂pi
− pi

∂2EΦi

∂p2

=

∂2c
∂p2

i

∂2c
∂p2

i

− 2∂EΦi

∂pi
− p∂2EΦi

∂p2
i

.

By convexity of c, the numerator and the first term of the denominator of the last expression are positive,

and by assumption, ∂Φi

∂pi
and ∂2Φi

∂p2
i

are negative for any rival price, so that ∂EΦi

∂pi
and ∂2EΦi

∂p2 are also negative.

This means that the entire denominator and thus dpi

dp∗ is positive. �

A.3 Solution of the 2x3–0 and 2x3–1 cases with identical risk–averse agents

We allow both sellers and buyers to have any twice–differentiable weakly risk–averse utility function such

that the utility of not trading is equal to zero. The only additional assumptions we make are (a) all buyers

have the same utility function and all sellers have the same (possibly different from buyers’) utility function,

and (b) utility functions are common knowledge amongst the agents.22

The 2x3–1 case

Let u be the common utility function of buyers, and v that of sellers. As noted above, the utility of not

trading is zero; otherwise we express u and v as functions of p, the price at which the agent trades. Since

22A weaker version of (b) also works, since it is not necessary that buyers know sellers’ utility functions. See Appendix A.4 for

a relaxation of (a).



prices are restricted to be between zero and buyers’ valuation, we have u, v ≥ 0. Also, v′(p) > 0 > u′(p)

(the latter since buyer’s monetary surplus is Ū − p), and u′′(p), v′′(p) ≤ 0 (from weak risk aversion). Note

that the conditions on first derivatives imply that v > 0 when p > 0 and u > 0 when p < Ū .

Figure 11: Buyer 1 payoffs in the 2x3–1 cell, given seller prices p1, p2 (symmetric game)

Buyer 2

Visit Seller 1 Visit Seller 2

Buyer Visit Seller 1 5
12u1

3
4u1

1 Visit Seller 2 3
4u2

5
12u2

Given sellers’ prices, the two informed buyers play the game shown in Figure 11, where u1 = u(p1)

and u2 = u(p2) are the utilities from buying from Seller 1 and Seller 2. (As always, the uninformed buyer,

randomizes uniformly between sellers irrespective of risk attitude.) Note that each payoff is the product of

the utility from buying (u1 or u2) and the probability of being able to buy. (For example, if Buyer 1 and

Buyer 2 visit the same seller, each is equally likely to buy with probability 1/2 or 1/3, depending on the

realization of the uninformed buyer’s seller visit choice.) In the symmetric equilibrium of this game, each

buyer visits Seller 1 with probability

q(p1, p2) =
9u1 − 5u2

4u1 + 4u2

(as long as p1 and p2 are not too far apart), so

∂q

∂p1
=

7u2

2(u1 + u2)2
· u′(p1). (8)

Given q, the probability of Seller 1 being able to sell is

Φ1(p1, p2) = 1−
1

2
(1 − q)2,

and Seller 1’s expected utility is

Π1(p1, p2) = Φ1(p1, p2) · v(p1).

Expected utility is maximized when

0 =
∂Π1

∂p1
= Φ1 · v

′(p1) + v(p1)
∂Φ1

∂p1

= Φ1 · v
′(p1) + v(p1) · (1− q)

∂q

∂p1
.

In a symmetric equilibrium in prices, p1 = p2, so that q = 1/2 and thus Φ1 = Φ2 = 7/8. Let p be the

common value of p1 and p2. Then p solves

0 =
7

8
v′(p) + v(p)

7u′(p)

16u(p)
. (9)



Figure 12: Buyer 1 payoffs in the 2x3–0 cell, given seller prices p1, p2 (symmetric game)

Buyer 2 Buyer 2

Visit Seller 1 Visit Seller 2 Visit Seller 1 Visit Seller 2

Buyer Visit Seller 1 1
3u1

1
2u1 Buyer Visit Seller 1 1

2u1 u1

1 Visit Seller 2 u2
1
2u2 1 Visit Seller 2 1

2u2
1
3u2

Buyer 3: Visit Seller 1 Buyer 3: Visit Seller 2

The 2x3–0 case

Solving this case follows a similar process to the 2x3–1 case, with two important differences. First, all

three buyers are informed, so they play a 2x2x2 game given sellers’ prices (see Figure 12). In a symmetric

equilibrium, each buyer visits Seller 1 with probability q that solves

(u1 − u2)q
2 − (3u1 + u2)q + (3u1 − u2) = 0,

so that ∂q
∂p1

can be computed by differentiating implicitly:

∂q

∂p1
= −

q2 − 3q + 3

2q(u1 − u2) − 3u1 − u2
· u′(p1).

The second difference is that sellers’ visit probabilities reflect the fact that all three buyers play the

symmetric equilibrium strategy (rather than one of them randomizing uniformly). So, given q, we have

Φ1(p1, p2) = 1 − (1 − q)3,

so that
∂Φ1

∂p1
= 3(1− q)2 ·

∂q

∂p1
.

Then Seller 1’s expected utility (Π1 = Φ1 · v(p1)) is maximized when

0 = Φ1 · v
′(p1) + v(p1) · 3(1− q)2

∂q

∂p1
.

In a symmetric equilibrium in prices, as before we have p1 = p2, q = 1/2 and Φ1 = Φ2 = 7/8, so that p

(the common value of p1 and p2) solves

0 =
7

8
v′(p) + v(p)

21u′(p)

64u(p)
. (10)

Comparison of the two cases

Let p0 and p∗ solve (10) and (9) respectively; that is, they are the subgame perfect equilibrium prices in the

2x3–0 and 2x3–1 cases given utility functions u and v. (Note that since the left–hand sides of (10) and (9)

are neither zero nor infinite, it must be that u and v are strictly positive; i.e., p0, p
∗ ∈ (0, Ū).) Then we have

−2 =
v(p∗)

v′(p∗)
·
u′(p∗)

u(p∗)
and −

8

3
=

v(p0)

v′(p0)
·
u′(p0)

u(p0)
,



so that
v(p∗)

v′(p∗)
·
u′(p∗)

u(p∗)
>

v(p0)

v′(p0)
·
u′(p0)

u(p0)
.

Define

g(p) =
u′(p)v(p)

u(p)v′(p)
.

Then

g′(p) =
uv′(u′v′ + u′′v)− u′v(uv′′ + u′v′)

(uv′)2

=
vv′

[

uu′′ − (u′)2
]

− uu′
[

vv′′ − (v′)2
]

(uv′)2
. (11)

Since u and v are strictly positive, u′′ and v′′ are weakly negative, and v′ > 0 > u′, the first term of

the numerator is negative while the second is positive, making the entire numerator negative. Since the

denominator is clearly positive, we therefore have g′ > 0, so that g is increasing in p and hence p0 > p∗.

Thus the equilibrium price in the 2x3–0 case is higher than that in the 2x3–1 case, not only for risk–neutral

agents, but also for risk–averse ones.

A.4 Solution of the 2x3–0 and 2x3–1 cases with heterogeneous risk–averse agents

Here, we extend the analysis in the previous section to allow a distribution of risk attitudes amongst buyers,

with each having private knowledge of his risk attitude. To keep the analysis simple, we assume sellers are

risk neutral. Uninformed buyers will continue visiting each seller with equal probability, so we focus here

on informed buyers.

As in the previous section, we assume that informed buyers’ utility functions are twice–differentiable

and that the utility of not trading is zero. But rather than all having the same utility function, there is a

one–parameter continuum of risk–averse buyer types indexed by θ, such that a buyer of type θ1 is more risk

averse than a buyer of type θ2 if and only if θ1 > θ2. The utility function for a buyer of type θ will be called

u(θ, p) or uθ(p). As before, uθ(p) ≥ 0, u′

θ(p) < 0 and u′′

θ(p) < 0 for p ∈ [0, Ū] (and thus uθ(p) > 0 when

p < Ū ). Suppose the population distribution of θ is given by some c.d.f. F with p.d.f. f . We assume F and

f are common knowledge, but the type of any given buyer is his private information.

Suppose the sellers choose prices p1 and p2, where p1 ≤ p2. Then visiting Seller 1 entails a smaller

probability of trading but a higher surplus conditional on trading, while visiting Seller 2 entails a larger

probability of trading but a lower surplus conditional on trading. This means that if buyers believe that the

probability of a given buyer visiting Seller 1 is q ≥ 0.5, and some buyer type θ is indifferent between visiting

the two sellers given q, then buyers who are more risk averse (to the right of θ in the population distribution)

will visit Seller 2 and those who are less risk averse (to the left of θ) will visit Seller 1, so that the fraction of

buyers visiting Seller 1 will be F (θ). So, an equilibrium of the game played amongst the informed buyers

will be characterized by q∗ = F (θ∗), where type θ∗ is indifferent between visiting the two sellers given q∗.



The 2x3–1 case

Given q, a buyer of type θ gets utility from visiting Seller 1 of uθ(p1) with probability 9−4q
12 , and gets utility

from visiting Seller 2 of uθ(p2) with probability 5+4q
12 . Then, the equilibrium condition is

9 − 4q

12
· uθ(p1) =

5 + 4q

12
· uθ(p2),

along with q = F (θ). That is,

[9− 4F (θ)] · u(θ, p1) = [5 + 4F (θ)] · u(θ, p2). (12)

To find ∂q
∂p1

, we first note that ∂q
∂p1

= f(θ) · ∂θ
∂p1

. Next, we use implicit differentiation on (12):

−4f(θ)u(θ, p1)
∂θ

∂p1
+ [9 − 4F (θ)]

[

u1(θ, p1)
∂θ

∂p1
+ u2(θ, p1)

]

= 4f(θ)u(θ, p2)
∂θ

∂p1
+ [5 + 4F (θ)]u1(θ, p2)

∂θ

∂p1
, (13)

where u1 and u2 are the partial derivatives of u with respect to the first and second argument respectively.

When sellers are choosing their equilibrium prices, p1 = p2; call their common value p. Also, q = 0.5,

which means F (θ) = 0.5. So (13) simplifies to

−4f(θ)u(θ, p)
∂θ

∂p1
+ 7u2(θ, p) = 4f(θ)u(θ, p)

∂θ

∂p1
,

and solving for ∂θ
∂p1

yields

∂θ

∂p1
=

7u′

θ(p)

8f(θ)uθ(p)
,

so
∂q

∂p1
=

7u′

θ(p)

8uθ(p)

when sellers are in equilibrium.

Turning to sellers, Seller 1’s profit is given by p1 ·
[

1 − 1
2 (1− q)2

]

, which is maximized when

0 =

[

1−
1

2
(1− q)2

]

+ p(1 − q)
∂q

∂p1
.

In equilibrium, p1 = p2 = p and q = 0.5, so we have

0 =
7

8
+

p

2
·

∂q

∂p1

=
7

8
+

p

2
·
7u′

θ(p)

8uθ(p)
,

and therefore

−2 = p ·
u′

θ(p)

uθ(p)
,



which implicitly solves for the equilibrium price. (Note the similarity to the corresponding result from the

previous section.)

The 2x3–0 case

Given q, a buyer of type θ gets utility uθ(p1) with probability 3−3q+q2

3 from visiting Seller 1, and uθ(p2)

with probability 1+q+q2

3 from visiting Seller 2. Then the equilibrium condition is

[3− 3F (θ) + F (θ)2] · u(θ, p1) = [1 + F (θ) + F (θ)2] · u(θ, p2).

Using implicit differentiation,

[−3f(θ) + 2F (θ)f(θ)]u(θ, p1)
∂θ

∂p1
+ [3 − 3F (θ) + F (θ)2]

[

u1(θ, p1)
∂θ

∂p1
+ u2(θ, p1)

]

= [f(θ) + 2F (θ)f(θ)]u(θ, p2)
∂θ

∂p1
+ [1 + F (θ) + F (θ)2]u1(θ, p2)

∂θ

∂p1
,

and substituting the equilibrium conditions p1 = p2 = p and F (θ) = 0.5 yields

−2f(θ)u(θ, p)
∂θ

∂p1
+

7

4
u2(θ, p) = 2f(θ)u(θ, p)

∂θ

∂p1
,

or equivalently
∂θ

∂p1
=

7u′

θ(p)

16f(θ)uθ(p)
,

so that
∂q

∂p1
=

7u′

θ(p)

16uθ(p)

when sellers are in equilibrium.

Turning to sellers, Seller 1’s profit is given by p1 ·
[

1 − (1 − q)3
]

, which is maximized when

0 =
[

1 − (1 − q)3
]

+ 3p(1− q)2
∂q

∂p1
.

In equilibrium,

0 =
7

8
+

3p

4
·

∂q

∂p1

=
7

8
+

3p

4
·

7u′

θ(p)

16uθ(p)
,

and therefore

−
8

3
= p ·

u′

θ(p)

uθ(p)
.

Note that the marginal buyer (the one indifferent between sellers) is the same here as in the 2x3–1 case

as long as the population distribution is the same in both cases; it is the “median buyer” with type θ∗ =

F−1(0.5).

Comparison of the two cases



To show that the equilibrium price must be higher in 2x3–0 than in 2x3–1, we follow a process very much

like that at the end of Appendix A.3 for the homogeneous case. Define h(p) = p ·
u′

θ
(p)

uθ(p) ; then as before, it

suffices to show that h′(p) < 0. But

h′(p) =
uθ(p)[p · u′′

θ(p) + u′

θ(p)]− p[u′

θ(p)]2

[uθ(p)]2

=
puθ(p)u′′

θ(p) + uθ(p)u′

θ(p)− p[u′

θ(p)]2

[uθ(p)]2
. (14)

The denominator of (14) is positive, while the three terms of the numerator are negative, negative and

positive respectively, so that the entire fraction is negative. Thus even under heterogeneous and privately–

known risk attitudes, the predicted treatment effect remains the same.

A.5 Effect of price responsiveness on equilibrium prices

As in Section 4.4, suppose that buyers are β times as price–responsive as they are predicted to be under the

assumption of standard preferences (i.e., suppose that price responsiveness is given by (3) in that section),

while sellers have standard preferences. In this section, we compute the implied Nash equilibrium in seller

prices, as a function of β, for the 2x2–0 case. The 2x3–0 and 2x3–1 cases follow a nearly identical process

(and indeed can be obtained from Appendix A.3, substituting in the CRRA utility function u(x) = xβ but

with v(x) = x), while the 2x2–1 case is analogous to what was done in Appendix A.1.23

A seller’s expected profit is equal to her price multiplied by the probability that she is visited by at least

one buyer. For Seller 1 in the 2x2–0 case, this is π1 = p1 · Φ, where

Φ = 1− (1− q̂)2, (15)

q̂ is given by (3), and q(p1, p2) is given by (2) in Section 4.3. Then

∂π1

∂p1
= 1 − (1− q̂)2 + 2p1(1− q̂)

∂q̂

∂p1

= 1 − (1− q̂)2 + 2p1(1− q̂)β
∂q

∂p1

= 1 − (1− q̂)2 + 2p1(1− q̂)β

[

−
60− 3p2

(40 − p1 − p2)2

]

. (16)

In a symmetric Nash equilibrium, π1 is maximized when p1 = p2, so that q and hence q̂ are equal to one–

half. So (16) simplifies to 0 = 3
4 − 3βp

4(20−p)
(where p is the common value of p1 and p2), whence p = 20

1+β
.

23The associated equilibrium prices are 160

8+3β
in the 2x3–0 case and 40

2+β
in the 2x3–1 case, while in the 2x2–1 case, sellers

play continuous mixed strategies with expectation 30−10β

β
· ln

“

3+β

3−β

”

, based on the density function f(p) = 30−10β

βp2 for p ∈
h

20
“

3−β

3+β

”

, 20
i

.



 
 

A.6  Sample instructions from original experiment 

The instructions below are from the 2x3 market, with no uninformed buyers in rounds 1-20 and one 
uninformed buyer in rounds 21-40. Parts 1, 2 and 3 were given to subjects before round 1, between 
rounds 20 and 21, and after round 40 respectively. The instructions from the other treatments were very 
similar, and available from the corresponding author upon request. 

 

Instructions (Part 1) 

You are about to participate in a decision making experiment. Please read these instructions carefully, as 
the money you earn may depend on how well you understand them. If you have a question at any time, 
please feel free to ask the experimenter. We ask that you not talk with the other participants during the 
experiment, and that you put away your mobile phones and other devices at this time.  

This experiment has three parts. These instructions are for Part 1; you will receive new instructions after 
this part has finished. Part 1 is made up of 20 rounds, each consisting of a simple computerised market 
game. Before the first round, you are assigned a role: buyer or seller. You will remain in the same role 
throughout the experiment.  

In each round, the participants in this session are divided into “markets”: groups of five containing a 
total of three buyers and two sellers. The other people in your market will be randomly assigned in 
each round. You will not be told the identity of the people in your market, nor will they be told yours – 
even after the session ends.  

The market game: In each round, a seller can produce one unit of a hypothetical good, at a cost of $0. A 
buyer can buy up to one unit of the good, which is resold to the experimenter at the end of the round for 
$20. It is not possible to buy or sell more than one unit in a round. Sellers begin by choosing their 
prices, which are entered as multiples of 0.05, between 0 and 20 inclusive (without the dollar sign).  
 
After all sellers have chosen prices, all buyers can observe the prices of each of the sellers in their 
market, then each chooses which seller to visit. If only one buyer visits a particular seller, then that 
buyer pays the seller’s price for the seller’s item. If more than one buyer visits the same seller, then 
since the seller only has one unit, one of the buyers is randomly selected by the computer to purchase it 
at that seller’s price, and the other buyers are unable to buy. Any seller visited by no buyers is unable to 
sell. 
 
Profits: Your profit for the round depends on the round’s result. 
- If you are a seller and you are able to sell, your profit is the price you chose. 
- If you are a seller and you are unable to sell, your profit is zero. 
- If you are a buyer and you are able to buy, your profit is $20.00 minus the price you paid. 
- If you are a buyer and you are unable to buy, your profit is zero. 
 
Sequence of play in a round:  
(1) The computer randomly forms markets made up of three buyers and two sellers each. 
(2) Sellers choose their prices.  
(3) All buyers observe the sellers’ prices, then each buyer chooses which seller to visit.  
(4) The round ends. If you are a seller, you are informed of: each seller’s price, how many buyers visited 



 
 

you, quantity sold and profit for the round. If you are a buyer, you are informed of: each seller’s 
price, how many buyers visited the same seller as you, your quantity bought and profit for the round. 

After this, you go on to the next round. 
 
Payments: Your payment depends on the results of the experiment. At the end of the experiment, two 
rounds from Part 1 will be chosen randomly for each participant. You will be paid the total of your 
profits from those two rounds, plus whatever you earn in the other parts of the experiment. Payments 
are made privately and in cash at the end of the session. 
 

 Instructions (Part 2) 

The procedure in this part is nearly the same as before. You will play a similar market game for 20 
additional rounds. Your role (buyer or seller) will remain the same as before, and the participants in 
your market – a total of 3 buyers and 2 sellers – will still be randomly re-assigned in each round.  
 
The difference from the first part of the experiment is that now, in each round only two of the three 
buyers will be able to observe the sellers’ prices before choosing which seller to visit. The remaining 
buyer will still choose a seller to visit, but without having seen any prices. 

As before, if only one buyer visits a particular seller, then that buyer buys the seller’s item, and if more 
than one buyer visits the same seller, then one of them is randomly selected by the computer to buy. 
Profits are determined in the same way as in Part 1. 
 
Payments: At the end of the experiment, two rounds from Part 2 will be chosen randomly for each 
participant. You will be paid the total of your profits from those two rounds. Your payment from 
this part will be added to what you got from Part 1, and additional earnings are possible in Part 3. 
 

Instructions (Part 3) 

This part begins with a Gamble Selection Task. You will be shown five gambles, and will be asked to 
choose the one you prefer. Each gamble has two possible outcomes, with equal (50%) chance of 
occurring. Your earnings from this task will depend on which gamble you choose, and which outcome 
occurs.  

The gambles are as follows:  
 

Gamble Random numbers 1-50 (50% chance) Random numbers 51-100 (50% chance) 

1 You earn $4 You earn $4 

2 You earn $6 You earn $3 

3 You earn $8 You earn $2 

4 You earn $10 You earn $1 

5 You earn $12 You earn $0 

 
After you have chosen one of these gambles, the computer will randomly draw a whole number between 
1 and 100 (inclusive). If the random number is 50 or less, your earnings from this task are as shown in 



 
 

the middle column of the table. If the random number is 51 or more, your earnings from this task are as 
shown in the right column. The random number drawn for you may be different from the ones drawn for 
other participants. 
 
Once you have chosen a gamble, you will be shown another screen containing a questionnaire. You will 
receive $5 for answering all of the questions if you were a seller in Parts 1 and 2, or $15 if you were a 
buyer. Once everyone has finished the questionnaire, you will be shown the results of all three parts of 
the experiment.  
 



A.7  Sample screen-shots 

Seller decision screen: 

 
 
Informed buyer decision screen: 
 

 
 
 



 
Uninformed buyer decision screen: 
 

 
 
Lottery choice screen: 
 

 
 
 
 
 
 



Questionnaire screen: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

A.8  Sample instructions from follow-up experiment 

The instructions below are from the 2x3 market with one uninformed buyer in all rounds (1-50). Parts 1 and 
2 were given to subjects before round 1 and after round 50 respectively. The instructions from the other 
treatment were very similar, and available from the corresponding author upon request. 

 

Instructions (Part 1) 

You are about to participate in a decision making experiment. Please read these instructions carefully, as the 
money you earn may depend on how well you understand them. If you have a question at any time, please 
feel free to ask the experimenter. We ask that you not talk with the other participants during the experiment, 
and that you put away your mobile phones and other devices at this time.  

This experiment has two parts. These instructions are for Part 1; you will receive new instructions after this 
part has finished. Part 1 is made up of 50 rounds, each consisting of a simple computerised market game. 
Before the first round, you are assigned a role: buyer or seller. You will remain in the same role throughout 
the experiment.  

In each round, the participants in this session are divided into “markets”: groups of five containing a total of 
three buyers and two sellers. The other people in your market will be randomly assigned in each round. 
You will not be told the identity of the people in your market, nor will they be told yours – even after the 
session ends.  

The market game: In each round, a seller can produce one unit of a hypothetical good, at a cost of $0. A 
buyer can buy up to one unit of the good, which is resold to the experimenter at the end of the round for 
$20. It is not possible to buy or sell more than one unit in a round. Sellers begin by choosing their prices, 
which are entered as multiples of 0.05, between 0 and 20 inclusive (without the dollar sign).  
 
After all sellers have chosen prices, two of the three buyers can observe the prices of each of the sellers in 
their market, while the remaining buyer does not. Then each buyer chooses which seller to visit. If only one 
buyer visits a particular seller, then that buyer pays the seller’s price for the seller’s item. If more than one 
buyer visits the same seller, then since the seller only has one unit, one of the buyers is randomly selected 
by the computer to purchase it at that seller’s price, and the other buyers are unable to buy. Any seller 
visited by no buyers is unable to sell. 
 
Profits: Your profit for the round depends on the round’s result. 
- If you are a seller and you are able to sell, your profit is the price you chose. 
- If you are a seller and you are unable to sell, your profit is zero. 
- If you are a buyer and you are able to buy, your profit is $20.00 minus the price you paid. 
- If you are a buyer and you are unable to buy, your profit is zero. 
 
Sequence of play in a round:  
(1) The computer randomly forms markets made up of three buyers and two sellers each. 
(2) Sellers choose their prices.  
(3) Two of the three buyers observe the sellers’ prices, then each buyer chooses which seller to visit.  
(4) The round ends. If you are a seller, you are informed of: each seller’s price, how many buyers visited 

you, quantity sold and profit for the round. If you are a buyer, you are informed of: each seller’s price, 
how many buyers visited the same seller as you, your quantity bought and profit for the round. 



 
 

After this, you go on to the next round. 
 
Payments: Your payment depends on the results of the experiment. At the end of the session, five rounds 
from Part 1 will be chosen randomly for each participant. You will be paid the total of your profits from 
those five rounds, plus whatever you earn in Part 2 of the experiment. Payments are made privately and in 
cash at the end of the session. 

 

 Instructions (Part 2) 

This part begins with a Gamble Selection Task. You will be shown five gambles, and will be asked to 
choose the one you prefer. Each gamble has two possible outcomes, with equal (50%) chance of occurring. 
Your earnings from this task will depend on which gamble you choose, and which outcome occurs.  

The gambles are as follows:  
 

Gamble Random numbers 1-50 (50% chance) Random numbers 51-100 (50% chance) 

1 You earn $4 You earn $4 

2 You earn $6 You earn $3 

3 You earn $8 You earn $2 

4 You earn $10 You earn $1 

5 You earn $12 You earn $0 

 
After you have chosen one of these gambles, the computer will randomly draw a whole number between 1 
and 100 (inclusive). If the random number is 50 or less, your earnings from this task are as shown in the 
middle column of the table. If the random number is 51 or more, your earnings from this task are as shown 
in the right column. The random number drawn for you may be different from the ones drawn for other 
participants. 
 
Once you have chosen a gamble, you will be shown another screen containing a questionnaire. You will 
receive $5 for answering all of the questions if you were a seller in Part 1, or $15 if you were a buyer. 
Once everyone has finished the questionnaire, you will be shown the results of both parts of the 
experiment. 


