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Abstract

The general principles underlying tests of matrix rank are investigated. It is demonstrated

that statistics for such tests can be seen as implicit functions of null space estimators. In turn,

the asymptotic behaviour of the null space estimators is shown to determine the asymptotic

behaviour of the statistics through a plug–in principle. The theory simplifies the asymptotics

under a variety of alternatives of empirical relevance as well as misspecification, clarifies the

relationships between the various existing tests, makes use of important results in the nu-

merical analysis literature, and motivates numerous new tests. A brief Monte Carlo study

illustrates the results.
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1 Introduction

The literature on tests of matrix rank has grown into a large and eminently applicable branch

of econometrics since the seminal contribution by Anderson (1951) (see Camba-Mendez &

Kapetanios (2009) for a survey). Much of this progress has taken place in spite of the difficulty

of the asymptotics of these tests; indeed, statistics for testing the rank of a matrix often

involve eigenvectors, inverses, and other discontinuous functions of matrices. Consequently,

significant gaps have persisted in our knowledge of the relationships between the various tests

in the literature. Relationships between the Anderson (1951), Johansen (1991), Robin & Smith

(2000), and Kleibergen & Paap (2006) statistics are known, as are relationships between the

Cragg & Donald (1996, 1997) statistics. However, there is as of yet no characterization of

the general structure of statistics for testing the rank of a matrix. Another consequence, is

that little is known about the behaviour of tests of rank under local alternatives or under

misspecification. Local power is considered in Cragg & Donald (1997) and a handful of

papers surveyed by Hubrich et al. (2001), while misspecification is considered in Robin &

Smith (2000), Caner (1998), Cavaliere et al. (2010b), Aznar & Salvador (2002), and Cavaliere

et al. (2014). All of these results relate to specific tests and there is as of yet no known

general principle that unifies all of these results. The statistical and econometric literature

has also made little use of the numerical analysis literature, which has made great strides in

understanding and discovering effective matrix rank (Hansen, 1998).

Thus, the objective of this paper is to investigate the general principles underlying tests of

matrix rank by: (i) characterizing the general structure of statistics for testing matrix rank,

(ii) describing the behaviour of these statistics under a variety of alternatives of empirical

relevance and misspecification, and (iii) making use of important insights from the numerical

analysis literature. These intermediate objectives are achieved along the following steps.

First, the paper shows that the general structure of statistics for tests of rank is of the form

of an implicit function of estimators of the null spaces of the matrix in question (see Sections

3.1 and 4.3). This achieves intermediate objective (i) as it is demonstrated that most statistics

in the literature have common functional forms although they may differ in the implicit null

space estimators (see Table 1).
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Next, the paper develops the theory of null space estimation based on reduced–rank approx-

imations, which have been widely studied in the numerical analysis literature. This achieves

intermediate objective (iii). Lemmas 1 and 2 provide a full characterization of the asymptotic

properties of null space estimators under the various alternatives under study. These results

generalize Dufour & Valery (2011) in that they apply to general matrices rather than just

the positive semi–definite ones and are not restricted to eigenprojections. They also allow us

to use any reduced–rank approximation to construct a statistical test of matrix rank; this is

demonstrated by a number of new tests based on the QR and Cholesky decompositions (see

Section 5).

Finally, it is demonstrated that the behaviour of statistics for tests of rank is completely

governed by the implicit null space estimators. A plug–in principle is shown to hold, whereby

every statistic mimics the asymptotic behaviour of an infeasible statistic that plugs in null

spaces related to the population value of the matrix under study. This greatly simplifies the

asymptotics of tests of rank under the various alternatives as well as misspecification. Under

the null hypothesis or the local alternative, one can simply ignore the fact that the null spaces

are estimated and derive the asymptotics as if the appropriate null spaces were known. Under

the global alternative, the statistic diverges whenever the associated infeasible statistic diverges

and under certain conditions (conjectured to be generic) both statistics are proven to diverge

at the same rate. Thus, the plug–in principle allows us to achieve intermediate objective (ii).

It also follows that statistics that have a common functional form but differ in their null space

estimators are asymptoticallly equivalent, therefore establishing the asymptotic equivalence of

a number of tests in the literature. Theorem 2 and Corollaries 3 and 4 are shown to imply the

asymptotics of almost all tests of rank, with the handful of exceptions demonstrably satisfying

a weaker form of the plug–in principle (see the discussion in Section 4.3).

It is important to emphasize several distinctive features of the approach of this paper.

First, the approach is Waldian in that the primitives are taken to be a matrix estimator and a

normalizing matrix; this allows it to encompass a much wider variety of tests than Reinsel &

Velu (1998) and Massmann (2007), which nest some of the likelihood–based tests but miss a

host of other tests. Second, it is based on orthogonal projection matrices, so that no identifying

restrictions are imposed on the null space estimators; this allows for an elegant and compact

description of their rates of convergence. Third, it encompasses both standard asymptotics

and cointegration in a way that illuminates the continuity between the two literatures. In this

regard, the paper is developed gradually from the special case of standard asymptotics to the
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general case that allows for cointegration.

It is also important to note two aspects of the plug–in principle that have been well known

in the literature. First, as far back as Stock & Watson (1988) and as recently as Boswijk et al.

(2015), researchers have relied on the idea that the population cointegration relationship

could be substituting in for a super–consistent estimator in working out the asymptotics of

cointegration statistics. This paper demonstrates that this idea does not hold in general (see

Example 4) and proposes the necessary modifications. Second, the proofs of the asymptotics

of some tests sometimes involved an implicit use of the plug–in principle (e.g. Cragg & Donald

(1996) and Robin & Smith (2000)). However, these instances concerned specific rather than

generic tests and did not recognize the plug–in principle as an overarching framework that

elucidates the asymptotics of tests of rank in general.

In terms of practical recommendations for practitioners, the following results emerge: (i)

both theoretical and Monte Carlo results fail to point to an optimal test of rank, thus re-

searchers can base their choice of test on other considerations, (ii) test statistics based on the

QR and LU decompositions (e.g. the Cragg & Donald (1996) statistic) are recommended for

high intensity computing such as the bootstrap as they are numerically less expensive than the

alternatives (see Al-Sadoon (2016) for an illustration), and (iii) the paper proposes a number

of new tests, which include robust extensions of the likelihood ratio test of Anderson (1951)

and the maximum eigenvalue test of Johansen (1991) as well as tests based on the QR and

Cholesky decompositions.1

The paper is organized as follows. Section 2 develops the notation of the paper. Section

3 develops the theory under standard asymptotics. Section 4 develops the theory under non–

standard asymptotics. Section 5 provides Monte Carlo evidence. Section 6 concludes. Further

Monte Carlo results and technical material as well as the proofs of the results can be found

in the on-line appendix to the paper.

2 Notation

Rn×m denotes the set of n×m real valued matrices and Gn×m is the subset of matrices of full

rank. Pm+ ⊂ Pm ⊂ Sm denote the set of positive definite, positive semi–definite, and symmetric

matrices in Rm×m respectively. vec(B) is the vector formed by vertically stacking the columns

1Practitioners may also wish to consult the Matlab tutorial accompanying this paper, tutorial.m, which is

included in the compressed file, rank.rar, available on the author’s website.
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of B and vech(B) is the one formed by vertically stacking the elements below and including

the diagonal elements of B. The mat operator is defined as the inverse to the vec operator (its

range will be evident from the context). The Euclidean norm of B ∈ Rn×m is defined as ‖B‖ =

(vec′(B)vec(B))1/2. The Mahalanobis norm is defined as ‖B‖Θ = (vec′(B)Θ−1vec(B))1/2 for

Θ ∈ Pnm+ . The 2–norm is defined as ‖B‖2 = maxx∈Rm,‖x‖=1 ‖Bx‖. If P ⊂ Rn×m, define

d(B,P) = infX∈P ‖B − X‖. The singular values of B are denoted by σ1(B) ≥ σ2(B) ≥

· · · ≥ σmin{n,m}(B). The condition number of B is defined as cond(B) = σ1(B)/σr(B), where

r = rank(B). The Moore–Penrose inverse of B is denoted by B†. For any B ∈ Gn×m with

n > m, an orthogonal complement B⊥ is any matrix in Gn×(n−m) satisfying B′⊥B = 0. The

column space of B is denoted by span(B). The orthogonal projection onto span(B) is denoted

by PB. The duplication matrix Dm is the mapping vech(B) 7→ vec(B) over B ∈ Sm. For

B ∈ Pm, B1/2 is the positive semi–definite square root matrix and B†/2 = (B1/2)† = (B†)1/2.

Finally, we say that a sequence of random matrices XT ∈ Rn×m indexed by T is bounded

away from zero in probability and denote this by X = O−1
p (1) if for all ε > 0, there exists a

δε > 0 and a Tε ≥ 0 such that the probability that ‖XT ‖ > δε is at least 1− ε for all T ≥ Tε.

It is easy to show that ‖XT ‖−1 = O−1
p (1) if and only if XT = Op(1) and XT = O−1

p (1) if and

only if ‖XT ‖−1 = Op(1). Hence the notation, O−1
p (1). The product of two O−1

p (1) sequences

is again O−1
p (1) and aT ‖XT ‖

p→∞ for any non–random sequence aT →∞. The deterministic

version, O−1(1), is defined similarly.

3 Tests of Rank Under Standard Asymptotics

This section lays the foundations of our study. First, the general structure of statistics for

tests of rank is considered. It is shown that most of them are implicit functions of null space

estimators. Second, the behaviour of null space estimators is investigated under standard

asymptotic assumptions. Finally, it is shown how their behaviour governs the asymptotics of

tests of rank. Before we begin, we must fix a few ideas.

We will draw inference on an unobserved matrix B in a parameter space that will be

taken to be either Rn×m, Sm, or Pm (the particular parameter space will be evident from the

context). For 0 ≤ r < min{n,m}, we will be interested in testing the hypothesis

H0(r) : rank(B) = r

against the global alternative

H1(r) : rank(B) > r

5



as well as the local alternative

HT (r) : B = B∗ +D/
√
T , rank(B∗) = r,

where B∗ is unknown, T is the sample size, and the choice of D ensures that B remains in the

parameter space. Because our results depend crucially on B∗ under HT (r) and on B under

H0(r) and H1(r), we define B∗ = B under H0(r) and H1(r). Thus, the discussion below will

focus primarily on B∗, which is to be understood as B under H0(r) and H1(r) and the limiting

B under HT (r).

3.1 Preliminary Examples

First, we review the core statistics in the literature that form the basis of our investigation.

Example 1. Let {(yt, xt) : t ≥ 1} be stationary and ergodic with finite fourth moments and

yt = Bxt + εt, t = 1, . . . , T,

where B is an element of the parameter space Rn×m. Assume, moreover, that Γ = E(xtx
′
t) ∈

Pm+ and {xt ⊗ εt : t ≥ 0} is a martingale difference sequence such that E(xtx
′
t ⊗ εtε′t) ∈ Pnm+ .

Let B̂ and Σ̂ be the OLS estimators of B and E(εtε
′
t) and recall that the homoskedastic

estimator of the asymptotic variance of B̂ is Ω̂ = Γ̂−1 ⊗ Σ̂, where Γ̂ = T−1
∑T

t=1 xtx
′
t. The

likelihood ratio statistic proposed by Anderson (1951) for testing H0(r) can be expressed as

LR
(
B̂, Σ̂, Γ̂, P

N̂r
, P

M̂r

)
= T

min{n,m}∑
i=1

log
(

1 + σ2
i

(
(P

N̂r
Σ̂P

N̂r
)†/2P

N̂r
B̂P

M̂r
(P

M̂r
Γ̂−1P

M̂r
)†/2
))

,

where N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) estimate, in a sense to be made precise in the next

subsection, the null spaces of B under H0(r). Anderson noted that, under H0(r), LR behaves

identically to a quadratic form that is expressible as

A
(
B̂, Σ̂, Γ̂, P

N̂r
, P

M̂r

)
= T

∥∥∥(P
N̂r

Σ̂P
N̂r

)†/2P
N̂r
B̂P

M̂r
(P

M̂r
Γ̂−1P

M̂r
)†/2
∥∥∥2
.

We will also consider the Johansen (1991) maximum eigenvalue statistic, expressible as

J
(
B̂, Σ̂, Γ̂, P

N̂r
, P

M̂r

)
= T log

(
1 +

∥∥∥(P
N̂r

Σ̂P
N̂r

)†/2P
N̂r
B̂P

M̂r
(P

M̂r
Γ̂−1P

M̂r
)†/2
∥∥∥2

2

)
.

Note that each of these statistics is a function of vec
(

(P
N̂r

Σ̂P
N̂r

)†/2P
N̂r
B̂P

M̂r
(P

M̂r
Γ̂−1P

M̂r
)†/2
)

=(
(P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
)
)†/2

vec(P
N̂r
B̂P

M̂r
). Thus, if we wish to utilize an alternative es-

timator to Ω̂ that is not necessarily of Kronecker product form (e.g. the heteroskedasticity–

robust estimator), we may utilize the following generalization of the A statistic,

F
(
B̂, Ω̂, P

N̂r
, P

M̂r

)
= Tvec′(P

N̂r
B̂P

M̂r
){(P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
)}†vec(P

N̂r
B̂P

M̂r
).
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The statistics of Cragg & Donald (1996) and Kleibergen & Paap (2006) (among many others)

are of this form. Note that A
(
B̂, Σ̂, Γ̂, P

N̂r
, P

M̂r

)
= F

(
B̂, Γ̂−1 ⊗ Σ̂, P

N̂r
, P

M̂r

)
. On-line

appendix E.1 provides detailed derivations of all of the statistics above.

Following the same logic that leads to the F statistic, we may generalize LR and J as

LRg

(
B̂, Ω̂, P

N̂r
, P

M̂r

)
= T

min{n,m}∑
i=1

log
(

1 + σ2
i

(
mat

(
((P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
))†/2vec(P

N̂r
B̂P

M̂r
)
)))

Jg

(
B̂, Ω̂, P

N̂r
, P

M̂r

)
= T log

(
1 +

∥∥∥mat
(

((P
M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
))†/2vec(P

N̂r
B̂P

M̂r
)
)∥∥∥2

2

)
.

These statistics reduce to the LR and J statistics when Ω̂ = Γ̂−1 ⊗ Σ̂.

Example 2. Suppose the parameter space in Example 1 is Sm instead. Suppose, moreover,

that B is estimated subject to the symmetry restriction so that B̂ ∈ Sm and Ψ̂ is an estimator

of the asymptotic covariance of vech(B̂). Then Donald et al. (2007) formulate a test of H0(r)

using a statistic expressible as F
(
B̂,DmΨ̂D′m, PM̂r

, P
M̂r

)
, where M̂r again estimates the null

space of B under H0(r). When the parameter space is Pm, Donald et al. (2007) propose a

statistic based on the eigenvalues of B̂ expressible as

t
(
B̂, Ψ̂, P

M̂r

)
=

√
T tr(P

M̂r
B̂P

M̂r
)√

vec′(Im)(P
M̂r
⊗ P

M̂r
)DmΨ̂D′m(P

M̂r
⊗ P

M̂r
)vec(Im)

.

Note that t
(
B̂, 1

m−r (D′mDm)−1, P
M̂r

)
=
√
T tr(P

M̂r
B̂P

M̂r
). On-line appendix E.2 provides

detailed derivations of the statistics above.

The statistics LR, A, J , F , and t comprise almost all of the statistics in the literature

(see Table 1).2 The remaining statistics await further discussion below. For now, we simply

note that each statistic is of the form T θτ(B̂, Ω̂, P
N̂r
, P

M̂r
), for some function τ and associated

scaling factor θ > 0 (see Assumptions K). In fact, each is of the form of a standardized measure

of the size of P
N̂r
B̂P

M̂r
(P

M̂r
B̂P

M̂r
in the symmetric case). Small values of this measure lend

support to H0(r), while large values indicate that H1(r) is true. We will see how this works

in the next section. We will also see that all of these statistics satisfy a plug–in principle

whereby their asymptotic behaviour under standard asymptotics mimics the behaviour of

infeasible analogues T θτ(B̂, Ω̂, PNr , PMr) where Nr and Mr are determined by B.

2It is worth emphasizing that while the expressions above serve the purpose of highlighting the common structure

of statistics for tests of rank, they are to be avoided for computational reasons. The corresponding representations

that avoid projection matrices and generalized inverses can be found in on-line appendices E.1 and E.2.
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3.2 Estimating the Null Spaces

In this section, our task will be to estimate the null spaces of B∗ ∈ Rn×m. Throughout this

section, we maintain the assumption that B̂ ∈ Gn×m. This is guaranteed if vec(B̂) is a non–

degenerate random vector (i.e. it has a continuous probability density function). It is also

guaranteed if vech(B̂) is non–degenerate when B̂ is restricted to Sm or Pm. This is due to

the fact that rank deficient matrices occupy sub-manifolds of the parameter space of lower

dimension and therefore of measure zero.

Definition 1 (Null Space Estimators). For B∗ ∈ Rn×m, a rank–r left (resp. right) null space

estimator of B∗ is defined as any random matrix N̂r ∈ Gn×(n−r) (resp. M̂r ∈ Gm×(m−r))

almost surely. We say that N̂r (resp. M̂r) is consistent for the left (resp. right) null space of

B∗ if P
N̂r

(resp. P
M̂r

) converges in probability to the orthogonal projection onto the left (resp.

right) null space of B∗.

The problem of estimating null spaces has a long history in the numerical analysis literature

(Golub & Van Loan, 1996; Hansen, 1998). The basic idea is to approximate B̂ by a reduced–

rank approximation (RRA), B̂RRA
r of rank r. If the approximation is good enough, then as B̂

approaches B∗, so will B̂RRA
r . We may then obtain consistent estimates of the null spaces of

B∗ as the null spaces of B̂RRA
r .

There are essentially two types of RRAs: decomposition–based approximations and norm–

based approximations. We discuss them briefly in turn. A more detailed discussion is relegated

to on-line appendix B.

Definition 2 (Decomposition–based Approximations). For B̂ ∈ Gn×m, the decomposition

B̂ = Û ŜV̂ ′ is rank–revealing if, Ŝ ∈ Rn×m is upper triangular, Û and V̂ and their inverses are

bounded, and whenever Ŝ is partitioned as
[
Ŝ11 Ŝ12

0 Ŝ22

]
with Ŝ11 ∈ Rr×r, then

(i) There is a K1 > 0, not dependent on B̂, such that σr(Ŝ11) ≥ K1σr(B̂).

(ii) There is a K2 > 0, such that σ1(Ŝ22) ≤ K2σr+1(B̂) and K2 = O(1) for any B̂ satisfying

B̂ − B̂∗ → 0 with B̂∗ = O(1), rank(B̂∗) = r, and σr(B̂
∗) = O−1(1).

A rank–revealing decomposition can be used to obtain the RRA

B̂DBA
r = Û

Ŝ11 Ŝ12

0 0

 V̂ ′.
We refer to this RRA as a decomposition–based approximation (DBA).
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The set of rank–revealing decompositions includes the singular value decomposition (SVD),

the LU decomposition with complete pivoting (LU), and the block LU decomposition (BLU).

When B̂ is restricted to Sm, the spectral decomposition (EIG) is also rank–revealing. All

of these decompositions have appeared in tests of rank (see Table 1). There are many more

that have not been utilized in statistics or econometrics. Examples include the QR decom-

position with pivoting, which is the preferred decomposition in numerical analysis due to its

computational expediency, and, when B̂ is restricted to Pm, the Cholesky rank–revealing de-

composition. These are illustrated in the Monte Carlo simulations of Section 5. The fact that

all of these decompositions are rank–revealing is demonstrated in on-line appendix B.1.3

Definition 3 (Norm–based Approximations). For B̂ ∈ Gn×m, let

B̂CDA
r ∈ argmin{‖B̂ −A‖Θ : A ∈ Rn×m, rank(A) ≤ r},

where Θ ∈ Pnm+ . We term this the Cragg and Donald approximation (CDA), after Cragg &

Donald (1997), who first proposed it in econometrics.4

The CDA nests a number of other RRAs as special cases. When Θ is the identity matrix

we obtain the SVD approximation. When Θ is a Kronecker product of square matrices of sizes

m and n, we obtain the RRA implicit in the Robin & Smith (2000) decomposition (RSD).

The null space estimators in Example 1 are obtained from B̂ by an RSD with Θ = Γ̂−1 ⊗ Σ̂.

When Θ is not of Kronecker product form, there are no known analytical solutions. However,

a novel iterative scheme for obtaining the CDA can be found in on-line appendix B.2, which

works quite well in numerical experiments.

To summarize, Table 1 lists the implicit null space estimators in a selection of statistics in

the literature. We are now able to extract the following lemma which describes the asymptotics

of null space estimators in general.

Lemma 1. Let B̂ be an estimator of B∗ ∈ Rn×m such that B̂ ∈ Gn×m, and
√
T (B̂ − B∗) =

Op(1). Let rank(B∗) = r and let Nr ∈ Gn×(n−r) and Mr ∈ Gm×(m−r) span the left and right

null spaces of B∗ respectively. Let the RRAs {B̂RRA
i : 0 ≤ i < min{n,m}} be either DBAs or

CDAs. In the latter case, we assume that cond(Θ) = Op(1). Finally, let N̂i (resp. M̂i) span

the left (resp. right) null space of B̂RRA
i for 0 ≤ i < min{n,m}.

3Of course, not every matrix decomposition is rank–revealing. Example of non–rank–revealing decompositions

include the Jordan canonical form for square matrices, the LU decomposition with partial or no pivoting, and the

QR decomposition with no pivoting (see on-line appendix B.1 for a discussion).
4A precursor to this RRA is the one proposed by Gabriel & Zamir (1979), although they take Θ to be diagonal.
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Table 1: Reduced–Rank Approximations Utilized in Statistics for Tests of Rank.

Paper Statistic RRA Paper Statistic RRA

Bartlett (1947) F RSD Anderson (1951) LR RSD

Anderson (1951) A RSD Johansen (1988) F RSD

Stock & Watson (1988) NA† EIG Johansen (1991) J RSD

Kleibergen & van Dijk (1994) F BLU Robin & Smith (1995) A BLU

Cragg & Donald (1996) F LU Yang & Bewley (1996) F RSD

Yang & Bewley (1996) κ‡ RSD Cragg & Donald (1997) F CDA

Bierens (1997) κ‡ RSD Lucas (1997) NA† BLU

Lucas (1998) NA† BLU Caner (1998) F RSD

Quintos (1998) F RSD Gonzalo & Pitarakis (1999) κ‡ RSD

Lütkepohl & Saikkonen (1999) F RSD Robin & Smith (2000) κ‡ RSD

Nyblom & Harvey (2000) t EIG Boswijk & Lucas (2002) NA† BLU

Breitung (2002) t EIG Kleibergen & Paap (2006) F SVD

Donald et al. (2007) F LU Donald et al. (2007) F SVD

Donald et al. (2007) F CDA Donald et al. (2007) t EIG

Avarucci & Velasco (2009) F SVD Cavaliere et al. (2010a) F RSD

Cavaliere et al. (2010b) F RSD Nielsen (2010) t EIG

Johansen & Nielsen (2012) NA† RSD Cavaliere et al. (2014) F RSD

†These statistics are not of any form we have considered in this paper. They are discussed in Section 4.

‡These statistics satisfy Assumptions K.

(i)
√
T (B̂ − B̂RRA

r ),
√
T (P

N̂r
− PNr), and

√
T (P

M̂r
− PMr) are Op(1).

(ii) If 0 ≤ i < r then P
N̂i
B̂P

M̂i
= O−1

p (1). If n = m and B∗ ∈ Pm, then P
M̂i
B̂P

M̂i
= O−1

p (1)

and P
N̂i
B̂P

N̂i
= O−1

p (1).

(iii) If 0 ≤ i < r and the rank–i RRA is continuous at B∗, then P
N̂i
− PN∗i = op(1) and

P
M̂i
− PM∗i = op(1), where N∗i and M∗i span the left and right null spaces of (B∗)RRAi

respectively.

Lemma 1 (i) establishes the rates of convergence of DBAs, CDAs, and their associated

null space estimators. Since the Euclidean norm of the difference of two orthogonal projection

matrices of the same rank is the Euclidean norm of the vector of sines of all of the canonical

angles between the two subspaces (Stewart & Sun, 1990), Lemma 1 (i) proves that the canon-

ical angles between the estimated and population null spaces are Op(T
−1/2). Dufour & Valery

(2011) obtain the special case of this result where B∗, B̂ ∈ Pm and B̂RRA
i is the EIG RRA.

Lemma 1 (ii) states that when one estimates null spaces of dimensions that are too high,

the null space estimators capture non–vanishing components of B̂ in the sense that P
N̂i
B̂P

M̂i

remains bounded away from zero in probability. When B̂ approaches Pm, the left and right

null space estimators are equally capable of capturing non–vanishing components of B̂.

10



Lemma 1 (iii) states that if the RRA is continuous at B∗, then the null space estimators

converge in probability. It follows that the non–vanishing components of B̂ can be estimated

consistently as P
N̂i
B̂P

M̂i

p→ PNiB
∗PMi 6= 0. Unfortunately, RRAs are not continuous ev-

erywhere. However, continuity is known to be generic for the SVD, RSD, and EIG RRAs

(Stewart & Sun, 1990; Markovsky, 2012) and it can also be shown to be generic for simple

DBAs such as the LU, Cholesky, and QR RRAs. No results are available for the general CDA,

although one might well conjecture that continuity is generic for all RRAs.

3.3 The Plug–in Principle

We are now in a position to see how null space estimators determine the behaviour of statistics

for tests of rank. Consider first the following set of assumptions.

Assumptions A. B∗ ∈ Rn×m. B̂ ∈ Rn×m and Ω̂ ∈ Snm are estimators indexed by T . Each

vec(B̂) ∈ Rnm is a non–degenerate random vector. Ω̂ ∈ Pnm+ almost surely.
√
T (B̂ − B∗), Ω̂,

and Ω̂−1 are Op(1).

Assumptions A are satisfied in the context of Example 1. They also arise in much more

general settings, e.g. generalized method of moments and maximum likelihood estimation.

Note that Ω̂ may or may not be a consistent estimator of the asymptotic variance of B̂. In

fact, it is not even required to converge, allowing for the fixed–b hypothesis testing framework

(Kiefer et al., 2000; Kiefer & Vogelsang, 2002a,b, 2005).

We will also want to prove results for symmetric matrices, which we considered in Example

2. In that case, we will rely on the following analogous set of assumptions.

Assumptions B. B∗ ∈ Sm. B̂ ∈ Sm and Ψ̂ ∈ Sm(m+1)/2 are estimators indexed by T .

Each vech(B̂) ∈ Rm(m+1)/2 is a non–degenerate random vector. Ψ̂ ∈ Pm(m+1)/2
+ almost surely.

√
T (B̂ −B∗), Ψ̂, and Ψ̂−1 are Op(1). In this context, we will set Ω̂ = DmΨ̂D′m.

The alternatives H0(r), HT (r), and H1(r) interact with Assumptions A and B by setting

the rank of B∗. In particular, under either Assumptions A or B, rank(B∗) = r under H0(r)

or HT (r) and rank(B∗) > r under H1(r).

Under these remarkably minimal assumptions, we will be able to prove the following plug–

in principle for a large class of statistics

Definition 4 (The Plug–in Principle in Standard Asymptotics). Suppose B̂ ∈ Rn×m and

Ω̂ ∈ Pnm are estimators indexed by T , B∗ ∈ Rn×m, and
√
T (B̂ − B∗) = Op(1). For a given

11



0 ≤ r < min{n,m} and RRA, let N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) span the left and right

null spaces of B̂RRA
r respectively. The weak plug–in principle for statistics of tests of rank is

said to hold for the statistic T θτ(B̂, Ω̂, P
N̂r
, P

M̂r
) relative to the null spaces of B∗ if

(i) Under either H0(r) or HT (r), T θτ(B̂, Ω̂, P
N̂r
, P

M̂r
)− T θτ(B̂, Ω̂, PNr , PMr) = Op(T

−1/2),

where Nr ∈ Gn×(n−r) and Mr ∈ Gm×(m−r) span the left and right null spaces of B∗

respectively.

(ii) Under H1(r), then |τ(B̂, Ω̂, P
N̂r
, P

M̂r
)| = O−1

p (1) if |τ(B̂, Ω̂, PNr , PMr)| = O−1
p (1), where

Nr ∈ Gn×(n−r) and Mr ∈ Gm×(m−r) span the left and right null spaces of (B∗)RRAr

respectively.

It is said to satisfy the strong plug–in principle relative to the null spaces of B∗ if additionally

(iii) Under H1(r), τ(B̂, Ω̂, P
N̂r
, P

M̂r
)− τ(B̂, Ω̂, PNr , PMr) = op(1), where Nr ∈ Gn×(n−r) and

Mr ∈ Gm×(m−r) span the left and right null spaces of (B∗)RRAr respectively.

Condition (i) requires that the feasible and infeasible statistics differ from each other by

no more than Op(T
−1/2) under H0(r) and HT (r). This is much stronger than asymptotic

equivalence in large sample statistics, which requires only that the two have the same limiting

distribution (Lehmann & Romano, 2005, p. 577). We will see, however, that it is easily

satisfied. Condition (ii) ensures that a test of rank has power against H1(r) if the associated

infeasible test has power. Condition (iii) strengthens (ii) in that it requires the feasible and

infeasible statistics to diverge at the same rate under the global alternative.

The variant of the plug–in principle we will prove applies to the class of statistics of the

form T θτ(B̂, Ω̂, P
N̂r
, P

M̂r
) = T θκ

(
P
N̂r
B̂P

M̂r
, (P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
)
)

, where κ satisfies

the following set of assumptions.

Assumptions K. P ⊆ X ⊆ Rn×m. P is closed and convex. Y ⊆ Rnm×nm. κ : X ×Y → R is

a measurable function and satisfies:

(i) There exist measurable functions L1 and L2 such that for all X, X̂ ∈ X and Y, Ŷ ∈ Y,

|κ(X̂, Ŷ )− κ(X,Y )| ≤ L1(X̂,X, Ŷ , Y )‖X̂ −X‖+ L2(X̂,X, Ŷ , Y )‖Ŷ − Y ‖.

For θ > 0, L1(X̂,X, Ŷ , Y ) = O(‖X‖2θ−1) and L2(X̂,X, Ŷ , Y ) = O(‖X‖2θ) if ‖Y †‖ =

O(1) as ‖X̂ −X‖+ ‖Ŷ − Y ‖ → 0.

(ii) For every C1 > 0 and C2 > 0 there exists a C > 0 such that for all X ∈ P and Y ∈ Y

with vec(X) ∈ span(Y ), ‖X‖ ≥ C1 and ‖Y ‖ ≤ C2 imply that |κ(X,Y )| ≥ C.
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Table 2: Properties of the Most Common Statistics for Tests of Rank.

τ θ P X Y κ(X,Y )

LR 1 Rn×m Rn×m Pm ⊗ Pn
∑min{n,m}

i=1 log(1 + σ2
i (mat(Y †/2vec(X))))

LRg 1 Rn×m Rn×m Pnm
∑min{n,m}

i=1 log(1 + σ2
i (mat(Y †/2vec(X))))

A 1 Rn×m Rn×m Pm ⊗ Pn ‖Y †/2vec(X)‖2

F 1 Rn×m Rn×m Pnm ‖Y †/2vec(X)‖2

J 1 Rn×m Rn×m Pm ⊗ Pn log
(
1 + ‖mat(Y †/2vec(X))‖22

)
Jg 1 Rn×m Rn×m Pnm log

(
1 + ‖mat(Y †/2vec(X))‖22

)
t 1

2 Pm Sm×m Pm(m+1)/2 tr(X)
vec′(Im)Y vec(Im)

The Lipschitz condition of Assumptions K (i) allows the weak plug–in principle to hold

under the null and local alternatives. It also allows the strong plug–in principle to hold under

the global alternative. Assumption K (i) also reveals that the scaling factor, θ, is determined

by the shape of the test statistic at the origin. On the other hand, the boundedness condition

in Assumption K (ii) allows tests based on the feasible and infeasible statistics to have power

against H1(r). Note that boundedness of κ away from zero is only ensured on P × Y rather

than the potentially larger set X × Y. This is to allow for the t test of Example 2, which has

power against positive semi–definite matrices of rank higher than r but not against general

matrices of rank higher than r. That is, the t statistic in Example 2 diverges under H1(r) not

just because P
M̂r
B̂P

M̂r
= O−1

p (1) but also because P
M̂r
B̂P

M̂r
approaches P = Pm.

All of the statistics we have considered so far satisfy Assumptions K (see Table 2). Robin

& Smith (2000) take κ(X,Y ) = ‖Y †/2vec(X)‖2 +O(‖Y †/2vec(X)‖3) as Y †/2vec(X)→ 0. This

class of statistics is asymptotically equivalent to the class of statistics satisfying Assumptions

K with θ = 1, P = X = Rn×m, and Y = Pnm. Another option is to take any norm ϕ on Rnm

and formulate a statistic with κ(X,Y ) = ϕ2(Y †/2vec(X)) (the F statistic is a special case of

this). Here, θ = 1, P = X = Rn×m, and Y = Pnm.

We can now state the first main theorem of the paper.

Theorem 1. Suppose Assumptions K hold along with either Assumptions A or B. Suppose

the null space estimators N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) are obtained by either a DBA

or a CDA with cond(Θ) = Op(1). Let Nr ∈ Gn×(n−r) and Mr ∈ Gm×(m−r) span the left

and right null spaces of (B∗)RRAr for r ≤ rank(B∗). Suppose (i) the following inclusions hold

almost surely

PNrB̂PMr ∈ X , (PMr ⊗ PNr)Ω̂(PMr ⊗ PNr) ∈ Y,

P
N̂r
B̂P

M̂r
∈ X , (P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
) ∈ Y,

13



and (ii) the following conditions hold

d(PNrB̂PMr ,P) = op(1), d(P
N̂r
B̂P

M̂r
,P) = op(1).

Then T θτ(B̂, Ω̂, P
N̂r
, P

M̂r
) = T θκ

(
P
N̂r
B̂P

M̂r
, (P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
)
)

satisfies the weak

plug–in principle for statistics of tests of rank. If, additionally, the RRA is continuous at B∗,

then the statistic satisfies the strong plug–in principle.

Theorem 1 requires two additional assumptions: (i) that the feasible and infeasible statis-

tics be well defined and (ii) that the terms PNrB̂PMr and P
N̂r
B̂P

M̂r
approach the region where

the statistics can have power. Condition (ii) is automatically satisfied for statistics in which

X = P (see Table 2). The intuition behind Theorem 1 is as follows. Under H0(r) or HT (r), we

know from Lemma 1 (i) that N̂r and M̂r are consistent null space estimators and this together

with condition (i) of Assumptions K (i.e. smoothness), implies that substituting the null space

estimators for their limiting values affects negligible change to the value of the statistic; this

satisfies condition (i) of the plug–in principle. Under H1(r), we know by Lemma 1 (ii) that

P
N̂r
B̂P

M̂r
is bounded away from zero in probability and if it additionally approaches P then

condition (ii) of Assumptions K implies that κ
(
P
N̂r
B̂P

M̂r
, (P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
)
)

will

be bounded away from zero in probability; this satisfies condition (ii) of the plug–in principle.

Finally, under H1(r), when the RRA is continuous at B∗, then we know from Lemma 1 (iii)

that the null space estimators will converge to the null spaces of (B∗)RRAr and the smoothness

of κ again implies that the substitution of the null space estimators for their population ana-

logues has negligible effect on the rate of divergence of the statistic under H1(r); this satisfies

condition (iii) of the plug–in principle.

It follows from Theorem 1 that all of the statistics of the standard asymptotics literature

(and the many more we have listed above) satisfy the weak plug–in principle; when the

underlying RRA is continuous at the population matrix (a feature we have conjectured to be

generic for all RRAs), they also satisfy the strong plug–in principle.

It also follows from Theorem 1 that statistics with common functional form but different

null space estimators differ from each other by Op(T
−1/2) under H0(r) and HT (r). Thus, the

Cragg & Donald (1996), Cragg & Donald (1997), and Kleibergen & Paap (2006) statistics

do not only have the same limiting distribution under H0(r) and HT (r), but they differ from

each other by Op(T
−1/2). When Ω̂ is of Kronecker product form, we may add to the list

the statistics of Anderson (1951), Robin & Smith (1995), and Robin & Smith (2000). In the

symmetric case, we have additionally that all three F statistics proposed by Donald et al.
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(2007) differ from each other by Op(T
−1/2) under H0(r) or HT (r). In choosing between these

equivalent statistics then, the practitioner must rely on either small sample performance or

numerical convenience in choosing the right test. In the latter case, we note that the CDA with

non–Kronecker product weighting matrix is the most computationally expensive of the RRAs

considered in this paper. Next are the RSD, SVD, and EIG RRAs, which although much faster

than the CDA, are not the most efficient computationally. The fastest available algorithms

are the LU and QR algorithms (Hansen, 1998; Golub & Van Loan, 1996). Therefore, these

latter algorithms are recommended for high intensity computations such as the bootstrap.

An immediate corollary of Theorem 1 is that the test for identification proposed by Wright

(2003) does not have to be conducted using the Cragg & Donald (1997) statistic but can instead

be done using any other asymptotically equivalent F statistic. The same statistic can also be

avoided in the rank estimator proposed by Cragg & Donald (1997).

The weak plug–in principle simplifies the asymptotics of tests of rank tremendously. It

allows us to immediately see the asymptotic distribution under H0(r) and HT (r) – we simply

derive the asymptotic distribution as if the population null spaces were known. It also allows

us to obtain the asymptotics under H1(r) and misspecification. The strong plug–in principle,

in turn, allows us (under possibly generic conditions) to obtain precise estimates of the rates

of divergence of the statistics under H1(r). See Section 5 for Monte Carlo illustrations of the

weak and strong plug–in principles in standard asymptotics.

Note that we may relax the condition that Ω̂−1 = Op(1) (resp. Ψ̂−1 = Op(1)) under

Assumptions A (resp. B). Here, there are two cases to consider: reducible singularity, which can

be treated by rescaling (this is taken up in the next section), and irreducible singularity, which

requires regularization (the terminology is due to Dufour & Valery (2011)). In the latter case,

we may pursue the approach of Moore (1977) if we can ensure that (PMr ⊗PNr)Ω̂(PMr ⊗PNr)

satisfies the conditions of Andrews (1987). If not, we will need to substitute Y † in Table

2 with one of the regularized inverses proposed by Lütkepohl & Burda (1997) or Dufour &

Valery (2011). Recently, Duplinskiy (2014) has proposed avoiding regularization altogether

and simply bootstrapping the non–standardized test statistics. Donald et al. (2014) consider

this problem in greater detail.

As an application of the plug–in principle, we explicitly derive the limiting distributions

of some of the statistics we have considered above.

Corollary 1. Suppose Assumptions K and A hold and suppose we have null space esti-

mators N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) obtained by either a DBA or a CDA with
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cond(Θ) = Op(1). Under H0(r) or HT (r), let Nr ∈ Gn×(n−r) and Mr ∈ Gm×(m−r) span

the left and right null spaces of B∗ respectively. Then if T θτ
(
B̂, Ω̂, PNr , PMr

)
d→ ζ, then

T θτ
(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→ ζ. In particular, if

(√
Tvec(N ′rB̂Mr), (Mr ⊗Nr)

′Ω̂(Mr ⊗Nr)
)

d→ (ξr,Ωr),

then we have

LRg

(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

, F
(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

,

Jg

(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→ ‖mat(Ω−1/2

r ξr)‖22.

Corollary 1 implies that, if
√
Tvec(B̂ − B)

d→ N(0,Φ) and Ω̂ converges to a constant

positive definite matrix, then LRg and F converge in distribution to a quadratic form in

(n − r)(m − r) normal random variables, while Jg converges to the square of the 2–norm of

a random matrix with normal entries. Under correct specification (i.e. Ω̂
p→ Φ) and H0(r),

F
d→ χ2((n − r)(m − r)) and Jg

d→ ‖Z‖22, where vec(Z) ∼ N(0, I(n−r)(m−r)). Under correct

specification and HT (r), F
d→ χ2

(
(n− r)(m− r), ‖N ′rDMr‖2(Mr⊗Nr)′Φ(Mr⊗Nr)

)
and Jg

d→∥∥Z + mat
(
((Mr ⊗Nr)

′Φ(Mr ⊗Nr))
†/2vec(N ′rDMr)

)∥∥2

2
, with Z as before. For the limiting

distribution of LRg and F underH0(r) andHT (r) and incorrect specification (i.e. Ω̂
p→ Ω 6= Φ),

the reader is referred to Lemma 8.2 of White (1994). The limiting distributions of Jg under

H0(r) and HT (r) and incorrect specification is non–standard and does not appear to simplify

further than what is stated in the result above. Under fixed–b asymptotics Ω̂ does not converge

in probability although, under the usual assumptions, the limiting distributions of the statistics

above are free of nuisance parameters. The reader is referred to the fixed–b literature for the

limiting distributions (Kiefer et al., 2000; Kiefer & Vogelsang, 2002a,b, 2005).

Corollary 1 generalizes the misspecification results of Robin & Smith (2000), who consider

the asymptotics of only the A statistic. It also generalizes the local power result of Cragg &

Donald (1997), who consider only the F statistic that employs the CDA null space estimator.

Finally, it allows for more general functional forms of κ than previously used in the literature.

Corollary 2. Suppose Assumptions K and B hold and suppose we have a null space estimator

M̂r ∈ Gm×(m−r) obtained by either a DBA or a CDA with cond(Θ) = Op(1). Under H0(r)

or HT (r), let Mr ∈ Gm×(m−r) span the null space of B∗. Then if T θτ
(
B̂, Ω̂, PMr , PMr

)
d→ ζ,

then T θτ
(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ζ. In particular, if

(√
Tvech(M ′rB̂Mr), D

†
m−r(Mr ⊗Mr)

′Ω̂(Mr ⊗Mr)D
†
m−r

′
)

d→ (ξr,Ωr),
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then we have

LRg

(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

, F
(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

,

Jg

(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ‖mat(Dm−rΩ

−1/2
r ξr)‖22,

and if Mr is chosen to have orthogonal columns then

t
(
B̂, Ψ̂, P

M̂r

)
d→ tr(mat(Dm−rξr))

(vec′(Im−r)Dm−rΩrD′m−rvec(Im−r))1/2
.

It follows from Corollary 2 that if
√
Tvech(B̂−B)

d→ N(0,Φ) and Ψ̂ converges in probability

to a positive definite matrix, then LRg and F converge in distribution to a quadratic form in

(m− r)(m− r + 1)/2 normal random variables, Jg converges to the square of the 2–norm of

a random matrix with normal entries, and t converges to a normal random variable. Under

correct specification (i.e. Ψ̂
p→ Φ) and H0(r), F

d→ χ2((m−r)(m−r+1)/2), Jg
d→ ‖Z‖22, where

Z = Z ′ and vech(Z) ∼ N(0, I(m−r)(m−r+1)/2), and t
d→ N(0, 1). Under correct specification

and HT (r), F
d→ χ2

(
(m− r)(m− r + 1)/2, ‖vech(M ′rDMr)‖2D†m−r(Mr⊗Mr)′Φ(Mr⊗Mr)D†m−r

′

)
,

Jg
d→
∥∥∥Z + mat(Dm−r((D

†
m−r(Mr ⊗Mr)

′Φ(Mr ⊗Mr)D
†
m−r

′)−1/2vech(M ′rDMr)))
∥∥∥2

2
, with Z

the same as before, and t
d→ N

(
tr(M ′rDMr)

vec′(Im−r)(Mr⊗Mr)′Φ(Mr⊗Mr)vec(Im−r) , 1
)

. For the limiting

distribution of F and t under H0(r) and HT (r) and incorrect specification (i.e. Ψ̂
p→ Ψ 6= Φ),

the reader is referred again to Lemma 8.2 of White (1994). The limiting distributions of

Jg under H0(r) and HT (r) and incorrect specification is, again, not amenable to further

simplification. Fixed–b asymptotics are treated in the literature cited following Corollary 1.

Donald et al. (2007) proved the H0(r) and H1(r) results for F and t in the case of correct

specification. Thus Corollary 2 extends their results in the direction of local power, misspeci-

fication, fixed–b asymptotics, and more general functional forms of the statistics.

4 Tests of Rank Under Non–Standard Asymptotics

In this section, we will extend the basic theory to more general settings that allow for coin-

tegration. Just as before, we consider some well–known examples in the literature before

proceeding to generalize null space estimation and the plug–in principle.

4.1 Preliminary Examples

Cointegration presents some truly fascinating anomalies for tests of rank. In the next couple

of examples we will show that the framework of Section 3 cannot be applied verbatim. The
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examples will, however, point to the necessary generalization.

Example 3. Let {εt : t ≥ 1} be i.i.d. N(0,Σ), Σ ∈ Pm+ , y0 = 0, and

∆yt = Byt−1 + εt, t = 1, . . . , T.

We assume that the roots of the characteristic polynomial of the system are either outside

the unit circle or else at 1. Assume for the moment that the model generates data of order

of integration no higher than 1 (see Theorem 4.2 of Johansen (1995a) for the conditions).

Then r = rank(B) < m is the number of cointegration relationships. Let Nr ∈ Gm×(m−r) and

Mr ∈ Gm×(m−r) span the left and right null spaces of B respectively. Let B̂ and Σ̂ be the

OLS estimators of B and Σ and let Ω̂ = Γ̂−1 ⊗ Σ̂, where Γ̂ = 1
T

∑T
t=1 yt−1y

′
t−1.

It is easy to check that Johansen’s (1988) trace statistic is LR
(
B̂, Σ̂, Γ̂, P

N̂r
, P

M̂r

)
, where

the null space estimators are the RSD estimators, and has the same limiting distribution as

that of LR
(
B̂, Σ̂, Γ̂, PNr , PMr

)
. This suggests that the plug–in principle holds here. Un-

fortunately, however, Ω̂ converges to a singular matrix so Assumptions A fail. On closer

inspection, however, we find that Ω̂’s rate of convergence along its asymptotic null space is

counterbalanced by B̂’s rate of convergence along its asymptotic right null space. In particu-

lar, (T 1/2Mr ⊗ In)′Ω̂(T 1/2Mr ⊗ In) and TB̂Mr are each Op(1). This counterbalancing of the

accelerated rates of convergence is of crucial importance in the theory of cointegration.

Now suppose that the order of integration is no higher than 2 (see Theorem 4.6 of Jo-

hansen (1995a) for the conditions). Then Johansen (1995b) finds that Mr = [ Mr1 Mr2 ],

where
(
[ T 1/2Mr1 T 3/2Mr2 ]′ ⊗ In

)
Ω̂
(
[ T 1/2Mr1 T 3/2Mr2 ]⊗ In

)
and B̂[ TMr1 T 2Mr2 ]

are Op(1). Thus, there may be heterogenous rates of accelerated convergence that need to be

taken into account.

The phenomenon illustrated in Example 3 is well known in cointegration (Johansen, 1995a)

and in regressions with polynomial trends (Hamilton, 1994, Chapter 16). B̂ and Ω̂ shrink to

zero along certain directions at offsetting rates. Thus, all that is required to evaluate the

asymptotics of the infeasible statistic is to rescale B̂ and Ω̂ by the appropriate power of T

along the appropriate directions (provided the statistic is invariant to such rescaling). For this

reason, Dufour & Valery (2011) refer to the limiting singularity of Ω̂ as reducible singularity.

We will show that if the statistic is invariant to such rescaling, then the feasible statistic

continues to mimic the infeasible statistic, thus proving the plug–in principle.5 However, this

is not the only subtlety in cointegration rank testing as the next example shows.

5In fact, it will be seen that the rates found in Example 3 are stronger than necessary for satisfying the coun-
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Example 4. Let {(ε′t, u′t)′ : t ≥ 1} be a 2m–dimensional sequence of i.i.d. N
(
[ 0

0 ] ,
[

Σ 0
0 B

])
random vectors, Σ ∈ Pm+ , x0 = 0, and

yt = xt + εt, xt = xt−1 + ut, t = 1, . . . , T.

The rank of B ∈ Rm×m determines the number of stochastic trends in the model. Let Mr ∈

Gm×(m−r) span the null space of B. Let y = T−1
∑T

t=1 yt, Σ̂ = T−2
∑T

t=1(yt−y)(yt−y)′ ∈ Pm+ ,

and Γ̂ = T−4
∑T

t=1

∑t
s=1(ys − y)

∑t
s=1(ys − y)′. We will work with B̂ = Σ̂−1/2Γ̂Σ̂−1/2.

Nyblom & Harvey (2000) show that B̂ converges in distribution to a random matrix whose

null space is exactly the span of Mr. As [ Mr⊥
√
TMr ]′ B̂ [ Mr⊥

√
TMr ] converges in

distribution to an almost surely positive definite matrix, they propose the t–type statistic

T tr(P
M̂r
B̂P

M̂r
), where M̂r is the EIG null space estimator based on B̂. Experience would

then suggest that this statistic should mimic T tr(PMrB̂PMr). Surprisingly, however, this is

not the case. It would seem then that the plug–in principle fails.

In fact, the plug–in principle still holds but for a different matrix than Mr. One can

check that B̂Mr = Op(T
−1/2). On the other hand, the Poincaré Separation Theorem im-

plies that the smallest m − r eigenvalues of B̂ are Op(T
−1). Thus, normalizing and col-

lecting the associated eigenvectors in MrT ∈ Gm×(m−r), we have that B̂MrT = Op(T
−1).

Therefore, we find the surprising fact that Mr fails to capture the appropriate rate of con-

vergence of B̂ to singularity and there are other directions along which B̂ converges faster.

Another example, based on a deeper analysis of the asymptotics of B̂, is MrT =
√
T Σ̂1/2(Im−

Mr⊥(M ′r⊥Γ̂Mr⊥)−1M ′r⊥Γ̂)Mr(M
′
rΣMr)

−1/2 = Mr + op(1) and satisfies B̂MrT = Op(T
−1). In

both cases, B̂ converges faster along MrT than it does along Mr, even though PMrT
converges

to PMr . The crucial point to note here is that any reasonable null space estimators will detect

MrT rather than Mr. Thus, the plug–in principle continues to hold, albeit for MrT rather than

Mr and the limiting distribution of T tr(PMrT
B̂PMrT

) is precisely the limiting distribution of

the Nyblom and Harvey statistic. See on-line appendix E.4 for the mathematical details.

Example 4 suggests three additional subtleties. First, B̂ need not converge in probability

even as some linear combinations of its rows and columns converge to zero in probability.

Second, rescaling should be allowed along possibly random and T–varying directions. Third,

statistics in cointegration may be scaled differently than in standard asymptotics as T appears

with a power of 1 instead of 1
2 in the Nyblom & Harvey (2000) statistic. The appropriate

scaling factor will be explained below.

terbalancing assumption we will need for the plug–in principle. See on-line appendix E.3 for further details on the

I(1) case.
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Using these statistics, we will be interested in testing H0(r) against H1(r) and HT (r),

which is now defined as

HT (r) : B = B∗ + T−ωD, rank(B∗) = r,

where ω ≥ 0 ensuring that the local alternative does not stray too far away from B∗. In

Example 3 the appropriate ω is 1 for the I(1) case and 2 for the I(2) case (Hubrich et al.,

2001). In Example 4, the appropriate ω is 2. See on-line appendices E.3 and E.4.6

4.2 Estimating the Null Spaces

In this section we consider the performance of null space estimators when B̂ converges to zero

along non–constant directions at heterogenous rates. The main idea remains the same, B̂ will

be seen to approach a sequence of reduced–rank matrices B̂∗ whose limiting null spaces we

would like to estimate. If B̂RRA
r approximates B̂ well enough, then it will approximate B̂∗ as

well and we may estimate the null spaces of interest by the null spaces of B̂RRA
r . Thus, B̂∗

plays the role that B∗ played in Section 3.2.

Lemma 2. Let B̂ be an estimator indexed by T such that B̂ ∈ Gn×m almost surely and

B̂ = Op(1). Let Nr ∈ Gn×(n−r) and Mr ∈ Gm×(m−r) and suppose there exists sequences of

possibly random matrices NrT ∈ Gn×(n−r) and MrT ∈ Gm×(m−r), whose singular values are

bounded away from zero in probability, PNrT

p→ PNr and PMrT

p→ PMr , and, for γ > 0,

σr(N
′
r⊥B̂Mr⊥) = O−1

p (1), T γN ′rT B̂ = Op(1), T γB̂MrT = Op(1), T γN ′rT B̂MrT = Op(1).

Let the RRAs {B̂RRA
i : 0 ≤ i < min{n,m}} be either DBAs or CDAs. In the latter case, we

assume that cond(ΘT ) = Op(1), where ΘT = Z ′TΘZT and ZT = [ Mr⊥ MrT ]⊗[ Nr⊥ NrT ].

Let N̂i (resp. M̂i) span the left (resp. right) null space of B̂RRA
i for 0 ≤ i < min{n,m}. Finally,

set B̂∗ = [ Nr⊥ NrT ]−1′
[
N ′r⊥B̂Mr⊥ 0

0 0

]
[ Mr⊥ MrT ]−1.

(i) T γ(B̂−B̂∗), T γ(B̂−B̂RRA
r ), T γ(P

N̂r
−PNrT

)[ Nr⊥ NrT ], and T γ(P
M̂r
−PMrT

)[ Mr⊥ MrT ]

are Op(1).

(ii) If 0 ≤ i < r and the null spaces are estimated by DBA, then P
N̂i
B̂P

M̂i
= O−1

p (1). If,

on the other hand, the null spaces are estimated by CDA, then P
N̂iT

B̂TPM̂iT
= O−1

p (1)

and [ Nr⊥ NrT ]′P
N̂i
B̂P

M̂i
[ Mr⊥ MrT ] = O−1

p (1), where N̂iT = [ Nr⊥ NrT ]−1N̂i,

M̂iT = [ Mr⊥ MrT ]−1M̂i, and B̂T = [ Nr⊥ NrT ]′B̂[ Mr⊥ MrT ].

6Of course, more complicated local alternatives can also be considered (e.g. Hallin et al. (2016)). Since this is

highly contingent on the DGP, we opt to simplify the exposition by considering only the simplest case.
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If n = m, Nr⊥ = Mr⊥, NrT = MrT , and d(M ′r⊥B̂Mr⊥,Pr) = op(1), then P
M̂i
B̂P

M̂i
=

O−1
p (1) and P

N̂i
B̂P

N̂i
= O−1

p (1) for the DBA and P
M̂iT

B̂TPM̂iT
= O−1

p (1) and P
N̂iT

B̂TPN̂iT
=

O−1
p (1) for the CDA.

(iii) If 0 ≤ i < r and the distance between B̂∗ and the set of discontinuity points of the

rank–i RRA is bounded away from zero in probability, then P
N̂i
− P

N̂∗i
= op(1) and

P
M̂i
− P

M̂∗i
= op(1), where N̂∗i and M̂∗i span the left and right null spaces of (B̂∗)RRAi

respectively.

The assumptions of Lemma 2 specialize to those of Lemma 1 when NrT = Nr and

MrT = Mr span the null spaces of some matrix B∗ and
√
T (B̂ − B∗) = Op(1) so that

γ = 1
2 and B̂∗ = B∗. These assumptions accommodate the features we have documented

in Examples 3 and 4. First, B̂ is allowed to converge along NrT and MrT at any non–

standard rate γ and, since they both depend on T , heterogeneous rates are also allowed. In

the I(1) case of Example 3, γ = 1
2 , NrT = Nr, and MrT = T 1/2Mr, while in the I(2) case

MrT = [ T 1/2Mr1 T 3/2Mr2 ]. In this regard, the condition that NrT and MrT have singular

values bounded away from zero in probability is important in order to to ensure that they

specify proper directions along which B̂ goes to zero.7 Second, the matrices NrT and MrT

may be random, allowing for the setting we had in Example 4, where γ = 1 and NrT = MrT

were chosen as
√
T Σ̂1/2(Im −Mr⊥(M ′r⊥Γ̂Mr⊥)−1M ′r⊥Γ̂)Mr(M

′
rΣMr)

−1/2. Third, B̂ is only

required to converge in probability along NrT and MrT but its components along Nr⊥ and

Mr⊥ are only required to be bounded in probability. This allows for the scenario we witnessed

in Example 4, where B̂ converges in distribution, but not in probability, along Nr⊥ and Mr⊥.

In this regard, the boundedness of σr(N
′
r⊥B̂Mr⊥) away from zero in probability is necessary

in order to ensure B̂ has an r× r asymptotically surviving component even as its components

along NrT and MrT are vanishing. When B̂ converges to a fixed rank–r matrix, as in Example

3 or Section 3, this boundedness condition is redundant.

It is important to emphasize that γ, the rate of convergence of B̂ along NrT and MrT ,

need not be restricted to integer multiples of 1
2 but can take any positive value in general. For

cointegrated stable processes (Caner, 1998) and fractionally cointegrated processes (Johansen

& Nielsen, 2012), for example, γ can take values in the interval
(

1
2 ,∞

)
.

Lemma 2 (i) proves that even though B̂ is not ensured to converge, it does approach a

random sequence B̂∗ of matrices of rank–r at a rate of Op(T
−γ). The rates of convergence of

7Otherwise, B̂MrT
p→ 0 could occur not because B̂ converges to zero in probability along MrT but because

certain line combinations of the columns of MrT converge to zero in probability.
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DBAs and CDAs to B̂∗ are also found to be Op(T
−γ). The rates of convergence of the null

space estimators in Lemma 2 (i) may seem peculiar compared to their counterparts in Lemma

1 (i). In fact, the expressions are more parsed descriptions of the convergence of null space

estimators in two important respects. First, they allow for the estimated null spaces to exhibit

accelerated rates of convergence. For example, the lemma implies that the right null space

estimator in the I(1) case of Example 3 satisfies T (P
M̂r
Mr −Mr) = Op(1) and, utilizing a

similar argument to that used in the proof of the lemma, this then implies that T (P
M̂r
−PMr) =

Op(1). The left null space estimator, on the other hand, has a standard rate of convergence
√
T (P

N̂r
−PNr) = Op(1). Second, they allow subspaces of the estimated null spaces to exhibit

heterogeneous rates of convergence. In the I(2) case of Example 3, T (P
M̂r
Mr1−Mr1) = Op(1)

and T 2(P
M̂r
Mr2 −Mr2) = Op(1). Thus, it is possible to decompose M̂r as [ M̂r1 M̂r2 ] with

T (P
M̂r1
− PMr1) = Op(1) and T 2(P

M̂r2
− PMr2) = Op(1). Geometrically, the canonical angles

between span(M̂r) and span(Mr) converge to zero at different rates. Note that when the

assumptions of Lemma 2 specialize to those of Lemma 1, the new expressions for the rates of

convergence of the null space estimators are equivalent to the old ones.

Lemma 2 (ii) provides the same results as Lemma 1 (ii) for the DBA but not for the

CDA. For the CDA, we are only ensured the weaker result that P
N̂iT

B̂TPM̂iT
= O−1

p (1),

which implies the even weaker result that [ Nr⊥ NrT ]′P
N̂i
B̂P

M̂i
[ Mr⊥ MrT ] = O−1

p (1).

That is, we are only ensured that a rescaled version of P
N̂i
B̂P

M̂i
is bounded away from zero

in probability. However, when NrT and MrT are bounded in probability we still have that

P
N̂i
B̂P

M̂i
is bounded away from zero in probability and when NrT and MrT are unbounded,

we will see that the CDA is still capable of delivering power in tests of rank based on statistics

invariant to rescaling.

Lemma 2 (iii) states that when B̂∗ remains well within the region of continuity of the

RRA, then as B̂ approaches this sequence the associated null space estimators converge in

probability to the null spaces of (B̂∗)RRAi . It follows that P
N̂i
B̂P

M̂r
− P

N̂∗i
B̂P

M̂∗r
= op(1) and

we will again have an estimator of the non–vanishing components of B̂.

4.3 The Plug–In Principle

Consider the following generalizations of Assumptions A and B.

Assumptions C. B∗ ∈ Rn×m. B̂ ∈ Rn×m and Ω̂ ∈ Snm are estimators indexed by T . Each

vec(B̂) ∈ Rnm is a non–degenerate random vector and B̂ = Op(1). Ω̂ ∈ Pnm+ almost surely. If

Nq ∈ Gn×(n−q) and Mq ∈ Gm×(m−q) span the left and right null spaces of B∗ respectively, there
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exists sequences of possibly random matrices NqT ∈ Gn×(n−q) and MqT ∈ Gm×(m−q), whose

singular values are bounded away from zero in probability, PNqT

p→ PNq and PMqT

p→ PMq ,

and, for γ > 0,

σq(N
′
q⊥B̂Mq⊥) = O−1

p (1), T γN ′qT B̂ = Op(1), T γB̂MqT = Op(1),

T γN ′qT B̂MqT = Op(1), Z ′T Ω̂ZT = Op(1), (Z ′T Ω̂ZT )−1 = Op(1),

where ZT = [ Mq⊥ MqT ]⊗ [ Nq⊥ NqT ].

The symmetric analogue is given by the following set of assumptions.

Assumptions D. B∗ ∈ Sm. B̂ ∈ Sm and Ψ̂ ∈ Sm(m+1)/2 are estimators indexed by T . Each

vec(B̂) ∈ Rm(m+1)/2 is a non–degenerate random vector and B̂ = Op(1). Ψ̂ ∈ Pm(m+1)/2
+

almost surely. If Mq ∈ Gm×(m−q) spans the null space of B∗, there exists a sequence of

possibly random matrices MqT ∈ Gm×(m−q), whose singular values are bounded away from

zero in probability, PMqT

p→ PMq , and, for γ > 0,

σq(M
′
q⊥B̂Mq⊥) = O−1

p (1), T γB̂MqT = Op(1), T γM ′qT B̂MqT = Op(1),

D†mZ
′
TDmΨ̂D′mZTD

†
m
′ = Op(1), (D†mZ

′
TDmΨ̂D′mZTD

†
m
′)−1 = Op(1),

where ZT = [ Mq⊥ MqT ]⊗ [ Mq⊥ MqT ]. In this context, we will set Ω̂ = DmΨ̂D′m.

The alternatives H0(r), HT (r), and H1(r) interact with Assumptions C and D as they did

before, by setting q = rank(B∗). In particular, q = r under H0(r) or HT (r) and q > r under

H1(r). However, unlike in Assumptions A and B, q appears explicitly because the asymptotics

in cointegration are intimately related to the rank of B∗.

Clearly, Assumptions C and D reduce to Assumptions A and B respectively, when
√
T (B̂−

B∗) = Op(1) and NqT and MqT are independent of T . These assumptions establish sufficient

conditions for Lemma 2 to hold under the non–symmetric and symmetric settings respec-

tively. The only additional assumptions concern the asymptotic behaviour of Ω̂ and Ψ̂. These

are required to be asymptotically bounded and well–conditioned after conformable rescaling

with B̂. This is the manifestation of the counterbalancing effect we discussed in Exam-

ple 3. In the I(1) case of Example 3, we need
(

[ Mq⊥ T 1/2Mq ]′Γ̂−1[ Mq⊥ T 1/2Mq ]
)
⊗(

[ Nq⊥ Nq ]′Σ̂[ Nq⊥ Nq ]
)

and its inverse to be Op(1), while in the I(2) case we need(
[ Mq⊥ T 1/2Mq1 T 3/2Mq2 ]′Γ̂−1[ Mq⊥ T 1/2Mq1 T 3/2Mq2 ]

)
⊗
(

[ Nq⊥ Nq ]′Σ̂[ Nq⊥ Nq ]
)

and

its inverse need to be Op(1). In Example 4, Ψ̂ = 1
m−r (D′mDm)−1 (see Example 2), while ZT

and Z−1
T are easily checked to be bounded in probability. The verification of these condi-

tions is a standard part of computing the asymptotic distributions of cointegration statistics
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(Johansen, 1995a,b). See on-line appendices E.3 and E.4 for illustrations of how these condi-

tions are checked in the context of the I(1) model of Example 3 and Example 4 respectively.

Al-Sadoon (2016) provides another illustration.

Definition 5 (The Plug–in Principle in General Asymptotics). Suppose B̂ ∈ Rn×m and

Ω̂ ∈ Pnm are estimators indexed by T , B∗ ∈ Rn×m, and B̂∗ ∈ Rn×m is a random sequence

indexed by T satisfying T γ(B̂ − B̂∗) = Op(1). Suppose the null spaces of B̂∗ converge in

probability to the null spaces of B∗ and let NqT ∈ Gn×(n−q) and MqT ∈ Gm×(m−q) span the

left and right null spaces of B̂∗ respectively. For a given 0 ≤ r < min{n,m} and RRA, let

N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) span the left and right null spaces of B̂RRA
r respectively.

The weak plug–in principle for statistics of tests of rank is said to hold for the statistic

T 2γθτ(B̂, Ω̂, P
N̂r
, P

M̂r
) relative to the null spaces of B̂∗ if

(i) Under eitherH0(r) orHT (r), T 2γθτ(B̂, Ω̂, P
N̂r
, P

M̂r
)−T 2γθτ(B̂, Ω̂, PNrT

, PMrT
) = Op(T

−γ).

(ii) Under H1(r), then |τ(B̂, Ω̂, P
N̂r
, P

M̂r
)| = O−1

p (1) if |τ(B̂, Ω̂, P
N̂∗r
, P

M̂∗r
)| = O−1

p (1), where

N̂∗r ∈ Gn×(n−r) and M̂∗r ∈ Gm×(m−r) span the left and right null spaces of (B̂∗)RRAr

respectively.

It is said to satisfy the strong plug–in principle relative to the null spaces of B̂∗ if additionally

(iii) Under H1(r), τ(B̂, Ω̂, P
N̂r
, P

M̂r
)− τ(B̂, Ω̂, P

N̂∗r
, P

M̂∗r
) = op(1), where N̂∗r ∈ Gn×(n−r) and

M̂∗r ∈ Gm×(m−r) span the left and right null spaces of (B̂∗)RRAr respectively.

When γ = 1
2 , B̂∗ is fixed at B∗ and NqT and MqT are both fixed and span the null spaces

of B∗, the general asymptotics plug–in principle reduces to the standard asymptotics plug–in

principle. Note that the correct scaling for our statistics under general asymptotics is 2γθ

rather than θ and the quality of the approximation in the general plug–in principle under

H0(r) and HT (r) depends on the rate at which B̂ converges to the set of matrices of rank r.

The factor θ will be determined, just as it was before, by Assumptions K.

The generalized set of assumptions and the generalized notion of the plug–in principle

together allow us to generalize Theorem 1.

Theorem 2. Suppose Assumptions K hold along with either Assumptions C or D. Suppose

the null space estimators N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) are obtained by either a DBA

or a CDA with cond(ΘT ) = Op(1). Let B̂∗ = [ Nq⊥ NqT ]−1′
[
N ′q⊥B̂Mq⊥ 0

0 0

]
[ Mq⊥ MqT ]−1

and let N̂∗r ∈ Gn×(n−r) and M̂∗r ∈ Gm×(m−r) span the left and right null spaces of (B̂∗)RRAr
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for r ≤ q. Suppose (i) the following inclusions hold almost surely

P
N̂∗r
B̂P

M̂∗r
∈ X , (P

M̂∗r
⊗ P

N̂∗r
)Ω̂(P

M̂∗r
⊗ P

N̂∗r
) ∈ Y,

P
N̂r
B̂P

M̂r
∈ X , (P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
) ∈ Y,

and (ii) either of the following two conditions hold

(a) For every X ∈ X , Y ∈ Y, N ∈ Gn×n, and M ∈ Gm×m, X̃ = PN−1XN
′XMPM−1X′ ∈ X ,

Ỹ = (PM−1X′M ⊗ PN−1XN)′Y (PM−1X′M ⊗ PN−1XN) ∈ Y, and κ(X̃, Ỹ ) = κ(X,Y ).

Moreover, d(P
N̂∗rT

B̂TPM̂∗rT
,P) = op(1) and d(P

N̂rT
B̂TPM̂rT

,P) = op(1), where N̂∗rT =

[ Nq⊥ NqT ]−1N̂∗r , M̂∗rT = [ Mq⊥ MqT ]−1M̂∗r , N̂rT = [ Nq⊥ NqT ]−1N̂r, M̂rT =

[ Mq⊥ MqT ]−1M̂r, B̂T = [ Nq⊥ NqT ]′B̂[ Mq⊥ MqT ].

(b) ZT = Op(1), d(P
N̂∗r
B̂P

M̂∗r
,P) = op(1), and d(P

N̂r
B̂P

M̂r
,P) = op(1).

Then T 2γθτ(B̂, Ω̂, P
N̂r
, P

M̂r
) = T 2γθκ

(
P
N̂r
B̂P

M̂r
, (P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
)
)

satisfies the

weak plug–in principle relative to the sequence B̂∗. If, additionally, the distance between

B̂∗ and the set of discontinuity points of the rank–r RRA is bounded away from zero in

probability, then the statistic satisfies the strong plug–in principle relative to B̂∗.

Theorem 2 is strictly more general than Theorem 1. When Assumptions C and D specialize

to Assumptions A and B respectively, Theorem 1 is a special case of Theorem 2 (ii). Just

as before, condition (i) ensures that the feasible and infeasible statistics are well defined.

Condition (ii.a) of Theorem 2 is an invariance condition that allows the plug–in principle to

hold in the context of Example 3, where both B̂ and Ω̂ must be rescaled conformably in

order to evaluate the asymptotics. The set of transformations in this condition may seem

peculiar. However, they are simple manifestations of the invariance of all of the statistics we

have considered so far (except for t) with respect to the group of transformations

(B̂, Ω̂, N̂r, M̂r) 7→ (N ′B̂M, (M ⊗N)′Ω̂(M ⊗N), N−1N̂r,M
−1M̂r),

where N ∈ Gn×n and M ∈ Gm×m. Thus, the set of transformations (X,Y ) 7→ (X̃, Ỹ )

with respect to which κ is invariant in condition (i) defines a group. Condition (ii.b), on

the other hand, allows the plug–in principle to hold in the context of Example 4, where

ZT is bounded in probability and the invariance conditions in (i) do not hold. This con-

dition also allows the plug–in principle to hold in standard asymptotics. The intuition of

Theorem 2 is the same as in Theorem 1. If the statistic is invariant to rescaling (i.e. con-

dition (ii.a) holds), then the plug–in principle applies to the rescaled statistic exactly as it
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did before, this time utilizing Lemma 2, because κ
(
P
N̂r
B̂P

M̂r
, (P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
)
)

=

κ
(
P
N̂rT

B̂TPM̂rT
, (P

M̂rT
⊗ P

N̂rT
)Ω̂T (P

M̂rT
⊗ P

N̂rT
)
)

. If, on the other hand, condition (ii.b)

holds, then the same argument as Theorem 1 continues to hold without any modification.

The plug–in principle applied to the context of Example 3 allows one to simply plug–

in the limiting null space of B̂. The plug–in principle applies regardless of the order of

integration of the process (fractional cointegration is also allowed) and not only to the F

statistic but also to the Jg and LRg statistics. It also applies in the contexts of added lags

and arbitrary deterministic terms such as polynomial trends and dummies. The plug–in

principle in Example 4 applies relative to a random sequence rather than a constant one. In

particular, one cannot plug–in the null space of B∗. That is because under either H0(r) or

HT (r), P
M̂r
−PMr = Op(T

−1/2), which is too slow for the plug–in principle to work. One can,

however, plug in MrT as defined in Example 4 because P
M̂r
− PMrT

= Op(T
−1). See on-line

appendices E.4 and F.4 for theoretical and Monte Carlo illustrations respectively.

A large class of statistics is nested under Theorem 2, including all of the standard asymp-

totics statistics of the literature as well as the majority of the cointegration rank statistics in

the literature. In particular, it nests all of the statistics included in Table 1 except for the

ones superscripted by the symbol †. Those, along with recent statistics by Hallin et al. (2016)

and Boswijk et al. (2015), are of the form T 2γθτ({yt : t = 1, . . . , T}, P
M̂r

). Thus, they explic-

itly depend on a null space estimator and their dependence on the data is more complicated

than what we have considered in this paper. However, it is evident from the proofs of the

asymptotics of these results that these statistics are asymptotically equivalent to infeasible

versions T 2γθτ({yt : t = 1, . . . , T}, PMr) under H0(r) and that both the feasible and infeasible

statistics diverge under H1(r). Thus, a form of the plug–in principle continues to hold for

these statistics as well.

It follows from Theorem 2 that the Johansen (1988), Kleibergen & van Dijk (1994), and

Kleibergen & Paap (2006) statistics, which differ from each other only in their implicit null

space estimators, differ from each other by Op(T
−1/2) under H0(r) and HT (r). Thus, the

choice among these will have to depend on either Monte Carlo performance or numerical

expedience as noted in Section 3.

The simplification to asymptotic analysis afforded by Theorem 2 is noteworthy. It allows

the researcher to obtain the asymptotics not only for the different alternatives but also under

misspecification. We summarize in the following corollaries.

Corollary 3. Suppose Assumptions K and C hold and suppose we have null space estima-
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tors N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) obtained by either a DBA or a CDA with cond(ΘT ) =

Op(1). UnderH0(r) orHT (r), if T 2γθτ
(
B̂, Ω̂, PNrT

, PMrT

)
d→ ζ, then T 2γθτ

(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→

ζ. In particular, if(
T γvec(N ′rT B̂MrT ), (MrT ⊗NrT )′Ω̂(MrT ⊗NrT )

)
d→ (ξr,Ωr),

then we have

T 2γ−1LRg

(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

, T 2γ−1F
(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

,

T 2γ−1Jg

(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→ ‖mat(Ω−1/2

r ξr)‖22.

Under H0(r), ξr and Ωr in Corollary 3 are typically functionals of a Brownian motion and

deterministic terms (if deterministic trends are included), while under HT (r) they are typically

of the Ornstein–Uhlenbeck form (Hubrich et al., 2001). The limiting behaviour under H0(r)

and HT (r) of all of the statistics in Johansen (1988), Johansen (1991), Kleibergen & van Dijk

(1994), Yang & Bewley (1996), Quintos (1998), Gonzalo & Pitarakis (1999), Lütkepohl &

Saikkonen (1999), Kleibergen & Paap (2006), Avarucci & Velasco (2009), and Cavaliere et al.

(2010a) follow from Corollary 3. These results assume correct specification, so the limiting

distributions above are nuisance–parameter–free. In the case of misspecification, the limiting

distributions may not be free of nuisance parameters. It follows from Corollary 3 that the

statistics proposed by Johansen (1988), Kleibergen & van Dijk (1994), and Kleibergen &

Paap (2006) have the exact same behaviour under the misspecification conditions of Caner

(1998) (infinite variance shocks), Cavaliere et al. (2010b) (heteroskedastic shocks), and Aznar

& Salvador (2002) and Cavaliere et al. (2014) (misspecified lag length).

Corollary 4. Suppose Assumptions K and D hold and we have a null space estimator M̂r ∈

Gm×(m−r) obtained by either a DBA or a CDA with cond(ΘT ) = Op(1). Under H0(r) or

HT (r), if T 2γθτ
(
B̂, Ω̂, PMrT

, PMrT

)
d→ ζ, then T 2γθτ

(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ζ. In particular, if(

T γvech(M ′rT B̂MrT ), D†m−r(MrT ⊗MrT )′Ω̂(MrT ⊗MrT )D†m−r
′
)

d→ (ξr,Ωr),

then we have

T 2γ−1LRg

(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

, T 2γ−1F
(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

,

T 2γ−1Jg

(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ‖mat(Dm−rΩ

−1/2
r ξr)‖22,

and if MrT
p→Mr, a non–random matrix of orthonormal columns, then

T γ−1/2t
(
B̂, Ω̂, P

M̂r

)
d→ tr(mat(Dm−rξr))

(vec′(Im−r)Dm−rΩrD′m−rvec(Im−r))1/2
.
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Similar observations apply to Corollary 4 as do to Corollary 3. The asymptotic distribu-

tions of the Bierens (1997), Nyblom & Harvey (2000), Breitung (2002), and Nielsen (2010)

statistics under H0(r) and HT (r) follow from Corollary 4.

Corollaries 3 and 4 (and by inclusion, Corollaries 1 and 2) highlight a remarkable property

of the asymptotics of statistics for tests of rank that does not seem to have received sufficient

attention: only the asymptotics along NrT and MrT have any contribution to the limiting

distribution of the test statistics. That is, the asymptotics of B̂ along neither Nr⊥ nor Mr⊥

have any contribution to the asymptotics whatsoever.

5 Monte Carlo

This section illustrates the plug–in principle with two simulation experiments based on Ex-

amples 1 and 4. These were chosen in order to introduce fixed–b tests in the first example and

to showcase the tests based on the QR and Cholesky RRAs in the second example. Size and

power tables along with other simulations based on Example 2 and 3 are available in on-line

appendix E.

5.1 Linear Regression

Considering the set up of Example 1. Let {xt : t = 1, . . . , T} be i.i.d. N(0, I4) and independent

of {εt : t = 1, . . . , T}, a stationary 4–dimensional process satisfying εt = 0.5εt−1 + ut. Let

B =

[
1 0 0 0
0 1 0 0
0 0 0.5 0
0 0 0 0

]
. For Ω̂, we use the non–parametric estimator based on the Bartlett kernel with

bandwidth equal to the sample size. The experiment consists of generating 10000 samples of

sizes ranging from T = 25 to T = 1000. For each sample, we compute F (B̂, Ω̂, P
N̂r
, P

M̂r
) for

r = 0, . . . , 3 and null spaces estimated by SVD, RSD, CDA, LU, and QR RRAs. In the case

of the CDA, we set Θ = Ω̂. We also consider the infeasible F statistics based on the SVD.

The right panels of Figure 1 illustrate the plug–in principle under H0(3). The top right

panel shows the median absolute difference between each feasible statistic and the infeasible

statistic goes to zero in the limit. The lower right panel then provides the Carmér–von Mises

distance between the distribution of the infeasible statistic and the asymptotic distribution,

W 2(1)

2
∫ 1
0 (W (s)−sW (1))2ds

for a standard Brownian motion W (Kiefer & Vogelsang, 2002a). Thus, all

our rank–3 statistics also have this limiting distribution.

The middle panels illustrates the strong plug–in principle under H1(2). In particular,

the top middle panel plots the median absolute deviation of each feasible statistic from the
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Figure 1: Monte Carlo Results for F Statistics

associated infeasible statistic divided by T . The rates of divergence of the statistics are

asymptoticallly equal. This is clearly visible in the lower middle panel which plots the median

F statistic for each sample size. This is due to the fact that BRRA
2 =

[
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]
for all of our

RRAs and all of our rank–2 RRAs are continuous at B.

Finally, the left panels illustrate a setting where the weak plug–in principle holds but not

the strong plug–in principle. The top right panel plots the rates of divergence which are now

heterogeneous. This is also visible in the bottom left panel which plots the median statistics.

This is due to the fact that none of the rank–1 RRAs are continuous at B. B̂RRA
1 fluctuates

between the vicinity of BRRA
1 =

[
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]
and the vicinity of BRRA

2 =

[
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]
as B̂

p→ B

for each RRA. Thus, the null space estimators fluctuate as well and F/T fails to converge

although it stays bounded away from zero in probability by the weak plug–in principle.

5.2 The Local Level Model

Consider the model given in Example 4 with Σ = I4, B =

[
1 0 0 0
0 1 0 0
0 0 0.5 0
0 0 0 0

]
. As before, the exper-

iment consists of generating 10000 samples of sizes ranging from T = 25 to T = 1000. For

each sample, we compute the non–standardized t statistic
√
Tt
(
B̂, 1

m−r (D′mDm)−1, P
M̂r

)
=

T tr(P
M̂r
B̂P

M̂r
), for r = 0, . . . , 3. In particular, we compute the statistics based on the SVD,

LU, QR, and Cholesky RRAs along with their infeasible analogues. The Cholesky statistics

appear here for the first time. Note that the SVD statistic is the Nyblom & Harvey (2000)
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Figure 2: Monte Carlo Results for Cointegration t Statistics

statistic. Note also that the infeasible statistics do not agree across RRAs because, for r = 1, 2,

(B̂∗)RRAr is not invariant to the choice of RRA as it was in the previous experiment.

The format of Figure 2 is the same as in 1. In particular, the right panels of Figure 2

show that the difference between each statistic and its infeasible analogue goes to zero in

the limit. In turn, all of our statistics have the same limiting distribution under H0(3) (see

on-line appendix E). The middle and left panels then look at the performance under H1(2)

and H1(1) respectively. The top panels make clear that the strong plug–in principle is at play

here as the median absolute difference between each statistic and its infeasible analogue goes

to zero. This is due to the fact that each vech(B̂∗) is non–degenerate in the space of positive

semi–definite matrices of rank 3. Thus (B̂∗)RRAr stays away from the (non–generic) points of

discontinuity of each RRA for r = 1, 2. However, unlike in the previous experiment, the rates

of divergence displayed in the lower panels are heterogeneous, again, because (B̂∗)RRAr differ

across RRAs for r = 1, 2.

5.3 Further Monte Carlo

More extensive experiments are provided in on-line appendix F. These consider size and power

of the various tests above in the context of Examples 1 – 4. Here we summarize the findings.

First, there does not appear to be a uniformly best performing test in small samples. Second,

tests based on the infeasible statistics have a tendency to over–reject relative to the tests based
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on the feasible statistics. To see why this makes sense, recall that statistics for tests of rank

can be seen as measures of how large P
N̂r
B̂P

M̂r
is (see Section 3.1). When this quantity is

small, we accept H0(r) and when it is large we reject in favour of H1(r). Now under H0(r),

P
N̂r
B̂P

M̂r
is likely to be of smaller size than PNrB̂PMr because in the former expression the

null space estimators are actively trying to annihilate B̂ whereas is the latter expression the

implicit null space estimators are passive and do not adapt to B̂. Third, fixed–b tests have

better size properties than their small–b counterparts. This accords with the Monte Carlo

evidence documented in the fixed–b literature. Finally, the Cragg & Donald (1997) tests have

a tendency to reject less frequently than all the other statistics regardless of the alternative

being tested.

6 Conclusion

This paper has demonstrated that the asymptotic behaviour of statistics for tests of rank is

determined by the asymptotic behaviour of implicit null space estimators through a plug–in

principle. This has allowed for a general theory of tests of rank that simplified the asymptotics

under the various alternatives, clarified the relationships between the various statistics in the

literature, made full use of the numerical analysis literature, and motivated many new tests.

We briefly mention some possible venues for future research. First, we have considered the

performance of test of rank under a fixed–rank hypothesis and higher rank alternatives but not

lower rank alternatives. The approach of this paper can be used to obtain well known results

by Cragg & Donald (1997) (Al-Sadoon, 2015, p. 40) but generalizations of these results seem

to be highly non–trivial and deserve further investigation. Second, as a number of statistics

in the literature have been shown to be asymptotically equivalent, the next natural step is

to study small sample performance and higher order asymptotics. On-line appendix F goes a

small step in that first direction, while the second direction is the subject of ongoing research.

Third, as this paper has presented a theory of null space estimation, the natural next step

is to consider inference on the directionality (rather than the dimension) of the null spaces.

Fourth, model selection techniques can be used to turn any statistic for a test of rank into an

index whose optimum estimates rank (see Al-Sadoon (2015)), thus rank estimation deserves

further investigation in both theory and Monte Carlo simulations. Finally, high–dimensional

tests of rank would be very useful for many applications in macroeconomics and finance.This

is not econometrics.
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